CHAPTER XI MICROPHONES AND TELEPHONESIn 1878, David Edward Hughes discovered that the imperfect contact formed between two pieces of some such substance as carbon or charcoal is very sensitive to the slightest changes in pressure, and when included in an electric circuit with a battery and a telephone receiver, will transmit sounds. Such an instrument is called amicrophone. It has various forms but in most of them one piece of carbon or charcoal is held loosely between two other pieces in such a manner as to be easily affected by the slightest vibrations conveyed to it through the air or any other medium.Fig. 143.—A Microphone connected to a Telephone Receiver, and a Battery.Fig. 143.—A Microphone connected to a Telephone Receiver, and a Battery.Figure 143 illustrates a simple form of instrument embodying this principle. A small pencil of carbon is supported loosely between two blocks of the same substance glued to a thin wooden sounding-board of pine. The sounding-board is mounted in an upright position on a wooden base. The carbon pencil rests loosely in two small indentations in the carbon blocks. The blocks are connected, by means of a very fine wire or a strip of tinfoil, with one or two cells of battery and a telephone receiver. Any vibration or sounds in range of the microphone will cause the sounding-board to vibrate. This will affect the pressure of the contact between the carbon pencil and the two blocks. When the pressure between the two is increased the resistance in the path of the electric current is decreased and more current immediately flows through the circuit. On the other hand, when the pressure is decreased, the resistance is increased and less current flows through the telephone receiver. The amount of current flowing in the circuit thus keeps step with the changes in the resistance, and accordingly produces sounds in the telephone receiver. The vibrations emitted from the receiver are usually much greater than those of the original sounds, and so the microphone may be used to magnify weak sounds such as the ticking of clock-wheels or the footfalls of insects. If a watch is laid on the base of the microphone, the ticking of the escapement wheel can be heard with startling loudness. The sounds caused by a fly walking on a microphone may be made to sound as loud as the tramp of a horse.Fig. 144.—A Very Sensitive Form of Microphone, with which the Footsteps of a Fly can be heard.Fig. 144.—A Very Sensitive Form of Microphone, with which the Footsteps of a Fly can be heard.The electricalstethoscopesused by physicians to listen to the action of the heart are in principle only a microphone and telephone receiver connected to a battery.The drawing in Figure 144 illustrates a very sensitive microphone that is quite easy to make. With this instrument it is possible to hear the tramping of a fly’s feet or the noise of its wings.The base upon which the apparatus is mounted serves as the sounding-board and is made in the form of a hollow wooden box. It can be made from an ordinary cigar-box by removing the paper and taking the box apart. The piece forming the top of the box must be planed down until it is only three thirty-seconds of an inch thick. The box should measure about five inches square and three-quarters of an inch thick when finished. Do not use any nails or small brads whatsoever in its construction, but fasten it together with glue. If you use any nails you will decrease the sensitiveness of the instrument quite appreciably. The bottom of the box should be left open. The result is a sounding-board of the same principles as that of the banjo head. Small feet, one-quarter of an inch square, are glued to the four under corners so as to raise the bottom clear of the table, or whatever the microphone may be placed upon. The bottom of each one of the small feet is cushioned with a layer of felt so that no jars will be transmitted to the instrument by any object upon which it is resting.The carbon pencil used on this type of instrument is pivoted in the center and rests at one end upon a carbon block.The carbon block is made about one inch long, one-quarter of an inch thick, and one-half of an inch wide. A small hole is drilled near each end to receive a screw which fastens the block to the sounding-board. A fine wire is led from one of these screws to a binding-post mounted at the side of the box. Another wire leads from a second binding-post to a standard which is also fastened to the sounding-board with a small screw.The standard is made from a sheet of thin brass and is bent into the shape shown in the illustration.The pencil is a piece of one-quarter-inch carbon rod, two and three-quarter inches long. A small hole is drilled one and five-eighths of an inch from one end with a sewing-needle, and a piece of fine brass wire, pointed at both ends, pushed in. The wire should be a tight fit in the hole. It should be about one-half of an inch long, and may be made from an ordinary pin.The slide-bar is used to regulate the pressure of the pencil upon the carbon block and is simply a piece of soft copper wire about one-eighth of an inch in diameter. It is bent into the shape shown in the illustration so that it will slide over the carbon pencil. The sides of the standard should press just tightly enough against the ends of the pivot which passes through the carbon pencil to hold it in position without slipping, and at the same time allow it to swing freely up and down.The two binding-posts should be connected in series with two dry cells and a pair of good telephone receivers. Place the receivers against the ears. Move the slide-bar gently back and forth until the voice of any one talking in another part of the room can be heard distinctly in the telephone receivers. In order to hear faint whispers, move the slide-bar away from the carbon block.In order to hear a fly walk it is necessary to have the carbons very dry and clean. The instrument must be very carefully adjusted. Cover the microphone with a large glass globe and place a fly inside of the globe. Whenever the fly walks on any part of the microphone you will be able to hear each footstep in the telephone receivers. When he flies about inside of the globe, his wings will cause a loud roaring and buzzing noise to be heard in the receivers.TelephonesNot many years ago, when the telephone made its first appearance, it was the wonder of the times just as wireless telegraphy is to-day. Starting as an exceedingly simple and inexpensive apparatus, it has gradually developed into a wonderful and complex system, so that at the present time, instead of experiencing difficulty in telephoning over distances of fifty or one hundred miles, as at first, it is possible to carry on a conversation over a line two thousand miles long as easily as it is face to face.Like the telegraph, the principle of the telephone is that of a current of electricity flowing over a line wire into a pair of electro-magnets, but with many important differences.When compared with telegraph apparatus, the telephone is found to be exceedingly sensitive. A telegraph relay requires perhaps about one-hundredth of an ampere to work it properly. A telegraph sounder will require about one-tenth of an ampere, but a telephone receiver will render speech audible with less than a millionth of an ampere, and therefore may almost be said to be a hundred thousand times more sensitive than a sounder.Another difference between the telephone and the telegraph lies in the fact that the currents flowing over a telegraph line do not usually vary at a rate greater than twenty or thirty times a second, whereas telephone currents change their intensity hundreds of times a second.The telephone is an instrument for the transmission of speech to a distance by means of electricity, wherein the speaker talks to an elastic plate of thin sheet-iron which vibrates and sends out a pulsating current of electricity.The transmission of the vibrations depends upon well-known principles of electricity, and does not consist of the actual transmission of sounds, but of electrical impulses which keep perfect accord or step with the sound waves produced by the voice in the transmitter. These electrical currents pass through a pair of small electro-magnets acting upon a plate or diaphragm, which in turn agitates the air in a manner similar to the original voice speaking into the transmitter and thus emits sounds.That part of the apparatus which takes up the sounds and changes them into electric currents composes thetransmitter. When words are spoken into the mouthpiece they strike a diaphragm, on the back of which is fastened a small cup-shaped piece of carbon. A second cup is mounted in a rigid position directly back of the first. The space between them is filled with small polished granules of carbon. When these granules are in a perfectly loose state and are undisturbed, their resistance to an electric current is very great and they allow almost none to flow.2When slightly compressed their resistance is greatly lowered and they permit the current to pass. The vibrations of the diaphragm cause the carbon cup mounted on its back to move and exert a varying pressure upon the granules with a corresponding variation in their resistance and the amount of current which will pass through.Fig. 145.—A Telephone System, consisting of a Receiver, Transmitter, and a Battery connected in Series.Fig. 145.—A Telephone System, consisting of a Receiver, Transmitter, and a Battery connected in Series. Words spoken into the Transmitter are reproduced by the Receiver.Thereceiver, or that part of the apparatus which transforms the pulsating current back into sound waves consists of a thin iron disk, placed very near but not quite touching the end of a small steel bar, permanently magnetized, and about which is wound a coil of fine insulated wire.The transmitter and the receiver are connected together in series with a battery as in Figure 145. When words are spoken into the transmitter the little carbon granules are immediately thrown into motion, and being alternately compressed and released cause corresponding changes in the current flowing through the receiver from the battery. The magnetism of the receiver changes with each change in the electric current, and thus by alternately attracting and repelling the diaphragm causes it to vibrate and emit sounds. Such is theprincipleof the telephone. The telephones in actual service to-day are complicated with bells, magnetos, induction coils, condensers, relays, and various other apparatus, which fact renders them more efficient.The bells and magnetos are for the purpose of calling the central operator or the person at the other end of the line and drawing attention to the fact that some one wishes to get into communication with him. The older styles of telephones used what is known as a polarized bell and a hand magneto for this purpose. A polarized bell is a very sensitive piece of apparatus which will operate with very little current. A magneto is a small hand dynamo which when turned with a crank will generate a current causing the bell at the other end of the line to ring. When the telephone receiver is raised off its hook in order to place it to the ear the bell and magneto are automatically disconnected from the line and the receiver and the transmitter are connected in their place. The current necessary to supply the telephone and receiver is supplied by two or three dry cells placed inside of each telephone.The latest types of instruments employ what is known as the central energy system, wherein the current is supplied by a large storage battery located at the central office and serving as a current supply to all the telephones connected to that system.It would be impossible to enter into the history of the telephone far enough to explain the details of some of the various systems in every-day use in such a book as this because of the immense amount of material it would be necessary to present. Such a work would occupy a volume of its own. Additional information may be readily found in any reference library. However, the "boy electrician" who wishes to make a telephone for communicating between the house and barn, or with his chum down the street, will find the necessary information in the following pages. If this work is carried out carefully and a home-made telephone system built and installed it will not only prove a very interesting undertaking but will also serve to dispel all mystery which may surround this device in the mind of the young experimenter.How to Build a TelephoneTelephone receivers are useful for many purposes in electrical work other than to receive speech. They are used in connection with wireless instruments, in place of a galvanometer in measuring electrical circuits, and for testing in various ways.Telephone receivers are of two types. One of them is long and cumbersome, and is very similar to the original Bell telephone receiver. The other is small and flat, and is called a "watch-case" receiver. A watch-case receiver is shown in Figure 146. It consists of a U-shaped permanent magnet so mounted as to exert a polarizing influence upon a pair of little electro-magnets, before the poles of which is placed an iron diaphragm. For convenience, these parts are assembled in a small cylindrical casing, usually of hard rubber. The permanent magnet exerts a continual pull upon the diaphragm, tending to draw it in. When the telephone currents pass through the little magnets, they will either strengthen the permanent magnet and assist it in attracting the diaphragm, or detract from its strength and allow the diaphragm to recede, depending upon which direction the current flows.Fig. 146.—A Watch-Case Telephone Receiver.Fig. 146.—A Watch-Case Telephone Receiver.Watch-case receivers are usually employed for wireless telegraph work because they are very light in weight and can easily be attached to a head-band in order to hold them to the ears and leave the hands free. Watch-case receivers can be purchased for forty-five to seventy-five cents at almost any electrical supply house. They are very useful to the amateur experimenter in many ways.A telephone receiver capable of giving fair results on a short telephone line can be very easily made, but of course will not prove as efficient as one which is purchased ready-made from a reliable electrical manufacturer.The first practical telephone receiver was invented by Alexander Graham Bell and was made somewhat along the same lines as that shown in Figure 147.Such a receiver may be made from a piece of curtain-pole, three and three-quarter inches long and about one and one-eighth inches in diameter. A hole, three-eighths of an inch in diameter, is bored along the axis throughout its entire length, to receive the permanent magnet.The shell of the receiver is a cup-shaped piece of hard wood, two and one-half inches in diameter and one inch deep. It will have to be turned on a lathe. Its exact shape and dimensions are best understood from the dimensions shown in the cross section in Figure 147. The shell is firmly attached to one end of the piece of curtain-pole by gluing.The permanent magnet is a piece of hard steel, three-eighths of an inch in diameter and four and five-eighths of an inch in length. The steel will have to be tempered or hardened before it will make a suitable magnet, and the best way to accomplish this is to have a blacksmith do it for you by heating the rod and then plunging it into water when just at the right temperature.Fig. 147.—A Simple Form of Telephone Receiver.Fig. 147.—A Simple Form of Telephone Receiver.One end of the bar is fitted with two thick fiber washers about seven-eighths of an inch in diameter and spaced one-quarter of an inch apart. The bobbin so formed is wound full of No. 36 B. & S. gauge single-silk-covered magnet wire. The ends of the wire are passed through two small holes in the fiber washers and then connected to a pair of heavier wires. The wires are run through two holes in the curtain-pole, passing lengthwise from end to end, parallel to the hole bored to receive the bar magnet.This bar magnet is then pushed through the hole until the end of the rod on which the spool is fixed is just below the level of the edges of the shell.The two wires are connected to binding-posts,AandB, mounted on the end of the receiver. A hook is also provided so that the receiver may be hung up.The diaphragm is a circular piece of thin sheet-iron, two and one-half inches in diameter. It is placed over the shell, and the bar magnet adjusted until the end almost touches the diaphragm. The magnet should fit into the hole very tightly, so that it will have to be driven in order to be moved back and forth.The diaphragm is held in place by a hard-wood cap, two and three-quarter inches in diameter and having a hole three-quarters of an inch in diameter in the center. The cap is held to the shell by means of four small brass screws.The receiver is now completed and should give a loud click each time that a battery is connected or disconnected from the two posts,AandB.The original Bell telephone apparatus was made up simply of two receivers without any battery or transmitter. In such a case the current is generated by "induction." The receiver is used to speak through as well as to hear through. This method of telephoning is unsatisfactory over any appreciable distances. The time utilized in making a transmitter will be well spent.A simple form of transmitter is shown in Figure 148. The wooden back,B, is three and one-half inches square and three-quarters of an inch thick. The front face of the block is hollowed out in the center as shown in the cross-section view.The face-plate,A, is two and one-half inches square and one-half an inch thick. A hole, seven-eighths of an inch in diameter, is bored through the center. One side is then hollowed out to a diameter of one and three-quarter inches, so as to give space for the diaphragm to vibrate as shown in the cross-sectional drawing.The carbon buttons are one inch in diameter and three-sixteenths of an inch thick. A small hole is bored in the center of each to receive a brass machine screw. The hole is countersunk, so as to bring the head of the screw down as close to the surface of the carbon as is possible. Then, using a sharp knife or a three-cornered file, score the surface of the carbon until it is covered with criss-cross lines.The diaphragm is a piece of thin sheet-iron cut in the form of a circle two and one-half inches in diameter. A small hole is bored through the center of this. One of the carbon buttons is fastened to the center of the diaphragm with a small screw and a nut.Cut out a strip of flannel or thin felt, nine-sixteenths of an inch wide and three and one-half inches long. Around the edge of the carbon button mounted on the diaphragm, bind this strip with silk thread in such a manner that the strip forms a cylinder closed at one end with the button.Fill the cylinder with polished carbon telephone transmitter granules to a depth of about one-eighth of an inch. These granules will have to be purchased from an electrical supply house. They are finely polished small carbon balls, much like birdshot in appearance.Slip a long machine-screw through the hole in the second carbon button and clamp it in place with a nut. Then place the carbon button in the cylinder so that it closes up the end. The space between the two buttons should be about three-sixteenths of an inch. Bind the flannel or felt around the button with a piece of silk thread so that it cannot slip out of place. The arrangement of the parts should now be the same as that shown by the cross-sectional drawing in the upper right-hand corner of Figure 148.The complete transmitter is assembled as shown in the lower part of Figure 148.A small tin funnel is fitted into the hole in the face-plate,A, to act as a mouthpiece.A screw passes through the back,B, and connects to the diaphragm. The screw is marked "E" in the illustration. A binding-post is threaded on the screw so that a wire may be easily connected. The screw passing through the back carbon button also passes through a hole in the wooden back, and is clamped firmly in position with a brass nut so that the button is held very rigidly and cannot move. The front button, being attached to the diaphragm, is free to move back and forth with each vibration of the latter.Fig. 148.—A Home-made Telephone Transmitter.Fig. 148.—A Home-made Telephone Transmitter.The carbon granules should fill the space between the buttons three-quarters full. They should lie loosely together, and not be packed in.When connected to a battery and a telephone receiver the current passes from the post,D, to the back button, through the mass of carbon granules into the front button and out at the post,E. When the voice is directed into the mouthpiece, the sound waves strike the diaphragm and cause it to vibrate. The front button attached to it then also vibrates and constantly changes the pressure on the carbon granules. Each change in pressure is accompanied by an immediate change in resistance and consequently the amount of current flowing.Figure 149 shows a complete telephone ready for mounting on the wall. It consists of a receiver, telephone transmitter, bell, hook, and push-button. The bell is mounted on a flat base-board. The transmitter is similar to that just described, but is built into the front of a box-like cabinet. The box is fitted with a push-button at the lower right-hand corner. A simple method of making a suitable push-button is shown in the upper left-hand part of the illustration. It consists of two small brass strips arranged so that pushing a small wooden plug projecting through the side of the cabinet will bring the two strips together and make an electrical connection.The "hook" consists of a strip of brass, pivoted at one end with a round-headed brass wood screw and provided with a small spring, so that when the receiver is taken off of the hook it will fly up and make contact with a screw, markedCin the illustration. When the receiver is on the hook, its weight will draw the latter down against the screw,D. The hook is mounted on the base-board of the telephone, and projects through a slot cut in the side of the cabinet.Four binding-posts are mounted on the lower part of the base-board. The two markedBandBare for the battery.Fig. 149.—A Complete Telephone Instrument.Fig. 149.—A Complete Telephone Instrument. Two Instruments such as this are necessary to form a simple Telephone System.That markedLis for the "line," andGis for the ground connection or the return wire.Fig. 150.—Diagram of Connection for the Telephone Instrument shown in Fig. 149.Fig. 150.—Diagram of Connection for the Telephone Instrument shown in Fig. 149.The diagram of the connections is shown in Figure 150. The line-wire coming from the telephone at the other station enters through the binding-post markedL, and then connects to the hook. The lower contact on the hook is connected to one terminal of the bell. The other terminal of the bell leads to the binding-post markedG, which is connected to the ground, or to the second line-wire, where two are used.The post,G, and one post,B, are connected together. The other post markedBconnects to one terminal of the transmitter. The other terminal of the transmitter is connected to the telephone receiver. The other post of the telephone receiver leads to the upper contact on the hook markedC. The push-button is connected directly across the terminals of the transmitter and the receiver so that when the button is pushed it short-circuits the transmitter and the receiver. When the receiver is on the hook and the latter is down so that it makes contact withDany current coming over the line-wire will pass through the bell and down through the ground or the return-wire to the other station, thus completing the circuit. If the current is strong enough it will ring the bed. When the receiver is lifted off the hook, the spring will cause the hook to rise and make contact with the screw markedC. This will connect the receiver, transmitter, and the battery to the line so that it is possible to talk. If, however, it is desired to ring the bell on the instrument at the other end of the line, all that it is necessary to do is to press the push-button. This will short-circuit the receiver and the transmitter and ring the bell. The battery current is flowing over the line all the time when the receiver is up, but the transmitter and the receiver offer so much resistance to its flow that not enough current can pass to ring the bell until the resistance is cut out by short-circuiting them with the push-button.The instruments at both ends of the line should be similar. In connecting them together care should be taken to see that the batteries at each end of the line are arranged so that they are in series and do not oppose each other. One side of the line may be a wire, but the return may be the ground, as already explained in the chapter on telegraph apparatus.A transmitter of the "desk-stand" type may be made according to the scheme shown in Figure 151. It consists simply of a transmitter mounted upon an upright, and provided with a base so that it may stand on a desk or a table.Fig. 151.—A Desk-Stand Type of Telephone.Fig. 151.—A Desk-Stand Type of Telephone.It is also fitted with a hook and a push-button, so that it is a complete telephone instrument with the exception of the bell and the battery. The battery and the bell may be located in another place and connected to the desk-stand by means of a flexible wire or "electrical cord."Figure 152 shows what is known as a telephone induction coil. Induction coils are used in telephone systems whenever it is necessary to work over a long distance. Such a system is more complicated, and requires considerable care in making the connections, but is far superior to the system just described.Fig. 152.—A Telephone Induction Coil.Fig. 152.—A Telephone Induction Coil.An induction coil consists of two fiber or hard-wood heads, about one inch square and one-quarter of an inch thick, mounted on the ends of an iron core composed of a bundle of small iron wires about two and one-half inches long. The core should be about five-sixteenths of an inch in diameter.The core is covered with a layer of paper and then wound with three layers of No. 22 B. & S. single-cotton-covered wire. These three layers of wire form theprimary. The primary is covered with a layer of paper and then the secondary is wound on. The secondary consists of twelve layers of No. 36 B. & S. single-silk-covered magnet wire. It is advisable to place a layer of paper between layers of the secondary winding, and to give each one a coating of shellac. The two secondary terminals of the coil are led out through holes in the fiber head and kept separate from the primary terminals.Fig. 153.—Diagram of Connection for a Telephone System employing an Induction Coil at each Station.Fig. 153.—Diagram of Connection for a Telephone System employing an Induction Coil at each Station.The wiring diagram of a telephone system using an induction coil at each station is shown in Figure 153. The speech sent over a line using an induction coil system is much clearer and more easily understood than that on a line not using such a device.In building telephone instruments or connecting them up, care and accuracy will go a long way towards success. Telephony involves some very delicate and sensitive vibratory mechanical and electrical actions, and such instruments must be very carefully made.[2]A transmitter is really a microphone built especially to receive the sounds of the human voice, and operates on the same principle.INDUCTION COILS
CHAPTER XI MICROPHONES AND TELEPHONESIn 1878, David Edward Hughes discovered that the imperfect contact formed between two pieces of some such substance as carbon or charcoal is very sensitive to the slightest changes in pressure, and when included in an electric circuit with a battery and a telephone receiver, will transmit sounds. Such an instrument is called amicrophone. It has various forms but in most of them one piece of carbon or charcoal is held loosely between two other pieces in such a manner as to be easily affected by the slightest vibrations conveyed to it through the air or any other medium.Fig. 143.—A Microphone connected to a Telephone Receiver, and a Battery.Fig. 143.—A Microphone connected to a Telephone Receiver, and a Battery.Figure 143 illustrates a simple form of instrument embodying this principle. A small pencil of carbon is supported loosely between two blocks of the same substance glued to a thin wooden sounding-board of pine. The sounding-board is mounted in an upright position on a wooden base. The carbon pencil rests loosely in two small indentations in the carbon blocks. The blocks are connected, by means of a very fine wire or a strip of tinfoil, with one or two cells of battery and a telephone receiver. Any vibration or sounds in range of the microphone will cause the sounding-board to vibrate. This will affect the pressure of the contact between the carbon pencil and the two blocks. When the pressure between the two is increased the resistance in the path of the electric current is decreased and more current immediately flows through the circuit. On the other hand, when the pressure is decreased, the resistance is increased and less current flows through the telephone receiver. The amount of current flowing in the circuit thus keeps step with the changes in the resistance, and accordingly produces sounds in the telephone receiver. The vibrations emitted from the receiver are usually much greater than those of the original sounds, and so the microphone may be used to magnify weak sounds such as the ticking of clock-wheels or the footfalls of insects. If a watch is laid on the base of the microphone, the ticking of the escapement wheel can be heard with startling loudness. The sounds caused by a fly walking on a microphone may be made to sound as loud as the tramp of a horse.Fig. 144.—A Very Sensitive Form of Microphone, with which the Footsteps of a Fly can be heard.Fig. 144.—A Very Sensitive Form of Microphone, with which the Footsteps of a Fly can be heard.The electricalstethoscopesused by physicians to listen to the action of the heart are in principle only a microphone and telephone receiver connected to a battery.The drawing in Figure 144 illustrates a very sensitive microphone that is quite easy to make. With this instrument it is possible to hear the tramping of a fly’s feet or the noise of its wings.The base upon which the apparatus is mounted serves as the sounding-board and is made in the form of a hollow wooden box. It can be made from an ordinary cigar-box by removing the paper and taking the box apart. The piece forming the top of the box must be planed down until it is only three thirty-seconds of an inch thick. The box should measure about five inches square and three-quarters of an inch thick when finished. Do not use any nails or small brads whatsoever in its construction, but fasten it together with glue. If you use any nails you will decrease the sensitiveness of the instrument quite appreciably. The bottom of the box should be left open. The result is a sounding-board of the same principles as that of the banjo head. Small feet, one-quarter of an inch square, are glued to the four under corners so as to raise the bottom clear of the table, or whatever the microphone may be placed upon. The bottom of each one of the small feet is cushioned with a layer of felt so that no jars will be transmitted to the instrument by any object upon which it is resting.The carbon pencil used on this type of instrument is pivoted in the center and rests at one end upon a carbon block.The carbon block is made about one inch long, one-quarter of an inch thick, and one-half of an inch wide. A small hole is drilled near each end to receive a screw which fastens the block to the sounding-board. A fine wire is led from one of these screws to a binding-post mounted at the side of the box. Another wire leads from a second binding-post to a standard which is also fastened to the sounding-board with a small screw.The standard is made from a sheet of thin brass and is bent into the shape shown in the illustration.The pencil is a piece of one-quarter-inch carbon rod, two and three-quarter inches long. A small hole is drilled one and five-eighths of an inch from one end with a sewing-needle, and a piece of fine brass wire, pointed at both ends, pushed in. The wire should be a tight fit in the hole. It should be about one-half of an inch long, and may be made from an ordinary pin.The slide-bar is used to regulate the pressure of the pencil upon the carbon block and is simply a piece of soft copper wire about one-eighth of an inch in diameter. It is bent into the shape shown in the illustration so that it will slide over the carbon pencil. The sides of the standard should press just tightly enough against the ends of the pivot which passes through the carbon pencil to hold it in position without slipping, and at the same time allow it to swing freely up and down.The two binding-posts should be connected in series with two dry cells and a pair of good telephone receivers. Place the receivers against the ears. Move the slide-bar gently back and forth until the voice of any one talking in another part of the room can be heard distinctly in the telephone receivers. In order to hear faint whispers, move the slide-bar away from the carbon block.In order to hear a fly walk it is necessary to have the carbons very dry and clean. The instrument must be very carefully adjusted. Cover the microphone with a large glass globe and place a fly inside of the globe. Whenever the fly walks on any part of the microphone you will be able to hear each footstep in the telephone receivers. When he flies about inside of the globe, his wings will cause a loud roaring and buzzing noise to be heard in the receivers.TelephonesNot many years ago, when the telephone made its first appearance, it was the wonder of the times just as wireless telegraphy is to-day. Starting as an exceedingly simple and inexpensive apparatus, it has gradually developed into a wonderful and complex system, so that at the present time, instead of experiencing difficulty in telephoning over distances of fifty or one hundred miles, as at first, it is possible to carry on a conversation over a line two thousand miles long as easily as it is face to face.Like the telegraph, the principle of the telephone is that of a current of electricity flowing over a line wire into a pair of electro-magnets, but with many important differences.When compared with telegraph apparatus, the telephone is found to be exceedingly sensitive. A telegraph relay requires perhaps about one-hundredth of an ampere to work it properly. A telegraph sounder will require about one-tenth of an ampere, but a telephone receiver will render speech audible with less than a millionth of an ampere, and therefore may almost be said to be a hundred thousand times more sensitive than a sounder.Another difference between the telephone and the telegraph lies in the fact that the currents flowing over a telegraph line do not usually vary at a rate greater than twenty or thirty times a second, whereas telephone currents change their intensity hundreds of times a second.The telephone is an instrument for the transmission of speech to a distance by means of electricity, wherein the speaker talks to an elastic plate of thin sheet-iron which vibrates and sends out a pulsating current of electricity.The transmission of the vibrations depends upon well-known principles of electricity, and does not consist of the actual transmission of sounds, but of electrical impulses which keep perfect accord or step with the sound waves produced by the voice in the transmitter. These electrical currents pass through a pair of small electro-magnets acting upon a plate or diaphragm, which in turn agitates the air in a manner similar to the original voice speaking into the transmitter and thus emits sounds.That part of the apparatus which takes up the sounds and changes them into electric currents composes thetransmitter. When words are spoken into the mouthpiece they strike a diaphragm, on the back of which is fastened a small cup-shaped piece of carbon. A second cup is mounted in a rigid position directly back of the first. The space between them is filled with small polished granules of carbon. When these granules are in a perfectly loose state and are undisturbed, their resistance to an electric current is very great and they allow almost none to flow.2When slightly compressed their resistance is greatly lowered and they permit the current to pass. The vibrations of the diaphragm cause the carbon cup mounted on its back to move and exert a varying pressure upon the granules with a corresponding variation in their resistance and the amount of current which will pass through.Fig. 145.—A Telephone System, consisting of a Receiver, Transmitter, and a Battery connected in Series.Fig. 145.—A Telephone System, consisting of a Receiver, Transmitter, and a Battery connected in Series. Words spoken into the Transmitter are reproduced by the Receiver.Thereceiver, or that part of the apparatus which transforms the pulsating current back into sound waves consists of a thin iron disk, placed very near but not quite touching the end of a small steel bar, permanently magnetized, and about which is wound a coil of fine insulated wire.The transmitter and the receiver are connected together in series with a battery as in Figure 145. When words are spoken into the transmitter the little carbon granules are immediately thrown into motion, and being alternately compressed and released cause corresponding changes in the current flowing through the receiver from the battery. The magnetism of the receiver changes with each change in the electric current, and thus by alternately attracting and repelling the diaphragm causes it to vibrate and emit sounds. Such is theprincipleof the telephone. The telephones in actual service to-day are complicated with bells, magnetos, induction coils, condensers, relays, and various other apparatus, which fact renders them more efficient.The bells and magnetos are for the purpose of calling the central operator or the person at the other end of the line and drawing attention to the fact that some one wishes to get into communication with him. The older styles of telephones used what is known as a polarized bell and a hand magneto for this purpose. A polarized bell is a very sensitive piece of apparatus which will operate with very little current. A magneto is a small hand dynamo which when turned with a crank will generate a current causing the bell at the other end of the line to ring. When the telephone receiver is raised off its hook in order to place it to the ear the bell and magneto are automatically disconnected from the line and the receiver and the transmitter are connected in their place. The current necessary to supply the telephone and receiver is supplied by two or three dry cells placed inside of each telephone.The latest types of instruments employ what is known as the central energy system, wherein the current is supplied by a large storage battery located at the central office and serving as a current supply to all the telephones connected to that system.It would be impossible to enter into the history of the telephone far enough to explain the details of some of the various systems in every-day use in such a book as this because of the immense amount of material it would be necessary to present. Such a work would occupy a volume of its own. Additional information may be readily found in any reference library. However, the "boy electrician" who wishes to make a telephone for communicating between the house and barn, or with his chum down the street, will find the necessary information in the following pages. If this work is carried out carefully and a home-made telephone system built and installed it will not only prove a very interesting undertaking but will also serve to dispel all mystery which may surround this device in the mind of the young experimenter.How to Build a TelephoneTelephone receivers are useful for many purposes in electrical work other than to receive speech. They are used in connection with wireless instruments, in place of a galvanometer in measuring electrical circuits, and for testing in various ways.Telephone receivers are of two types. One of them is long and cumbersome, and is very similar to the original Bell telephone receiver. The other is small and flat, and is called a "watch-case" receiver. A watch-case receiver is shown in Figure 146. It consists of a U-shaped permanent magnet so mounted as to exert a polarizing influence upon a pair of little electro-magnets, before the poles of which is placed an iron diaphragm. For convenience, these parts are assembled in a small cylindrical casing, usually of hard rubber. The permanent magnet exerts a continual pull upon the diaphragm, tending to draw it in. When the telephone currents pass through the little magnets, they will either strengthen the permanent magnet and assist it in attracting the diaphragm, or detract from its strength and allow the diaphragm to recede, depending upon which direction the current flows.Fig. 146.—A Watch-Case Telephone Receiver.Fig. 146.—A Watch-Case Telephone Receiver.Watch-case receivers are usually employed for wireless telegraph work because they are very light in weight and can easily be attached to a head-band in order to hold them to the ears and leave the hands free. Watch-case receivers can be purchased for forty-five to seventy-five cents at almost any electrical supply house. They are very useful to the amateur experimenter in many ways.A telephone receiver capable of giving fair results on a short telephone line can be very easily made, but of course will not prove as efficient as one which is purchased ready-made from a reliable electrical manufacturer.The first practical telephone receiver was invented by Alexander Graham Bell and was made somewhat along the same lines as that shown in Figure 147.Such a receiver may be made from a piece of curtain-pole, three and three-quarter inches long and about one and one-eighth inches in diameter. A hole, three-eighths of an inch in diameter, is bored along the axis throughout its entire length, to receive the permanent magnet.The shell of the receiver is a cup-shaped piece of hard wood, two and one-half inches in diameter and one inch deep. It will have to be turned on a lathe. Its exact shape and dimensions are best understood from the dimensions shown in the cross section in Figure 147. The shell is firmly attached to one end of the piece of curtain-pole by gluing.The permanent magnet is a piece of hard steel, three-eighths of an inch in diameter and four and five-eighths of an inch in length. The steel will have to be tempered or hardened before it will make a suitable magnet, and the best way to accomplish this is to have a blacksmith do it for you by heating the rod and then plunging it into water when just at the right temperature.Fig. 147.—A Simple Form of Telephone Receiver.Fig. 147.—A Simple Form of Telephone Receiver.One end of the bar is fitted with two thick fiber washers about seven-eighths of an inch in diameter and spaced one-quarter of an inch apart. The bobbin so formed is wound full of No. 36 B. & S. gauge single-silk-covered magnet wire. The ends of the wire are passed through two small holes in the fiber washers and then connected to a pair of heavier wires. The wires are run through two holes in the curtain-pole, passing lengthwise from end to end, parallel to the hole bored to receive the bar magnet.This bar magnet is then pushed through the hole until the end of the rod on which the spool is fixed is just below the level of the edges of the shell.The two wires are connected to binding-posts,AandB, mounted on the end of the receiver. A hook is also provided so that the receiver may be hung up.The diaphragm is a circular piece of thin sheet-iron, two and one-half inches in diameter. It is placed over the shell, and the bar magnet adjusted until the end almost touches the diaphragm. The magnet should fit into the hole very tightly, so that it will have to be driven in order to be moved back and forth.The diaphragm is held in place by a hard-wood cap, two and three-quarter inches in diameter and having a hole three-quarters of an inch in diameter in the center. The cap is held to the shell by means of four small brass screws.The receiver is now completed and should give a loud click each time that a battery is connected or disconnected from the two posts,AandB.The original Bell telephone apparatus was made up simply of two receivers without any battery or transmitter. In such a case the current is generated by "induction." The receiver is used to speak through as well as to hear through. This method of telephoning is unsatisfactory over any appreciable distances. The time utilized in making a transmitter will be well spent.A simple form of transmitter is shown in Figure 148. The wooden back,B, is three and one-half inches square and three-quarters of an inch thick. The front face of the block is hollowed out in the center as shown in the cross-section view.The face-plate,A, is two and one-half inches square and one-half an inch thick. A hole, seven-eighths of an inch in diameter, is bored through the center. One side is then hollowed out to a diameter of one and three-quarter inches, so as to give space for the diaphragm to vibrate as shown in the cross-sectional drawing.The carbon buttons are one inch in diameter and three-sixteenths of an inch thick. A small hole is bored in the center of each to receive a brass machine screw. The hole is countersunk, so as to bring the head of the screw down as close to the surface of the carbon as is possible. Then, using a sharp knife or a three-cornered file, score the surface of the carbon until it is covered with criss-cross lines.The diaphragm is a piece of thin sheet-iron cut in the form of a circle two and one-half inches in diameter. A small hole is bored through the center of this. One of the carbon buttons is fastened to the center of the diaphragm with a small screw and a nut.Cut out a strip of flannel or thin felt, nine-sixteenths of an inch wide and three and one-half inches long. Around the edge of the carbon button mounted on the diaphragm, bind this strip with silk thread in such a manner that the strip forms a cylinder closed at one end with the button.Fill the cylinder with polished carbon telephone transmitter granules to a depth of about one-eighth of an inch. These granules will have to be purchased from an electrical supply house. They are finely polished small carbon balls, much like birdshot in appearance.Slip a long machine-screw through the hole in the second carbon button and clamp it in place with a nut. Then place the carbon button in the cylinder so that it closes up the end. The space between the two buttons should be about three-sixteenths of an inch. Bind the flannel or felt around the button with a piece of silk thread so that it cannot slip out of place. The arrangement of the parts should now be the same as that shown by the cross-sectional drawing in the upper right-hand corner of Figure 148.The complete transmitter is assembled as shown in the lower part of Figure 148.A small tin funnel is fitted into the hole in the face-plate,A, to act as a mouthpiece.A screw passes through the back,B, and connects to the diaphragm. The screw is marked "E" in the illustration. A binding-post is threaded on the screw so that a wire may be easily connected. The screw passing through the back carbon button also passes through a hole in the wooden back, and is clamped firmly in position with a brass nut so that the button is held very rigidly and cannot move. The front button, being attached to the diaphragm, is free to move back and forth with each vibration of the latter.Fig. 148.—A Home-made Telephone Transmitter.Fig. 148.—A Home-made Telephone Transmitter.The carbon granules should fill the space between the buttons three-quarters full. They should lie loosely together, and not be packed in.When connected to a battery and a telephone receiver the current passes from the post,D, to the back button, through the mass of carbon granules into the front button and out at the post,E. When the voice is directed into the mouthpiece, the sound waves strike the diaphragm and cause it to vibrate. The front button attached to it then also vibrates and constantly changes the pressure on the carbon granules. Each change in pressure is accompanied by an immediate change in resistance and consequently the amount of current flowing.Figure 149 shows a complete telephone ready for mounting on the wall. It consists of a receiver, telephone transmitter, bell, hook, and push-button. The bell is mounted on a flat base-board. The transmitter is similar to that just described, but is built into the front of a box-like cabinet. The box is fitted with a push-button at the lower right-hand corner. A simple method of making a suitable push-button is shown in the upper left-hand part of the illustration. It consists of two small brass strips arranged so that pushing a small wooden plug projecting through the side of the cabinet will bring the two strips together and make an electrical connection.The "hook" consists of a strip of brass, pivoted at one end with a round-headed brass wood screw and provided with a small spring, so that when the receiver is taken off of the hook it will fly up and make contact with a screw, markedCin the illustration. When the receiver is on the hook, its weight will draw the latter down against the screw,D. The hook is mounted on the base-board of the telephone, and projects through a slot cut in the side of the cabinet.Four binding-posts are mounted on the lower part of the base-board. The two markedBandBare for the battery.Fig. 149.—A Complete Telephone Instrument.Fig. 149.—A Complete Telephone Instrument. Two Instruments such as this are necessary to form a simple Telephone System.That markedLis for the "line," andGis for the ground connection or the return wire.Fig. 150.—Diagram of Connection for the Telephone Instrument shown in Fig. 149.Fig. 150.—Diagram of Connection for the Telephone Instrument shown in Fig. 149.The diagram of the connections is shown in Figure 150. The line-wire coming from the telephone at the other station enters through the binding-post markedL, and then connects to the hook. The lower contact on the hook is connected to one terminal of the bell. The other terminal of the bell leads to the binding-post markedG, which is connected to the ground, or to the second line-wire, where two are used.The post,G, and one post,B, are connected together. The other post markedBconnects to one terminal of the transmitter. The other terminal of the transmitter is connected to the telephone receiver. The other post of the telephone receiver leads to the upper contact on the hook markedC. The push-button is connected directly across the terminals of the transmitter and the receiver so that when the button is pushed it short-circuits the transmitter and the receiver. When the receiver is on the hook and the latter is down so that it makes contact withDany current coming over the line-wire will pass through the bell and down through the ground or the return-wire to the other station, thus completing the circuit. If the current is strong enough it will ring the bed. When the receiver is lifted off the hook, the spring will cause the hook to rise and make contact with the screw markedC. This will connect the receiver, transmitter, and the battery to the line so that it is possible to talk. If, however, it is desired to ring the bell on the instrument at the other end of the line, all that it is necessary to do is to press the push-button. This will short-circuit the receiver and the transmitter and ring the bell. The battery current is flowing over the line all the time when the receiver is up, but the transmitter and the receiver offer so much resistance to its flow that not enough current can pass to ring the bell until the resistance is cut out by short-circuiting them with the push-button.The instruments at both ends of the line should be similar. In connecting them together care should be taken to see that the batteries at each end of the line are arranged so that they are in series and do not oppose each other. One side of the line may be a wire, but the return may be the ground, as already explained in the chapter on telegraph apparatus.A transmitter of the "desk-stand" type may be made according to the scheme shown in Figure 151. It consists simply of a transmitter mounted upon an upright, and provided with a base so that it may stand on a desk or a table.Fig. 151.—A Desk-Stand Type of Telephone.Fig. 151.—A Desk-Stand Type of Telephone.It is also fitted with a hook and a push-button, so that it is a complete telephone instrument with the exception of the bell and the battery. The battery and the bell may be located in another place and connected to the desk-stand by means of a flexible wire or "electrical cord."Figure 152 shows what is known as a telephone induction coil. Induction coils are used in telephone systems whenever it is necessary to work over a long distance. Such a system is more complicated, and requires considerable care in making the connections, but is far superior to the system just described.Fig. 152.—A Telephone Induction Coil.Fig. 152.—A Telephone Induction Coil.An induction coil consists of two fiber or hard-wood heads, about one inch square and one-quarter of an inch thick, mounted on the ends of an iron core composed of a bundle of small iron wires about two and one-half inches long. The core should be about five-sixteenths of an inch in diameter.The core is covered with a layer of paper and then wound with three layers of No. 22 B. & S. single-cotton-covered wire. These three layers of wire form theprimary. The primary is covered with a layer of paper and then the secondary is wound on. The secondary consists of twelve layers of No. 36 B. & S. single-silk-covered magnet wire. It is advisable to place a layer of paper between layers of the secondary winding, and to give each one a coating of shellac. The two secondary terminals of the coil are led out through holes in the fiber head and kept separate from the primary terminals.Fig. 153.—Diagram of Connection for a Telephone System employing an Induction Coil at each Station.Fig. 153.—Diagram of Connection for a Telephone System employing an Induction Coil at each Station.The wiring diagram of a telephone system using an induction coil at each station is shown in Figure 153. The speech sent over a line using an induction coil system is much clearer and more easily understood than that on a line not using such a device.In building telephone instruments or connecting them up, care and accuracy will go a long way towards success. Telephony involves some very delicate and sensitive vibratory mechanical and electrical actions, and such instruments must be very carefully made.[2]A transmitter is really a microphone built especially to receive the sounds of the human voice, and operates on the same principle.INDUCTION COILS
CHAPTER XI MICROPHONES AND TELEPHONESIn 1878, David Edward Hughes discovered that the imperfect contact formed between two pieces of some such substance as carbon or charcoal is very sensitive to the slightest changes in pressure, and when included in an electric circuit with a battery and a telephone receiver, will transmit sounds. Such an instrument is called amicrophone. It has various forms but in most of them one piece of carbon or charcoal is held loosely between two other pieces in such a manner as to be easily affected by the slightest vibrations conveyed to it through the air or any other medium.Fig. 143.—A Microphone connected to a Telephone Receiver, and a Battery.Fig. 143.—A Microphone connected to a Telephone Receiver, and a Battery.Figure 143 illustrates a simple form of instrument embodying this principle. A small pencil of carbon is supported loosely between two blocks of the same substance glued to a thin wooden sounding-board of pine. The sounding-board is mounted in an upright position on a wooden base. The carbon pencil rests loosely in two small indentations in the carbon blocks. The blocks are connected, by means of a very fine wire or a strip of tinfoil, with one or two cells of battery and a telephone receiver. Any vibration or sounds in range of the microphone will cause the sounding-board to vibrate. This will affect the pressure of the contact between the carbon pencil and the two blocks. When the pressure between the two is increased the resistance in the path of the electric current is decreased and more current immediately flows through the circuit. On the other hand, when the pressure is decreased, the resistance is increased and less current flows through the telephone receiver. The amount of current flowing in the circuit thus keeps step with the changes in the resistance, and accordingly produces sounds in the telephone receiver. The vibrations emitted from the receiver are usually much greater than those of the original sounds, and so the microphone may be used to magnify weak sounds such as the ticking of clock-wheels or the footfalls of insects. If a watch is laid on the base of the microphone, the ticking of the escapement wheel can be heard with startling loudness. The sounds caused by a fly walking on a microphone may be made to sound as loud as the tramp of a horse.Fig. 144.—A Very Sensitive Form of Microphone, with which the Footsteps of a Fly can be heard.Fig. 144.—A Very Sensitive Form of Microphone, with which the Footsteps of a Fly can be heard.The electricalstethoscopesused by physicians to listen to the action of the heart are in principle only a microphone and telephone receiver connected to a battery.The drawing in Figure 144 illustrates a very sensitive microphone that is quite easy to make. With this instrument it is possible to hear the tramping of a fly’s feet or the noise of its wings.The base upon which the apparatus is mounted serves as the sounding-board and is made in the form of a hollow wooden box. It can be made from an ordinary cigar-box by removing the paper and taking the box apart. The piece forming the top of the box must be planed down until it is only three thirty-seconds of an inch thick. The box should measure about five inches square and three-quarters of an inch thick when finished. Do not use any nails or small brads whatsoever in its construction, but fasten it together with glue. If you use any nails you will decrease the sensitiveness of the instrument quite appreciably. The bottom of the box should be left open. The result is a sounding-board of the same principles as that of the banjo head. Small feet, one-quarter of an inch square, are glued to the four under corners so as to raise the bottom clear of the table, or whatever the microphone may be placed upon. The bottom of each one of the small feet is cushioned with a layer of felt so that no jars will be transmitted to the instrument by any object upon which it is resting.The carbon pencil used on this type of instrument is pivoted in the center and rests at one end upon a carbon block.The carbon block is made about one inch long, one-quarter of an inch thick, and one-half of an inch wide. A small hole is drilled near each end to receive a screw which fastens the block to the sounding-board. A fine wire is led from one of these screws to a binding-post mounted at the side of the box. Another wire leads from a second binding-post to a standard which is also fastened to the sounding-board with a small screw.The standard is made from a sheet of thin brass and is bent into the shape shown in the illustration.The pencil is a piece of one-quarter-inch carbon rod, two and three-quarter inches long. A small hole is drilled one and five-eighths of an inch from one end with a sewing-needle, and a piece of fine brass wire, pointed at both ends, pushed in. The wire should be a tight fit in the hole. It should be about one-half of an inch long, and may be made from an ordinary pin.The slide-bar is used to regulate the pressure of the pencil upon the carbon block and is simply a piece of soft copper wire about one-eighth of an inch in diameter. It is bent into the shape shown in the illustration so that it will slide over the carbon pencil. The sides of the standard should press just tightly enough against the ends of the pivot which passes through the carbon pencil to hold it in position without slipping, and at the same time allow it to swing freely up and down.The two binding-posts should be connected in series with two dry cells and a pair of good telephone receivers. Place the receivers against the ears. Move the slide-bar gently back and forth until the voice of any one talking in another part of the room can be heard distinctly in the telephone receivers. In order to hear faint whispers, move the slide-bar away from the carbon block.In order to hear a fly walk it is necessary to have the carbons very dry and clean. The instrument must be very carefully adjusted. Cover the microphone with a large glass globe and place a fly inside of the globe. Whenever the fly walks on any part of the microphone you will be able to hear each footstep in the telephone receivers. When he flies about inside of the globe, his wings will cause a loud roaring and buzzing noise to be heard in the receivers.TelephonesNot many years ago, when the telephone made its first appearance, it was the wonder of the times just as wireless telegraphy is to-day. Starting as an exceedingly simple and inexpensive apparatus, it has gradually developed into a wonderful and complex system, so that at the present time, instead of experiencing difficulty in telephoning over distances of fifty or one hundred miles, as at first, it is possible to carry on a conversation over a line two thousand miles long as easily as it is face to face.Like the telegraph, the principle of the telephone is that of a current of electricity flowing over a line wire into a pair of electro-magnets, but with many important differences.When compared with telegraph apparatus, the telephone is found to be exceedingly sensitive. A telegraph relay requires perhaps about one-hundredth of an ampere to work it properly. A telegraph sounder will require about one-tenth of an ampere, but a telephone receiver will render speech audible with less than a millionth of an ampere, and therefore may almost be said to be a hundred thousand times more sensitive than a sounder.Another difference between the telephone and the telegraph lies in the fact that the currents flowing over a telegraph line do not usually vary at a rate greater than twenty or thirty times a second, whereas telephone currents change their intensity hundreds of times a second.The telephone is an instrument for the transmission of speech to a distance by means of electricity, wherein the speaker talks to an elastic plate of thin sheet-iron which vibrates and sends out a pulsating current of electricity.The transmission of the vibrations depends upon well-known principles of electricity, and does not consist of the actual transmission of sounds, but of electrical impulses which keep perfect accord or step with the sound waves produced by the voice in the transmitter. These electrical currents pass through a pair of small electro-magnets acting upon a plate or diaphragm, which in turn agitates the air in a manner similar to the original voice speaking into the transmitter and thus emits sounds.That part of the apparatus which takes up the sounds and changes them into electric currents composes thetransmitter. When words are spoken into the mouthpiece they strike a diaphragm, on the back of which is fastened a small cup-shaped piece of carbon. A second cup is mounted in a rigid position directly back of the first. The space between them is filled with small polished granules of carbon. When these granules are in a perfectly loose state and are undisturbed, their resistance to an electric current is very great and they allow almost none to flow.2When slightly compressed their resistance is greatly lowered and they permit the current to pass. The vibrations of the diaphragm cause the carbon cup mounted on its back to move and exert a varying pressure upon the granules with a corresponding variation in their resistance and the amount of current which will pass through.Fig. 145.—A Telephone System, consisting of a Receiver, Transmitter, and a Battery connected in Series.Fig. 145.—A Telephone System, consisting of a Receiver, Transmitter, and a Battery connected in Series. Words spoken into the Transmitter are reproduced by the Receiver.Thereceiver, or that part of the apparatus which transforms the pulsating current back into sound waves consists of a thin iron disk, placed very near but not quite touching the end of a small steel bar, permanently magnetized, and about which is wound a coil of fine insulated wire.The transmitter and the receiver are connected together in series with a battery as in Figure 145. When words are spoken into the transmitter the little carbon granules are immediately thrown into motion, and being alternately compressed and released cause corresponding changes in the current flowing through the receiver from the battery. The magnetism of the receiver changes with each change in the electric current, and thus by alternately attracting and repelling the diaphragm causes it to vibrate and emit sounds. Such is theprincipleof the telephone. The telephones in actual service to-day are complicated with bells, magnetos, induction coils, condensers, relays, and various other apparatus, which fact renders them more efficient.The bells and magnetos are for the purpose of calling the central operator or the person at the other end of the line and drawing attention to the fact that some one wishes to get into communication with him. The older styles of telephones used what is known as a polarized bell and a hand magneto for this purpose. A polarized bell is a very sensitive piece of apparatus which will operate with very little current. A magneto is a small hand dynamo which when turned with a crank will generate a current causing the bell at the other end of the line to ring. When the telephone receiver is raised off its hook in order to place it to the ear the bell and magneto are automatically disconnected from the line and the receiver and the transmitter are connected in their place. The current necessary to supply the telephone and receiver is supplied by two or three dry cells placed inside of each telephone.The latest types of instruments employ what is known as the central energy system, wherein the current is supplied by a large storage battery located at the central office and serving as a current supply to all the telephones connected to that system.It would be impossible to enter into the history of the telephone far enough to explain the details of some of the various systems in every-day use in such a book as this because of the immense amount of material it would be necessary to present. Such a work would occupy a volume of its own. Additional information may be readily found in any reference library. However, the "boy electrician" who wishes to make a telephone for communicating between the house and barn, or with his chum down the street, will find the necessary information in the following pages. If this work is carried out carefully and a home-made telephone system built and installed it will not only prove a very interesting undertaking but will also serve to dispel all mystery which may surround this device in the mind of the young experimenter.How to Build a TelephoneTelephone receivers are useful for many purposes in electrical work other than to receive speech. They are used in connection with wireless instruments, in place of a galvanometer in measuring electrical circuits, and for testing in various ways.Telephone receivers are of two types. One of them is long and cumbersome, and is very similar to the original Bell telephone receiver. The other is small and flat, and is called a "watch-case" receiver. A watch-case receiver is shown in Figure 146. It consists of a U-shaped permanent magnet so mounted as to exert a polarizing influence upon a pair of little electro-magnets, before the poles of which is placed an iron diaphragm. For convenience, these parts are assembled in a small cylindrical casing, usually of hard rubber. The permanent magnet exerts a continual pull upon the diaphragm, tending to draw it in. When the telephone currents pass through the little magnets, they will either strengthen the permanent magnet and assist it in attracting the diaphragm, or detract from its strength and allow the diaphragm to recede, depending upon which direction the current flows.Fig. 146.—A Watch-Case Telephone Receiver.Fig. 146.—A Watch-Case Telephone Receiver.Watch-case receivers are usually employed for wireless telegraph work because they are very light in weight and can easily be attached to a head-band in order to hold them to the ears and leave the hands free. Watch-case receivers can be purchased for forty-five to seventy-five cents at almost any electrical supply house. They are very useful to the amateur experimenter in many ways.A telephone receiver capable of giving fair results on a short telephone line can be very easily made, but of course will not prove as efficient as one which is purchased ready-made from a reliable electrical manufacturer.The first practical telephone receiver was invented by Alexander Graham Bell and was made somewhat along the same lines as that shown in Figure 147.Such a receiver may be made from a piece of curtain-pole, three and three-quarter inches long and about one and one-eighth inches in diameter. A hole, three-eighths of an inch in diameter, is bored along the axis throughout its entire length, to receive the permanent magnet.The shell of the receiver is a cup-shaped piece of hard wood, two and one-half inches in diameter and one inch deep. It will have to be turned on a lathe. Its exact shape and dimensions are best understood from the dimensions shown in the cross section in Figure 147. The shell is firmly attached to one end of the piece of curtain-pole by gluing.The permanent magnet is a piece of hard steel, three-eighths of an inch in diameter and four and five-eighths of an inch in length. The steel will have to be tempered or hardened before it will make a suitable magnet, and the best way to accomplish this is to have a blacksmith do it for you by heating the rod and then plunging it into water when just at the right temperature.Fig. 147.—A Simple Form of Telephone Receiver.Fig. 147.—A Simple Form of Telephone Receiver.One end of the bar is fitted with two thick fiber washers about seven-eighths of an inch in diameter and spaced one-quarter of an inch apart. The bobbin so formed is wound full of No. 36 B. & S. gauge single-silk-covered magnet wire. The ends of the wire are passed through two small holes in the fiber washers and then connected to a pair of heavier wires. The wires are run through two holes in the curtain-pole, passing lengthwise from end to end, parallel to the hole bored to receive the bar magnet.This bar magnet is then pushed through the hole until the end of the rod on which the spool is fixed is just below the level of the edges of the shell.The two wires are connected to binding-posts,AandB, mounted on the end of the receiver. A hook is also provided so that the receiver may be hung up.The diaphragm is a circular piece of thin sheet-iron, two and one-half inches in diameter. It is placed over the shell, and the bar magnet adjusted until the end almost touches the diaphragm. The magnet should fit into the hole very tightly, so that it will have to be driven in order to be moved back and forth.The diaphragm is held in place by a hard-wood cap, two and three-quarter inches in diameter and having a hole three-quarters of an inch in diameter in the center. The cap is held to the shell by means of four small brass screws.The receiver is now completed and should give a loud click each time that a battery is connected or disconnected from the two posts,AandB.The original Bell telephone apparatus was made up simply of two receivers without any battery or transmitter. In such a case the current is generated by "induction." The receiver is used to speak through as well as to hear through. This method of telephoning is unsatisfactory over any appreciable distances. The time utilized in making a transmitter will be well spent.A simple form of transmitter is shown in Figure 148. The wooden back,B, is three and one-half inches square and three-quarters of an inch thick. The front face of the block is hollowed out in the center as shown in the cross-section view.The face-plate,A, is two and one-half inches square and one-half an inch thick. A hole, seven-eighths of an inch in diameter, is bored through the center. One side is then hollowed out to a diameter of one and three-quarter inches, so as to give space for the diaphragm to vibrate as shown in the cross-sectional drawing.The carbon buttons are one inch in diameter and three-sixteenths of an inch thick. A small hole is bored in the center of each to receive a brass machine screw. The hole is countersunk, so as to bring the head of the screw down as close to the surface of the carbon as is possible. Then, using a sharp knife or a three-cornered file, score the surface of the carbon until it is covered with criss-cross lines.The diaphragm is a piece of thin sheet-iron cut in the form of a circle two and one-half inches in diameter. A small hole is bored through the center of this. One of the carbon buttons is fastened to the center of the diaphragm with a small screw and a nut.Cut out a strip of flannel or thin felt, nine-sixteenths of an inch wide and three and one-half inches long. Around the edge of the carbon button mounted on the diaphragm, bind this strip with silk thread in such a manner that the strip forms a cylinder closed at one end with the button.Fill the cylinder with polished carbon telephone transmitter granules to a depth of about one-eighth of an inch. These granules will have to be purchased from an electrical supply house. They are finely polished small carbon balls, much like birdshot in appearance.Slip a long machine-screw through the hole in the second carbon button and clamp it in place with a nut. Then place the carbon button in the cylinder so that it closes up the end. The space between the two buttons should be about three-sixteenths of an inch. Bind the flannel or felt around the button with a piece of silk thread so that it cannot slip out of place. The arrangement of the parts should now be the same as that shown by the cross-sectional drawing in the upper right-hand corner of Figure 148.The complete transmitter is assembled as shown in the lower part of Figure 148.A small tin funnel is fitted into the hole in the face-plate,A, to act as a mouthpiece.A screw passes through the back,B, and connects to the diaphragm. The screw is marked "E" in the illustration. A binding-post is threaded on the screw so that a wire may be easily connected. The screw passing through the back carbon button also passes through a hole in the wooden back, and is clamped firmly in position with a brass nut so that the button is held very rigidly and cannot move. The front button, being attached to the diaphragm, is free to move back and forth with each vibration of the latter.Fig. 148.—A Home-made Telephone Transmitter.Fig. 148.—A Home-made Telephone Transmitter.The carbon granules should fill the space between the buttons three-quarters full. They should lie loosely together, and not be packed in.When connected to a battery and a telephone receiver the current passes from the post,D, to the back button, through the mass of carbon granules into the front button and out at the post,E. When the voice is directed into the mouthpiece, the sound waves strike the diaphragm and cause it to vibrate. The front button attached to it then also vibrates and constantly changes the pressure on the carbon granules. Each change in pressure is accompanied by an immediate change in resistance and consequently the amount of current flowing.Figure 149 shows a complete telephone ready for mounting on the wall. It consists of a receiver, telephone transmitter, bell, hook, and push-button. The bell is mounted on a flat base-board. The transmitter is similar to that just described, but is built into the front of a box-like cabinet. The box is fitted with a push-button at the lower right-hand corner. A simple method of making a suitable push-button is shown in the upper left-hand part of the illustration. It consists of two small brass strips arranged so that pushing a small wooden plug projecting through the side of the cabinet will bring the two strips together and make an electrical connection.The "hook" consists of a strip of brass, pivoted at one end with a round-headed brass wood screw and provided with a small spring, so that when the receiver is taken off of the hook it will fly up and make contact with a screw, markedCin the illustration. When the receiver is on the hook, its weight will draw the latter down against the screw,D. The hook is mounted on the base-board of the telephone, and projects through a slot cut in the side of the cabinet.Four binding-posts are mounted on the lower part of the base-board. The two markedBandBare for the battery.Fig. 149.—A Complete Telephone Instrument.Fig. 149.—A Complete Telephone Instrument. Two Instruments such as this are necessary to form a simple Telephone System.That markedLis for the "line," andGis for the ground connection or the return wire.Fig. 150.—Diagram of Connection for the Telephone Instrument shown in Fig. 149.Fig. 150.—Diagram of Connection for the Telephone Instrument shown in Fig. 149.The diagram of the connections is shown in Figure 150. The line-wire coming from the telephone at the other station enters through the binding-post markedL, and then connects to the hook. The lower contact on the hook is connected to one terminal of the bell. The other terminal of the bell leads to the binding-post markedG, which is connected to the ground, or to the second line-wire, where two are used.The post,G, and one post,B, are connected together. The other post markedBconnects to one terminal of the transmitter. The other terminal of the transmitter is connected to the telephone receiver. The other post of the telephone receiver leads to the upper contact on the hook markedC. The push-button is connected directly across the terminals of the transmitter and the receiver so that when the button is pushed it short-circuits the transmitter and the receiver. When the receiver is on the hook and the latter is down so that it makes contact withDany current coming over the line-wire will pass through the bell and down through the ground or the return-wire to the other station, thus completing the circuit. If the current is strong enough it will ring the bed. When the receiver is lifted off the hook, the spring will cause the hook to rise and make contact with the screw markedC. This will connect the receiver, transmitter, and the battery to the line so that it is possible to talk. If, however, it is desired to ring the bell on the instrument at the other end of the line, all that it is necessary to do is to press the push-button. This will short-circuit the receiver and the transmitter and ring the bell. The battery current is flowing over the line all the time when the receiver is up, but the transmitter and the receiver offer so much resistance to its flow that not enough current can pass to ring the bell until the resistance is cut out by short-circuiting them with the push-button.The instruments at both ends of the line should be similar. In connecting them together care should be taken to see that the batteries at each end of the line are arranged so that they are in series and do not oppose each other. One side of the line may be a wire, but the return may be the ground, as already explained in the chapter on telegraph apparatus.A transmitter of the "desk-stand" type may be made according to the scheme shown in Figure 151. It consists simply of a transmitter mounted upon an upright, and provided with a base so that it may stand on a desk or a table.Fig. 151.—A Desk-Stand Type of Telephone.Fig. 151.—A Desk-Stand Type of Telephone.It is also fitted with a hook and a push-button, so that it is a complete telephone instrument with the exception of the bell and the battery. The battery and the bell may be located in another place and connected to the desk-stand by means of a flexible wire or "electrical cord."Figure 152 shows what is known as a telephone induction coil. Induction coils are used in telephone systems whenever it is necessary to work over a long distance. Such a system is more complicated, and requires considerable care in making the connections, but is far superior to the system just described.Fig. 152.—A Telephone Induction Coil.Fig. 152.—A Telephone Induction Coil.An induction coil consists of two fiber or hard-wood heads, about one inch square and one-quarter of an inch thick, mounted on the ends of an iron core composed of a bundle of small iron wires about two and one-half inches long. The core should be about five-sixteenths of an inch in diameter.The core is covered with a layer of paper and then wound with three layers of No. 22 B. & S. single-cotton-covered wire. These three layers of wire form theprimary. The primary is covered with a layer of paper and then the secondary is wound on. The secondary consists of twelve layers of No. 36 B. & S. single-silk-covered magnet wire. It is advisable to place a layer of paper between layers of the secondary winding, and to give each one a coating of shellac. The two secondary terminals of the coil are led out through holes in the fiber head and kept separate from the primary terminals.Fig. 153.—Diagram of Connection for a Telephone System employing an Induction Coil at each Station.Fig. 153.—Diagram of Connection for a Telephone System employing an Induction Coil at each Station.The wiring diagram of a telephone system using an induction coil at each station is shown in Figure 153. The speech sent over a line using an induction coil system is much clearer and more easily understood than that on a line not using such a device.In building telephone instruments or connecting them up, care and accuracy will go a long way towards success. Telephony involves some very delicate and sensitive vibratory mechanical and electrical actions, and such instruments must be very carefully made.[2]A transmitter is really a microphone built especially to receive the sounds of the human voice, and operates on the same principle.INDUCTION COILS
In 1878, David Edward Hughes discovered that the imperfect contact formed between two pieces of some such substance as carbon or charcoal is very sensitive to the slightest changes in pressure, and when included in an electric circuit with a battery and a telephone receiver, will transmit sounds. Such an instrument is called amicrophone. It has various forms but in most of them one piece of carbon or charcoal is held loosely between two other pieces in such a manner as to be easily affected by the slightest vibrations conveyed to it through the air or any other medium.
Fig. 143.—A Microphone connected to a Telephone Receiver, and a Battery.Fig. 143.—A Microphone connected to a Telephone Receiver, and a Battery.
Fig. 143.—A Microphone connected to a Telephone Receiver, and a Battery.
Figure 143 illustrates a simple form of instrument embodying this principle. A small pencil of carbon is supported loosely between two blocks of the same substance glued to a thin wooden sounding-board of pine. The sounding-board is mounted in an upright position on a wooden base. The carbon pencil rests loosely in two small indentations in the carbon blocks. The blocks are connected, by means of a very fine wire or a strip of tinfoil, with one or two cells of battery and a telephone receiver. Any vibration or sounds in range of the microphone will cause the sounding-board to vibrate. This will affect the pressure of the contact between the carbon pencil and the two blocks. When the pressure between the two is increased the resistance in the path of the electric current is decreased and more current immediately flows through the circuit. On the other hand, when the pressure is decreased, the resistance is increased and less current flows through the telephone receiver. The amount of current flowing in the circuit thus keeps step with the changes in the resistance, and accordingly produces sounds in the telephone receiver. The vibrations emitted from the receiver are usually much greater than those of the original sounds, and so the microphone may be used to magnify weak sounds such as the ticking of clock-wheels or the footfalls of insects. If a watch is laid on the base of the microphone, the ticking of the escapement wheel can be heard with startling loudness. The sounds caused by a fly walking on a microphone may be made to sound as loud as the tramp of a horse.
Fig. 144.—A Very Sensitive Form of Microphone, with which the Footsteps of a Fly can be heard.Fig. 144.—A Very Sensitive Form of Microphone, with which the Footsteps of a Fly can be heard.
Fig. 144.—A Very Sensitive Form of Microphone, with which the Footsteps of a Fly can be heard.
The electricalstethoscopesused by physicians to listen to the action of the heart are in principle only a microphone and telephone receiver connected to a battery.
The drawing in Figure 144 illustrates a very sensitive microphone that is quite easy to make. With this instrument it is possible to hear the tramping of a fly’s feet or the noise of its wings.
The base upon which the apparatus is mounted serves as the sounding-board and is made in the form of a hollow wooden box. It can be made from an ordinary cigar-box by removing the paper and taking the box apart. The piece forming the top of the box must be planed down until it is only three thirty-seconds of an inch thick. The box should measure about five inches square and three-quarters of an inch thick when finished. Do not use any nails or small brads whatsoever in its construction, but fasten it together with glue. If you use any nails you will decrease the sensitiveness of the instrument quite appreciably. The bottom of the box should be left open. The result is a sounding-board of the same principles as that of the banjo head. Small feet, one-quarter of an inch square, are glued to the four under corners so as to raise the bottom clear of the table, or whatever the microphone may be placed upon. The bottom of each one of the small feet is cushioned with a layer of felt so that no jars will be transmitted to the instrument by any object upon which it is resting.
The carbon pencil used on this type of instrument is pivoted in the center and rests at one end upon a carbon block.
The carbon block is made about one inch long, one-quarter of an inch thick, and one-half of an inch wide. A small hole is drilled near each end to receive a screw which fastens the block to the sounding-board. A fine wire is led from one of these screws to a binding-post mounted at the side of the box. Another wire leads from a second binding-post to a standard which is also fastened to the sounding-board with a small screw.
The standard is made from a sheet of thin brass and is bent into the shape shown in the illustration.
The pencil is a piece of one-quarter-inch carbon rod, two and three-quarter inches long. A small hole is drilled one and five-eighths of an inch from one end with a sewing-needle, and a piece of fine brass wire, pointed at both ends, pushed in. The wire should be a tight fit in the hole. It should be about one-half of an inch long, and may be made from an ordinary pin.
The slide-bar is used to regulate the pressure of the pencil upon the carbon block and is simply a piece of soft copper wire about one-eighth of an inch in diameter. It is bent into the shape shown in the illustration so that it will slide over the carbon pencil. The sides of the standard should press just tightly enough against the ends of the pivot which passes through the carbon pencil to hold it in position without slipping, and at the same time allow it to swing freely up and down.
The two binding-posts should be connected in series with two dry cells and a pair of good telephone receivers. Place the receivers against the ears. Move the slide-bar gently back and forth until the voice of any one talking in another part of the room can be heard distinctly in the telephone receivers. In order to hear faint whispers, move the slide-bar away from the carbon block.
In order to hear a fly walk it is necessary to have the carbons very dry and clean. The instrument must be very carefully adjusted. Cover the microphone with a large glass globe and place a fly inside of the globe. Whenever the fly walks on any part of the microphone you will be able to hear each footstep in the telephone receivers. When he flies about inside of the globe, his wings will cause a loud roaring and buzzing noise to be heard in the receivers.
TelephonesNot many years ago, when the telephone made its first appearance, it was the wonder of the times just as wireless telegraphy is to-day. Starting as an exceedingly simple and inexpensive apparatus, it has gradually developed into a wonderful and complex system, so that at the present time, instead of experiencing difficulty in telephoning over distances of fifty or one hundred miles, as at first, it is possible to carry on a conversation over a line two thousand miles long as easily as it is face to face.Like the telegraph, the principle of the telephone is that of a current of electricity flowing over a line wire into a pair of electro-magnets, but with many important differences.When compared with telegraph apparatus, the telephone is found to be exceedingly sensitive. A telegraph relay requires perhaps about one-hundredth of an ampere to work it properly. A telegraph sounder will require about one-tenth of an ampere, but a telephone receiver will render speech audible with less than a millionth of an ampere, and therefore may almost be said to be a hundred thousand times more sensitive than a sounder.Another difference between the telephone and the telegraph lies in the fact that the currents flowing over a telegraph line do not usually vary at a rate greater than twenty or thirty times a second, whereas telephone currents change their intensity hundreds of times a second.The telephone is an instrument for the transmission of speech to a distance by means of electricity, wherein the speaker talks to an elastic plate of thin sheet-iron which vibrates and sends out a pulsating current of electricity.The transmission of the vibrations depends upon well-known principles of electricity, and does not consist of the actual transmission of sounds, but of electrical impulses which keep perfect accord or step with the sound waves produced by the voice in the transmitter. These electrical currents pass through a pair of small electro-magnets acting upon a plate or diaphragm, which in turn agitates the air in a manner similar to the original voice speaking into the transmitter and thus emits sounds.That part of the apparatus which takes up the sounds and changes them into electric currents composes thetransmitter. When words are spoken into the mouthpiece they strike a diaphragm, on the back of which is fastened a small cup-shaped piece of carbon. A second cup is mounted in a rigid position directly back of the first. The space between them is filled with small polished granules of carbon. When these granules are in a perfectly loose state and are undisturbed, their resistance to an electric current is very great and they allow almost none to flow.2When slightly compressed their resistance is greatly lowered and they permit the current to pass. The vibrations of the diaphragm cause the carbon cup mounted on its back to move and exert a varying pressure upon the granules with a corresponding variation in their resistance and the amount of current which will pass through.Fig. 145.—A Telephone System, consisting of a Receiver, Transmitter, and a Battery connected in Series.Fig. 145.—A Telephone System, consisting of a Receiver, Transmitter, and a Battery connected in Series. Words spoken into the Transmitter are reproduced by the Receiver.Thereceiver, or that part of the apparatus which transforms the pulsating current back into sound waves consists of a thin iron disk, placed very near but not quite touching the end of a small steel bar, permanently magnetized, and about which is wound a coil of fine insulated wire.The transmitter and the receiver are connected together in series with a battery as in Figure 145. When words are spoken into the transmitter the little carbon granules are immediately thrown into motion, and being alternately compressed and released cause corresponding changes in the current flowing through the receiver from the battery. The magnetism of the receiver changes with each change in the electric current, and thus by alternately attracting and repelling the diaphragm causes it to vibrate and emit sounds. Such is theprincipleof the telephone. The telephones in actual service to-day are complicated with bells, magnetos, induction coils, condensers, relays, and various other apparatus, which fact renders them more efficient.The bells and magnetos are for the purpose of calling the central operator or the person at the other end of the line and drawing attention to the fact that some one wishes to get into communication with him. The older styles of telephones used what is known as a polarized bell and a hand magneto for this purpose. A polarized bell is a very sensitive piece of apparatus which will operate with very little current. A magneto is a small hand dynamo which when turned with a crank will generate a current causing the bell at the other end of the line to ring. When the telephone receiver is raised off its hook in order to place it to the ear the bell and magneto are automatically disconnected from the line and the receiver and the transmitter are connected in their place. The current necessary to supply the telephone and receiver is supplied by two or three dry cells placed inside of each telephone.The latest types of instruments employ what is known as the central energy system, wherein the current is supplied by a large storage battery located at the central office and serving as a current supply to all the telephones connected to that system.It would be impossible to enter into the history of the telephone far enough to explain the details of some of the various systems in every-day use in such a book as this because of the immense amount of material it would be necessary to present. Such a work would occupy a volume of its own. Additional information may be readily found in any reference library. However, the "boy electrician" who wishes to make a telephone for communicating between the house and barn, or with his chum down the street, will find the necessary information in the following pages. If this work is carried out carefully and a home-made telephone system built and installed it will not only prove a very interesting undertaking but will also serve to dispel all mystery which may surround this device in the mind of the young experimenter.
Not many years ago, when the telephone made its first appearance, it was the wonder of the times just as wireless telegraphy is to-day. Starting as an exceedingly simple and inexpensive apparatus, it has gradually developed into a wonderful and complex system, so that at the present time, instead of experiencing difficulty in telephoning over distances of fifty or one hundred miles, as at first, it is possible to carry on a conversation over a line two thousand miles long as easily as it is face to face.
Like the telegraph, the principle of the telephone is that of a current of electricity flowing over a line wire into a pair of electro-magnets, but with many important differences.
When compared with telegraph apparatus, the telephone is found to be exceedingly sensitive. A telegraph relay requires perhaps about one-hundredth of an ampere to work it properly. A telegraph sounder will require about one-tenth of an ampere, but a telephone receiver will render speech audible with less than a millionth of an ampere, and therefore may almost be said to be a hundred thousand times more sensitive than a sounder.
Another difference between the telephone and the telegraph lies in the fact that the currents flowing over a telegraph line do not usually vary at a rate greater than twenty or thirty times a second, whereas telephone currents change their intensity hundreds of times a second.
The telephone is an instrument for the transmission of speech to a distance by means of electricity, wherein the speaker talks to an elastic plate of thin sheet-iron which vibrates and sends out a pulsating current of electricity.
The transmission of the vibrations depends upon well-known principles of electricity, and does not consist of the actual transmission of sounds, but of electrical impulses which keep perfect accord or step with the sound waves produced by the voice in the transmitter. These electrical currents pass through a pair of small electro-magnets acting upon a plate or diaphragm, which in turn agitates the air in a manner similar to the original voice speaking into the transmitter and thus emits sounds.
That part of the apparatus which takes up the sounds and changes them into electric currents composes thetransmitter. When words are spoken into the mouthpiece they strike a diaphragm, on the back of which is fastened a small cup-shaped piece of carbon. A second cup is mounted in a rigid position directly back of the first. The space between them is filled with small polished granules of carbon. When these granules are in a perfectly loose state and are undisturbed, their resistance to an electric current is very great and they allow almost none to flow.2When slightly compressed their resistance is greatly lowered and they permit the current to pass. The vibrations of the diaphragm cause the carbon cup mounted on its back to move and exert a varying pressure upon the granules with a corresponding variation in their resistance and the amount of current which will pass through.
Fig. 145.—A Telephone System, consisting of a Receiver, Transmitter, and a Battery connected in Series.Fig. 145.—A Telephone System, consisting of a Receiver, Transmitter, and a Battery connected in Series. Words spoken into the Transmitter are reproduced by the Receiver.
Fig. 145.—A Telephone System, consisting of a Receiver, Transmitter, and a Battery connected in Series. Words spoken into the Transmitter are reproduced by the Receiver.
Thereceiver, or that part of the apparatus which transforms the pulsating current back into sound waves consists of a thin iron disk, placed very near but not quite touching the end of a small steel bar, permanently magnetized, and about which is wound a coil of fine insulated wire.
The transmitter and the receiver are connected together in series with a battery as in Figure 145. When words are spoken into the transmitter the little carbon granules are immediately thrown into motion, and being alternately compressed and released cause corresponding changes in the current flowing through the receiver from the battery. The magnetism of the receiver changes with each change in the electric current, and thus by alternately attracting and repelling the diaphragm causes it to vibrate and emit sounds. Such is theprincipleof the telephone. The telephones in actual service to-day are complicated with bells, magnetos, induction coils, condensers, relays, and various other apparatus, which fact renders them more efficient.
The bells and magnetos are for the purpose of calling the central operator or the person at the other end of the line and drawing attention to the fact that some one wishes to get into communication with him. The older styles of telephones used what is known as a polarized bell and a hand magneto for this purpose. A polarized bell is a very sensitive piece of apparatus which will operate with very little current. A magneto is a small hand dynamo which when turned with a crank will generate a current causing the bell at the other end of the line to ring. When the telephone receiver is raised off its hook in order to place it to the ear the bell and magneto are automatically disconnected from the line and the receiver and the transmitter are connected in their place. The current necessary to supply the telephone and receiver is supplied by two or three dry cells placed inside of each telephone.
The latest types of instruments employ what is known as the central energy system, wherein the current is supplied by a large storage battery located at the central office and serving as a current supply to all the telephones connected to that system.
It would be impossible to enter into the history of the telephone far enough to explain the details of some of the various systems in every-day use in such a book as this because of the immense amount of material it would be necessary to present. Such a work would occupy a volume of its own. Additional information may be readily found in any reference library. However, the "boy electrician" who wishes to make a telephone for communicating between the house and barn, or with his chum down the street, will find the necessary information in the following pages. If this work is carried out carefully and a home-made telephone system built and installed it will not only prove a very interesting undertaking but will also serve to dispel all mystery which may surround this device in the mind of the young experimenter.
How to Build a TelephoneTelephone receivers are useful for many purposes in electrical work other than to receive speech. They are used in connection with wireless instruments, in place of a galvanometer in measuring electrical circuits, and for testing in various ways.Telephone receivers are of two types. One of them is long and cumbersome, and is very similar to the original Bell telephone receiver. The other is small and flat, and is called a "watch-case" receiver. A watch-case receiver is shown in Figure 146. It consists of a U-shaped permanent magnet so mounted as to exert a polarizing influence upon a pair of little electro-magnets, before the poles of which is placed an iron diaphragm. For convenience, these parts are assembled in a small cylindrical casing, usually of hard rubber. The permanent magnet exerts a continual pull upon the diaphragm, tending to draw it in. When the telephone currents pass through the little magnets, they will either strengthen the permanent magnet and assist it in attracting the diaphragm, or detract from its strength and allow the diaphragm to recede, depending upon which direction the current flows.Fig. 146.—A Watch-Case Telephone Receiver.Fig. 146.—A Watch-Case Telephone Receiver.Watch-case receivers are usually employed for wireless telegraph work because they are very light in weight and can easily be attached to a head-band in order to hold them to the ears and leave the hands free. Watch-case receivers can be purchased for forty-five to seventy-five cents at almost any electrical supply house. They are very useful to the amateur experimenter in many ways.A telephone receiver capable of giving fair results on a short telephone line can be very easily made, but of course will not prove as efficient as one which is purchased ready-made from a reliable electrical manufacturer.The first practical telephone receiver was invented by Alexander Graham Bell and was made somewhat along the same lines as that shown in Figure 147.Such a receiver may be made from a piece of curtain-pole, three and three-quarter inches long and about one and one-eighth inches in diameter. A hole, three-eighths of an inch in diameter, is bored along the axis throughout its entire length, to receive the permanent magnet.The shell of the receiver is a cup-shaped piece of hard wood, two and one-half inches in diameter and one inch deep. It will have to be turned on a lathe. Its exact shape and dimensions are best understood from the dimensions shown in the cross section in Figure 147. The shell is firmly attached to one end of the piece of curtain-pole by gluing.The permanent magnet is a piece of hard steel, three-eighths of an inch in diameter and four and five-eighths of an inch in length. The steel will have to be tempered or hardened before it will make a suitable magnet, and the best way to accomplish this is to have a blacksmith do it for you by heating the rod and then plunging it into water when just at the right temperature.Fig. 147.—A Simple Form of Telephone Receiver.Fig. 147.—A Simple Form of Telephone Receiver.One end of the bar is fitted with two thick fiber washers about seven-eighths of an inch in diameter and spaced one-quarter of an inch apart. The bobbin so formed is wound full of No. 36 B. & S. gauge single-silk-covered magnet wire. The ends of the wire are passed through two small holes in the fiber washers and then connected to a pair of heavier wires. The wires are run through two holes in the curtain-pole, passing lengthwise from end to end, parallel to the hole bored to receive the bar magnet.This bar magnet is then pushed through the hole until the end of the rod on which the spool is fixed is just below the level of the edges of the shell.The two wires are connected to binding-posts,AandB, mounted on the end of the receiver. A hook is also provided so that the receiver may be hung up.The diaphragm is a circular piece of thin sheet-iron, two and one-half inches in diameter. It is placed over the shell, and the bar magnet adjusted until the end almost touches the diaphragm. The magnet should fit into the hole very tightly, so that it will have to be driven in order to be moved back and forth.The diaphragm is held in place by a hard-wood cap, two and three-quarter inches in diameter and having a hole three-quarters of an inch in diameter in the center. The cap is held to the shell by means of four small brass screws.The receiver is now completed and should give a loud click each time that a battery is connected or disconnected from the two posts,AandB.The original Bell telephone apparatus was made up simply of two receivers without any battery or transmitter. In such a case the current is generated by "induction." The receiver is used to speak through as well as to hear through. This method of telephoning is unsatisfactory over any appreciable distances. The time utilized in making a transmitter will be well spent.A simple form of transmitter is shown in Figure 148. The wooden back,B, is three and one-half inches square and three-quarters of an inch thick. The front face of the block is hollowed out in the center as shown in the cross-section view.The face-plate,A, is two and one-half inches square and one-half an inch thick. A hole, seven-eighths of an inch in diameter, is bored through the center. One side is then hollowed out to a diameter of one and three-quarter inches, so as to give space for the diaphragm to vibrate as shown in the cross-sectional drawing.The carbon buttons are one inch in diameter and three-sixteenths of an inch thick. A small hole is bored in the center of each to receive a brass machine screw. The hole is countersunk, so as to bring the head of the screw down as close to the surface of the carbon as is possible. Then, using a sharp knife or a three-cornered file, score the surface of the carbon until it is covered with criss-cross lines.The diaphragm is a piece of thin sheet-iron cut in the form of a circle two and one-half inches in diameter. A small hole is bored through the center of this. One of the carbon buttons is fastened to the center of the diaphragm with a small screw and a nut.Cut out a strip of flannel or thin felt, nine-sixteenths of an inch wide and three and one-half inches long. Around the edge of the carbon button mounted on the diaphragm, bind this strip with silk thread in such a manner that the strip forms a cylinder closed at one end with the button.Fill the cylinder with polished carbon telephone transmitter granules to a depth of about one-eighth of an inch. These granules will have to be purchased from an electrical supply house. They are finely polished small carbon balls, much like birdshot in appearance.Slip a long machine-screw through the hole in the second carbon button and clamp it in place with a nut. Then place the carbon button in the cylinder so that it closes up the end. The space between the two buttons should be about three-sixteenths of an inch. Bind the flannel or felt around the button with a piece of silk thread so that it cannot slip out of place. The arrangement of the parts should now be the same as that shown by the cross-sectional drawing in the upper right-hand corner of Figure 148.The complete transmitter is assembled as shown in the lower part of Figure 148.A small tin funnel is fitted into the hole in the face-plate,A, to act as a mouthpiece.A screw passes through the back,B, and connects to the diaphragm. The screw is marked "E" in the illustration. A binding-post is threaded on the screw so that a wire may be easily connected. The screw passing through the back carbon button also passes through a hole in the wooden back, and is clamped firmly in position with a brass nut so that the button is held very rigidly and cannot move. The front button, being attached to the diaphragm, is free to move back and forth with each vibration of the latter.Fig. 148.—A Home-made Telephone Transmitter.Fig. 148.—A Home-made Telephone Transmitter.The carbon granules should fill the space between the buttons three-quarters full. They should lie loosely together, and not be packed in.When connected to a battery and a telephone receiver the current passes from the post,D, to the back button, through the mass of carbon granules into the front button and out at the post,E. When the voice is directed into the mouthpiece, the sound waves strike the diaphragm and cause it to vibrate. The front button attached to it then also vibrates and constantly changes the pressure on the carbon granules. Each change in pressure is accompanied by an immediate change in resistance and consequently the amount of current flowing.Figure 149 shows a complete telephone ready for mounting on the wall. It consists of a receiver, telephone transmitter, bell, hook, and push-button. The bell is mounted on a flat base-board. The transmitter is similar to that just described, but is built into the front of a box-like cabinet. The box is fitted with a push-button at the lower right-hand corner. A simple method of making a suitable push-button is shown in the upper left-hand part of the illustration. It consists of two small brass strips arranged so that pushing a small wooden plug projecting through the side of the cabinet will bring the two strips together and make an electrical connection.The "hook" consists of a strip of brass, pivoted at one end with a round-headed brass wood screw and provided with a small spring, so that when the receiver is taken off of the hook it will fly up and make contact with a screw, markedCin the illustration. When the receiver is on the hook, its weight will draw the latter down against the screw,D. The hook is mounted on the base-board of the telephone, and projects through a slot cut in the side of the cabinet.Four binding-posts are mounted on the lower part of the base-board. The two markedBandBare for the battery.Fig. 149.—A Complete Telephone Instrument.Fig. 149.—A Complete Telephone Instrument. Two Instruments such as this are necessary to form a simple Telephone System.That markedLis for the "line," andGis for the ground connection or the return wire.Fig. 150.—Diagram of Connection for the Telephone Instrument shown in Fig. 149.Fig. 150.—Diagram of Connection for the Telephone Instrument shown in Fig. 149.The diagram of the connections is shown in Figure 150. The line-wire coming from the telephone at the other station enters through the binding-post markedL, and then connects to the hook. The lower contact on the hook is connected to one terminal of the bell. The other terminal of the bell leads to the binding-post markedG, which is connected to the ground, or to the second line-wire, where two are used.The post,G, and one post,B, are connected together. The other post markedBconnects to one terminal of the transmitter. The other terminal of the transmitter is connected to the telephone receiver. The other post of the telephone receiver leads to the upper contact on the hook markedC. The push-button is connected directly across the terminals of the transmitter and the receiver so that when the button is pushed it short-circuits the transmitter and the receiver. When the receiver is on the hook and the latter is down so that it makes contact withDany current coming over the line-wire will pass through the bell and down through the ground or the return-wire to the other station, thus completing the circuit. If the current is strong enough it will ring the bed. When the receiver is lifted off the hook, the spring will cause the hook to rise and make contact with the screw markedC. This will connect the receiver, transmitter, and the battery to the line so that it is possible to talk. If, however, it is desired to ring the bell on the instrument at the other end of the line, all that it is necessary to do is to press the push-button. This will short-circuit the receiver and the transmitter and ring the bell. The battery current is flowing over the line all the time when the receiver is up, but the transmitter and the receiver offer so much resistance to its flow that not enough current can pass to ring the bell until the resistance is cut out by short-circuiting them with the push-button.The instruments at both ends of the line should be similar. In connecting them together care should be taken to see that the batteries at each end of the line are arranged so that they are in series and do not oppose each other. One side of the line may be a wire, but the return may be the ground, as already explained in the chapter on telegraph apparatus.A transmitter of the "desk-stand" type may be made according to the scheme shown in Figure 151. It consists simply of a transmitter mounted upon an upright, and provided with a base so that it may stand on a desk or a table.Fig. 151.—A Desk-Stand Type of Telephone.Fig. 151.—A Desk-Stand Type of Telephone.It is also fitted with a hook and a push-button, so that it is a complete telephone instrument with the exception of the bell and the battery. The battery and the bell may be located in another place and connected to the desk-stand by means of a flexible wire or "electrical cord."Figure 152 shows what is known as a telephone induction coil. Induction coils are used in telephone systems whenever it is necessary to work over a long distance. Such a system is more complicated, and requires considerable care in making the connections, but is far superior to the system just described.Fig. 152.—A Telephone Induction Coil.Fig. 152.—A Telephone Induction Coil.An induction coil consists of two fiber or hard-wood heads, about one inch square and one-quarter of an inch thick, mounted on the ends of an iron core composed of a bundle of small iron wires about two and one-half inches long. The core should be about five-sixteenths of an inch in diameter.The core is covered with a layer of paper and then wound with three layers of No. 22 B. & S. single-cotton-covered wire. These three layers of wire form theprimary. The primary is covered with a layer of paper and then the secondary is wound on. The secondary consists of twelve layers of No. 36 B. & S. single-silk-covered magnet wire. It is advisable to place a layer of paper between layers of the secondary winding, and to give each one a coating of shellac. The two secondary terminals of the coil are led out through holes in the fiber head and kept separate from the primary terminals.Fig. 153.—Diagram of Connection for a Telephone System employing an Induction Coil at each Station.Fig. 153.—Diagram of Connection for a Telephone System employing an Induction Coil at each Station.The wiring diagram of a telephone system using an induction coil at each station is shown in Figure 153. The speech sent over a line using an induction coil system is much clearer and more easily understood than that on a line not using such a device.In building telephone instruments or connecting them up, care and accuracy will go a long way towards success. Telephony involves some very delicate and sensitive vibratory mechanical and electrical actions, and such instruments must be very carefully made.[2]A transmitter is really a microphone built especially to receive the sounds of the human voice, and operates on the same principle.INDUCTION COILS
Telephone receivers are useful for many purposes in electrical work other than to receive speech. They are used in connection with wireless instruments, in place of a galvanometer in measuring electrical circuits, and for testing in various ways.
Telephone receivers are of two types. One of them is long and cumbersome, and is very similar to the original Bell telephone receiver. The other is small and flat, and is called a "watch-case" receiver. A watch-case receiver is shown in Figure 146. It consists of a U-shaped permanent magnet so mounted as to exert a polarizing influence upon a pair of little electro-magnets, before the poles of which is placed an iron diaphragm. For convenience, these parts are assembled in a small cylindrical casing, usually of hard rubber. The permanent magnet exerts a continual pull upon the diaphragm, tending to draw it in. When the telephone currents pass through the little magnets, they will either strengthen the permanent magnet and assist it in attracting the diaphragm, or detract from its strength and allow the diaphragm to recede, depending upon which direction the current flows.
Fig. 146.—A Watch-Case Telephone Receiver.Fig. 146.—A Watch-Case Telephone Receiver.
Fig. 146.—A Watch-Case Telephone Receiver.
Watch-case receivers are usually employed for wireless telegraph work because they are very light in weight and can easily be attached to a head-band in order to hold them to the ears and leave the hands free. Watch-case receivers can be purchased for forty-five to seventy-five cents at almost any electrical supply house. They are very useful to the amateur experimenter in many ways.
A telephone receiver capable of giving fair results on a short telephone line can be very easily made, but of course will not prove as efficient as one which is purchased ready-made from a reliable electrical manufacturer.
The first practical telephone receiver was invented by Alexander Graham Bell and was made somewhat along the same lines as that shown in Figure 147.
Such a receiver may be made from a piece of curtain-pole, three and three-quarter inches long and about one and one-eighth inches in diameter. A hole, three-eighths of an inch in diameter, is bored along the axis throughout its entire length, to receive the permanent magnet.
The shell of the receiver is a cup-shaped piece of hard wood, two and one-half inches in diameter and one inch deep. It will have to be turned on a lathe. Its exact shape and dimensions are best understood from the dimensions shown in the cross section in Figure 147. The shell is firmly attached to one end of the piece of curtain-pole by gluing.
The permanent magnet is a piece of hard steel, three-eighths of an inch in diameter and four and five-eighths of an inch in length. The steel will have to be tempered or hardened before it will make a suitable magnet, and the best way to accomplish this is to have a blacksmith do it for you by heating the rod and then plunging it into water when just at the right temperature.
Fig. 147.—A Simple Form of Telephone Receiver.Fig. 147.—A Simple Form of Telephone Receiver.
Fig. 147.—A Simple Form of Telephone Receiver.
One end of the bar is fitted with two thick fiber washers about seven-eighths of an inch in diameter and spaced one-quarter of an inch apart. The bobbin so formed is wound full of No. 36 B. & S. gauge single-silk-covered magnet wire. The ends of the wire are passed through two small holes in the fiber washers and then connected to a pair of heavier wires. The wires are run through two holes in the curtain-pole, passing lengthwise from end to end, parallel to the hole bored to receive the bar magnet.
This bar magnet is then pushed through the hole until the end of the rod on which the spool is fixed is just below the level of the edges of the shell.
The two wires are connected to binding-posts,AandB, mounted on the end of the receiver. A hook is also provided so that the receiver may be hung up.
The diaphragm is a circular piece of thin sheet-iron, two and one-half inches in diameter. It is placed over the shell, and the bar magnet adjusted until the end almost touches the diaphragm. The magnet should fit into the hole very tightly, so that it will have to be driven in order to be moved back and forth.
The diaphragm is held in place by a hard-wood cap, two and three-quarter inches in diameter and having a hole three-quarters of an inch in diameter in the center. The cap is held to the shell by means of four small brass screws.
The receiver is now completed and should give a loud click each time that a battery is connected or disconnected from the two posts,AandB.
The original Bell telephone apparatus was made up simply of two receivers without any battery or transmitter. In such a case the current is generated by "induction." The receiver is used to speak through as well as to hear through. This method of telephoning is unsatisfactory over any appreciable distances. The time utilized in making a transmitter will be well spent.
A simple form of transmitter is shown in Figure 148. The wooden back,B, is three and one-half inches square and three-quarters of an inch thick. The front face of the block is hollowed out in the center as shown in the cross-section view.
The face-plate,A, is two and one-half inches square and one-half an inch thick. A hole, seven-eighths of an inch in diameter, is bored through the center. One side is then hollowed out to a diameter of one and three-quarter inches, so as to give space for the diaphragm to vibrate as shown in the cross-sectional drawing.
The carbon buttons are one inch in diameter and three-sixteenths of an inch thick. A small hole is bored in the center of each to receive a brass machine screw. The hole is countersunk, so as to bring the head of the screw down as close to the surface of the carbon as is possible. Then, using a sharp knife or a three-cornered file, score the surface of the carbon until it is covered with criss-cross lines.
The diaphragm is a piece of thin sheet-iron cut in the form of a circle two and one-half inches in diameter. A small hole is bored through the center of this. One of the carbon buttons is fastened to the center of the diaphragm with a small screw and a nut.
Cut out a strip of flannel or thin felt, nine-sixteenths of an inch wide and three and one-half inches long. Around the edge of the carbon button mounted on the diaphragm, bind this strip with silk thread in such a manner that the strip forms a cylinder closed at one end with the button.
Fill the cylinder with polished carbon telephone transmitter granules to a depth of about one-eighth of an inch. These granules will have to be purchased from an electrical supply house. They are finely polished small carbon balls, much like birdshot in appearance.
Slip a long machine-screw through the hole in the second carbon button and clamp it in place with a nut. Then place the carbon button in the cylinder so that it closes up the end. The space between the two buttons should be about three-sixteenths of an inch. Bind the flannel or felt around the button with a piece of silk thread so that it cannot slip out of place. The arrangement of the parts should now be the same as that shown by the cross-sectional drawing in the upper right-hand corner of Figure 148.
The complete transmitter is assembled as shown in the lower part of Figure 148.
A small tin funnel is fitted into the hole in the face-plate,A, to act as a mouthpiece.
A screw passes through the back,B, and connects to the diaphragm. The screw is marked "E" in the illustration. A binding-post is threaded on the screw so that a wire may be easily connected. The screw passing through the back carbon button also passes through a hole in the wooden back, and is clamped firmly in position with a brass nut so that the button is held very rigidly and cannot move. The front button, being attached to the diaphragm, is free to move back and forth with each vibration of the latter.
Fig. 148.—A Home-made Telephone Transmitter.Fig. 148.—A Home-made Telephone Transmitter.
Fig. 148.—A Home-made Telephone Transmitter.
The carbon granules should fill the space between the buttons three-quarters full. They should lie loosely together, and not be packed in.
When connected to a battery and a telephone receiver the current passes from the post,D, to the back button, through the mass of carbon granules into the front button and out at the post,E. When the voice is directed into the mouthpiece, the sound waves strike the diaphragm and cause it to vibrate. The front button attached to it then also vibrates and constantly changes the pressure on the carbon granules. Each change in pressure is accompanied by an immediate change in resistance and consequently the amount of current flowing.
Figure 149 shows a complete telephone ready for mounting on the wall. It consists of a receiver, telephone transmitter, bell, hook, and push-button. The bell is mounted on a flat base-board. The transmitter is similar to that just described, but is built into the front of a box-like cabinet. The box is fitted with a push-button at the lower right-hand corner. A simple method of making a suitable push-button is shown in the upper left-hand part of the illustration. It consists of two small brass strips arranged so that pushing a small wooden plug projecting through the side of the cabinet will bring the two strips together and make an electrical connection.
The "hook" consists of a strip of brass, pivoted at one end with a round-headed brass wood screw and provided with a small spring, so that when the receiver is taken off of the hook it will fly up and make contact with a screw, markedCin the illustration. When the receiver is on the hook, its weight will draw the latter down against the screw,D. The hook is mounted on the base-board of the telephone, and projects through a slot cut in the side of the cabinet.
Four binding-posts are mounted on the lower part of the base-board. The two markedBandBare for the battery.
Fig. 149.—A Complete Telephone Instrument.Fig. 149.—A Complete Telephone Instrument. Two Instruments such as this are necessary to form a simple Telephone System.
Fig. 149.—A Complete Telephone Instrument. Two Instruments such as this are necessary to form a simple Telephone System.
That markedLis for the "line," andGis for the ground connection or the return wire.
Fig. 150.—Diagram of Connection for the Telephone Instrument shown in Fig. 149.Fig. 150.—Diagram of Connection for the Telephone Instrument shown in Fig. 149.
Fig. 150.—Diagram of Connection for the Telephone Instrument shown in Fig. 149.
The diagram of the connections is shown in Figure 150. The line-wire coming from the telephone at the other station enters through the binding-post markedL, and then connects to the hook. The lower contact on the hook is connected to one terminal of the bell. The other terminal of the bell leads to the binding-post markedG, which is connected to the ground, or to the second line-wire, where two are used.
The post,G, and one post,B, are connected together. The other post markedBconnects to one terminal of the transmitter. The other terminal of the transmitter is connected to the telephone receiver. The other post of the telephone receiver leads to the upper contact on the hook markedC. The push-button is connected directly across the terminals of the transmitter and the receiver so that when the button is pushed it short-circuits the transmitter and the receiver. When the receiver is on the hook and the latter is down so that it makes contact withDany current coming over the line-wire will pass through the bell and down through the ground or the return-wire to the other station, thus completing the circuit. If the current is strong enough it will ring the bed. When the receiver is lifted off the hook, the spring will cause the hook to rise and make contact with the screw markedC. This will connect the receiver, transmitter, and the battery to the line so that it is possible to talk. If, however, it is desired to ring the bell on the instrument at the other end of the line, all that it is necessary to do is to press the push-button. This will short-circuit the receiver and the transmitter and ring the bell. The battery current is flowing over the line all the time when the receiver is up, but the transmitter and the receiver offer so much resistance to its flow that not enough current can pass to ring the bell until the resistance is cut out by short-circuiting them with the push-button.
The instruments at both ends of the line should be similar. In connecting them together care should be taken to see that the batteries at each end of the line are arranged so that they are in series and do not oppose each other. One side of the line may be a wire, but the return may be the ground, as already explained in the chapter on telegraph apparatus.
A transmitter of the "desk-stand" type may be made according to the scheme shown in Figure 151. It consists simply of a transmitter mounted upon an upright, and provided with a base so that it may stand on a desk or a table.
Fig. 151.—A Desk-Stand Type of Telephone.Fig. 151.—A Desk-Stand Type of Telephone.
Fig. 151.—A Desk-Stand Type of Telephone.
It is also fitted with a hook and a push-button, so that it is a complete telephone instrument with the exception of the bell and the battery. The battery and the bell may be located in another place and connected to the desk-stand by means of a flexible wire or "electrical cord."
Figure 152 shows what is known as a telephone induction coil. Induction coils are used in telephone systems whenever it is necessary to work over a long distance. Such a system is more complicated, and requires considerable care in making the connections, but is far superior to the system just described.
Fig. 152.—A Telephone Induction Coil.Fig. 152.—A Telephone Induction Coil.
Fig. 152.—A Telephone Induction Coil.
An induction coil consists of two fiber or hard-wood heads, about one inch square and one-quarter of an inch thick, mounted on the ends of an iron core composed of a bundle of small iron wires about two and one-half inches long. The core should be about five-sixteenths of an inch in diameter.
The core is covered with a layer of paper and then wound with three layers of No. 22 B. & S. single-cotton-covered wire. These three layers of wire form theprimary. The primary is covered with a layer of paper and then the secondary is wound on. The secondary consists of twelve layers of No. 36 B. & S. single-silk-covered magnet wire. It is advisable to place a layer of paper between layers of the secondary winding, and to give each one a coating of shellac. The two secondary terminals of the coil are led out through holes in the fiber head and kept separate from the primary terminals.
Fig. 153.—Diagram of Connection for a Telephone System employing an Induction Coil at each Station.Fig. 153.—Diagram of Connection for a Telephone System employing an Induction Coil at each Station.
Fig. 153.—Diagram of Connection for a Telephone System employing an Induction Coil at each Station.
The wiring diagram of a telephone system using an induction coil at each station is shown in Figure 153. The speech sent over a line using an induction coil system is much clearer and more easily understood than that on a line not using such a device.
In building telephone instruments or connecting them up, care and accuracy will go a long way towards success. Telephony involves some very delicate and sensitive vibratory mechanical and electrical actions, and such instruments must be very carefully made.
A transmitter is really a microphone built especially to receive the sounds of the human voice, and operates on the same principle.
INDUCTION COILS