III

We may follow life down to the ground, yes, under the ground, into the very roots of matter and motion, yea, beyond the roots, into the imaginary world of molecules and atoms, and their attractions and repulsions and not find its secret. Indeed, science—the new science—pursues matter to the vanishing-point, where it ceases to become matter and becomes pure force or spirit. What takes place in that imaginary world where ponderable matter ends and becomes disembodied force, and wherethe hypothetical atoms are no longer divisible, we may conjecture but may never know. We may fancy the infinitely little going through a cycle of evolution like that of the infinitely great, and solar systems developing and revolving inside of the ultimate atoms, but the Copernicus or the Laplace of the atomic astronomy has not yet appeared. The atom itself is an invention of science. To get the mystery of vitality reduced to the atom is getting it in very close quarters, but it is a very big mystery still. Just how the dead becomes alive, even in the atom, is mystery enough to stagger any scientific mind. It is not the volume of the change; it is the quality or kind. Chemistry and mechanics we have always known, and they always remain chemistry and mechanics. They go into our laboratories and through our devices chemistry and mechanics, and they come out chemistry and mechanics. They will never come out life, conjure with them as we will, and we can get no other result. We cannot inaugurate the mystic dance among the atoms that will give us the least throb of life.

The psychic arises out of the organic and the organic arises out of the inorganic, and the inorganic arises out of—what? The relation of each to the other is as intimate as that of the soul to the body; we cannot get between them even in thought, but the difference is one of kind and not of degree. The vital transcends the mechanical, and the psychictranscends the vital—is on another plane, and yet without the sun's energy there could be neither. Thus are things knit together; thus does one thing flow out of or bloom out of another. We date from the rocks, and the rocks date from the fiery nebulæ, and the loom in which the texture of our lives was woven is the great loom of vital energy about us and in us; but what hand guided the shuttle and invented the pattern—who knows?

Science recognizes a more fundamental world than that of matter. This is the electro-magnetic world which underlies the material world and which, as Professor Soddy says, probably completely embraces it, and has no mechanical analogy. To those accustomed only to the grosser ideas of matter and its motions, says the British scientist, this electro-magnetic world is as difficult to conceive of as it would be for us to walk upon air. Yet many times in our lives is this world in overwhelming evidence before us. During a thunderstorm we get an inkling of how fearfully and wonderfully the universe in which we live is made, and what energy and activity its apparent passivity and opacity mark. A flash of lightning out of a storm-cloud seems instantly to transform the whole passive universe into a terrible living power. This slow, opaque, indifferent matter about us and above us, going its silent or noisy round of mechanical and chemical change, ponderable, insensate, obstructive, slumbering in the rocks, quietly active in the soil, gently rustling in the trees, sweetly purling inthe brooks, slowly, invisibly building and shaping our bodies—how could we ever dream that it held in leash such a terrible, ubiquitous, spectacular thing as this of the forked lightning? If we were to see and hear it for the first time, should we not think that the Judgment Day had really come? that the great seals of the Book of Fate were being broken?

What an awakening it is! what a revelation! what a fearfully dramatic actor suddenly leaps upon the stage! Had we been permitted to look behind the scenes, we could not have found him; he was not there, except potentially; he was born and equipped in a twinkling. One stride, and one word which shakes the house, and he is gone; gone as quickly as he came. Look behind the curtain and he is not there. He has vanished more completely than any stage ghost ever vanished—he has withdrawn into the innermost recesses of the atomic structure of matter, and is diffused through the clouds, to be called back again, as the elemental drama proceeds, as suddenly as before.

All matter is charged with electricity, either actual or potential; the sun is hot with it, and doubtless our own heart-beats, our own thinking brains, are intimately related to it; yet it is palpable and visible only in this sudden and extraordinary way. It defies our analysis, it defies our definitions; it is inscrutable and incomprehensible, yet it will do ourerrands, light our houses, cook our dinners, and pull our loads.

How humdrum and constant and prosaic the other forces—gravity, cohesion, chemical affinity, and capillary attraction—seem when compared with this force of forces, electricity! How deep and prolonged it slumbers at one time, how terribly active and threatening at another, bellowing through the heavens like an infuriated god seeking whom he may destroy!

The warring of the elements at such times is no figure of speech. What has so disturbed the peace in the electric equilibrium, as to make possible this sudden outburst, this steep incline in the stream of energy, this ethereal Niagara pouring from heaven to earth? Is a thunderstorm a display of the atomic energy of which the physicists speak, and which, were it available for our use, would do all the work of the world many times over?

How marvelous that the softest summer breeze, or the impalpable currents of the calmest day, can be torn asunder with such suddenness and violence, by the accumulated energy that slumbers in the imaginary atoms, as to give forth a sound like the rending of mountains or the detonations of earthquakes!

Electricity is the soul of matter. If Whitman's paradox is true, that the soul and body are one, in the same sense the scientific paradox is true: thatmatter and electricity are one, and both are doubtless a phase of the universal ether—a reality which can be described only in terms of the negation of matter. In a flash of lightning we see pure disembodied energy—probably that which is the main-spring of the universe. Modern science is more and more inclined to find the explanation of all vital phenomena in electrical stress and change. We know that an electric current will bring about chemical changes otherwise impracticable. Nerve force, if not a form of electricity, is probably inseparable from it. Chemical changes equivalent to the combustion of fuel and the corresponding amount of available energy released have not yet been achieved outside of the living body without great loss. The living body makes a short cut from fuel to energy, and this avoids the wasteful process of the engine. What part electricity plays in this process is, of course, only conjectural.

Our daily lives go on for the most part in two worlds, the world of mechanical transposition and the world of chemical transformations, but we are usually conscious only of the former. This is the visible, palpable world of motion and change that rushes and roars around us in the winds, the storms, the floods, the moving and falling bodies, and the whole panorama of our material civilization; thelatter is the world of silent, invisible, unsleeping, and all-potent chemical reactions that take place all about us and is confined to the atoms and molecules of matter, as the former is confined to its visible aggregates.

Mechanical forces and chemical affinities rule our physical lives, and indirectly our psychic lives as well. When we come into the world and draw our first breath, mechanics and chemistry start us on our career. Breathing is a mechanical, or a mechanico-vital, act; the mechanical principle involved is the same as that involved in the working of a bellows, but the oxidation of the blood when the air enters the lungs is a chemical act, or a chemico-vital act. The air gives up a part of its oxygen, which goes into the arterial circulation, and its place is taken by carbonic-acid gas and watery vapor. The oxygen feeds and keeps going the flame of life, as literally as it feeds and keeps going the fires in our stoves and furnaces.

Hence our most constant and vital relation to the world without is a chemical one. We can go without food for some days, but we can exist without breathing only a few moments. Through these spongy lungs of ours we lay hold upon the outward world in the most intimate and constant way. Through them we are rooted to the air. The air is a mechanical mixture of two very unlike gases—nitrogen and oxygen; one very inert, the other very active.Nitrogen is like a cold-blooded, lethargic person—it combines with other substances very reluctantly and with but little energy. Oxygen is just its opposite in this respect: it gives itself freely; it is "Hail, fellow; well met!" with most substances, and it enters into co-partnership with them on such a large scale that it forms nearly one half of the material of the earth's crust. This invisible gas, this breath of air, through the magic of chemical combination, forms nearly half the substance of the solid rocks. Deprive it of its affinity for carbon, or substitute nitrogen or hydrogen in its place, and the air would quickly suffocate us. That changing of the dark venous blood in our lungs into the bright, red, arterial blood would instantly cease. Fancy the sensation of inhaling an odorless, non-poisonous atmosphere that would make one gasp for breath! We should be quickly poisoned by the waste of our own bodies. All things that live must have oxygen, and all things that burn must have oxygen. Oxygen does not burn, but it supports combustion.

And herein is one of the mysteries of chemistry again. This support which the oxygen gives is utterly unlike any support we are acquainted with in the world of mechanical forces. Oxygen supports combustion by combining chemically with carbon, and the evolution of heat and light is the result. And this is another mystery—this chemical union which takes place in the ultimate particles of matter andwhich is so radically different from a mechanical mixture. In a chemical union the atoms are not simply in juxtaposition; they are, so to speak, inside of one another—each has swallowed another and lost its identity, an impossible feat, surely, viewed in the light of our experiences with tangible bodies. In the visible, mechanical world no two bodies can occupy the same place at the same time, but apparently in chemistry they can and do. An atom of oxygen and one of carbon, or of hydrogen, unite and are lost in each other; it is a marriage wherein the two or three become one. In dealing with the molecules and atoms of matter we are in a world wherein the laws of solid bodies do not apply; friction is abolished, elasticity is perfect, and place and form play no part. We have escaped from matter as we know it, the solid, fluid, or gaseous forms, and are dealing with it in its fourth or ethereal estate. In breathing, the oxygen goes into the blood, not to stay there, but to unite with and bring away the waste of the system in the shape of carbon, and re-enter the air again as one of the elements of carbonic-acid gas, CO2. Then the reverse process takes place in the vegetable world, the leaves breathe this poisonous gas, release the oxygen under the chemistry of the sun's rays, and appropriate and store up the carbon. Thus do the animal and vegetable worlds play into each other's hands. The animal is dependent upon the vegetable for its carbon, whichit releases again, through the life processes, as carbonic-acid gas, to be again drawn into the cycle of vegetable life.

The act of breathing well illustrates our mysterious relations to Nature—the cunning way in which she plays the principal part in our lives without our knowledge. How certain we are that we draw the air into our lungs—that we seize hold of it in some way as if it were a continuous substance, and pull it into our bodies! Are we not also certain that the pump sucks the water up through the pipe, and that we suck our iced drinks through a straw? We are quite unconscious of the fact that the weight of the superincumbent air does it all, that breathing is only to a very limited extent a voluntary act. It is controlled by muscular machinery, but that machinery would not act in a vacuum. We contract the diaphragm, or the diaphragm contracts under stimuli received through the medulla oblongata from those parts of the body which constantly demand oxygen, and a vacuum tends to form in the chest, which is constantly prevented by the air rushing in to fill it. The expansive force of the air under its own weight causes the lungs to fill, just as it causes the bellows of the blacksmith to fill when he works the lever, and the water to rise in the pump when we force out the air by working the handle. Another unconscious muscular effort under the influence of nerve stimulus, and the air is forced out of the lungs,charged with the bodily waste which it is the function to relieve. But the wonder of it all is how slight a part our wills play in the process, and how our lives are kept going by a mechanical force from without, seconded or supplemented by chemical and vital forces from within.

The one chemical process with which we are familiar all our lives, but which we never think of as such, is fire. Here on our own hearthstones goes on this wonderful spectacular and beneficent transformation of matter and energy, and yet we are grown so familiar with it that it moves us not. We can describe combustion in terms of chemistry, just as we can describe the life-processes in similar terms, yet the mystery is no more cleared up in the one case than in the other. Indeed, it seems to me that next to the mystery of life is the mystery of fire. The oxidizing processes are identical, only one is a building up or integrating process, and the other is a pulling down or disintegrating process. More than that, we can evoke fire any time, by both mechanical and chemical means, from the combustible matter about us; but we cannot evoke life. The equivalents of life do not slumber in our tools as do the equivalents of fire. Hence life is the deeper mystery. The ancients thought of a spirit of fire as they did of a spirit of health and of disease, and of good and bad spirits all about them, and as we think of a spirit of life, or of a creative life principle. Arewe as wide of the mark as they were? So think many earnest students of living things. When we do not have to pass the torch of life along, but can kindle it in our laboratories, then this charge will assume a different aspect.

Nature works with such simple means! A little more or a little less of this or that, and behold the difference! A little more or a little less heat, and the face of the world is changed.

"And the little more, and how much it is,And the little less, and what worlds away!"

"And the little more, and how much it is,And the little less, and what worlds away!"

"And the little more, and how much it is,

And the little less, and what worlds away!"

At one temperature water is solid, at another it is fluid, at another it is a visible vapor, at a still higher it is an invisible vapor that burns like a flame. All possible shades of color lurk in a colorless ray of light. A little more or a little less heat makes all the difference between a nebula and a sun, and between a sun and a planet. At one degree of heat the elements are dissociated; at a lower degree they are united. At one point in the scale of temperatures life appears; at another it disappears. With heat enough the earth would melt like a snowball in a furnace, with still more it would become a vapor and float away like a cloud. More or less heat only makes the difference between the fluidity of water and the solidity of the rocks that it beats against, or of the banks that hold it.

The physical history of the universe is written in terms of heat and motion. Astronomy is the story of cooling suns and worlds. At a low enough temperature all chemical activity ceases. In our own experience we find that frost will blister like flame. In the one case heat passes into the tissues so quickly and in such quantity that a blister ensues; in the other, heat is abstracted so quickly and in such quantity that a like effect is produced. In one sense, life is a thermal phenomenon; so are all conditions of fluids and solids thermal phenomena.

Great wonders Nature seems to achieve by varying the arrangement of the same particles. Arrange or unite the atoms of carbon in one way and you have charcoal; assemble the same atoms in another order, and you have the diamond. The difference between the pearl and the oyster-shell that holds it is one of structure or arrangement of the same particles of matter. Arrange the atoms of silica in one way and you have a quartz pebble, in another way and you have a precious stone. The chemical constituents of alcohol and ether are the same; the difference in their qualities and properties arises from the way the elements are compounded—the way they take hold of hands, so to speak, in that marriage ceremony which constitutes a chemical compound. Compounds identical in composition and in molecular formulæ may yet differ widely in physical properties; the elements are probably grouped in differentways, the atoms of carbon or of hydrogen probably carry different amounts of potential energy, so that the order in which they stand related to one another accounts for the different properties of the same chemical compounds. Different groupings of the same atoms of any of the elements result in a like difference of physical properties.

The physicists tell us that what we call the qualities of things, and their structure and composition, are but the expressions of internal atomic movements. A complex substance simply means a whirl, an intricate dance, of which chemical composition, histological structure, and gross configuration are the figures. How the atoms take hold of hands, as it were, the way they face, the poses they assume, the speed of their gyrations, the partners they exchange, determine the kinds of phenomena we are dealing with.

There is a striking analogy between the letters of our alphabet and their relation to the language of the vast volume of printed books, and the eighty or more primary elements and their relation to the vast universe of material things. The analogy may not be in all respects a strictly true one, but it is an illuminating one. Our twenty-six letters combined and repeated in different orders give us the many thousand words our language possesses, and these words combined and repeated in different orders give us the vast body of printed books in our libraries.The ultimate parts—the atoms and molecules of all literature, so to speak—are the letters of the alphabet. How often by changing a letter in a word, by reversing their order, or by substituting one letter for another, we get a word of an entirely different meaning, as in umpire and empire, petrifaction and putrefaction, malt and salt, tool and fool. And by changing the order of the words in a sentence we express all the infinite variety of ideas and meanings that the books of the world hold.

The eighty or more primordial elements are Nature's alphabet with which she writes her "infinite book of secrecy." Science shows pretty conclusively that the character of the different substances, their diverse qualities and properties, depend upon the order in which the atoms and molecules are combined. Change the order in which the molecules of the carbon and oxygen are combined in alcohol, and we get ether—the chemical formula remaining the same. Or take ordinary spirits of wine and add four more atoms of carbon to the carbon molecules, and we have the poison, carbolic acid. Pure alcohol is turned into a deadly poison by taking from it one atom of carbon and two of hydrogen. With the atoms of carbon, hydrogen, and oxygen, by combining them in different proportions and in different orders, Nature produces such diverse bodies as acetic acid, alcohol, sugar, starch, animal fats, vegetable oils, glycerine, and the like. So with the longlist of hydrocarbons—gaseous, liquid, and solid—called paraffins, that are obtained from petroleum and that are all composed of hydrogen and carbon, but with a different number of atoms of each, like a different number of a's or b's or c's in a word.

What an enormous number of bodies Nature forms out of oxygen by uniting it chemically with other primary elements! Thus by uniting it with the element silica she forms half of the solid crust of the globe; by uniting it with hydrogen in the proportion of two to one she forms all the water of the globe. With one atom of nitrogen united chemically with three atoms of hydrogen she forms ammonia. With one atom of carbon united with four atoms of hydrogen she spells marsh gas; and so on. Carbon occurs in inorganic nature in two crystalline forms,—the diamond and black lead, or graphite,—their physical differences evidently being the result of their different molecular structure. Graphite is a good conductor of heat and electricity, and the diamond is not. Carbon in the organic world, where it plays such an important part, is non-crystalline. Under the influence of life its molecules are differently put together, as in sugar, starch, wood, charcoal, etc. There are also two forms of phosphorus, but not two kinds; the same atoms are probably united differently in each. The yellow waxy variety has such an affinity for oxygen that it will burn in water, and it is poisonous. Bring this variety to ahigh temperature away from the air, and its molecular structure seems to change, and we have the red variety, which is tasteless, odorless, and non-poisonous, and is not affected by contact with the air. Such is the mystery of chemical change.

Science has developed methods and implements of incredible delicacy. Its "microbalance" can estimate "the difference of weight of the order of the millionth of a milligram." Light travels at the speed of 186,000 miles a second, yet science can follow it with its methods, and finds that it travels faster with the current of running water than against it. Science has perfected a thermal instrument by which it can detect the heat of a lighted candle six miles away, and the warmth of the human face several miles distant. It has devised a method by which it can count the particles in the alpha rays of radium that move at a velocity of twenty thousand kilometers a second, and a method by which, through the use of a screen of zinc-sulphide, it can see the flashes produced by the alpha atoms when they strike this screen. It weighs and counts and calculates the motions of particles of matter so infinitely small that only the imagination can grasp them. Its theories require it to treat the ultimate particles into which it resolves matter, and which are so small that they are no longer divisible,as if they were solid bodies with weight and form, with centre and circumference, colliding with one another like billiard-balls, or like cosmic bodies in the depths of space, striking one another squarely, and, for aught I know, each going through another, or else grazing one another and glancing off. To particles of matter so small that they can no longer be divided or made smaller, the impossible feat of each going through the centre of another, or of each enveloping the other, might be affirmed of them without adding to their unthinkableness. The theory is that if we divide a molecule of water the parts are no longer water, but atoms of hydrogen and oxygen—real bodies with weight and form, and storehouses of energy, but no longer divisible.

Indeed, the atomic theory of matter leads us into a non-material world, or a world the inverse of the solid, three-dimensioned world that our senses reveal to us, or to matter in a fourth estate. We know solids and fluids and gases; but emanations which are neither we know only as we know spirits and ghosts—by dreams or hearsay. Yet this fourth or ethereal estate of matter seems to be the final, real, and fundamental condition.

How it differs from spirit is not easy to define. The beta ray of radium will penetrate solid iron a foot thick, a feat that would give a spirit pause. The ether of space, which science is coming more and more to look upon as the mother-stuff of all things,has many of the attributes of Deity. It is omni-present and all-powerful. Neither time nor space has dominion over it. It is the one immutable and immeasurable thing in the universe. From it all things arise and to it they return. It is everywhere and nowhere. It has none of the finite properties of matter—neither parts, form, nor dimension; neither density nor tenuity; it cannot be compressed nor expanded nor moved; it has no inertia nor mass, and offers no resistance; it is subject to no mechanical laws, and no instrument or experiment that science has yet devised can detect its presence; it has neither centre nor circumference, neither extension nor boundary. And yet science is as convinced of its existence as of the solid ground beneath our feet. It is the one final reality in the universe, if we may not say that it is the universe. Tremors or vibrations in it reach the eye and make an impression that we call light; electrical oscillations in it are the source of other phenomena. It is the fountain-head of all potential energy. The ether is an invention of the scientific imagination. We had to have it to account for light, gravity, and the action of one body upon another at a distance, as well as to account for other phenomena. The ether is not a body, it is a medium. All bodies are in motion; matter moves; the ether is in a state of absolute rest. Says Sir Oliver Lodge, "The ether is strained, and has the property of exerting strain and recoil." An electronis like a knot in the ether. The ether is the fluid of fluids, yet its tension or strain is so great that it is immeasurably more dense than anything else—a phenomenon that may be paralleled by a jet of water at such speed that it cannot be cut with a sword or severed by a hammer. It is so subtle or imponderable that solid bodies are as vacuums to it, and so pervasive that all conceivable space is filled with it; "so full," says Clerk Maxwell, "that no human power can remove it from the smallest portion of space, or produce the slightest flaw in its infinite continuity."

The scientific imagination, in its attempts to master the workings of the material universe, has thus given us a creation which in many of its attributes rivals Omnipotence. It is the sum of all contradictions, and the source of all reality. The gross matter which we see and feel is one state of it; electricity, which is without form and void, is another state of it; and our minds and souls, Sir Oliver Lodge intimates, may be still another state of it. But all these theories of physical science are justified by their fruits. The atomic theory of matter, and the kinetic theory of gases, are mathematically demonstrated. However unreal and fantastic they may appear to our practical faculties, conversant only with ponderable bodies, they bear the test of the most rigid and exact experimentation.

After we have marveled over all these hidden things, and been impressed by the world within world of the material universe, do we get any nearer to the mystery of life? Can we see where the tremendous change from the non-living to the living takes place? Can we evoke life from the omnipotent ether, or see it arise in the whirling stream of atoms and electrons? Molecular science opens up to us a world where the infinitely little matches the infinitely great, where matter is dematerialized and answers to many of the conceptions of spirit; but does it bring us any nearer the origin of life? Is radio-active matter any nearer living matter than is the clod under foot? Are the darting electrons any more vital than the shooting-stars? Can a flash of radium emanations on a zinc-sulphide plate kindle the precious spark? It is probably just as possible to evoke vitality out of the clash of billiard-balls as out of the clash of atoms and electrons. This allusion to billiard-balls recalls to my mind a striking passage from Tyndall's famous Belfast Address which he puts in the mouth of Bishop Butler in his imaginary argument with Lucretius, and which shows how thoroughly Tyndall appreciated the difficulties of his own position in advocating the theory of the physico-chemical origin of life.

The atomic and electronic theory of matter admitsone to a world that does indeed seem unreal and fantastic. "If my bark sinks," says the poet, "'t is to another sea." If the mind breaks through what we call gross matter, and explores its interior, it finds itself indeed in a vast under or hidden world—a world almost as much a creation of the imagination as that visited by Alice in Wonderland, except that the existence of this world is capable of demonstration. It is a world of the infinitely little which science interprets in terms of the infinitely large. Sir Oliver Lodge sees the molecular spaces that separate the particles of any material body relatively like the interstellar spaces that separate the heavenly bodies. Just as all the so-called solid matter revealed by our astronomy is almost infinitesimal compared with the space through which it is distributed, so the electrons which compose the matter with which we deal are comparable to the bodies of the solar system moving in vast spaces. It is indeed a fantastic world where science conceives of bodies a thousand times smaller than the hydrogen atom—the smallest body known to science; where it conceives of vibrations in the ether millions of millions times a second; where we are bombarded by a shower of corpuscles from a burning candle, or a gas-jet, or a red-hot iron surface, moving at the speed of one hundred thousand miles a second! But this almost omnipotent ether has, after all, some of the limitations of the finite. It takes time to transmitthe waves of light from the sun and the stars. This measurable speed, says Sir Oliver Lodge, gives the ether away, and shows its finite character.

It seems as if the theory of the ether must be true, because it fits in so well with the enigmatic, contradictory, incomprehensible character of the universe as revealed to our minds. We can affirm and deny almost anything of the ether—that it is immaterial, and yet the source of all material; that it is absolutely motionless, yet the cause of all motion; that it is the densest body in nature, and yet the most rarified; that it is everywhere, but defies detection; that it is as undiscoverable as the Infinite itself; that our physics cannot prove it, though they cannot get along without it. The ether inside a mass of iron or of lead is just as dense as the ether outside of it—which means that it is not dense at all, in our ordinary use of the term.

There are physical changes in matter, there are chemical changes, and there is a third change, as unlike either of these as they are unlike each other. I refer to atomic change, as in radio-activity, which gives us lead from helium—a spontaneous change of the atoms. The energy that keeps the earth going, says Soddy, is to be sought for in the individual atoms; not in the great heaven-shaking voice of thunder, but in the still small voice of the atoms.Radio-activity is the mainspring of the universe. The only elements so far known that undergo spontaneous change are uranium and thorium. One pound of uranium contains and slowly gives out the same amount of energy that a hundred tons of coal evolves in its combustion, but only one ten-billionth part of this amount is given out every year.

Man, of course, reaps where he has not sown. How could it be otherwise? It takes energy to sow or plant energy. We are exhausting the coal, the natural gas, the petroleum of the rocks, the fertility of the soil. But we cannot exhaust the energy of the winds or the tides, or of falling water, because this energy is ever renewed by gravity and the sun. There can be no exhaustion of our natural mechanical and chemical resources, as some seem to fear.

I recently visited a noted waterfall in the South where electric power is being developed on a large scale. A great column of water makes a vertical fall of six hundred feet through a steel tube, and in the fall develops two hundred and fifty thousand horse-power. The water comes out of the tunnel at the bottom, precisely the same water that went in at the top; no change whatever has occurred in it, yet a vast amount of power has been taken out of it, or, rather, generated by its fall. Another drop of six hundred feet would develop as much more; in fact, the process may be repeated indefinitely, the same amount of power resulting each time, without effectingany change in the character of the water. The pull of gravity is the source of the power which is distributed hundreds of miles across the country as electricity. Two hundred and fifty thousand invisible, immaterial, noiseless horses are streaming along these wires with incredible speed to do the work of men and horses in widely separated parts of the country. A river of sand falling down those tubes, if its particles moved among themselves with the same freedom that those of the water do, would develop the same power. The attraction of gravitation is not supposed to be electricity, and yet here out of its pull upon the water comes this enormous voltage! The fact that such a mysterious and ubiquitous power as electricity can be developed from the action of matter without any alteration in its particles, suggests the question whether or not this something that we call life, or life-force, may not slumber in matter in the same way; but the secret of its development we have not yet learned, as we have that of electricity.

Radio-activity is uninfluenced by external conditions; hence we are thus far unable to control it. Nothing that is known will effect the transmutation of one element into another. It is spontaneous and uncontrollable. May not life be spontaneous in the same sense?

The release of the energy associated with the structure of the atoms is not available by any of ourmechanical appliances. The process of radio-activity involves the expulsion of atoms of helium with a velocity three hundred times greater than that ever previously known for any material mass or particle, and this power we are incompetent to use. The atoms remain unchanged amid the heat and pressure of the laboratory of nature. Iron and oxygen and so forth remain the same in the sun as here on the earth.

Science strips gross matter of its grossness. When it is done with it, it is no longer the obstructive something we know and handle; it is reduced to pure energy—the line between it and spirit does not exist. We have found that bodies are opaque only to certain rays; the X-ray sees through this too too solid flesh. Bodies are ponderable only to our dull senses; to a finer hand than this the door or the wall might offer no obstruction; a finer eye than this might see the emanations from the living body; a finer ear might hear the clash of electrons in the air. Who can doubt, in view of what we already know, that forces and influences from out the heavens above, and from the earth beneath, that are beyond our ken, play upon us constantly?

The final mystery of life is no doubt involved in conditions and forces that are quite outside of or beyond our conscious life activities, in forces that play about us and upon and through us, that we know not of, because a knowledge of them is notnecessary to our well-being. "Our eye takes in only an octave of the vibrations we call light," because no more is necessary for our action or our dealing with things. The invisible rays of the spectrum are potent, but they are beyond the ken of our senses. There are sounds or sound vibrations that we do not hear; our sense of touch cannot recognize a gossamer, or the gentler air movements.

I began with the contemplation of the beauty and terror of the thunderbolt—"God's autograph," as one of our poets (Joel Benton) said, "written upon the sky." Let me end with an allusion to another aspect of the storm that has no terror in it—the bow in the clouds: a sudden apparition, a cosmic phenomenon no less wonderful and startling than the lightning's flash. The storm with terror and threatened destruction on one side of it, and peace and promise on the other! The bow appears like a miracle, but it is a commonplace of nature; unstable as life, and beautiful as youth. The raindrops are not changed, the light is not changed, the laws of the storms are not changed; and yet, behold this wonder!

But all these strange and beautiful phenomena springing up in a world of inert matter are but faint symbols of the mystery and the miracle of the change of matter from the non-living to the living, from the elements in the clod to the same elements in the brain and heart of man.

Still the problem of living things haunts my mind and, let me warn my reader, will continue to haunt it throughout the greater part of this volume. The final truth about it refuses to be spoken. Every effort to do so but gives one new evidence of how insoluble the problem is.

In this world of change is there any other change to be compared with that in matter, from the dead to the living?—a change so great that most minds feel compelled to go outside of matter and invoke some super-material force or agent to account for it. The least of living things is so wonderful, the phenomena it exhibits are so fundamentally unlike those of inert matter, that we invent a word for it,vitality; and having got the word, we conceive of a vital force or principle to explain vital phenomena. Hence vitalism—a philosophy of living things, more or less current in the world from Aristotle's time down to our own. It conceives of something in nature super-mechanical and super-chemical, though inseparably bound up with these things. There is no life without material and chemicalforces, but material and chemical forces do not hold the secret of life. This is vitalism as opposed to mechanism, or scientific materialism, which is the doctrine of the all-sufficiency of the physical forces operating in the inorganic world to give rise to all the phenomena of the organic world—a doctrine coming more and more in vogue with the progress of physical science. Without holding to any belief in the supernatural or the teleological, and while adhering to the idea that there has been, and can be, no break in the causal sequence in this world, may one still hold to some form of vitalism, and see in life something more than applied physics and chemistry?

Is biology to be interpreted in the same physical and chemical terms as geology? Are biophysics and geophysics one and the same? One may freely admit that there cannot be two kinds of physics, nor two kinds of chemistry—not one kind for a rock, and another kind for a tree, or a man. There are not two species of oxygen, nor two of carbon, nor two of hydrogen and nitrogen—one for living and one for dead matter. The water in the human body is precisely the same as the water that flows by in the creek or that comes down when it rains; and the sulphur and the lime and the iron and the phosphorus and the magnesium are identical, so far as chemical analysis can reveal, in the organic and the inorganic worlds. But are we not compelled to think of akind of difference between a living and a non-living body that we cannot fit into any of the mechanical or chemical concepts that we apply to the latter? Professor Loeb, with his "Mechanistic Conception of Life"; Professor Henderson, of Harvard, with his "Fitness of the Environment"; Professor Le Dantec, of the Sorbonne in Paris, with his volume on "The Nature and Origin of Life," published a few years since; Professor Schäfer, President of the British Association, Professor Verworn of Bonn, and many others find in the laws and properties of matter itself a sufficient explanation of all the phenomena of life. They look upon the living body as only the sum of its physical and chemical activities; they do not seem to feel the need of accounting for life itself—for that something which confers vitality upon the heretofore non-vital elements. That there is new behavior, that there are new chemical compounds called organic,—tens of thousands of them not found in inorganic nature,—that there are new processes set up in aggregates of matter,—growth, assimilation, metabolism, reproduction, thought, emotion, science, civilization,—no one denies.

How are we going to get these things out of the old physics and chemistry without some new factor or agent or force? To help ourselves out here with a "vital principle," or with spirit, or a creative impulse, as Bergson does, seems to be the only courseopen to certain types of mind. Positive science cannot follow us in this step, because science is limited to the verifiable. The stream of forces with which it deals is continuous; it must find the physical equivalents of all the forces that go into the body in the output of the body, and it cannot admit of a life force which it cannot trace to the physical forces.

What has science done to clear up this mystery of vitality? Professor Loeb, our most eminent experimental biologist, has succeeded in fertilizing the eggs of some low forms of sea life by artificial means; and in one instance, at least, it is reported that the fatherless form grew to maturity. This is certainly an interesting fact, but takes us no nearer the solution of the mystery of vitality than the fact that certain chemical compounds may stimulate the organs of reproduction helps to clear up the mystery of generation; or the fact that certain other chemical compounds help the digestive and assimilative processes and further the metabolism of the body assists in clearing up the mystery that attaches to these things. In all such cases we have the living body to begin with. The egg of the sea-urchin and the egg of the jelly-fish are living beings that responded to certain chemical substances, so that a process is set going in their cell life that is equivalent to fertilization. It seems to me that the result of all Professor Loeb's valuable inquiries is only to giveus a more intimate sense of how closely mechanical and chemical principles are associated and identified with all the phenomena of life and with all animal behavior. Given a living organism, mechanics and chemistry will then explain much of its behavior—practically all the behavior of the lower organisms, and much of that of the higher. Even when we reach man, our reactions to the environment and to circumstances play a great part in our lives; but dare we say that will, liberty of choice, ideation, do not play a part also? How much reality there is in the so-called animal will, is a problem; but that there is a foundation for our belief in the reality of the human will, I, for one, do not for a moment doubt. The discontinuity here is only apparent and not real. We meet with the same break when we try to get our mental states, our power of thought—a poem, a drama, a work of art, a great oration—out of the food we eat; but life does it, though our science is none the wiser for it. Our physical life forms a closed circle, science says, and what goes into our bodies as physical force, must come out in physical force, or as some of its equivalents. Well, one of the equivalents, transformed by some unknown chemism within us, is our psychic force, or states of consciousness. The two circles, the physical and the psychical, are not concentric, as Fiske fancied, but are linked in some mysterious way.

Professor Loeb is a master critic of the life processes; he and his compeers analyze them as they have never been analyzed before; but the solution of the great problem of life that we are awaiting does not come. A critic may resolve all of Shakespeare's plays into their historic and other elements, but that will not account for Shakespeare. Nature's synthesis furnishes occasions for our analysis. Most assuredly all psychic phenomena have a physical basis; we know the soul only through the body; but that they are all of physico-chemical origin, is another matter.

Biological science has hunted the secret of vitality like a detective; and it has done some famous work; but it has not yet unraveled the mystery. It knows well the part played by carbon, oxygen, and hydrogen in organic chemistry, that without water and carbon dioxide there could be no life; it knows the part played by light, air, heat, gravity, osmosis, chemical affinity, and all the hundreds or thousands of organic compounds; it knows the part played by what are called the enzymes, or ferments, in all living bodies, but it does not know the secret of these ferments; it knows the part played by colloids, or jelly-like compounds, that there is no living body without colloids, though there are colloid bodies that are not living; it knows the part played byoxidation, that without it a living body ceases to function, though everywhere all about us is oxidation without life; it knows the part played by chlorophyll in the vegetable kingdom, and yet how chlorophyll works such magic upon the sun's rays, using the solar energy to fix the carbon of carbonic acid in the air, and thereby storing this energy as it is stored in wood and coal and in much of the food we consume, is a mystery. Chemistry cannot repeat the process in its laboratories. The fungi do not possess this wonderful chlorophyllian power, and hence cannot use the sunbeam to snatch their carbon from the air; they must get it from decomposed vegetable matter; they feed, as the animals do, upon elements that have gone through the cycle of vegetable life. The secret of vegetable life, then, is in the green substance of the leaf where science is powerless to unlock it. Conjure with the elements as it may, it cannot produce the least speck of living matter. It can by synthesis produce many of the organic compounds, but only from matter that has already been through the organic cycle. It has lately produced rubber, but from other products of vegetable life.

As soon as the four principal elements, carbon, oxygen, hydrogen, and nitrogen, that make up the living body, have entered the world of living matter, their activities and possible combinations enormously increase; they enter into new relations withone another and form compounds of great variety and complexity, characterized by the instability which life requires. The organic compounds are vastly more sensitive to light and heat and air than are the same elements in the inorganic world. What has happened to them? Chemistry cannot tell us. Oxidation, which is only slow combustion, is the main source of energy in the body, as it is in the steam-engine. The storing of the solar energy, which occurs only in the vegetable, is by a process of reduction, that is, the separation of the carbon and oxygen in carbonic acid and water. The chemical reactions which liberate energy in the body are slow; in dead matter they are rapid and violent, or explosive and destructive. It is the chemistry in the leaf of the plant that diverts or draws the solar energy into the stream of life, and how it does it is a mystery.

The scientific explanations of life phenomena are all after the fact; they do not account for the fact; they start with the ready-made organism and then reduce its activities and processes to their physical equivalents. Vitality is given, and then the vital processes are fitted into mechanical and chemical concepts, or into moulds derived from inert matter—not a difficult thing to do, but no more an explanation of the mystery of vitality than a painting or a marble bust of Tyndall would be an explanation of that great scientist.

All Professor Loeb's experiments and criticisms throw light upon the life processes, or upon the factors that take part in them, but not upon the secret of the genesis of the processes themselves. Amid all the activities of his mechanical and chemical factors, there is ever present a factor which he ignores, which his analytical method cannot seize; namely, what Verworn calls "the specific energy of living substance." Without this, chemism and mechanism would work together to quite other ends. The water in the wave, and the laws that govern it, do not differ at all from the water and its laws that surround it; but unless one takes into account the force that makes the wave, an analysis of the phenomena will leave one where he began.

Professor Le Dantec leaves the subject where he took it up, with the origin of life and the life processes unaccounted for. His work is a description, and not an explanation. All our ideas about vitality, or an unknown factor in the organic world, he calls "mystic" and unscientific. A sharp line of demarcation between living and non-living bodies is not permissible. This, he says, is the anthropomorphic error which puts some mysterious quality or force in all bodies considered to be living. To Le Dantec, the difference between the quick and the dead is of the same order as the difference which exists between two chemical compounds—for example, as that which exists between alcohol and an aldehyde, a liquid thathas two less atoms of hydrogen in its composition. Modify your chemistry a little, add or subtract an atom or two, more or less, of this or that gas, and dead matter thrills into life, or living matter sinks to the inert. In other words, life is the gift of chemistry, its particular essence is of the chemical order—a bold inference from the fact that there is no life without chemical reactions, no life without oxidation. Yet chemical reactions in the laboratory cannot produce life. With Le Dantec, biology, like geology and astronomy, is only applied mechanics and chemistry.

Such is the result of the rigidly objective study of life—the only method analytical science can pursue. The conception of vitality as a factor in itself answers to nothing that the objective study of life can disclose; such a study reveals a closed circle of physical forces, chemical and mechanical, into which no immaterial force or principle can find entrance. "The fact of being conscious," Le Dantec says with emphasis, "does not intervene in the slightest degree in directing vital movements." But common sense and everyday observation tell us that states of consciousness do influence the bodily processes—influence the circulation, the digestion, the secretions, the respiration.

An objective scientific study of a living body yieldsresults not unlike those which we might get from an objective study of a book considered as something fabricated—its materials, its construction, its typography, its binding, the number of its chapters and pages, and so on—without giving any heed to the meaning of the book—its ideas, the human soul and personality that it embodies, the occasion that gave rise to it, indeed all its subjective and immaterial aspects. All these things, the whole significance of the volume, would elude scientific analysis. It would seem to be a manufactured article, representing only so much mechanics and chemistry. It is the same with the living body. Unless we permit ourselves to go behind the mere facts, the mere mechanics and chemistry of life phenomena, and interpret them in the light of immaterial principles, in short, unless we apply some sort of philosophy to them, the result of our analysis will be but dust in our eyes, and ashes in our mouths. Unless there is something like mind or intelligence pervading nature, some creative and transforming impulse that cannot be defined by our mechanical concepts, then, to me, the whole organic world is meaningless. If man is not more than an "accident in the history of the thermic evolution of the globe," or the result of the fortuitous juxtaposition and combination of carbonic acid gas and water and a few other elements, what shall we say? It is at least a bewildering proposition.

Could one by analyzing a hive of bees find out the secret of its organization—its unity as an aggregate of living insects? Behold its wonderful economics, its division of labor, its complex social structure,—the queen, the workers, the drones,—thousands of bees without any head or code of laws or directing agent, all acting as one individual, all living and working for the common good. There is no confusion or cross-purpose in the hive. When the time of swarming comes, they are all of one mind and the swarm comes forth. Who or what decides who shall stay and who shall go? When the honey supply fails, or if it fail prematurely, on account of a drought, the swarming instinct is inhibited, and the unhatched queens are killed in their cells. Who or what issues the regicide order? We can do no better than to call it the Spirit of the Hive, as Maeterlinck has done. It is a community of mind. What one bee knows and feels, they all know and feel at the same instant. Something like that is true of a living body; the cells are like the bees: they work together, they build up the tissues and organs, some are for one thing and some for another, each community of cells plays its own part, and they all pull together for the good of the whole. We can introduce cells and even whole organs, for example a kidney from another living body, and all goes well; and yet we cannot find the seat of the organization. Can we do any better than to call it the Spirit of the Body?

Our French biologist is of the opinion that the artificial production of that marvel of marvels, the living cell, will yet take place in the laboratory. But the enlightened mind, he says, does not need such proof to be convinced that there is no essential difference between living and non-living matter.

Professor Henderson, though an expounder of the mechanistic theory of the origin of life, admits that he does not know of a biological chemist to whom the "mechanistic origin of a cell is scientifically imaginable." Like Professor Loeb, he starts with the vital; how he came by it we get no inkling; he confesses frankly that the biological chemist cannot even face the problem of the origin of life. He quotes with approval a remark of Liebig's, as reported by Lord Kelvin, that he (Liebig) could no more believe that a leaf or a flower could be formed or could grow by chemical forces "than a book on chemistry, or on botany, could grow out of dead matter." Is not this conceding to the vitalists all that they claim? The cell is the unit of life; all living bodies are but vast confraternities of cells, some billions or trillions of them in the human body; the cell builds up the tissues, the tissues build up the organs, the organs build up the body. Now if it is not thinkable that chemism could beget a cell, is it any more thinkable that it could build a living tissue,and then an organ, and then the body as a whole? If there is an inscrutable something at work at the start, which organizes that wonderful piece of vital mechanism, the cell, is it any the less operative ever after, in all life processes, in all living bodies and their functions,—the vital as distinguished from the mechanical and chemical? Given the cell, and you have only to multiply it, and organize these products into industrial communities, and direct them to specific ends,—certainly a task which we would not assign to chemistry or physics any more than we would assign to them the production of a work on chemistry or botany,—and you have all the myriad forms of terrestrial life.

The cell is the parent of every living thing on the globe; and if it is unthinkable that the material and irrational forces of inert matter could produce it, then mechanics and chemistry must play second fiddle in all that whirl and dance of the atoms that make up life. And that is all the vitalists claim. The physico-chemical forces do play second fiddle; that inexplicable something that we call vitality dominates and leads them. True it is that a living organism yields to scientific analysis only mechanical and chemical forces—a fact which only limits the range of scientific analysis, and which by no means exhausts the possibilities of the living organism. The properties of matter and the laws of matter are intimately related to life, yea, are inseparablefrom it, but they are by no means the whole story. Professor Henderson repudiates the idea of any extra-physical influence as being involved in the processes of life, and yet concedes that the very foundation of all living matter, yea, the whole living universe in embryo—the cell—is beyond the possibilities of physics and chemistry alone. Mechanism and chemism are adequate to account for astronomy and geology, and therefore, he thinks, are sufficient to account for biology, without calling in the aid of any Bergsonian life impulse. Still these forces stand impotent before that microscopic world, the cell, the foundation of all life.

Our professor makes the provisional statement, not in obedience to his science, but in obedience to his philosophy, that something more than mechanics and chemistry may have had a hand in shaping the universe, some primordial tendency impressed upon or working in matter "just before mechanism begins to act"—"a necessary and preëstablished associate of mechanism." So that if we start with the universe, with life, and with this tendency, mechanism will do all the rest. But this is not science, of course, because it is not verifiable; it is practically the philosophy of Bergson.

The cast-iron conclusions of physical science do pinch the Harvard professor a bit, and he pads them with a little of the Bergsonian philosophy. Bergson himself is not pinched at all by the conclusionsof positive science. He sees that we, as human beings, cannot live in this universe without supplementing our science with some sort of philosophy that will help us to escape from the fatalism of matter and force into the freedom of the spiritual life. If we are merely mechanical and chemical accidents, all the glory of life, all the meaning of our moral and spiritual natures, go by the board.

Professor Henderson shows us how well this planet, with its oceans and continents, and its mechanical and chemical forces and elements, is suited to sustain life, but he brings us no nearer the solution of the mystery than we were before. His title, to begin with, is rather bewildering. Has the "fitness of the environment" ever been questioned? The environment is fit, of course, else living bodies would not be here. We are used to taking hold of the other end of the problem. In living nature the foot is made to fit the shoe, and not the shoe the foot. The environment is the mould in which the living organism is cast. Hence, it seems to me, that seeking to prove the fitness of the environment is very much like seeking to prove the fitness of water for fish to swim in, or the fitness of the air for birds to fly in. The implication seems to be made that the environment anticipates the organism, or meets it half way. But the environment is rather uncompromising. Man alone modifies his environment by the weapon of science; but not radically; in the endhe has to fit himself to it. Life has been able to adjust itself to the universal forces and so go along with them; otherwise we should not be here. We may say, humanly speaking, that the water is friendly to the swimmer, if he knows how to use it; if not, it is his deadly enemy. The same is true of all the elements and forces of nature. Whether they be for or against us, depends upon ourselves. The wind is never tempered to the shorn lamb, the shorn lamb must clothe itself against the wind. Life is adaptive, and this faculty of adaptation to the environment, of itself takes it out of the category of the physico-chemical. The rivers and seas favor navigation, if we have gumption enough to use and master their forces. The air is good to breathe, and food to eat, for those creatures that are adapted to them. Bergson thinks, not without reason, that life on other planets may be quite different from what it is on our own, owing to a difference in chemical and physical conditions. Change the chemical constituents of sea water, and you radically change the lower organisms. With an atmosphere entirely of oxygen, the processes of life would go on more rapidly and perhaps reach a higher form of development. Life on this planet is limited to a certain rather narrow range of temperature; the span may be the same in other worlds, but farther up or farther down the scale. Had the air been differently constituted, would not our lungs have beendifferent? The lungs of the fish are in his gills: he has to filter his air from a much heavier medium. The nose of the pig is fitted for rooting; shall we say, then, that the soil was made friable that pigs might root in it? The webbed foot is fitted to the water; shall we say, then, that water is liquid in order that geese and ducks may swim in it? One more atom of oxygen united to the two atoms that go to make the molecule of air, and we should have had ozone instead of the air we now breathe. How unsuited this would have made the air for life as we know it! Oxidation would have consumed us rapidly. Life would have met this extra atom by some new device.

One wishes Professor Henderson had told us more about how life fits itself to the environment—how matter, moved and moulded only by mechanical and chemical forces, yet has some power of choice that a machine does not have, and can and does select the environment best suited to its well-being. In fact, that it should have, or be capable of, any condition of well-being, if it is only a complex of physical and chemical forces, is a problem to wrestle with. The ground we walk on is such a complex, but only the living bodies it supports have conditions of well-being.

Professor Henderson concedes very little to the vitalists or the teleologists. He is a thorough mechanist. "Matter and energy," he says, "have an original property, assuredly not by chance, whichorganizes the universe in space and time." Where or how matter got this organizing property, he offers no opinion. "Given the universe, life, and the tendency [the tendency to organize], mechanism is inductively proved sufficient to account for all phenomena." Biology, then, is only mechanics and chemistry engaged in a new rôle without any change of character; but what put them up to this new rôle? "The whole evolutionary process, both cosmic and organic, is one, and the biologist may now rightly regard the universe in its very essence as biocentric."

Another Harvard voice is less pronounced in favor of the mechanistic conception of life. Professor Rand thinks that in a mechanically determined universe, "our conscious life becomes a meaningless replica of an inexorable physical concatenation"—the soul the result of a fortuitous concourse of atoms. Hence all the science and art and literature and religion of the world are merely the result of a molecular accident.

Dr. Rand himself, in wrestling with the problem of organization in a late number of "Science," seems to hesitate whether or not to regard man as a molecular accident, an appearance presented to us by the results of the curious accidents of molecules—which is essentially Professor Loeb's view; or whether to look upon the living body as the resultof a "specific something" that organizes, that is, of "dominating organic agencies," be they psychic or super-mundane, which dominate and determine the organization of the different parts of the body into a whole. Yet he is troubled with the idea that this specific something may be "nothing more than accidental chemical peculiarities of cells." But would these accidental peculiarities be constant? Do accidents happen millions of times in the same way? The cell is without variableness or shadow of turning. The cells are the minute people that build up all living forms, and what prompts them to build a man in the one case, and the man's dog in another, is the mystery that puzzles Professor Rand. "Tissue cells," he says, "are not structures like stone blocks laboriously carved and immovably cemented in place. They are rather like the local eddies in an ever-flowing and ever-changing stream of fluids. Substance which was at one moment a part of a cell, passes out and a new substance enters. What is it that prevents the local whirl in this unstable stream from changing its form? How is it that a million muscle cells remain alike, collectively ready to respond to a nerve impulse?" According to one view, expressed by Professor Rand, "Organization is something that we read into natural phenomena. It is in itself nothing." The alternative view holds that there is a specific organizing agent that brings about the harmonious operation of all the organsand parts of the system—a superior dynamic force controlling and guiding all the individual parts.

A most determined and thorough-going attempt to hunt down the secret of vitality, and to determine how far its phenomena can be interpreted in terms of mechanics and chemistry, is to be found in Professor H. W. Conn's volume entitled "The Living Machine." Professor Conn justifies his title by defining a machine as "a piece of apparatus so designed that it can change one kind of energy into another for a definite purpose." Of course the adjective "living" takes it out of the category of all mere mechanical devices and makes it super-mechanical, just as Haeckel's application of the word "living" to his inorganics ("living inorganics"), takes them out of the category of the inorganic. In every machine, properly so called, all the factors are known; but do we know all the factors in a living body? Professor Conn applies his searching analysis to most of the functions of the human body, to digestion, to assimilation, to circulation, to respiration, to metabolism, and so on, and he finds in every function something that does not fall within his category—some force not mechanical nor chemical, which he names vital.

In following the processes of digestion, all goes well with his chemistry and his mechanics till he comes to the absorption of food-particles, or their passage through the walls of the intestines into theblood. Here, the ordinary physical forces fail him, and living matter comes to his aid. The inner wall of the intestine is not a lifeless membrane, and osmosis will not solve the mystery. There is something there that seizes hold of the droplets of oil by means of little extruded processes, and then passes them through its own body to excrete them on an inner surface into the blood-vessels. "This fat absorption thus appears to be a vital process and not one simply controlled by physical forces like osmosis. Here our explanation runs against what we call 'vital power' of the ultimate elements of the body." Professor Conn next analyzes the processes of circulation, and his ready-made mechanical concepts carry him along swimmingly, till he tries to explain by them the beating of the heart, and the contraction of the small blood-vessels which regulate the blood-supply. Here comes in play the mysterious vital power again. He comes upon the same power when he tries to determine what it is that enables the muscle-fibre to take from the lymph the material needed for its use, and to discard the rest. The fibre acts as if it knew what it wanted—a very unmechanical attribute.

Then Professor Conn applies his mechanics and chemistry to the respiratory process and, of course, makes out a very clear case till he comes to the removal of the waste, or ash. The steam-engine cannot remove its own ash; the "living machine" can.Much of this ash takes the form of urea, and "the seizing upon the urea by the kidney cells is a vital phenomenon." Is not the peristaltic movement of the bowels, by which the solid matter is removed, also a vital phenomenon? Is not the conception of a pipe or a tube that forces semi-fluid matter along its hollow interior, by the contraction of its walls, quite beyond the reach of mechanics? The force is as mechanical as the squeezing of the bulb of a syringe by the hand, but in the case of the intestines, what does the squeezing? The vital force?

When the mechanical and chemical concepts are applied to the phenomena of the nervous system, they work very well till we come to mental phenomena. When we try to correlate physical energy with thought or consciousness, we are at the end of our tether. Here is a gulf we cannot span. The theory of the machine breaks down. Some other force than material force is demanded here, namely, psychical,—a force or principle quite beyond the sphere of the analytic method.

Hence Professor Conn concludes that there are vital factors and that they are the primal factors in the organism. The mechanical and chemical forces are the secondary factors. It is the primal factors that elude scientific analysis. Why a muscle contracts, or why a gland secretes, or "why the oxidation of starch in the living machine gives rise to motion, growth, and reproduction, while if the oxidation occursin the chemist's laboratory ... it simply gives rise to heat," are questions he cannot answer. In all his inquiries into the parts played by mechanical and chemical laws in the organism, he is compelled to "assume as their foundation the simple vital properties of living phenomena."


Back to IndexNext