Correspondence.
The Constitution of Matter and its Motions.—Universal Gravitation Produced by the Motions of Ether.—Hypothesis of M. L’Abbé Leray.—M. Riche on the New Chemical Notation.—New Sensitive Pigment Paper.
In one of my recent letters to this Journal I was deploring the want of some grand hypothesis which would embrace in one general law all the mechanical phenomena of nature—universal gravitation, cohesion, chemical affinity, electricity, magnetism, light, heat, &c.—and lo! just such a hypothesis has turned up and been explained to me by its author—a man whom I am compelled to regard, without any exaggeration, as one of the great geniuses of the present day. I allude to M. L’Abbé Leray, author of a work to which I referred in a recent letter, entitledConstitution de la Matière et ses Mouvements.
I will endeavour to give an outline—but it can only be an outline—of this startling hypothesis, which makes universal gravitation an effect of the motions of ether, and dispels the idea hitherto entertained that it is an attractive force inherent in particles of matter, by which they are enabled to exert a pull upon other particles at a distance from them in space.
Sir Isaac Newton, the immortal discoverer of the law of universal gravitation (which asserts that every particle of matter in the universe attracts every other particle with a force which varies directly as the mass and inversely as the square of the distance), himself believed that this law would be found, at some future time, to result from the motions of a subtle fluid which occupied space, the atoms of which, by impinging against ponderable matter, produce the observed effect of weight or gravitation. He could not conceive of ponderable matter possessing anyinherentproperty by which it was enabled to act upon other ponderable matterat a distance. He could not really believe in an inherent central force of attraction residing in a material atom, by which it could draw towards itself another such atom situated at a distance, or that it could affect other matter in any way than by the impact of intervening atoms; and he predicted that some day thecauseof universal gravitation would be discovered. That day seems now to have arrived, and the discovery to have been actually made.
I had read M. Leray’s extraordinary work with a great deal of interest, but there were still some unexplained points in his hypothesis which remained to be cleared up and some difficulties to be discussed. As he resides at an ecclesiastical institution within an easy walk of Redon, I visited him a few days ago, by appointment, for the express purpose of having a long talk over his hypothesis; and a very pleasant afternoon I had with him, leaving more deeply impressed than ever with a sense of his great abilities and originality. In fact, I seem to have made the acquaintance of a second Sir Isaac or Laplace.
The following is an outline of his theory; but of course no demonstration of any part of it can be made within the limits of this letter:—
Space is filled with a subtle ether, consisting of atoms in motion. These atoms are elastic—a property which they possess in virtue of being able to change their form, though not their volume, during impact and to recover it again. Their form is spherical, they are all equal, and their diameter is very small compared with that of the atoms of ponderable matter, and also with their general distance apart. This ether is, therefore, an exceedingly rare medium. When the atoms impinge against each other they rebound like billiard balls, and in all their motions they obey the common mechanical laws of inertia and impact, and no other laws whatever. They cannot act upon each other at a distance, and therefore no attractive or repulsive force exists between them.
If only one of these atoms were to exist in space it would move in a straight line with uniform velocity until it reached the limit of space; that is to say, the boundary by which creation is limited—the boundary which separates entity from nonentity. Here, being elastic, it would be reflected, and would then follow another rectilinear course until it again encountered in another point the boundary of space, where it would be again reflected; and so on for ever!
If we imagine space filled with an enormous number of such atoms it will follow thatat every point in space there will be small parallel currents of them moving in all directions. Their distance apart being great in proportion to their size, two contrary currents will not annihilate each other, but by far the greater number of atoms in one current will pass those in the other current without impact. Those atoms which do impinge against opposite atoms, at various angles of incidence, will rebound and join other currents which are moving in their new direction.
The state of things above described constitutes what is called “mobile equilibrium;” for what one current loses by meeting another in an opposite direction will be imparted to surrounding currents, and these, in their turn, will give back equal to what they have acquired, so that compensation will be made, and thus the laws of conservation of force, and ofvis viva, will be satisfied.
The velocity with which the atoms move is enormous, and millions of times greater than the velocity of light.
The reader will observe that there is a vast difference between the mobile equilibrium of this ether and the equilibrium of air or gas confined in a closed vessel. The reason why particles of a gas appear to repel each other is because the ethereal undulations of heat are vibrating between them. By reducing the temperature and increasing the pressure gases may be liquified or solidified, in which states no repulsion exists between their particles.
All ponderable matter is porous; its ultimate atoms are spheres much larger than the atoms of ether, and much farther apart; the currents of ether can, therefore, pass through a ponderable body in all directions.
When a current of ether passes through a ponderable body some of the atoms of ether strike the atoms of the body and rebound; the current, after passing through the body, will, therefore, be weakened, according to the number of its atoms which have rebounded in altered directions—that is to say, according to the number of atoms of the body which have been struck by atoms of ether. The greater the mass of a body the greater will be the weakening of the currents of ether which have passed through it. A current of ether weakened by passing through a body will gradually regain its original strength by passing through space, since it will be continually reinforced by other atoms moving in the same direction as itself.
A single ponderable atom in the midst of currents of ether will be in equilibrium under their action, because it will be struck equally in all directions.
But the atoms of a ponderable body will be put into vibratory motion by the passage through it of currents of ether; these internal motions may enable us to account for light, heat, magnetism, &c.
When two ponderable bodies exist in space, and currents of ether pass through them, the two bodies will be impelled towards each other, because the currents of ether that are between them and tend to keep them apart are weakened by having passed through the bodies, and are, therefore, weaker than the currents which impel them towards each other. This explains what has been called the “attractive force of gravity.”
It will be observed that since currents of ether pass through the bodies in all directions, the weakened currents between the bodies will be included within a sort of conical space. The law of attraction according to the inverse square of the distance is thus accounted for.
Since the weight of a body is the same, no matter how it is turned about, it follows that the ultimate atoms of all ponderable matter must be spherical. It follows also from the hypothesis that all the spherical atoms of ponderable matter are equal, and that there is, chemically speaking, but one simple substance—the apparent variety depending upon the mode of aggregation of the atoms into molecules.
Crystals are formed by arranging these spheres in the same way as you may arrange marbles or pile up cannon balls.
There is nothing in the hypothesis to interfere with the undulating theory of light, or with any theory that reposes strictly upon observed facts; but this we may discuss on a future occasion.
I need hardly say that it is in consequence of their great velocity that the atoms of ether acquire sufficient momentum to communicate sensible motion to ponderable matter.
Ponderable matter may possibly be composed of the aggregation of ethereal atoms; but M. Leray thinks not. He can see no good reason why it should be so.
Cohesion and chemical affinity may be explained on this hypothesis. Its leading feature is that it explains how such natural phenomena as do not involve vital or mental action may be explained on the simplest mechanical principles, and without involving that “bugaboo,”action at a distance. Of course, Dr. Frankland’s ideas of “bonds,” “active and latent atomicities,” &c., are inadmissible on this hypothesis.
The demonstrations are rigorously given, and the work involves a good deal of high mathematics. It is utterly impossible to do justice to the theory in the above brief sketch of it. The theorems of Euclid, if thus stated, would many of them appear improbable and absurd. The work itself can be procured from M. Gauthier Villars, 55, Quai des Grands Augustins, Paris, price three francs. It is copiously illustrated with woodcuts. A new edition has just appeared.
Some idea of the distance between the atoms of ponderable matter, when in the form of gas, may be gathered from a remark of Dr. Mann’s in hisGuide to a Knowledge of Life, at page 13, where he says:—
“It can be shown to be highly probable that the ultimate atoms of gases are at least one hundred times their own diameter asunder even when those gases are held in confined vessels.”
The earth and the moon are, therefore, about three times as near together, in proportion to the diameter of the earth, as two atoms of a gas are, if the above remark be true.
In Sir Isaac Newton’s corpuscular theory of light the atoms emitted from the sun were supposed to follow one another at a distance of about a thousand miles apart! Under such circumstances the impact of two atoms of intersecting rays of light would be a comparatively rare event.
M. Leray asserts that the law of gravitation is only an approximation to the truth, and that it is modified by the volumes of bodies. The proof of this he expects will be found some day in the motions of comets, which rapidly change their volume.
Elective affinity he supposes to depend upon the different forms of crystals, two crystals which present plane faces towards each other being more easily pushed together by the atoms of ether than two crystals in which a solid angle or an edge of one is presented to a plane face of the other.
The sun, planets, fixed stars, nebulæ, &c., are, of course, perpetually riddled through and through, in all directions, by currents of ether. That is why the heavenly bodies gravitate towards each other, as explained in a preceding paragraph.
With respect to reflection at the boundary of space, it is an idea which grows upon you the more you think of it. Enormous as creation is it is impossible to conceive of its havingnolimit. What, then, is beyond that limit?—Nothing. Not even space in which matter can exist; noplaceeven for matter. On reaching the boundary which separates an entity (for space is an entity) from a nonentity matter must be reflected, if elastic; or it must roll for ever against the boundary of space, if inelastic. This conclusion seems to me inevitable; there is no escape from it.
In the new edition of M. Leray’s book he modifies the theory which I have endeavoured briefly to explain in the foregoing paragraphs by supposing that, instead of one ether, there are two in a state of mixture, the second being a grosser fluid, and its atoms larger than those of the other. It is these larger atoms of the grosser fluid which, by their transversal vibrations, produce the phenomena of light, heat, &c. These larger atoms do not suffer the same swift motion of translation through space as the smaller atoms of the subtler fluid. They have no greater motion of translation than ponderable atoms have.
It may be asked—What is the difference between ponderable and imponderable matter, and why are the atoms of ether imponderable? To this query a satisfactory answer is given; but I must refer the reader to the book for it. Were I to enter upon any demonstrations an entire number of this Journal would not contain half that could be said.
I have proved in an independent manner, and different from that of Père Leray, that two equal, penetrable spheres of ponderable matter, existing in space at a distance apart which is large in proportion to their diameters, will be impelled towards each other by the impact of ethereal matters, according to a law which is approximately that of the inverse square of the distance. When the spheres are brought to within a much shorter distance of each other the law ceases to be approximately true. The law of gravitation may, therefore, be only approximately true for particles of matter at a great distance apart in proportion to their diameters. The only observations which appear to confirm the law are those which have been made upon the heavenly bodies; and here we have a case of a distance apart many times the diameters of the bodies, even between satellites and their primaries.
But before any one can seriously accept this new hypothesis a vast deal more thought and study must be bestowed upon it than I have yet had time to give it.
I will send the demonstration referred to for insertion in a future number of this Journal if our Editors think fit. The subject is not foreign to photography, but intimately connected with it as a science.
According to the new hypothesis, new definitions must be given ofMassandDensity. According to M. Leray, “the mass of an atom is equal to its volume, and the mass of a body is equal to the sum of the volumes of its atoms.”
“If we call M the mass of a body, and V its apparent volume, the fraction M/V is the absolute density of the body. The absolute density is, therefore, unity for an atom, and varies from 0 to 1 for all bodies.”
If two bodies have the same apparent volume, their densities are proportional to their masses.
I have been looking through a capital French work on Chemistry, published in 1870, by M. Alfred Riche, lecturer at the Polytechnic School at Paris. He uses the old notation and table of equivalents; but strongly advises a change to the new, which he explains very nicely, and pretty much as our lecturer has done. Whenever the atomic weight of an element is given according to the new table its symbol has a bar drawn across it. Something of this sort should always be observed, in order to avoid confusion between the old and new formulæ.
I have just received a letter from Mr. J. R. Johnson, containing a most beautiful carbon print. He asks me what I think of it. My reply is simply this—that it is the most wonderfully fine print I have ever seen upon paper.
Thomas Sutton, B.A.
Redon, January 26, 1872.
The most interesting event, in a photographic point of view, which I have to report is the departure of the scientific expedition to observe the total eclipse of the sun on the 12th of this month. The place selected for the observations is Cape Sidmouth, some three hundred miles south of Cape York, in Northern Australia.
The expedition has been organised by the Royal Society of Victoria, and the expense is met by private subscriptions, largely aided by grants from the several Colonial Governments. The Queensland Government steamer was also placed at the disposal of the party free of charge.
The various instruments necessary for the observations were sent from England by the Royal Society; but, owing to my absence from Sydney at the time the expedition sailed, I am unable to give any details of the arrangements for taking photographs of the eclipse. I hope, however, soon to be able to give a full description of the results.
The party consists of more than thirty gentlemen, the different branches of science being well represented; for botanists and geologists are taking advantage of the trip to make investigations in their own departments. For the astronomical observations Victoria sends her Government Astronomer, Mr. Ellery, at the head of a large staff of observers, and a photographer, Mr. Walters; while New South Wales sends Mr. Russell, the present, and the Rev. W. Scott, the late, Government Astronomer, and Mr. Merlin, of the “American and Australasian Photographic Company.” From this double staff we may expect a large number of photographs and other valuable results.
The steamer left Sydney on the 27th of November, and will return by Christmas, before which time no news will reach us of the doings of the party. We shall, therefore, look forward to their return with much interest.
Professional photographers here do not now devote their attention so exclusively to portraiture as formerly. The “American and Australasian Photographic Company” has announced its intention of photographing every house in the Australasian colonies! I suppose it finds it a profitable speculation, as it has already photographed a considerable number of towns, house by house. The day for each place is previously advertised, so that the inhabitants may put themselves and their dwellings in holiday attire. The photographs are to some extent used as advertisements.
I lately came across a photographer in the far interior, some 500 or 600 miles from Sydney. He had already travelled a still greater distance from Adelaide, in South Australia, from whence he had started on his tour. He was plying his vocation at the various sheep and cattle stations, and was apparently well patronised. I saw several of his groups of aboriginals, which were very good. The black fellows were highly delighted with their portraits, and were very anxious that copies should be sent to their friends in other districts.
Sydney, December 1, 1871.E. B. Docker, M.A.
P.S.—The unfortunate wreck of the mail steamer has deprived us of the journals for this month.—E. B. D.
Gentlemen,—My attention has been called to an article in your issue of the 19th January, under the head “Correspondence,” by Mr. Thomas Sutton, containing several statements with reference to carbolic acid which it would be wrong to allow to remain uncontradicted.
First: he says carbolic acid is by no means a good antiseptic, and is very poisonous, and then refers to persons being lately poisoned by itsfumesat Wolverhampton.
As to its poisonous nature: It is, of course, a poison if taken internally in quantity, but is not a virulent one taken in any reasonable or probable quantity. It is, perhaps, not out of place to say that if it should be taken internally in a concentrated form, by misadventure, large doses of castor and sweet oil immediately administered will materially counteract the poisonous effect of the acid. The fumes of the acid are perfectly harmless and may be breathed with impunity.
Mr. Sutton is labouring under a false impression with regard to the case to which he alludes at Wolverhampton, of which the following is the correct account:—Two dogs (not human beings) weresupposedto have died from inhaling the fumes of carbolic acid emanating from a disinfecting powder sprinkled over the floor of a workshop in Wolverhampton, and, the following is an extract from the report of the chemist who examined one of the dogs:—“The disinfecting powder was not a carbolic acid powder, but an imitation; for it contained nothing but lime impregnated with tar, and was entirely innocent of any harm to the animals. Strychnine, however, was discovered in considerable quantity in most parts of the viscera and in the blood. I calculated that at least one grain and a-quarter of this poisonous alkaloid had been administered to the animal by some evil-disposed person or persons unknown.” Thus much for the poisoning of human beings lately at Wolverhampton by the fumes of carbolic acid.[4]
4.The cattle show at the Agricultural Hall, Islington, has for the two last years been successfully disinfected and kept sweet with carbolic acid.Had Mr. Sutton ever seen carbolic acid fumigation, or read about carbolic acid, he would not have made an assertion so utterly groundless. The writer has himself many times been for two or three days together in a room containing a large excess of carbolic acid fumes without experiencing any injurious effects.With regard to the action of carbolic acid on the teeth, if Mr. Sutton will refer to an article in theBritish Journal of Dental Sciencefor March, 1871, he will find “it is a powerful antiseptic, and invaluable for the arrest of any decay or decomposition of the teeth.”Mr. Sutton has quoted from a long letter of Dr. Dougall’s to theLancet, and I cannot do better than refer him to Dr. Sansom’s able reply to it in theLancetof January 13th. Dr. Sansom says that the white-cloud appearance in albuminous solutions to which carbolic acid has been added is often really no albuminous precipitate at all, but is caused by refractile globules of carbolic acid in a fine state of sub-division; also, that it has been shown that albuminous solutions are antisepted when carbolic acid exists in them in too feeble a proportion to cause any precipitate whatever. If carbolic acid acted as an antiseptic by coagulating albumen, agents which had a greater coagulating power would,a fortiori, be more powerful antiseptics, which has abundantly been proved not to be the case, and therefore the antiseptic properties of carbolic acid do not result solely from its power of coagulating albumen.With respect to the assertion that the amount of carbolic acid vapour which could be tolerated in the air of a hospital ward would be entirely inadequate to act as a disinfectant, Dr. Sansom says his experiments have shown him thatcarbolised atmospheresare efficient in preventing putrefaction and the growth of mouldiness, and more so than atmospheres impregnated with chloride of lime or sulphurous acid.Dr. Sansom objects to the experiments recorded by Dr. Dougall, since tar oil (a crude product weak in carbolic acid, and possessing little or no volatile disinfectant constituent), and McDougall’s powder (a mixture of sulphites of lime and magnesia with tar oil) were used.As to carbolic acid not being a good antiseptic, the following reports, I think, fully prove the contrary:—The late Dr. W. Allen Miller, F.R.S., preserved urine and fresh blood for three months by the simple addition of five per cent. of Calvert’s carbolic disinfecting powder—a product containing fifteen per cent. of carbolic acid in a free state.Mr. Wm. Crookes, F.R.S., says that he took some albumen from fresh eggs and mixed it with an equal bulk of water. By itself it became bad after nine days, and at the end of three weeks it smelt very strongly. He added to four bottles of the fluid respectively 1, 2½, 5, and 10 per cent. of carbolic acid powder (equivalent to 3/20, ⅜, ¾, and 1½ per cent. of free carbolic acid). All kept good at ordinary temperatures for forty days. Blood with 1/15 per cent. of carbolic acid remained good for a month. Solutions of size, glue, and gum mixed with 1/15 per cent. of carbolic acid have remained for two months without becoming sour. Fresh yeast was washed with water containing one-tenth per cent. Its power of inducing fermentation was entirely destroyed.Dr. F. Crace Calvert, F.R.S., in his paper on comparative disinfectants, gives the following results with antiseptics upon solutions of albumen:—Antiseptic employed.Percentage of antiseptic used.Time in which acquired an offensive odour. Temperature 70° to 80° F.Chloride of lime516 days.Tar oil211 days.Carbolic acid2remained sound six monthsNone—5 days.The writer preserved meat for ninety days, during a hot summer, by placing twelve ounces of fresh meat in a bottle containing one pound of water and five grains of carbolic acid. The mouth of the bottle was left open, and no offensive smell was emitted till the ninety-third day. The meat was, of course, unfit for food, and was merely experimented with to test the antiseptic power of carbolic acid.
4.The cattle show at the Agricultural Hall, Islington, has for the two last years been successfully disinfected and kept sweet with carbolic acid.
Had Mr. Sutton ever seen carbolic acid fumigation, or read about carbolic acid, he would not have made an assertion so utterly groundless. The writer has himself many times been for two or three days together in a room containing a large excess of carbolic acid fumes without experiencing any injurious effects.
With regard to the action of carbolic acid on the teeth, if Mr. Sutton will refer to an article in theBritish Journal of Dental Sciencefor March, 1871, he will find “it is a powerful antiseptic, and invaluable for the arrest of any decay or decomposition of the teeth.”
Mr. Sutton has quoted from a long letter of Dr. Dougall’s to theLancet, and I cannot do better than refer him to Dr. Sansom’s able reply to it in theLancetof January 13th. Dr. Sansom says that the white-cloud appearance in albuminous solutions to which carbolic acid has been added is often really no albuminous precipitate at all, but is caused by refractile globules of carbolic acid in a fine state of sub-division; also, that it has been shown that albuminous solutions are antisepted when carbolic acid exists in them in too feeble a proportion to cause any precipitate whatever. If carbolic acid acted as an antiseptic by coagulating albumen, agents which had a greater coagulating power would,a fortiori, be more powerful antiseptics, which has abundantly been proved not to be the case, and therefore the antiseptic properties of carbolic acid do not result solely from its power of coagulating albumen.
With respect to the assertion that the amount of carbolic acid vapour which could be tolerated in the air of a hospital ward would be entirely inadequate to act as a disinfectant, Dr. Sansom says his experiments have shown him thatcarbolised atmospheresare efficient in preventing putrefaction and the growth of mouldiness, and more so than atmospheres impregnated with chloride of lime or sulphurous acid.
Dr. Sansom objects to the experiments recorded by Dr. Dougall, since tar oil (a crude product weak in carbolic acid, and possessing little or no volatile disinfectant constituent), and McDougall’s powder (a mixture of sulphites of lime and magnesia with tar oil) were used.
As to carbolic acid not being a good antiseptic, the following reports, I think, fully prove the contrary:—
The late Dr. W. Allen Miller, F.R.S., preserved urine and fresh blood for three months by the simple addition of five per cent. of Calvert’s carbolic disinfecting powder—a product containing fifteen per cent. of carbolic acid in a free state.
Mr. Wm. Crookes, F.R.S., says that he took some albumen from fresh eggs and mixed it with an equal bulk of water. By itself it became bad after nine days, and at the end of three weeks it smelt very strongly. He added to four bottles of the fluid respectively 1, 2½, 5, and 10 per cent. of carbolic acid powder (equivalent to 3/20, ⅜, ¾, and 1½ per cent. of free carbolic acid). All kept good at ordinary temperatures for forty days. Blood with 1/15 per cent. of carbolic acid remained good for a month. Solutions of size, glue, and gum mixed with 1/15 per cent. of carbolic acid have remained for two months without becoming sour. Fresh yeast was washed with water containing one-tenth per cent. Its power of inducing fermentation was entirely destroyed.
Dr. F. Crace Calvert, F.R.S., in his paper on comparative disinfectants, gives the following results with antiseptics upon solutions of albumen:—
The writer preserved meat for ninety days, during a hot summer, by placing twelve ounces of fresh meat in a bottle containing one pound of water and five grains of carbolic acid. The mouth of the bottle was left open, and no offensive smell was emitted till the ninety-third day. The meat was, of course, unfit for food, and was merely experimented with to test the antiseptic power of carbolic acid.
The following is an extract from a report inCompte Rendus de l’Académie des Sciencesof March 6th, 1871, by Messrs. Nelaton, Langier, and Payen, on experiments made at the Paris Morgue by M. Devergie:—
“During the heat of summer, when putrefying corpses in the Morgue continually emit a quantity of noxious gases that cannot be removed by ventilation or destroyed by chlorine or bleaching powder, we decided to prevent their production by trying to destroy the vitality of the germs of putrefaction, and thus prevent decomposition itself. We effected this by dissolving one litre of carbolic acid in 1,900 litres of water and irrigating the bodies with the solution thus made. Putrefaction was completely stopped, and disinfection was even obtained after reducing the quantity of acid by one-half. M. Devergie points out that water containing one four-thousandth part of carbolic acid proved sufficient during the intense heat of last summer to disinfect the deadhouse, without the aid of any shaft, when six or seven dead bodies were lying there. * * * * * * * * * * * Carbolic acid seems well adapted for the disinfection of rooms which have been occupied by persons suffering from infectious diseases; therefore, we recommend its use, after being dissolved in thirty times its weight of water, by sprinkling it on the floors, pavements, and staircases during the stay of patients in rooms and for a few days after their departure.”
According to Dr. Sansom carbolic acid is readily taken up by air, so that 159.44 cubic inches of air, at 60° Fah., contain one grain of carbolic acid. Air thuscarbolised(currents excluded) entirely annuls putrefaction and fungoid manifestation on the surface of putrescible fluids, and such carbolised air is more permanently efficacious than air charged with the fumes of chloride of lime or sulphurous acid, and it may be breathed with impunity by mammifers.
These few observations will, I think, satisfy your readers that Mr. Sutton’s remarks are erroneous and without foundation. I shall be glad to learn that photographers have tried carbolic acid in the preservative solution for dry plates, and would recommend them to make a solution of carbolic acid, one part to one thousand parts of water, and then add their albumen to this solution to the strength they require it. Above all things it is essential that the carbolic acid be of good quality for photographic purposes; and I would recommend them to use an acid such as Calvert’s No. 1 (gilt label) carbolic acid.—I am, yours, &c.,
Reginald Le Neve Foster.
Bradford, near Manchester, January 27, 1872.
Gentlemen,—It is over two years since I devised the carbolic mixture for detecting traces of albumen. At the time I did not think it of sufficient photographic interest to occupy your space in detailing experiments on the subject; but, as you do not remember the author’s name, I beg to remind you that I am the author. It was published, I believe, as a note by a friend of mine—an eminent chemist and toxicologist—in a medical work.
On one occasion we were talking over the means of detecting albumen, and having experimented with phenol or “carbolic acid” for about eight years, many times in connection with albumen, I knew its properties well, and, on my attention being directed to a test for albumen, I commenced experiments with a mixture of phenol and acetic acid, then with the addition of alcohol, and finally with phenol and alcohol, equal parts by weight. My friend and self then went through a comparative set of experiments side by side—my friend taking his old nitric acid test and I my new phenol mixture—the result being that my test indicated albumen both in plain water and urine, diluted one in ten after the nitric acid failed to indicate any further.—I am, yours, &c.,
F. W. Hart.
8, Kingsland Green, January 29, 1872.
Gentlemen,—The continued complaints which one heard from people after the close of our photographic exhibition, that they had not seen it, did not know when it opened or when it had closed, and the strong interest they felt in it, induce me to believe that a comprehensive exhibition of photography in all its shapes—the new processes, the landscape and humanity of different countries, &c., &c.—might be made of very great interest, and to pay its way as well.
In the spring, and even now, London is filled with collections of paintings, which make photographs look tame. In the International Exhibition they are equally put out; and if they are to be seen and judged properly they must be in an exhibition by themselves. No intelligent collector hangs works in colour with photographs or engravings; and exhibition goers, passing from a gallery of pictures, will not stop to look at photographs. If, therefore, we could, under the direction of the photographic societies, make in October a collection of cosmopolitan photography, and connect with it a display and comparison of lenses of all makers, we should enable the art to claim its just consideration.
Colonel Stuart Wortley’s suggestion as to contributions of negatives would give a photographic exhibition, if adopted, a special technical interest; and we might in this include examples of negatives by the dry processes.
The question of retouching might be decided without difference of opinion by having two classes of works—one touched on the negative, and the other in which no touching other than stopping out pinholes should be permitted. If awards are made—and in this I recall Colonel Wortley’s mention of the medal of the Photographic Society—no award should be made for a touched negative unless a print from it before touching should be submittedto the judgesat the same time, but not necessarily for exhibition.
It is clear that when we talk of excellence in photography we mean something other than what a draughtsman may do in the way of supplementing photography. Works which do not enter for an award may omit mention of the distinction I have indicated.
I believe that such an exhibition would excite a very general interest, and do more to improve the knowledge of photographers on practical details than years of casual acquaintance of what other men do.
I am, to a certain extent, an outsider, and cannot do more than suggest; but I hope that some of the influential masters of the camera will take up the question.—I am, yours, &c.,
W. J. Stillman.
100, Clarendon-road, Notting-hill, January 29, 1872.
Gentlemen,—Last night, as “I lay a-thinking,” the subject of obtaining photographic colour suddenly occurred to me, and the question arose as to whether the differences in the colours of the light reflected from the surfaces of different-coloured flowers (as red, blue, and yellow) was due to differences in the constitution of their juices, or of the solid matter of which they are formed. If on examination it proved to be of the juices, a second question arose as to whether it would not be possible to take advantage of this in the preparation of plates, as suggested by me in an article which you inserted inThe British Journal of Photographyfor October 27, 1865 (No. 286, vol. xii.). Then, supposing that by this or any other means the three monochromic plates were obtainable, would coloured glasses placed in front of the lens help to stop off the colours not to be represented on the plate? Thus, with a plate sensitive to blue only, the interposition of a blue glass would prevent the transmission of the yellow and red rays, a red glass those of the blue and yellow rays, and a yellow glass that of the blue and red rays to the plates sensitive to the blue, red, and yellow rays respectively.
I have evidence that so early as 1842 the late Sir John Herschel obtained variously-coloured photographs on paper, as he gave me several, and I have still one a good blue, one a fair red, and two purple. The letter accompanying them describes the two latter as produced by the use of the juice of the red poppy; but many of them have faded away entirely. My impression is that others of them were from vegetable juices, but I am not sure that this was the case. There can be no doubt, however, that his published papers will give an account of the numerous experiments he made on this subject.
These suggestions may, or may not, be of value in forwarding the realisation of the greatdesideratumof photographic colour; but I cannot be far wrong in mentioning them as they occur to me, especially as my former communication, in 1865, was thought to be worth consideration by experimentalists.
That the great end will be attained before a very long period has elapsed, and the prediction of M. Niepce be verified, that “one day a photographic picture will be produced such as one sees in a looking-glass,” is the hope and wish of—Yours, &c.,
Henry Collen.
Milford, Godalming, January 29, 1872.
Gentlemen,—The notice which the direction of the International Exhibition has sent to your Journal is sufficiently unsatisfactory to be discussed a little before the photographic profession commits itself to the mercies of that institution for another such display as we had last year.
It seems to some of us that the least the management could do, if the leading photographers are expected to contribute, would be to put some one on the photographic committee whom they are accustomed to regard as identified in a high degree with the interests of the art, or whose interest in it they feel assured of. We should have imagined that one of the presidents of the photographic societies, or at least one of those eminent amateurs who have really contributed to the advancement of photographic science, and shown a disinterested devotion to it in its present condition, would have had the selection, or, at least, a voice in the selection, of the pictures to be exhibited.
As it is, we have Dr. Diamond, who was, in years gone by, interested in photography, and who is understood to be in the present combination a passive member; Mr. Thompson, of whom most of us know nothing; and Col. Stuart Wortley, whom some of the profession do not accept as an authority, and in whose position, as having a commercial interest in photography in no way identified with that of the profession at large, they find excellent reasons why he should not be put forward as the judge and spokesman of it. If a professional photographer is to be assigned this position, Col. Wortley’s place is not sufficiently high to justify his selection. If an outsider must be selected, he is disqualified, as being commercially interested on the one hand and a disputed authority on the other, or one at least to whom few good professionals will defer.—I am, yours, &c.,
Hypo.
London, January, 29, 1872.
[Endorsing all that is said about the two jurors first mentioned, we ask our correspondent if he can, after due consideration, indicate any photographer, professional or amateur, in whom a greater degree of confidence would be placed than in Col. Wortley?—Eds.]
Gentlemen,—Perhaps the following may explain the defect “J. H. M.” speaks of:—During the hot weather last summer, while photographing an engine in the open air, every plate showed comblike marks at one side of the plate. After two days’ trial, and filtering the bath, changing the collodion, &c., it struck me that the cause might be the partial drying of the film. A piece of wet blotting-paper at the back of each plate at once remedied the defect, and all came right. I now always place wet paper at the back under similar circumstances.—I am, yours, &c.,
Geo. Spencer.
77, Cannon-street, E.C., January 26, 1872.
Gentlemen,—In your useful littleAlmanacfor the present year there is an article by Mr. A. L. Henderson, enthusiastically written, in favour of fuming.
Now, in accordance with his recommendation, I have tried the said fuming; but my first essay has certainly not impressed me very strongly as regards its favourable results—whether from my own defective manipulation or not I cannot say.
I found that the paper—especially some of Marion’s thick Saxe—assumed a most disagreeable yellow colour after fuming, and it maintained that colour through all subsequent operations—as a matter of course, spoiling the prints. Another sample of (Rive) paper procured from another dealer was not quite so faulty in this respect; still, in neither case was the brilliancy of the prints enhanced—rather deteriorated, I thought—although Mr. Henderson maintains so stoutly the advantages of fuming in this respect. Again: instead of the toning being quicker and more regular in action, as Mr. Henderson states, I found it much the reverse.
I think that I must be wrong somewhere in my working, and I wish to ask your opinion or Mr. Henderson’s on the best mode of proceeding—assuming it to be really worth while to adopt fuming. I used an oblong box about two feet in length by one foot in breadth, placing at the bottom a narrow-necked bottle containing about two ounces of liquor ammonia, fuming two quarter-sheets of paper for about ten minutes, with the result above stated.
Have I omitted any necessary addition? or have I proceeded wrongly?—I am, yours, &c.,
Ammonia Fuming.
Leeds, January 29, 1872.
Gentlemen,—In my communication to the Journal last week, at page 37, under headingUsing the Substratum, there is an omission which would prevent the successful coating of the plates.
The strength of the albumen there given is that of the stock solution, to use whichadd two ounces of distilled water to every half-drachm required, half-a-drachm thus diluted being amply sufficient to coat fifty plates.—I am, yours, &c.,
Aleck. A. Inglis.
Edinburgh, January 30, 1872.
Trade in Obscene Photographs.—A man named Benjamin Smith,aliasMartin Stanley, living at Oil Mill Folds, or Alma-place, Westgate, Rotherham, was charged at Rotherham, on Thursday, the 25th ult., with publishing and selling photographs of a kind to debase and scandalise human nature. The West Riding constabulary received information from various sources that photographs of a most disgusting character were being circulated throughout the United Kingdom, and even in other countries, by a man living at Rotherham, who had inserted an advertisement in several London and provincial papers, in the name of Smith and Stanley, stating that he was prepared on receipt of postage stamps to forward portraits of French girls of a highly novel and exciting nature. A trap to catch the prisoner was accordingly laid by the Rotherham police, an inspector sending to him letters signed with an assumed name, and purporting to come from a place some distance from Rotherham. Stamps were enclosed, and in return a number of photographs of a most filthy and disgusting nature were obtained. At length some postage stamps, bearing a private mark, were sent in a letter to the prisoner, and the inspector of police watched the postman deliver it. He then entered the house, and found his own letter containing the marked stamps, together with a number of other letters, in possession of the prisoner. On the house being searched another beastly photograph was found, whereupon the prisoner told the officer that he would find no more there, as he kept them at a house he mentioned at Sheffield. This house was accordingly searched by two officers of the Sheffield police force, and there they found a number of most filthy photographs, together with printed lists describing what the prisoner had for sale. The prisoner was apprehended on the 14th of January, and since that time nearly a hundred letters from all parts of England, Scotland, and Ireland have arrived at the Rotherham post office directed to him. The police obtained the permission of Her Majesty’s Secretary of State and of the Postmaster-General to receive and open these letters, and they found, on doing so, that great numbers of postage stamps were enclosed, and some filthy photographs and books. The prisoner was committed for trial, and on application being made the magistrates intimated that they should require the prisoner to be bound in the sum of £200, and two sureties of £100 each to be found.
Camphor in the Printing Bath.—Mr. John R. Clemons gives inMosaicssome of his experience with camphor in the printing press. He says:—After the positive printing bath has been used some time it becomes more or less charged with albumen. If, when the solution is poured from the dish into the filter, frothy bubbles appear on the surface, it is in the condition named, and is unfit for use in sensitising albumen paper. The reason is obvious. When an albumen sheet is floated upon a silver solution thus charged with albumen, a secondary film of albumen, or albumenate of silver, is imparted to it, which deprives it of its lustre, and it is impossible to secure a good tone upon it. The difference will be readily seen by floating one-half of a sheet of paper on the used solution, and the other half on a fresh solution, and comparing the results. The effect of silvering on such a solution is similar to that of using doubly-albumenised paper. In both cases the silver will penetrate both films, even if silvered on the back, and very good prints apparently may be made on paper so treated; but when you proceed to tone them, you will find that the double film of albumen resists the action of the gold, and renders it impossible to get rich tones. I have already recommended the addition of alcohol to a bath thus charged with albumen, and then burning it out, in order to cleanse the bath, but since have sought for a less expensive method, and have found camphor to be just what is needed. Besides being less expensive, it is also more expeditious; for in five minutes an eighty-ounce bath can be cleansed of all impurities by its use, as directed below. Make a saturated solution of camphor, viz.:—
To cleanse a bath which is considerably fouled by the albumen, add two and a-half ounces of this camphor solution. A greasy appearance will be presented on the surface of the bath. Shake well, when the greasiness will disappear. Then filter, never using the same filter twice. If, after filtration, the solution turns dark, add a couple of drops of permanganate of potash, and it will immediately clear. This turning dark is owing to long usage of the silver solution. It is a fact that the bath is daily impregnated more or less with the albumen, therefore a slight addition of camphor daily is recommended. This will avoid the addition of the permanganate, which rather decreases the sensitiveness. As a quick and ready corrective agent, camphor will be found of great advantage. It will impart a camphory smell to the solution, but in no way deteriorates the quality of the prints.
To Copy Oil Portraits.—Mr. B. Frank Saylor, inPhotographic Mosaics, says on this subject:—As I have never seen anything from which I have derived any material aid in the copying of oil portraits, and especially old ones, I propose simply to give ourmodus operandi, feeling confident that those who do not proceed in like manner may successfully copy oil paintings, and especially old portraits. We first, with a clean sponge and water, partially wash the old portrait, and then pour perhaps an ounce of glycerine on it, and with the same sponge brush the glycerine crosswise over the entire picture until it presents a uniform surface; or, should a greasy appearance be presented, something like a negative plate when partially coated, rub gently with the palm of the hand crosswise, and it is ready for copying. We copy under the skylight, about where we should place the sitter for the same lighted picture, directing the camera to about the centre of the picture, and as nearly level as may be. On our camera we use a quarter-size tube inverted—that is, turn it end for end—with a diaphragm of about six-eighths of an inch aperture, placing the picture square to the front of the camera. After making the necessary adjustments as to size, &c., we coat the plate with the same collodion which we use for our regular portrait negatives, and when it is properly coated expose fully—that is, neither over- nor under-expose. The success, however, depends on the manipulationduring the exposure. We take a piece of backboard, say six inches wide and about three feet long, and with it shade all the top of the portrait above the head, standing by the side of the portrait and holding the backboard in the hand, moving it up and down as though it were hinged on the top of the portrait, but not allowing its shadow to come down over the forehead or face, except those parts should be improved thereby. We produce the same effect on the sides of the portrait by occasionally moving our body at the same time over portions of the background, taking care not to remain perfectly still or too long in the same place, nor yet to allow any shadow from our person or anything else to cover any portion of the figure. Thus, with a little care and attention, a very satisfactory background is obtained, even admitting of desirable variation, thereby avoiding the necessity of a double-printed background and the like, and producing from a single negative and printing duplicates to equal, if not to surpass, the original, and every print alike. Lastly: we develope with the usual iron developer, using six ounces of iron to sixty-four of water; this, however, we again dilute with water, adding alcohol, more or less acetic acid, according to the detail and density we wish to obtain.