CHAPTER XXV.STEAM.

How steam is like air.

Steam is like air in three things. It is very thin; it is very elastic, or has a great deal of springiness; and you can not see it. Now perhaps you will say that this last is not true, and that we often see steam puffing out of a steam-engine or out of a tea-kettle; but this that we see is not really steam. It is not like the steam that is in the boiler of the engine or in the tea-kettle. It is a cloud of fog that the steam has turned into on coming out into the air. It is just like common fog, except that it is hot. Real steam you can not see as you see this.

Steam in boilers and tea-kettles.

Perhaps you will ask how I know that we can not see steam, as I can not look into a boiler or a tea-kettle. If we boil water in a glass vessel, we can see the steam if it can be seen; but we see nothing in the vessel over the water, and yet we know that there is a plenty of steam there, for the steam-fog is made in the air by the steam coming out at the mouth of the vessel.

How steam is made.

But we do not need this proof to show us that steam can not be seen. Look at the nose of a tea-kettle when the water is boiling in it quite briskly. Close to it, for half an inch or more, you can not see the steam-fog at all. What is the reason? There is a stream of steam coming out as fast as it can get out, but the air has not yet had a chance to change it into fog. It must spread out a little first. When it begins to spread out, the cool airmakes the particles of steam form into companies, and it is a multitude of these companies that you see in the cloud of steam, as it is called, that comes from a steam-engine or from a tea-kettle. The air really changes the steam into water, for fog, as I have told you in Chapter XIX., is water in companies that are too small to make drops.

Simmering.

See, now, how steam is made out of the water in a tea-kettle. The fire heats the water that is nearest to it in the kettle. This rises, and more water comes to take its place and be heated, and so the water keeps circulating up and down, the warmer going up and the cooler going down. After a while, when the water all gets to be very hot, you hear a simmering noise. Now the steam begins to be made. The sound is made by little bubbles of steam which are formed at the bottom of the kettle. Soon larger bubbles of steam are made, because so much more of the water becomes hot enough to be readily made into steam; and the rising of these bubbles makes a great commotion, as you can see if the water be in an open pot. All this process of steam-making you can see if the water is boiled in a thin glass bottle, or flask, as it is called.

Force of steam.

There is a great deal of force in steam. It is steam that works the locomotive, and moves along the great steamship in the water. Sometimes it shows its power in destruction, as when it bursts a boiler.

Now what is it that makes steam so powerful? To understand this, look at a locomotive when it is standing still, with its boiler full of steam. A valve is opened, and out rushes the steam,spreading itself, and turning into a cloud of fog. It is this trying to spread itself that makes the steam so powerful. If the valve were not opened the boiler might explode; for, as the steam is not used as it is while the locomotive is going, there would be more and more of it in the boiler, for it is making all the time. The force with which it rushes out when the valve is opened shows how much power it exerts in trying to spread itself.

What makes the lid of a tea-kettle rattle.

You see the same thing in the rattling of the lid of a tea-kettle when the water is boiling in it. The steam which is made has not room in the kettle to spread itself. It gets out, therefore, wherever it can. It blows out at the nose; and if the water boils very briskly, it can not get out fast enough at the nose, and so it keeps lifting the lid and puffing out there.

Bursting of boilers.

When the steam is shut up very tightly, as it is in the boiler of a steam-engine, it has very great power, and the more steam there is thus shut up the greater is the power. Men are sometimes careless about this, and get so much steam made in the boiler that it bursts. This is just as the roasted chestnut is burst by the steam and heated air that are in it. The boiler bears the pressure of the steam as long as it can. This pressure is made by the steam’s trying to spread itself, or by its expansive force, as it is expressed. After a while, the steam being made all the time, and being crowded together, as we may say, the boiler all at once gives way with a loud noise. The noise is caused in the same way as the pop of the roasted chestnut. It is the sudden shaking that the escaping steam gives to the air.

Safety valves.

There is always a safety-valve to a steam-engine. This iscommonly kept shut by a weight which is upon it. But when there comes to be a great deal of steam in the boiler, it has expansive power enough to raise the valve, and so some of the steam escapes. This prevents the boiler from bursting, and hence the valve is called a safety-valve. Now, if there happen to be a weak place in the boiler, and the weight on the valve is heavier than it should be, the weak place will be apt to give way rather than the valve, and an explosion results. Many a boiler is burst in this way.

Steam compared to powder.

I have told you about another way in which boilers are burst in the chapter on Powder. It is this. The boiler is carelessly left to get nearly empty, and the fire therefore makes it very hot. Then, when more water is let into it, a great deal of steam is made all at once. This exerts its expansive force with such violence that the boiler gives way. You can understand how this is if you see a little water dropped upon red-hot iron. A great cloud of steam arises, spreading itself in the air, and you can see that if this were pent up it would make a strong pressure in trying to get free.

Boy melting lead.

A boy was once much surprised to see the melted lead which he poured into a piece of elder, from which he had scooped the pith, thrown with great force against the ceiling. The reason was, that the elder was moist, and the moisture inside being changed all at once into steam, the expansive force of the steam threw out the lead, just as the expansive force of the gas made all at once from powder throws the ball out of a gun.

Explosion of a foundry.

It takes but a little water to make a good deal of steam, andthis explains an explosion that once occurred in a cannon foundry in London. There happened to be some water in one of the moulds, and, therefore, when the melted metal was put into it, this water was at once made into steam, and this, in trying to get free, made such an explosion as to blow up the whole foundry. Perhaps you can hardly believe that so little water could do so much when turned suddenly into steam. But you must remember that the steam occupies, if set free, about 1700 times as much room as the water does from which it is made. It tries to get this room, and in doing this it exerts great force, especially if it be made very suddenly.

How the sound of the steam-whistle is made.

You will like to know how the sound of the steam-whistle is made. In the chapter on the hearing, in Part Second, I told you that sound is always caused by the vibration or shaking of something. Now in the steam-whistle there is a sort of bell-shaped thing with a thin edge or rim. The steam, as it is let out through the whistle, strikes against this rim, and makes it vibrate, and so produces the sound. The sound is very loud, because the steam comes out with great force.

Questions.—In what three respects is steam like air? Tell about the steam-fog. How do we know that steam can not be seen? What is said about the steam that comes from the nose of a tea-kettle? Describe how steam is made. In what way can you see the whole process? What is said about the force of steam? How is its force shown in the locomotive when it is stopped at a station? Tell about the rattling of the lid of a boiling tea-kettle. Explain how boilers are commonly burst. How does the safety-valve operate? How is it that the safety-valve does not always keep boilers from bursting? What other way in which boilers are burst is mentioned? Tell about the accident with the melted lead. Tell about the blowing up of an iron foundry. How is the sound of the steam-whistle made?

Questions.—In what three respects is steam like air? Tell about the steam-fog. How do we know that steam can not be seen? What is said about the steam that comes from the nose of a tea-kettle? Describe how steam is made. In what way can you see the whole process? What is said about the force of steam? How is its force shown in the locomotive when it is stopped at a station? Tell about the rattling of the lid of a boiling tea-kettle. Explain how boilers are commonly burst. How does the safety-valve operate? How is it that the safety-valve does not always keep boilers from bursting? What other way in which boilers are burst is mentioned? Tell about the accident with the melted lead. Tell about the blowing up of an iron foundry. How is the sound of the steam-whistle made?


Back to IndexNext