CHAPTER VI

So far as the reliability of the anatomical work which has been discussed is in question, it would seem that Rawitz's results are rendered somewhat unsatisfactory by the carelessness of Cyon in fixing the materials; that Panse's descriptions and comparisons are neither careful nor detailed enough to be convincing; that the work of Alexander and Kreidl, as well as that of Kishi, gives evidence of accuracy and trustworthiness. The fact that the statements of Alexander and Kreidl frequently do not agree with those of Kishi proves that there are serious errors in the work of one or another of these investigators. Cyon's discussion of the anatomy of the dancer is not to be taken too seriously, for by his theory of space perception and of a sixth sense he was unduly biased in favor of the structural peculiarities described by Rawitz. Nevertheless, his discussion is not without interest, for the way in which he succeeded in making every structural fact which Rawitz suggested fit into his theories and help to account for the functional peculiarities which he had himself observed, is extremely clever and indicates a splendid scientific imagination.

To sum up: All the facts of behavior and physiology which have been established lead us to expect certain marked structural differences between the dancer and the common mouse. The bizarre movements, lack of equilibrational ability, and the nervous shaking of the head suggest the presence of peculiar conditions in the semicircular canals or their sense organs; and the lack of sensitiveness to sounds indicates defects in the cochlea. Yet, strange as it may seem to those who are not familiar with the difficulties of the study of the minute structure of these organs, no structural conditions have been discovered which account satisfactorily for the dancer's peculiarities of behavior. That the ear is unusual in form is highly probable, since three of the four investigators who have studied it carefully agree that it differs more or less markedly from that of the common mouse. But, on the other hand, the serious lack of agreement in their several descriptions of the conditions which they observed renders their results utterly inconclusive and extremely unsatisfactory. The status of our knowledge of the structure of the central nervous system is even less satisfactory, if possible, than that of our knowledge of those portions of the peripheral nervous system which would naturally be supposed to have to do with such functional peculiarities as the dancer exhibits. So far as I have been able to learn, no investigator has carefully examined the brain and spinal cord in comparison with those of the common mouse, and only those who have failed to find any structural basis for the facts of behavior in the organs of the ear have attempted to account for the dancer's whirling and deafness by assuming that the cerebellum is unusual in structure. We are, therefore, forced to conclude that our knowledge of the nervous system of the dancing mouse does not at present enable us to explain the behavior of the animal.

It seems highly probable to me, in the light of my observation of the dancer and my study of the entire literature concerning the animal, that no adequate explanation of its activities can be given in terms of the structure of the peripheral or the central nervous system, or of both, but that the structure of the entire organism will have to be taken into account. The dancer's physiological characteristics, in fact, suggest multitudinous structural peculiarities. I have confined my study to its behavior, not because the problems of structure seemed less interesting or less important, but simply because I found it necessary thus to limit the field of research in order to accomplish what I wished within a limited period.

That there are structural bases for the forms of behavior which this book describes is as certain as it could be were they definitely known; that they, or at least some of them, are discoverable by means of our present- day histological methods is almost as certain. It is, therefore, obvious that this is an excellent field for further research. It is not an agreeable task to report inconclusive and contradictory results, and I have devoted this chapter to a brief account of the work that has been done by others on the structure of the ear of the dancer rather for the sake of presenting a complete account of the animal as it is known to-day than because of the value of the facts which could be stated.

Repeatedly in the foregoing chapters mention has been made of the dancer's irresponsiveness to sounds, but it has not been definitely stated whether this peculiarity of behavior is due to deafness or to the inhibition of reaction. This chapter is concerned with the evidence which bears upon the problem of the existence of a sense of hearing. Again I may be permitted to call attention to the observations of other investigators before presenting the results of my own experiments and stating the conclusions which I have reached through the consideration of all available facts.

By the results of various simple tests which he made, Rawitz (25 p. 238) was convinced that the adult dancer is totally deaf. He did not experiment with the young, but he says he thinks they may be able to hear, since the necessary structural conditions are present. This guess which Rawitz made on the basis of very indefinite and uncertain knowledge of the histology of the ear of the young dancer is of special interest in the light of facts revealed by my own experiments. Unfortunately the study of hearing made by Rawitz is casual rather than thorough, and although it may turn out that all of his statements are justified by his observations, the reader is not likely to get much satisfaction from his discussion of the subject.

Inasmuch as he could discover no structural basis for deafness, Panse (23 p. 140) expressed himself as unwilling to believe that the mice are deaf, and this despite the fact that he observed no responses to the sounds made by a series of tuning forks ranging from C5 to C8. He believes rather that they are strangely irresponsive to sounds and that their sensitiveness is dulled, possibly, by the presence of plugs of wax in the ears. Since another investigator, Kishi, has observed the presence of similar plugs of wax in the ears of common mice which could hear, there is but slight probability that Panse is right in considering the plugs of wax as the cause of the dancer's irresponsiveness to sounds.

Far more thoroughgoing tests than those of Rawitz or Panse were made by Cyon (9 p. 218), who holds the unique position of being the only person on record who has observed the adult dancer give definite reactions to sounds. To a König Galton whistle so adjusted that it gave a tone of about 7000 complete vibrations per second, which is said to be about the pitch of the voice of the dancer, some of the animals tested by Cyon responded unmistakably, others not at all. In one group of four mice, two not only reacted markedly to the sound of the whistle but apparently listened intently, for as soon as the whistle was blown they ran to the side of the cage and pressed their noses against the walls as if attempting to approach the source of the stimulus. The remaining two mice gave not the slightest indication that the sound acted as a stimulus. By the repetition of this sound from eight to twelve times Cyon states that he was able to arouse the mice from sleep. When thus disturbed, the female came out of the nest box before the male. Similarly when the mice were disturbed by the whistle in the midst of their dancing, the female was first to retreat into the nest box. There is thus, according to Cyon, some indication of sex, as well as individual, differences in sensitiveness to the sound of the whistle. Cyon's statement that in order to evoke a response the whistle must be held above the head of the dancer suggests at once the possibility that currents of air or odors instead of sounds may have been responsible for the reactions which he observed. The work of this investigator justifies caution in the acceptance of his statements. Neither the conditions under which the auditory tests were made nor the condition of the animals is described with sufficient accuracy to make possible the comparison of Cyon's work with that of other investigators. As will appear later, it is of the utmost importance that the influence of other stimuli than sound be avoided during the tests and that the age of the mouse be known. The conclusion reached by Cyon is that some dancers are able to hear sounds of about the pitch of their own cries.

The fact, emphasized by Cyon, that the mice respond to tones of about the pitch of their own voice is of peculiar interest in its relation to the additional statements made by the same author to the effect that the female dancer is more sensitive to sounds than the male, and that the males either do not possess a voice or are much less sensitive to disagreeable stimuli than the females. In the case of the dancers which he first studied (9 p. 218), Cyon observed that certain strong stimuli evoked pain cries; but later in his investigation he noticed that four individuals, all of which were males, never responded thus to disagreeable stimulation (11 p.431). He asks, therefore, does this mean that the males lack a voice or that they are less sensitive than the females? The fact that he did not succeed in getting a definite answer to this simple question is indicative of the character of Cyon's work. My dancers have provided me with ample evidence concerning the matter. Both the males and the females, among the dancers which I have studied, possess a voice.

The females, especially during periods of sexual excitement, are much more likely to squeak than the males. At such times they give their shrill cry whenever they are touched by another mouse or by the human hand. A slight pinching of the tail will frequently cause the female to squeak, but the male seldom responds to the same stimulus by crying out. The most satisfactory way to demonstrate the existence of a voice in the male is to subject him to the stimulating effect of an induced current, so weak that it is barely appreciable to the human hand. To this unexpected stimulus even the male usually responds by a sudden squeak. There can be no doubt, then, of the possession of a voice by both males and females. The males may be either less sensitive or less given to vocal expression, but they are quite able to squeak when favorable conditions are presented. The possession of a voice by an animal is presumptive evidence in favor of a sense of hearing, but it would scarcely be safe to say that the mice must be able to hear their own voices. Cyon, however, thinks that some dancers can. What further evidence is to be had?

Although they obtained no visible motor reactions to such noises as the clapping of the hands, the snapping of the fingers, or to the tones of tuning forks of different pitches and the shrill tones of the Galton whistle, Alexander and Kreidl (1 p. 547) are not convinced of the total deafness of the dancer, for, as they remark, common mice which undoubtedly hear do not invariably respond visibly to sounds. Furthermore, the anatomical conditions revealed by their investigation of the ear of the dancer are not such as to render sensitiveness to sounds impossible. They recognize also that the existence of the ability to produce sounds is an indication of hearing. They have no confidence in the results reported by Cyon, for they feel that he did not take adequate precautions to guard against the action of other than auditory stimuli.

Zoth (31 p. 170) has pointed out with reason and force that testing the sensitiveness of the mice is especially difficult because of their restlessness. They are almost constantly executing quick, jerky movements, starting, stopping, or changing the direction of movement, and it is therefore extremely difficult to tell with even a fair degree of certainty whether a given movement which occurs simultaneously with a sound is a response to the sound or merely coincident with it. With great care in the exclusion of the influence of extraneous stimuli, Zoth tried a large number of experiments to test the hearing of both young and adult dancers. Not once did he observe an indubitable auditory reaction. As he says, "I have performed numerous experiments with the Galton whistle, with a squeaking glass stopper, with caps and cartridges, without being able to come to any certain conclusion. With reference to the Galton whistle and particularly to the tone which was said to have been heard extremely well by Cyon's mice, I believe I am rather safe in asserting that my mice, young (12-13 days) as well as old, do not react to the König Galton whistle (7210 Vs.). They could not be awakened out of sleep by repetitions of the sound, nor enticed out of their nests, and their dancing could not be interrupted" (31 p. 170). Zoth's experiments appear to be the most careful and critical of those thus far considered.

Last to be mentioned, but in many respects of greatest interest and value, is the work of Kishi (21 p. 482) on the problem of hearing. To this acute observer belongs the credit of calling attention emphatically to the ear movements which are exhibited by the dancer. Frequently, as he remarks, the ears move as if the animal were listening or trying to determine the direction whence comes a sound, yet usually the mouse gives no other sign of hearing. That the absence of ordinary reactions to sounds is due to deafness, Kishi, like Panse, is led to doubt because his anatomical studies have not revealed any defects in the organs of hearing which would seem to indicate the lack of this sense.

This historical survey of the problem of hearing has brought out a few important facts. No one of the several investigators of the subject, with the exception of Cyon, is certain that the dancer can hear, and no one of them, with the exception of Rawitz, is certain that it cannot hear! Cyon almost certainly observed two kinds of dancing mice. Those of his dancers which exhibited exceptional ability to climb in the vertical direction and which also gave good evidence of hearing certain sounds may have been hybrids resulting from the crossing of the dancer with a common mouse, or they may have been exceptional specimens of the true dancer variety. A third possibility is suggested by Rawitz's belief in the ability of the young dancer to hear. Cyon's positive results may have been obtained with immature individuals. I am strongly inclined to believe that Cyon did observe two types of dancer, and to accept his statement that some of the mice could hear, whereas others could not. It is evident, in the light of our examination of the experimental results thus far obtained by other investigators, that neither the total lack of sensitiveness to sounds in the adult nor the presence of such sensitiveness in the young dancer has been satisfactorily proved.

I shall now report in detail the results of my own study of the sense of hearing in the dancer. As the behavior of the young differs greatly from that of the adult, by which is meant the sexually mature animal, I shall present first the results of my experiments with adults and later, in contrast, the results obtained with mice from one to twenty-eight days old.

My preliminary tests were made with noises. While carefully guarding against the interference of visual, tactual, temperature, and olfactory stimuli, I produced noises of varying degrees of loudness by clapping the hands together suddenly, by shouting, whistling, exploding pistol caps, striking steel bars, ringing an electric bell, and causing another mouse to squeak. To these sounds a common mouse usually responds either by starting violently, or by trembling and remaining perfectly quiet for a few seconds, as if frightened. The adult dancers which I have tested, and I have repeated the experiment scores of times during the last three years with more than a hundred different individuals, have never given unmistakable evidence of hearing. Either they are totally deaf or there is a most surprising lack of motor reactions.

Precisely the same results were obtained in tests made with the Galton whistle throughout its range of pitches, and with Appuun whistles which, according to their markings, ranged from 2000 Vs. (C_4) to 48,000 (G_9), but which undoubtedly did not correspond at all exactly to this range, and with a series of König tuning forks which gave tones varying in pitch from 1024 to 16,382 complete vibrations.

I am willing to trust these experimental results the more fully because during all the time I have had adult dancers under observation I have never once seen a reaction which could with any fair degree of certainty be referred to an auditory stimulus. Never once, although I have tried repeatedly, have I succeeded in arousing a dancer from sleep by producing noises or tones, nor have I ever been able to observe any influence of sounds on the dance movements. All of Cyon's signs have failed with my mice. Occasionally what looked like a response to some sound appeared, but critical observation invariably proved it to be due to some other cause than the auditory stimulus. A sound produced above the animal is very likely to bring about a motor reaction, as Cyon claims; but I have always found it to be the result of the currents of air or odors, which usually influence the animal when the experimenter is holding any object above it. I do not wish to maintain that Cyon's conclusions are false; I merely emphasize the necessity for care in the exclusion of other stimuli. The mice are extremely sensitive to changes in temperature, such, for example, as are produced by the breath of the experimenter, and one must constantly guard against the misinterpretation of behavior.

In a single experiment with mice over a month old, I observed what might possibly indicate sensitiveness to sound. While holding a mouse, thirty- five days old, in my hand I pursed my lips and made a very shrill sound by drawing in air; the mouse seemed to start perceptibly according to the indications given by my sense of touch. I repeated the stimulus several times and each time I could see and feel the animal start slightly. With two other individuals which I tested the reaction was less certain, and with several others I failed to get any indication of response. This would seem to prove that the three individuals which responded happened to be sensitive to that particular tone at the age of five weeks. The test is unsatisfactory because the vibrations from my own body may have brought about the reaction instead of the air vibrations produced by my lips, and I therefore merely mention it in the enumeration of the various experimental tests which I have made.

If we should conclude from all the negative evidence that is available, or that could be obtained, that the dancer is totally deaf, it might fairly be objected that the conclusion is unsafe, since an animal does not necessarily respond to stimuli by a visible change in the position or relations of its body. Death feigning may fairly be considered a response to a stimulus or stimulus complex, yet there may be no sign of movement. The green frog when observed in the laboratory usually gives no indication whatever, by movements that are readily observable, that it hears sounds which occur about it, but I have been able to show by means of indirect methods of study that it is stimulated by these same sounds.[1] Its rate of respiration is changed by the sounds, and although a sound does not bring about a bodily movement, it does very noticeably influence movements in response to other stimuli which occur simultaneously with the sound. I discovered that under certain rather simple experimental conditions the green frog would regularly respond to a touch on the back by drawing its hind leg up toward the body. Under the same conditions the sound of an electric bell caused no visible movement of the leg, but if at the instant the back was touched the bell was rung, the leg movement was much greater than that brought about by the touch alone. This suggests at once the desirability of studying the sense of hearing in the dancer by some indirect method. The animal may be stimulated, and yet it may not give any visible sign of the influence of the auditory stimulus.

[Footnote 1: "The Sense of Hearing in Frogs."Journal of ComparativeNeurology and Psychology, Vol. XV, p. 288, 1905.]

Were not the dancing so extremely variable in rapidity and duration, it might be used as an index of the influence of auditory stimuli. Cyon's statements would indicate that sounds interfere with the dancing, but as I obtained no evidence of this, I worked instead with the following indirect method, which may be called the method of auditory choice.

The apparatus which was used is described in detail in Chapter VII. Figures 14 and 15 will greatly aid the reader in understanding its essential features. Two small wooden boxes, identical in form and as closely similar as possible in general appearance, were placed in a larger box in such positions that a mouse was forced to enter and pass through one of them in order to get to the nest-box. On the bottom of each of these small boxes was a series of wires through which an electric current could be made to pass at the will of the experimenter. The boxes could readily be interchanged in position. At one side of the large wooden box and beyond the range of vision of the mouse was an electric bell which could be caused to ring whenever the mouse approached the entrance to one of the small boxes. The point of the experiment was to determine whether the dancer could learn to avoid the box-which-rang when it was approached. The method of conducting the tests was as follows. Each day at a certain hour the mouse was placed in that part of the large box whence it could escape to the nest-box only by passing through one of the small boxes. If it approached the wrong box (whether it happened to be the one on the right or the one on the left depended upon the experimenter's decision), the bell began to ring as a warning against entering; if it approached the other box, all was silent. As motives for the choice of the box-which-did- not-ring both reward and punishment were employed. The reward consisted of freedom to return to the nest-boxviathe passage which led from the box-which-did-not-ring; the punishment, which consisted of a disagreeable electric shock, was given whenever the mouse entered the wrong box, that is, the one which had the sound as a warning. Entering the wrong box resulted in a disagreeable stimulus and in the necessity of returning to the large box, for the exit to the nest-box by way of the passage from this box was closed. My assumption, on the basis of extended study of the ability of the dancer to profit by experience, was that if it could hear the sound of the bell it would soon learn to avoid the box-that-rang and enter instead the one which had no sound associated with it.

Systematic tests were made with No. 4 from the 3d to the 12th of February, inclusive, 1906. Each day the mouse was permitted to find his way to the nest-box through one of the small boxes ten times in succession. Usually the experimenter rang the bell alternately for the box on the left and the box on the right. The time required for such a series of experiments varied, according to the rapidity with which the mouse made his choice, from ten to thirty minutes. If in these experiments the animal approached and entered the right, or soundless box, directly, the choice indicated nothing so far as ability to hear is concerned; if it entered the wrong, or sounding box, despite the ringing of the bell, it indicated either the lack of the influence of experience or inability to hear the sound; but if it regularly avoided the box-which-sounded it thus gave evidence of ability to hear the sound of the bell. The purpose of the test was to determine, not whether the mouse could learn, but whether it could hear.

For ten successive days this experiment was carried on with No. 4 without the least indication of increasing ability to avoid the wrong box by the association of the sound of the bell with the disagreeable electric shock and failure to escape to the nest-box. In fact, the experiment was discontinued because it became evident that an impossible task had been set for the mouse. Day by day as the tests were in progress I noticed that the animal became increasingly afraid of the entrances to the small boxes; it seemed absolutely helpless in the face of the situation. Partly because of the definiteness of the negative results obtained with No. 4 and partly because of the cruelty of subjecting an animal to disagreeable conditions which it is unable to avoid, the experiment was not repeated with other individuals. I have never conducted an experiment which gave me as much discomfort as this; it was like being set to whip a deaf child because it did not learn to respond to stimuli which it could not feel.

By a very similar method No. 18 was tested for his sensitiveness to the noise and jar from the induction apparatus which was used in connection with many of my experiments on vision and the modifiability of behavior. In this experiment the wrong box was indicated by the buzzing sound of the apparatus and the slight vibrations which resulted from it. Although No. 18 was tested, as was No. 4, for ten successive days, ten trials each day, it gave no evidence of ability to avoid the box-which-buzzed.

Since both direct and indirect methods of testing the hearing of the dancer have uniformly given negative results, in the case of mice more than five weeks old, I feel justified in concluding that they are totally deaf and not merely irresponsive to sounds.

Rawitz's statements, and the fact that what may have been auditory reactions were obtained with a few individuals of five weeks of age, suggest that the mice may be able to hear at certain periods of life. To discover whether this is true I have tested the young of twenty different litters from the first day to the twenty-eighth, either daily or at intervals of two or three days. In these tests König forks, steel bars, and a Galton whistle were used. The results obtained are curiously interesting.

During the first two weeks of life none of the mice which I tested gave any visible motor response to the various sounds used. During the third week certain of the individuals responded vigorously to sudden high tones and loud noises. After the third week I have seen only doubtful signs of hearing. I shall now describe in detail the method of experimentation, the condition of the animals, and the nature of the auditory reactions.

Between the twelfth and the eighteenth day the auditory canal becomes open to the exterior. The time is very variable in different litters, for their rate of growth depends upon the amount of nourishment which the mother is able to supply. Without exception, in my experience, the opening to the ear appears before the eyes are open. Consequently visual stimuli usually are not disturbing factors in the auditory tests with mice less than sixteen days old. There is also a sudden and marked change in the behavior of the mice during the third week. Whereas, for the first fourteen or eighteen days they are rather quiet and deliberate in their movements when removed from the nest, some time in the third week their behavior suddenly changes and they act as if frightened when taken up by the experimenter. They jump out of his hand, squeak, and sometimes show fight. This is so pronounced that it has attracted my attention many times and I have studied it carefully to determine, if possible, whether it is due to some profound change in the nervous system which thus suddenly increases the sensitiveness of the animal or to the development of the sexual organs. I am inclined to think that it is a nervous phenomenon which is intimately connected with the sexual condition. Within a day or two after it appears the mice usually begin to show auditory reactions and continue to do so for three to five days.

I shall now describe the results obtained with a few typical litters. A litter born of Nos. 151 and 152 gave uniformly negative results in all auditory tests up to the fourteenth day. On that day the ears were open, and the following observations were recorded. The five individuals of the litter, four females and one male, were taken from the nest one at a time at 7 A.M. and placed on a piece of paper in the bright sunlight. The warmth of the sun soon quieted them so that auditory tests could be made to advantage. As soon as an individual had become perfectly still, the Galton whistle was held at a distance of about four inches from its head in such a position that it could not be seen nor the currents of air caused by it felt, and suddenly blown. Each of the five mice responded to the first few repetitions of this stimulus by movements of the ears, twitchings of the body, and jerky movements of the legs. The most violent reactions resulted when the individual was lying on its back with its legs extended free in the air. Under such circumstances the four legs were often drawn together suddenly when the whistle was sounded. Similar responses were obtained with the lip sound already mentioned. Two other observers saw these experiments, and they agreed that there can be no doubt that the mice responded to the sound. The sounds which were effective lay between 5000 and 10,000 complete vibrations.

On the fifteenth day the eyes were just beginning to open. Three of the mice responded definitely to the sounds, but the other two slightly, if at all. On the sixteenth day they were all too persistently active for satisfactory auditory tests, and on the seventeenth, although they were tested repeatedly under what appeared to be favorable conditions, no signs of sensitiveness were noted. Although I continued to test this litter, at intervals of three or four days, for two weeks longer, I did not once observe a response to sound.

This was the first litter with which I obtained perfectly definite, clear- cut responses to sounds. That the reactive ability had not been present earlier than the fourteenth day I am confident, for I had conducted the tests in precisely the same manner daily up to the time of the appearance of the reactions. To argue that the mice heard before the fourteenth day, but were unable to react because the proper motor mechanism had not developed sufficiently would be short-sighted, for if the response depended upon the development of such a mechanism, it is not likely that it would disappear so quickly. I am therefore satisfied that these reactions indicate hearing.

With another litter the following results were obtained. On the thirteenth day each of the eight members of the litter responded definitely and uniformly to the Galton whistle, set at 5 (probably about 8000 complete vibrations), and to a König steel bar of a vibration rate of 4096 Vs. The largest individuals, for almost always there are noticeable differences in size among the members of a litter, appeared to be most sensitive to sounds.

On the fifteenth day and again on the seventeenth unmistakable responses to sound were observed; on the eighteenth the responses were indefinite, and on the nineteenth none were obtained. I continued the tests up to the twenty-eighth day without further indications of hearing.

Certain individuals in this litter reacted so vigorously to the loud sound produced by striking the steel bar a sharp blow and also to the Galton whistle, during a period of five days, that I have no hesitation in saying that they evidently heard during that period of their lives. Other members of the litter seemed to be less sensitive; their reactions were sometimes so indefinite as to leave the experimenter in doubt about the presence of hearing.

A third litter, which developed very slowly because of lack of sufficient food, first showed unmistakable reactions to sound on the twenty-first day. On this day only two of the five individuals reacted. The reactions were much more obvious on the twenty-second day, but thereafter they became indefinite.

Still another litter, which consisted of one female and four males, began to exhibit the quick, jerky movements, already mentioned, on the fourteenth day. On the morning of the fifteenth day three members of the litter definitely reacted to the tone of the steel bar, and also to the hammer blow when the bar was held tightly in the hand of the experimenter. My observations were verified by another experimenter. Two individuals which appeared to be very sensitive were selected for special tests. Their reactions were obvious on the sixteenth, seventeenth, and eighteenth days; on the nineteenth day they were indefinite, and on the twentieth none could be detected. Some individuals of this litter certainly had the ability to hear for at least five days.

A sixth litter of four females and two males first gave indications of the change in behavior which by this time I had come to interpret as a sign of the approach of the period of auditory sensitiveness, on the seventeenth day. I had tested them almost every day previous to this time without obtaining evidence of hearing. The tests with the steel bar and the Galton whistle were continued each day until the end of the fourth week without positive results. To all appearances the individuals of this litter were unable to hear at any time during the first month of life.

Practically the same results were obtained with another litter of four females. The change in their behavior was obvious on the eighteenth day, but at no time during the first month did they give any satisfactory indications of hearing.

In the accompanying table, I have presented in condensed form the results of my auditory tests in the case of twelve litters of young dancers.

PARENTS No. in Change in Ears Auditory ReactionsLitter Behavior Open Appear Disappear

152+151 5 13th day 14th day 14th day 16th day 152+15l 8 (?) 13th day 13th day 17th day 152+151 5 13th day 13th day 13th day 17th day 152+151 4 10th day 12th day 13th day 15th day 410+415 5 14th day 15th day 15th day 19th day 410+415 6 13th day 14th day 14th day 18th day 420+425 2 12th day 14th day 14th day 17th day 210+215 5 17th day 13th day 17th day 19th day 210+215 6 11th day 14th day No reactions 220+225 6 16th day 14th day No reactions 220+225 6 17th day 13th day No reactions 212+211 4 15th day 14th day No reactions

Certain of the litters tested responded definitely to sounds, others gave no sign of hearing at any time during the first four weeks of life. Of the twelve litters for which the results of auditory tests are presented in Table 5, eight evidently passed through an auditory period. It is important to note that all except one of these were the offspring of Nos. 151 and 152, or of their descendants Nos. 410 and 415 and Nos. 420 and 425. In fact every one of the litters in this line of descent which I have tested, and they now number fifteen, has given indications of auditory sensitiveness. And, on the other hand, only in a single instance have the litters born of Nos. 210 and 215, or of their descendants, given evidence of ability to hear.

These two distinct lines of descent may be referred to hereafter as the 400 and the 200 lines. I have observed several important differences between the individuals of these groups in addition to the one already mentioned. The 200 mice were sometimes gray and white instead of black and white; they climbed much more readily and danced less vigorously than those of the 400 group. These facts are particularly interesting in connection with Cyon's descriptions of the two types of dancer which he observed.

In criticism of my conclusion that the young dancers are able to hear certain sounds for a few days early in life, and then become deaf, it has been suggested that they cease to react because they rapidly become accustomed to the sounds. That this is not the case, is evident from the fact that the reactions often increase in definiteness during the first two or three days and then suddenly disappear entirely. But even if this were not true, it would seem extremely improbable that the mouse should become accustomed to a sudden and startlingly loud sound with so few repetitions as occurred in these tests. On any one day the sounds were not made more than five to ten times. Moreover, under the same external condition, the common mouse reacts unmistakably to these sounds day after day when they are first produced, although with repetition of the stimulus at short intervals, the reactions soon become indefinite or disappear.

The chief results of my study of hearing in the dancer may be summed up in a very few words. The young dancer, in some instances, hears sounds for a few days during the third week of life. The adult is totally deaf. Shortly before the period of auditory sensitiveness, the young dancer becomes extremely excitable and pugnacious.

The sense of sight in the dancer has received little attention hitherto. In the literature there are a few casual statements to the effect that it is of importance. Zoth, for example (31 p. 149), remarks that it seems to be keenly developed; and other writers, on the basis of their observation of the animal's behavior, hazard similar statements. The descriptions of the behavior of blinded mice, as given by Cyon, Alexander and Kreidl, and Kishi (p.47), apparently indicate that the sense is of some value; they do not, however, furnish definite information concerning its nature and its role in the daily life of the animal.

The experimental study of this subject which is now to be described was undertaken, after careful and long-continued observation of the general behavior of the dancer, in order that our knowledge of the nature and value of the sense of sight in this representative of the Mammalia might be increased in scope and definiteness. The results of this study naturally fall into three groups: (1) those which concern brightness vision, (2) those which concern color vision, and (3) those which indicate the role of sight in the life of the dancer.

Too frequently investigators, in their work on vision in animals, have assumed that brightness vision and color vision are inseparable; or, if not making this assumption, they have failed to realize that the same wave-length probably has markedly different effects upon the retinal elements of the eyes of unlike organisms. In a study of the sense of sight it is extremely important to discover whether difference in the quality, as well as in the intensity, of a visual stimulus influences the organism; in other words, whether color sensitiveness, as well as brightness sensitiveness, is present. If the dancer perceives only brightness or luminosity, and not color, it is evident that its visual world is strikingly different from that of the normal human being. The experiments now to be described were planned to show what the facts really are.

[Illustration: Figure 14.—Discrimination box.W, electric-box with white cardboards; B, electric-box with black cardboards. Drawn by Mr. C.H. Toll.]

As a means of testing the ability of the dancer to distinguish differences in brightness, the experiment box represented by Figures 14 and 15 was devised. Figure 14 is the box as seen from the position of the experimenter during the tests. Figure 15 is its ground plan. This box, which was made of wood, was 98 cm. long, 38 cm. wide, and 17 cm. deep, as measured on the outside. The plan of construction and its significance in connection with these experiments on vision will be clear from the following account of the experimental procedure. A mouse whose brightness vision was to be tested was placed in the nest-box, A (Figure 15). Thence by pushing open the swinging door atI, it could pass into the entrance chamber,B. Having enteredBit could return toAonly by passing through one of the electric-boxes, markedW, and following the alley toO, where by pushing open the swing door it could enter the nest-box. The door atIswung inward, towardB, only; those atO, right and left, swung outward, towardA, only. It was therefore impossible for the mouse to follow any other course thanA-I-B-L-W-E-OorA-I-B-R-W-E-O. The doors atIandOwere pieces of wire netting of 1/2 cm. mesh, hinged at the top so that a mouse could readily open them, in one direction, by pushing with its nose at any point along the bottom. On the floor of each of the electric-boxes,W, was an oak board 1 cm. in thickness, which carried electric wires by means of which the mouse could be shocked inWwhen the tests demanded it. The interrupted circuit constituted by the wires in the two electric-boxes, in connection with the induction apparatus,IC, the dry battery,C, and the hand key,K, was made by taking two pieces of No. 20 American standard gauge copper wire and winding them around the oak board which was to be placed on the floor of each electric-box. The wires, which ran parallel with one another, 1/2 cm. apart, fitted into shallow grooves in the edges of the board, and thus, as well as by being drawn taut, they were held firmly in position. The coils of the two pieces of wire alternated, forming an interrupted circuit which, when the keyKwas closed, was completed if the feet of a mouse rested on points of both pieces of wire. Since copper wire stretches easily and becomes loose on the wooden base, it is better to use phosphor bronze wire of about the same size, if the surface covered by the interrupted circuit is more than three or four inches in width. The phosphor bronze wire is more difficult to wind satisfactorily, for it is harder to bend than the copper wire, and it has the further disadvantage of being more brittle. But when once placed properly, it forms a far more lasting and satisfactory interrupted circuit for such experiments as those to be described than does copper wire. In the case of the electric-boxes under consideration, the oak boards which carried the interrupted circuits were separate, and the two circuits were joined by the union of the wires between the boxes. The free ends of the two pieces of wire which constituted the interrupted circuit were connected with the secondary coil of a Porter inductorium whose primary coil was in circuit with a No. 6 Columbia dry battery. In the light of preliminary experiments, made in preparation for the tests of vision, the strength of the induced current received by the mouse was so regulated, by changing the position of the secondary coil with reference to the primary, that it was disagreeable but not injurious to the animal. What part the disagreeable shock played in the test of brightness vision will now be explained.

[Illustration: FIGURE 15.—Ground plan of discrimination box.A, nest- box;B, entrance chamber;W,W, electric-boxes;L, doorway of left electric-box;R, doorway of right electric-box;E, exit from electric- box to alley;I, swinging door betweenAandB;O, swinging door between alley andA;IC, induction apparatus;C, electric cell;K, key in circuit.]

An opportunity for visual discrimination by brightness difference was provided by placing dead black cardboard at the entrance and on the inside of one of the electric-boxes, as shown in Figure 14,B, and white cardboard similarly in the other box. These cardboards were movable and could be changed from one box to the other at the will of the experimenter. The test consisted in requiring the mouse to choose a certain brightness, for example, the white cardboard side, in order to return to the nest-box without receiving an electric shock. The question which the experimenter asked in connection with this test really is, Can a dancer learn to go to the white box and thus avoid discomfort? If we assume its ability to profit by experience within the limits of the number of experiences which it was given, such a modification of behavior would indicate discrimination of brightness. Can the dancer distinguish white from black; light gray from dark gray; two grays which are almost of the same brightness? The results which make up the remainder of this and the following chapter furnish a definite answer to these questions.

To return to the experimental procedure, the mouse which is being tested is placed by the experimenter in the nest-box, where frequently in the early tests food and a comfortable nest were attractions. If it does not of its own accord, as a result of its abundant random activity, pass throughIintoBwithin a few seconds, it is directed to the doorway and urged through. A choice is now demanded of the animal; to return to the nest-box it must enter either the white electric-box or the black one. Should it choose the white box, it is permitted to return directly toAby way of the doorwayE, the alley, and the swinging door atO, and it thus gets the satisfaction of unobstructed activity, freedom to whirl, to feed, and to retreat for a time to the nest. Should it choose to attempt to enter the black box, as it touches the wires of the interrupted circuit it receives a shock as a result of the closing of the key in the circuit by the experimenter, and further, if it continues its forward course instead of retreating from the "stinging" black box, its passage throughEis blocked by a barrier of glass temporarily placed there by the experimenter, and the only way of escape to the nest-box is an indirect route by way ofBand the white box. Ordinarily the shock was given only when the mouse entered the wrong box, not when it retreated from it; it was never given when the right box was chosen. The box to be chosen, whether it was white, gray, or black, will be called the right box. The electric shock served as a means of forcing the animal to use its discriminating ability. But the question of motives in the tests is not so simple as might appear from this statement.

The reader will wonder why the mouse should have any tendency to enterB, and why after so doing, it should trouble to go further, knowing, as it does from previous experiences, that entering one of the electric-boxes may result in discomfort. The fact is, a dancer has no very constant tendency to go fromAtoBat the beginning of the tests, but after it has become accustomed to the box and has learned what the situation demands, it shows eagerness to make the trip fromAtoB, and thence by way of either the right or the left route toA. That the mouse should be willing to enter either of the electric-boxes, after it has experienced the shock, is even more surprising than its eagerness to run fromAtoB. When first tested for brightness discrimination in this apparatus, a dancer usually hesitated at the entrance to the electric-boxes, and this hesitation increased rapidly unless it were able to discriminate the boxes by their difference in brightness and thus to choose the right one. During the period of increasing hesitancy in making the choice, the experimenter, by carefully moving fromItoward the entrances to the electric-boxes a piece of cardboard which extended all the way acrossB, greatly increased the mouse's desire to enter one of the boxes by depriving it of dancing space inB. If an individual which did not know which entrance to choose were permitted to run about inB, it would often do so for minutes at a time without approaching the entrance to the boxes; but the same individual, when confined to a dancing space 4 or 5 cm. wide in front of the entrances, would enter one of the electric-boxes almost immediately. This facilitation of choice by decrease in the amount of space for whirling was not to any considerable extent the result of fear, for all the dancers experimented with were tame, and instead of forcing them to rush into one of the boxes blindly and without attempt at discrimination, the narrowing of the space simply increased their efforts to discriminate. The common mouse when subjected to similar experimental conditions is likely to be frightened by being forced to approach the entrances to the boxes, and fails to choose; it rushes into one box directly, and in consequence it is as often wrong as right. The dancer always chooses, but its eagerness to choose is markedly increased by the restriction of its movements to a narrow space in front of the entrances between which it is required to discriminate. It is evident that the animal is uncomfortable in a space which is too narrow for it to whirl in freely. It must have room to dance. This furnished a sufficiently strong motive for the entering of the electric-boxes. It must avoid disagreeable and unfavorable stimuli. This is a basis for attempts to choose, by visual discrimination, the electric-box in which the shock is not given. It may safely be said that the success of the majority of the experiments of this book depended upon three facts: (1) the dancer's tendency to avoid disagreeable external conditions, (2) its escape-from-confinement- impelling need of space in which to dance freely, and (3) its abundant and incessant activity.

Of these three conditions of success in the experiments, the second and third made possible the advantageous use of the first. For the avoidance of a disagreeable stimulus could be made use of effectively in the tests just because the mice are so restless and so active. In fact their eagerness to do things is so great that the experimenter, instead of having to wait for them to perform the desired act, often is forced to make them wait while he completes his observation and record. In this respect they are unlike most other animals.

My experiments with the dancer differ from those which have been made by most students of mammalian behavior in one important respect. I have used punishment instead of reward as the chief motive for the proper performance of the required act. Usually in experiments with mammals hunger has been the motive depended upon. The animals have been required to follow a certain devious path, to escape from a box by working a button, a bolt, a lever, or to gain entrance to a box by the use of teeth, claws, hands, or body weight and thus obtain food as a reward. There are two very serious objections to the use of the desire for food as a motive in animal behavior experiments—objections which in my opinion render it almost worthless in the case of many mammals. These are the discomfort of the animal and the impossibility of keeping the motive even fairly constant. However prevalent the experience of starvation may be in the life of an animal, it is not pleasant to think of subjecting it to extreme hunger in the laboratory for the sake of finding out what it can do to obtain food. Satisfactory results can be obtained in an experiment whose success depends chiefly upon hunger only when the animal is so hungry that it constantly does its best to obtain food, and when the desire for food is equally strong and equally effective as a spur to action in the repetitions of the experiment day after day. It is easy enough to get almost any mammal into a condition of utter hunger, but it is practically impossible to have the desire for food of the same strength day after day. In short, the desire for food is unsatisfactory as a motive in animal behavior work, first, because a condition of utter hunger, as has been demonstrated with certain mammals, is unfavorable for the performance of complex acts, second, because it is impossible to control the strength of the motive, and finally, because it is an inhumane method of experimentation.

In general, the method of punishment is more satisfactory than the method of reward, because it can be controlled to a greater extent. The experimenter cannot force his subject to desire food; he can, however, force it to discriminate between conditions to the best of its knowledge and ability by giving it a disagreeable stimulus every time it makes a mistake. In other words, the conditions upon which the avoidance of a disagreeable factor in the environment depends are far simpler and much more constant than those upon which the seeking of an agreeable factor depends. Situations which are potentially beneficial to the animal attract it in varying degrees according to its internal condition; situations which are potentially disagreeable or injurious repel it with a constancy which is remarkable. The favorable stimulus solicits a positive response; the unfavorable stimulus demands a negative response.

Finally, in connection with the discussion of motives, it is an important fact that forms of reward are far harder to find than forms of punishment. Many animals feed only at long intervals, are inactive, do not try to escape from confinement, cannot be induced to seek a particular spot, in a word, do not react positively to any of the situations or conditions which are employed usually in behavior experiments. It is, however, almost always possible to find some disagreeable stimulus which such an animal will attempt to avoid.

As it happens, the dancer is an animal which does not stand the lack of food well enough to make hunger a possible motive. I was driven to make use of the avoiding reaction, and it has proved so satisfactory that I am now using it widely in connection with experiments on other animals. The use of the induction shock, upon which I depended almost wholly in the discrimination experiments with the dancer, requires care; but I am confident that no reasonable objection to the conduct of the experiments could be made on the ground of cruelty, for the strength of the current was carefully regulated and the shocks were given only for an instant at intervals. The best proof of the humaneness of the method is the fact that the animals continued in perfect health during months of experimentation.

The brightness discrimination tests demanded, in addition to motives for choice, adequate precautions against discrimination by other than visual factors, and, for that matter, by other visual factors than that of brightness. The mouse might choose, for example, not the white or the black box, but the box which was to the right or to the left, in accordance with its experience in the previous test. This would be discrimination by position. As a matter of fact, the animals have a strong tendency at first to go uniformly either to the right or to the left entrance. This tendency will be exhibited in the results of the tests. Again, discrimination might depend upon the odors of the cardboards or upon slight differences in their shape, texture, or position. Before conclusive evidence of brightness discrimination could be obtained, all of these and other possibilities of discrimination had to be eliminated by check tests. I shall describe the various precautions taken in the experiments to guard against errors in interpretation, in order to show the lengths to which an experimenter may be driven in his search for safely interpretable results.

To exclude choice by position, the cardboards were moved from one electric-box to the other. When the change was made regularly, so that white was alternately on the right and the left, the mouse soon learned to go alternately to the right box and the left without stopping to notice the visual factor. This was prevented by changing the position of the cardboards irregularly.

Discrimination by the odor, texture, shape, and position of the cardboards was excluded by the use of different kinds of cardboards, by changing the form and position of them in check tests, and by coating them with shellac.

The brightness vision tests described in this chapter were made in a room which is lighted from the south only, with the experiment box directed away from the windows. The light from the windows shone upon the cardboards at the entrances to the electric-boxes, not into the eyes of the mouse as it approached them. Each mouse used in the experiments was given a series of ten tests in succession daily. The experiment was conducted as follows. A dancer was placed inA, where it usually ran about restlessly until it happened to find its way intoB. Having discovered that the swing door atIcould be pushed open, the animal seemed to take satisfaction in passing through intoBas soon as it had been placed in or had returned toA. InB, choice of two entrances, one of which was brighter than the other, was forced by the animal's need of space for free movement. If the right box happened to be chosen, the mouse returned toAand was ready for another test; if it entered the wrong box, the electric shock was given, and it was compelled to retreat from the box and enter the other one instead. In the early tests with an individual, a series sometimes covered from twenty to thirty minutes; in later tests, provided the condition of discrimination was favorable, it did not occupy more than ten minutes.

To exhibit the methods of keeping the records of these experiments and certain features of the results, two sample record sheets are reproduced below. The first of these sheets, Table 6, represents the results given by No. 5, a female,[1] in her first series of white-black tests. Table 7 presents the results of the eleventh series of tests given to the same individual.

[Footnote 1: It is to be remembered that the even numbers always designate males; the odd numbers, females.]

In the descriptions of the various visual experiments of this and the following chapters, the first word of the couplet which describes the condition of the experiment, for example, white-black, always designates the visual condition which the animal was to choose, the second that which it was to avoid on penalty of an electric shock. In the case of Tables 6 and 7, for example, white cardboard was placed in one box, black in the other, and the animal was required to enter the white box. In the tables the first column at the left gives the number of the test, the second the positions of the cardboards, and the third and fourth the result of the choice. The first test of Table 6 was made with the white cardboard on the box which stood at the left of the mouse as it approached fromA, and, consequently, with the black cardboard on the right. As is indicated by the record in the "wrong" column, the mouse chose the black instead of the white. The result of this first series was choice of the white box four times as compared with choice of the black box six times. On the eleventh day, that is, after No. 5 had been given 100 tests in this brightness vision experiment, she made no mistakes in a series of ten trials (Table 7).

White-Black, Series 1

Experimented on No. 5 January 15, 1906POSITION OFTEST CARDBOARDS RIGHT WRONG

1 White left — Wrong 2 White right — Wrong 3 White left — Wrong 4 White right — Wrong 5 White left Right — 6 White right Right — 7 White left — Wrong 8 White right Right — 9 White left — Wrong 10 White right Right —

Totals 4 6

Before tests, such as have been described, can be presented as conclusive proof of discrimination, it must be shown that the mouse has no preference for the particular brightness which the arrangement of the test requires it to select. That any preference which the mouse to be tested might have for white, rather than black, or for a light gray rather than a dark gray, might be discovered, what may be called preference test series were given before the discrimination tests were begun. These series, two of which were given usually, consisted of ten tests each, with the white alternately on the left and on the right. The mouse was permitted to enter either the white or the black box, as it chose, and to pass through to the nest-box without receiving a shock and without having its way blocked by the glass plate. The conditions of these preference tests may be referred to hereafter briefly as "No shock, open passages." The preference tests, which of course would be valueless as such unless they preceded the training tests, were given as preliminary experiments, in order that the experimenter might know how to plan his discrimination tests, and how to interpret his results.

White-Black, Series II

Experimented on No. 5 February 2, 1906

1 White left Right —2 White left Right —3 White right Right —4 White right Right —5 White right Right —6 White left Right —7 White left Right —8 White left Right —9 White right Right —10 White right Right —

Totals 10 0

The results given in the white-black preference tests by ten males and ten females are presented in Table 8. Three facts which bear upon the brightness discrimination tests appear from this table: (1) black is preferred by both males and females, (2) this preference is more marked in the first series of tests than in the second, and (3) it is slightly stronger for the first series in the case of females than in the case of males.

No. 10 3 7 3 7 18 5 5 5 5 20 2 8 4 6 152 4 6 6 4 210 4 6 4 6 214 6 4 3 7 220 5 5 3 7 230 4 6 2 8 410 4 6 5 5 420 4 6 9 1

Averages 4.1 5.9 4.4 5.6

No. 11 5 5 4 6 151 6 4 5 5 215 2 8 2 8 213 2 8 5 5 225 4 6 2 8 227 4 6 6 4 235 6 4 4 6 415 2 8 4 6 425 5 5 8 2 229 2 8 5 5

Averages 3.8 6.2 4.5 5.5

That the dancers should prefer to enter the dark rather than the light box is not surprising in view of the fact that the nests in which they were kept were ordinarily rather dark. But whatever the basis of the preference, it is clear that it must be taken account of in the visual discrimination experiments, for an individual which strongly preferred black might choose correctly, to all appearances, in its first black-white series. Such a result would demonstrate preference, and therefore one kind of discrimination, but not the formation of a habit of choice by discrimination. The preference for black is less marked in the second series of tests because the mouse as it becomes more accustomed to the experiment box tends more and more to be influenced by other conditions than those of brightness. The record sheets for both series almost invariably indicate a strong tendency to continue to go to the left or the right entrance according to the way by which the animal escaped the first time. This cannot properly be described as visual choice, for the mouse apparently followed the previous course without regard to the conditions of illumination. We have here an expression of the tendency to the repetition of an act. It is only after an animal acquires considerable familiarity with a situation that it begins to vary its behavior in accordance with relatively unimportant factors in the situation. It is this fact, illustrations of which may be seen in human life, as well as throughout the realm of animal behavior, that renders it imperative that an animal be thoroughly acquainted with the apparatus for experimentation and with the experimenter before regular experiments are begun. Any animal will do things under most experimental conditions, but to discover the nature and scope of its ability it is necessary to make it thoroughly at home in the experimental situation. As the dancer began to feel at home in the visual discrimination apparatus it began to exercise its discriminating ability, the first form of which was choice according to position.

Since there appears to be a slight preference on the part of most dancers' for the black box in comparison with the white box, white-black training tests were given to fifty mice, and black-white to only four. The tests with each individual were continued until it had chosen correctly in all of the tests of three successive series (thirty tests). As the reproduction of all the record sheets of these experiments would fill hundreds of pages and would provide most readers with little more information than is obtainable from a simple statement of the number of right and wrong choices, only the brightness discrimination records of Tables 6 and 7 are given in full.

As a basis for the comparison of the results of the white-black tests with those of the black-white tests, two representative sets of data for each of these conditions of brightness discrimination are presented (Tables 9 and 10). In these tables only the number of right and wrong choices for each series of ten tests appears.

Tables 9 and 10 indicate—if we grant that the precautionary tests to be described later exclude the possibility of other forms of discrimination— that the dancer is able to tell white from black; that it is somewhat easier, as the preference tests might lead us to expect, for it to learn to go to the black than to the white, and that the male forms the habit of choosing on the basis of brightness discrimination more quickly than the female.

No. 210 No. 215AGE, 28 DAYS AGE, 28 DAYSSERIES DATE RIGHT WRONG RIGHT WRONG(WHITE) (BLACK) (WHITE) (BLACK)A June 22 4 6 2 8B 23 4 6 2 8

1 24 4 6 3 72 25 6 4 5 53 26 7 3 7 34 27 5 5 8 25 28 7 3 9 16 29 8 2 8 27 30 9 1 9 18 July 1 10 0 10 09 2 10 0 9 110 3 10 0 10 011 4 — — 10 012 5 — — 10 0


Back to IndexNext