Putrescible Fluids

Fig. 11.Fig. 11.

Fig. 11.

Fig. 11.

Although I do not propose to enter into the details of the plumbing and sewerage arrangements, it is nevertheless necessary to touch upon certain broad questions. Wherever organic refuse is mixed with water putrefaction results, and certain gases are given off from putrefying liquids which are poisonous and hurtful to mankind. Every cook and housemaid is familiar with the fact that all vessels which serve as receptacles for putrescible liquids require the most careful cleansing, and need to be scrubbed and scoured, washed with hot water and soap and soda, andwiped dry. If this is not done they become foul, and rapidly cause the decomposition of any liquid containing organic matter which may be subsequently added.

The modern house drains into a sewer, which is necessarily always foul and filled with the gases of putrefaction. These gases are the result of microbial action. The sewage water is full of microbes, the gases of putrefaction are the gaseous 'toxins' (CO2, H2S, CH4, NH3, &c.) which result from their growth. The air of the sewer is necessarily harmful in itself, and the presence or absence of microbes in the sewer air is a matter of practically small importance. The house drains are necessarily foul as well as the sewers. We hear a great deal about 'self-cleansing' sewers, which shows how ignorant are the surveyors and others who use such terms. A glazed pipe, with a good gradient, may be less foul than a rough sewer with insufficient gradient, but you can no more have a 'self-cleansing' sewer than you can have a self-cleansing saucepan or chamber-vessel.

The foulest place in a house is the kitchen sink, with its vegetable and animaldébris, such as cabbage-water, grease, &c. Sanitary engineers are trying to cleanse these places by automatic flushing with cold water, which, to say the least, is enterprising. A few years ago 'fat traps' were fashionable, but were soon found to be intolerable from their inexpressible foulness.

It must be remembered that wherever along a line of drainage you get stagnation there must be putrefaction, and it must be borne in mind that every 'trap' which is a contrivance for ensuring stagnation is necessarily a place where putrefaction is liable to take place. Traps may keep back the smell of the street sewer in house pipes, but it must never be forgotten that they are undesirable evils in themselves.

The efforts of modern sanitary engineers are directed towards ensuring that the gases which inevitably result from putrefaction in sewers and house-drains should be as much as possible diluted with external air before we breathe them. The sewer gratings in the streets give off foul gases at the pavement level, especially in the summer. The ventilating pipes give off foul gases at the roof level, close to the water cisterns. The traps beneath everyW.C.and sink are all spots where putrefaction may and often does take place. The gullies in the front and back areas of the house are also liable to be foul. Here I would insist that every gully on the ground level should, when possible, be freely exposed to the air, so that the wind may blow over it. This, in London, is impossible, as these gullies are necessarily surrounded by the walls of the area, and in still, muggy weather these areas must contain a large amount of gaseous toxins.

I insist upon this point because I see the town architect making the mistake in the country of enclosing the kitchenand pantry gullies by walls (to form a kitchen yard), so that any emanations which arise from them are liable to be drawn into the house through the open windows. Such an arrangement ought, when possible, to be carefully avoided.

Traps and trapped gullies are evils which are only to be tolerated for the prevention of greater evils. I visited not long ago a convalescent home built on the slopes of a decidedly steep hill. The building was a fine one, and (why I do not know) was three storeys high. The builder had brought the rain-water pipes from the roof, and had made them terminate in trapped gullies close to the front wall of the house. In these collections of stagnant water, dead leaves, &c., would certainly decay, and every trap would inevitably become a cultivating chamber for the growth of mildew and moulds of various kinds. These trapped gullies communicated with an underground drain, where the same growth of mildew, &c., would inevitably go forward. In such a situation the rain-water, without the interference of the builder and architect, would have got clean away into the valley below, and have left the house perfectly dry. All that was needed was an open gutter. Great expense had been incurred to make the walls of this building dry, and still greater expense had been incurred to ensure precisely those evils which come from damp walls, viz., the growth of mildew.

In the autumn of 1896 I was stopping in an hotel which had no less than 42 trapped gullies touching its walls; there was one beneath almost every window and by the side of almost every door. Here, again, a little contrivance and common sense would have obviated all this mischievous expense.

The constant inhalation of the gases of putrefaction is a great danger to health, otherwise sanitarians would notlead us to imply that we ought to spend enormous sums to ensure their dilution before we inhale them. If these gases be concentrated, they are capable of killing strong men in a few minutes. The constant inhalation of these gases in a more diluted form leads to malnutrition, and one must suppose that the pasty-faced and undersized Cockney is made in this way. We have little certain knowledge of the diseases caused by sewer air. Personally, I should say that anæmia and malnutrition are the chief resulting evils, and that these conditions make us very vulnerable to infections. Sore-throat is certainly a drain disease, and thus a vulnerability to diphtheria is probably engendered. Puerperal disease of various kinds and rheumatic fever are among the diseases which have been attributed to sewer air, and it is probable that chronic enlargement of the tonsils and the surprising increase of adenoid growths in the pharynx and naso-pharynx are not without similar relationships.

Dr. Letheby and Dr. Haldane, who both investigated cases of acute poisoning by air in sewers, came to the conclusion that sulphuretted hydrogen was the fatal ingredient.

Dr. Haldane is of opinion that the source of the sulphuretted hydrogen is the kitchen refuse in the fat traps and grease boxes. He states that ·07 per cent. (or a mixture containing 7 parts of sulphuretted hydrogen with 9,993 parts of air) is poisonous.

It is probable that the constant inhalation of very small quantities indeed would be prejudicial to health.

There is a very general consensus of opinion that damp houses are unwholesome.

Why are they unwholesome? It is very doubtful if theconstant inhalation of watery vapour is prejudicial to health. I am not aware that sailors and millers, and boatmen who spend their lives on the water, are a short-lived class, or that they are liable to diseases which are special to them as a class.

The probable cause of the unwholesomeness of a damp house is its liability to grow moulds and mildews and allied organisms. The growth of putrefactive and pathogenic organisms is checked by dryness and encouraged by dampness, and it is probable that it is in this direction that we are to look for the causes of the unwholesomeness of damp houses. A friend built a house some eighteen months since on an eminence in a park having a stiff clay soil. His architect advised him to have cellars under the house 'for the sake of dryness,' and such advice is very general. Let us look at the question a little more closely. Suppose you build a house having an area of 50 feet by 50 feet = 2,500 square feet. If you have no cellar this 2,500 square feet of your house rests upon the soil, and six inches of concrete will effectually stop back the moisture. Suppose you have a cellar beneath the house, say 8 feet high, then you have to excavate 2,500 feet by 8 = 20,000 cubic feet of earth; and in addition to the floor of your cellar you have four sides, each 50 feet by 8 = 400 square feet, or 1,600 extra square feet in all, in contact with the damp earth. With a cellar you have 4,100 square feet ready to imbibe moisture from the soil, and without it you have 2,500 feet only.

A big cellarage used for pantries, larders, beer, wine, coals, &c., &c., which is not artificially warmed, makes a house very cold; and if the cellarage communicate directly with the ground floor, there is a constant draught of cold air from the vaults beneath to the living-rooms above.

Supposing such a cellarage to have walls and floorimpermeable to moisture, it is inevitable that whenever the wind shifts from a cold dry quarter to a warm muggy quarter (say fromN.E.toS.W.), condensation will take place, and the walls of your 'dry cellar' will stream with moisture.

A cold damp cellar, which comes only occasionally under the surveillance of the master and mistress, and in which all sorts of odds and ends are poked away to accumulate dust and mildew, is an undoubted disadvantage to a house.

Such a cellar should never be 'drained,'i.e., it must on no account have a gully in it for the purpose of 'swilling down.' When such a cellar is cleansed, it must be scrubbed andwiped dryprecisely like a living-room. The trap of a gully is sure to grow moulds and mildews, and if, as is not unlikely, it becomes unsealed by evaporation, then the gases from the sewer or cesspool will inevitably find their way into the cellarage and the house above it.

An inhabited basement, such as is universal in London, regarded in relation to the house above it, is a very different thing from an uninhabited cellarage.

A place where food is stored, be it larder or dairy, must be cool, and clean, anddry, and must on no account have a gully either in it or near it. Food, and milk, and cream are cultivating media for organisms of all kinds, and food, especially cold gelatinous food, may become most dangerously poisonous if stored in an unwholesome place.

I will invite attention to fig.12, which represents a cellarage window constructed quite recently. The window is entirely below the level of the ground, and is surrounded by an 'area' for giving light and air to the window. The area is protected by a horizontal grating on the ground level, securely and permanently fastened down, and the area is drained through a gully, this being necessarybecause of the rain which falls into it. The gully leads to an underground drain, which, in this particular case, did not run directly to a cesspool, but to an open gutter on the side of a hill at a lower level. Into this area dead leaves are blown, and worms and slugs and snails inevitably find their way, and are washed by the rain into the stagnant gully, which becomes a place for putrefaction and the cultivation of mildew, the spores of which are necessarily blown into the house to infect the food which is stored there. Not only is the area closed by a fixed grating above, but the window is securely and permanently barred, so that this dry area (?), with its mildew trap, cannot possibly be cleaned without pulling the house to pieces.

Fig. 12 and 13.Fig. 12.Fig. 13.

Fig. 12.Fig. 13.

Fig. 12.

Fig. 13.

Fig.13is a suggestion for the improvement of this area. A glazed shutter has been placed (to prevent the access of rain) over a fixed grating, which admits air at the sides. The gully has been removed, the front wall of thearea has (at the suggestion of Mr. William White, F.S.A.) been sloped forward so as to reflect the light into the room, and the window bars have been taken away, in order that this area may be cleaned as thoroughly as the room which it serves.

In view of recent discoveries as to the liability of food to become poisonous when stored in an unwholesome place, the construction of the larder is an important matter.

The place where cooked and uncooked food is stored—the larder—must be wholesome, and to this end great care must be used in its construction. The following appear to me to be the points which demand attention in the larder, an apartment which may influence the health of a household to a very great extent:—

1. The larder must bedry. Both walls and floor should be above suspicion as to dampness. Any mould or mildew growing on the floor or walls is very apt to infect the food. The floor should be of concrete, without seams or joints. The walls should be limewashed every year, and the shelves (if expense be no object) should be of some non-absorbent material, such as marble, slate, glazed earthenware, or glass. It is better to have a larder above the ground level than below it, because in the latter situation dampness is very difficult to prevent.2. A larder must becool. If it have no rooms above it, the roof must be so constructed as to keep out the heat of the sun. It is essential that its windows and ventilators should face the north. The temperature which is most favourable for the growth of microbes is one which approaches to blood-heat, and, speaking generally, one may say that the higher the temperature, the more likely is the 'cultivation' of microbes to go forward. It is importantthat the flue of the kitchen fire, or any other flue, should not touch the wall of the larder.3. Good ventilation is essential. The windows should be big, and should be protected on the outside with wire gauze, so as to prevent the access of flies or other insects.4. On no account must there be a gully communicating with any underground drain or sewer either inside or, indeed, near to any place where food is stored. In short, we must bear in mind that sewer-poisoning may be indirect through the food, as well as direct from the sewer itself. When the shelves and floor of a larder are washed, they should be wiped dry, and such washing should be carried out in dry weather, so that the drying process may be complete.

1. The larder must bedry. Both walls and floor should be above suspicion as to dampness. Any mould or mildew growing on the floor or walls is very apt to infect the food. The floor should be of concrete, without seams or joints. The walls should be limewashed every year, and the shelves (if expense be no object) should be of some non-absorbent material, such as marble, slate, glazed earthenware, or glass. It is better to have a larder above the ground level than below it, because in the latter situation dampness is very difficult to prevent.

2. A larder must becool. If it have no rooms above it, the roof must be so constructed as to keep out the heat of the sun. It is essential that its windows and ventilators should face the north. The temperature which is most favourable for the growth of microbes is one which approaches to blood-heat, and, speaking generally, one may say that the higher the temperature, the more likely is the 'cultivation' of microbes to go forward. It is importantthat the flue of the kitchen fire, or any other flue, should not touch the wall of the larder.

3. Good ventilation is essential. The windows should be big, and should be protected on the outside with wire gauze, so as to prevent the access of flies or other insects.

4. On no account must there be a gully communicating with any underground drain or sewer either inside or, indeed, near to any place where food is stored. In short, we must bear in mind that sewer-poisoning may be indirect through the food, as well as direct from the sewer itself. When the shelves and floor of a larder are washed, they should be wiped dry, and such washing should be carried out in dry weather, so that the drying process may be complete.

We all know how sensitive food is to unwholesome contaminations, and one may well have a doubt as to the sanitary condition of show dairies, where a cool, plashing fountain plays in the centre, because such fountain must have a waste-pipe, and one must fear that such waste-pipe communicates with a drain. A dairy, equally with a larder, should be kept cool and dry, and should offer no facilities for the ingress of putrefactive products from a sewer.

I have already pointed out that it is no protection to have waste-pipes trapped, because in every form of trap one must have stagnation, and wherever stagnation occurs there must be putrefaction. A very small quantity of food-refuse or milk is enough to set up putrefaction in a trap. If any outlet for water is thought desirable in a larder, it should be in the form of an open gutter which can be thoroughly cleaned and dried, and which should pass directly through the wall on the floor-level, the opening in the wall to be closed by a sliding trap-door when the gutter is not being used. No bacteriologist needs to be reminded that a water-trap is necessarily a cultivating chamber.

We are now in a position to consider the sanitation of the isolated dwelling. Having dwelt upon the evils of putrefaction, it is to be expected that methods which involve no putrefaction will be recommended. Further, it must be remembered that there are many situations which are otherwise suitable for a dwelling, but are rendered unsuitable by the lack of water; and in these days we have become so absolutely dependent upon water, that no site for a dwelling where water is scarce is acceptable.

We have come to think that there can be no cleanliness without soap and water, and it may be necessary to remind the reader that the nomad Arab cleanses himself with the sand of the desert; that polished floors redolent of beeswax and turpentine are at least as wholesome as those that are scrubbed and have their crevices filled with a soapy slime; and that one of the best ways of washing a flannel shirt is said to be to hang it in the sun and beat it thoroughly with a stick. Necessity is the mother of invention, and were there a water-famine to-morrow, I have no doubt that those who were minded to be cleanly would somehow manage to be so.

There is no denying that dry methods of sanitation are in this country, where water is plentiful, far from popular. Dwellers in cities want to be rid of matters which have no value forthemas individuals, and the luxury of having a scavenger 'laid on,' who can be set at work by merely turning a tap, and who, albeit that we pay handsomely for his services, does not hang about to be 'tipped,' are undeniable. Then, again, our scavenger is a very strict teetotaller and never strikes, although occasionally he is 'frozen out.' Many of us during a severe frost have, so to say, been the victims of dry methods and of 'water' closets, so called, on the principle ofLucus a non lucendo.

If dry methods of sanitation are to be successfully carried out, it is necessary to bear in mind the principles which underlie them.

The change which is produced in excrement when mixed with earth whereby the excrement is humified—i.e., changed to something which is indistinguishable by our senses from ordinary garden mould, or humus, is due to the action of fungoid organisms. Some of these belong to the 'mould' fungi, such as penicillium and saccharomyces, while others are allied to the schizomycetes, otherwise known as bacteria, bacilli, and micrococci.

A very important organism, or class of organisms, in this connection are those which bring about the nitrification of nitrogenous matters, whereby they are oxidised and made soluble, so as to be readily absorbed by the roots of growing plants. I prefer, however, to use the wordhumificationin place of nitrification, because it is not likely that nitrification is the sole change which takes place, and it is at least highly probable that many of the fungi which grow in nitrogenous matter play a very important part inproducing fertility and in feeding higher plants. The intestines of animals swarm with bacteria and allied bodies, and it may be assumed, in the absence of evidence to the contrary, that excrements carry with them, so to say, in the form of moulds and bacteria, bodies which help in their subsequent humification.

Which of us has not noticed the excrement of a dog, evenly covered with exquisitely graceful stalks of fungus as with a crop of erect white hairs. The greatest of all human observers must have seen this, for he makes the Queen say to Hamlet:

'Your bedded hair, like life in excrements,Starts up and stands on end.'

'Your bedded hair, like life in excrements,Starts up and stands on end.'

'Your bedded hair, like life in excrements,Starts up and stands on end.'

'Your bedded hair, like life in excrements,

Starts up and stands on end.'

Ordinary humus contains such organisms in countless numbers, and it is probable that when excreta are mixed with sterile bodies, such as ashes, the necessary organisms are in part supplied by the excreta themselves, or possibly gain access from the air around.

In order that humification may take place two things are necessary:—

It may be well to refer here to what is actually done in my garden at Andover, in Hampshire.

It should be stated that the garden is close to thecentre of the town of Andover, the chief town in West Hants (a purely agricultural district), with about 6,000 inhabitants.

The garden abuts on a street and lies very low, being only two or three feet at most above the average level of the river Anton, which forms one of its boundaries.

The interest of the garden lies in the fact that it has been manured for the last ten years with the excreta and other refuse of some twenty cottages, the only stable dung which has been used having been sufficient to make a hotbed in the spring, and no more.

Fig. 14.Fig. 14.A, cottages;B, house and garden (let for a girls' school);C,C, garden ground used for sanitary purposes, measuring (exclusive of grass and paths) about 1¼ acre;W, well,D,D,D,D,D, small stream, supplied partly by springs and partly from river.

Fig. 14.A, cottages;B, house and garden (let for a girls' school);C,C, garden ground used for sanitary purposes, measuring (exclusive of grass and paths) about 1¼ acre;W, well,D,D,D,D,D, small stream, supplied partly by springs and partly from river.

Fig. 14.

A, cottages;B, house and garden (let for a girls' school);C,C, garden ground used for sanitary purposes, measuring (exclusive of grass and paths) about 1¼ acre;W, well,D,D,D,D,D, small stream, supplied partly by springs and partly from river.

The plan (fig.14) shows the position of the cottages, which form acul-de-sacrunning from the street to the river, and also the position of the garden ground. This ground, which is on both sides of the cottages, measures, exclusive of paths and turf, about one and a quarter acre. Nearly an acre of the ground has, together with a house,been let for a girls' school, and in the cultivation of this piece the writer has no authority.

The cottages are fitted with 'pail closets,' with the exception of one only, which has a 'dry catch,' which is much superior from every point of view to a pail closet, and in course of time it is hoped that all the closets will be converted into 'dry catches,' of which more will be said hereafter. The contents of the pails are removed every morning, and aresuperficiallyburied in a furrow such as a gardener makes when turning up the ground with a spade. One must insist that the covering of the excreta cannot be too light, as it is essential for the due humification of the organic refuse that the air have access to the pores of the soil; and one may add that when the pores of the soil are sealed up by drenching rains, as was the case in the autumn of 1894, the process of humification is delayed, and certainly the excreta are not (owing to their sticky, glutinous nature) washed out of the soil by the heaviest rains experienced in this country. The method of superficial burial has this further advantage, that the tillage of the soil and the burying of the excreta are carried on by a single operation. As the cottages are close to the garden, the process of removing and burying the contents of the pails is done in less than an hour. Directly this has been accomplished, in the early hours of the morning, there is an end of anything which can offend either the eyes or the nose.

After the excreta have been superficially buried plants of the cabbage tribe are dibbled in as soon as may be. This is often done within three days, and the cabbages are sure to flourish. Seeds do not flourish with any certainty, and, although I have seen fair crops of turnips, peas, onions, &c., when the weather has been favourable, such crops are liable to fail, while cabbage as a first crop ispractically sure to succeed. I can call to mind a spot in the Andover garden which had been sown with turnips and radishes as a first crop after manuring. The produce was Brobdingnagian, but worthless except to dig into the ground. The development of green head was very great, the roots were huge and woolly. When the plan of operations which has been described (daily superficial burial followed by cabbage planting) was commenced, some ten years ago, many were the prophecies of failure. The practical men shook their heads and said I never should succeed that way, but that I was 'bound to store the stuff in a heap to allow it to ripen before being put on the land.' As a sanitarian one was naturally anxious to get the excreta below the surface of the ground as soon as possible, and I now feel confident in stating that the plan I recommend is the best from the sanitary, agricultural, and financial points of view. Sanitarily it is the best because there is no delay in the safe bestowal of the excreta; agriculturally it is best because no ammonia or other volatile body is given to the air, but all goes to enrich the land; and financially it is best because it involves moving the dung once only instead of twice; the same operation that tills the land serves to cover the dung, and while the excreta are 'ripening' for other crops the farmer gets a crop of cabbage. After the cabbage crop the ground is still very rich and will grow everything or anything, to which the soil and situation are suited, in high perfection.

The garden is in great contrast to an ordinary sewage farm. It is used as a pleasaunce, and its luxurious herbage and bright colouring are very beautiful. The ordinary garden crops show great exuberance of growth, and the summer fruit trees (apples, pears, peaches, and nectarines) are usually hung with a very bountiful crop of fruit.

Fig. 15. Garden at Andover.Fig. 15.—Garden at Andover.

Fig. 15.—Garden at Andover.

The illustration (fig.15) shows the central green path ofthe garden, and although the rich colouring of the tritomas, gladioli, stocks, phloxes, asters, lobelias, calceolarias, roses, and dahlias, cannot be reproduced, the illustration will serve to give some idea of the general luxuriance. The writer claims to have proved (all chemical analysesto the contrary notwithstanding) that human excreta have a very high manurial value, and this will be borne out by the picture.

Seeing that moderate dryness and free access of air are essential for humification, it becomes necessary so to construct our receptacle that these ends may be attained.

This end is not attained in an ordinary pail, because all the urine is retained; there is an excess of moisture, and the mixture becomes putrid and sloppy, unmanageable and offensive.

The best method of treating excreta is to allow them to be deposited in the 'dry catch,' suggested by Mr. Richardson, of Clifton (seefig.16). In this arrangement the seat is raised on two or three steps, and the excreta are caught on a slightly sloping concrete floor; the excreta are freely exposed to the air, and the urine flows away down the slight slope and is caught by an absorbent material, of which the best is garden humus.

With this arrangement no putrefaction takes place. It is not a matter of much practical moment whether or not earth be thrown into the dry catch after the excreta, because the arrangement ensures that offensiveness is reduced to a minimum.

If earth be used this humification will go on in the catch itself, and the longer such a catch is used the better it will act, always provided that moderate dryness and free access of air are ensured.

I speak with great confidence as to the success of this arrangement, and with an experience of some years' standing. With a dry catch of this kind used, let us suppose, for the lowest class of property and with daily removal of the excreta, the bulk and weight of the excreta are reducedto a minimum; there is no sloppiness or putrefaction. Collection and transport are easy, and the work is, with suitable tools, not repulsive. If we adopt the estimate of Parkes, that the solid excreta average for both sexes and all ages not more than 2½ ounces per diem, then the household of five persons would provide considerably less than 1 lb. weight per diem.

Fig. 16. Section of 'Dry-Catch' PrivyFig. 16.—Section of 'Dry-Catch' Privy, with Gutter filled with Absorbent Material to absorb Excess of Urine.

Fig. 16.—Section of 'Dry-Catch' Privy, with Gutter filled with Absorbent Material to absorb Excess of Urine.

Now a dry catch may in country places be used with the addition of dry earth, and where the householder has a garden he can have no difficulty in managing everything for himself, and must be little better than an idiot if he allows any sanitary authority to rob him of the finest manure the world produces, the excreta of the 'paragon of animals,' and withal the most highly fed.

Where the sanitary authority is responsible for the disposal of excrement, I believe it will be found more economical to carry the excreta to the earth than to take the earth to the excreta.

If there be cultivable land at hand, and the nearer such land is to the houses the better, I believe the best course to pursue is to bury the excreta daily in superficial furrows, as recommended above.

If there be no cultivable land at hand, then the excreta would have to be taken to a rough shed (sufficient to keep off the rain) and mixed with earth. The process of humification would be completed in three months, and the humus thus formed might be used over and over and over againad infinitum. The great advantage which follows from the scientific use of 'dry methods' is the continuity of the process. Nature turns all the excrement to humus, and humus is acknowledged to be the very best purifier of offensive nitrogenous matter which the world affords. The dark humus which is found everywhere, and which provides for all our needs, is nothing but excrement which has suffered a natural transformation brought about by a process which is purely biological. The oftener such humus is used the better it acts, and, further, it slowly increases in bulk. There can be no doubt as to its horticultural value, and if the authority cannot use it, the neighbouring farmers and gardeners will gladly do so. One of the difficulties connected with the dry-earth system is the procuring of earth, but from what I have said it is evident that an initial store of earth sufficient for six months' use, if judiciously, carefully, and scientifically used, would for ever take away the necessity of providing a fresh store.

This continuity of action is a most important matter, and one which has been hitherto almost wholly unappreciated. This arises from the fact that those who have notcarefully studied these dry methods are unable to believe that what I have stated is really true. That it is absolutely true I have no doubt whatever. Every sanitary authority should have a garden of its own for the purpose of practically demonstrating the excellent results obtained by using this 'dry' material as a manure. Such a garden, if properly cultivated, could not fail to be both beautiful and productive, and, if managed on the profit-sharing principle, would yield at least enough to pay wages. Such a garden should not have the customary notice, 'No admittance except on business,' but it should be the business of everybody to walk by it or through it while going to and from their daily work, and in so doing receive an object-lesson which would do more to enhance the health and prosperity of the country than any number of Board Schools and Free Libraries. In the last edition of 'Rural Hygiene' I have given some statements as to the financial results of my garden at Andover, which, I think, will be regarded as satisfactory. My experiments point to the fact that 600 square yards are enough for the disposal of the excreta of about 100 persons per annum.

The causes of the ill-success of the pail system appear to me to be in large measure due to the great weight of the pails, and, in consequence of the exceeding foulness of the material, the great distances which they have to be carried.

By the adoption of the 'dry catch' the weight of material would be enormously decreased and its daily transference by means of a proper shovel and travelling receptacle would be found both easy and economical.

If the material removed be buried superficially everyday with a view to cultivation and production, the land to which it is removedcannot be too near to the houses. This may seem a strong assertion, but I make it without any hesitation whatever. Should the necessity ever arise, I feel sure that all the parks and square gardens might be used in the manner I have indicated for sanitary purposes, not only without offence, but with a certain great increase in the productiveness of the ground, always provided that the atmosphere be not too foul (as is the case in central London) to permit of horticulture or agriculture in any form.

If the dry catch be used the material is not sloppy and liable to spill, and thus the great hindrance to its transport is removed.

Finally, the initial expenses and repairs of pails would no longer fall on the sanitary authority, and the huge cost of lugging about these absurdly clumsy putrefaction boxes would be at an end.

We have three specimens of municipal pails in the Parkes Museum, and these vary in weight from 40 lbs. to 50 lbs. The 50-lb. pail, which is 18 inches in diameter and 15 inches deep, weighs, when filled with water, 187¼ lbs.

If, by the help of two men, a horse, and a lorry, one has to take, in addition to the excreta, fifty pounds weight of galvanised iron, or wood and iron, a mile each way, the expense becomes huge, and anything like a daily removal is impracticable; but if one has to transport a pound of solid excrement a few hundred yards only, then the problem is a very different one.

Any sanitary authority which adopts 'dry method' should endeavour to arrange for a daily removal. I am no advocate of 'conservancy,' but would rather see the immediate utilisation of the excreta. It is only by immediate burial that one gets the full manurial value of them.

The burial must be done with a view to the cultivation of the land.It must be superficial.The excreta must be merely covered with the earth, no more. Furrows half a spit deep are ample. It is in this way only that one insures the oxidation of the excrement and the protection of the wells.

It is the almost universal custom to bury night soil deeply, and I could quote many instances in which excreta have been buried three or four feet deep, and have been exhumed some months later unchanged and still foul. If they be buried deeply, the farmer or gardener gets no benefit and the wells are endangered. The farmer, be it remembered, spreads his dung on the surface of the ground, with a maximum exposure to light and air and then ploughs it in; nothing could be more truly scientific.

We hear that in India, in spite of the earth system, typhoid is rife, and the opinion is very general there that typhoid spreads through the air. I have never been in India, and am not competent to express any opinion, but I have heard that in some places in India the excreta aredeeplyburied, and if this be the case, it appears to me that if the ground gets deeply fissured during drought, the torrential rains which follow may very well wash this too deeply buried and unchanged excreta into the water sources.

If excreta are to be used for agricultural purposes, no chemical antiseptics must on any account whatever be mixed with them. Antiseptics are a source of serious danger to the agriculturist. The best antiseptic for such a purpose is earth.

It has been supposed that the method of excrement disposal which I advocate necessitates the compelling ofdelicate persons to go out of doors in all weathers. I do not believe that it is necessary to ask delicate persons to run the risk of exposure in houses where dry methods of excrement disposal are employed. If a very small amount of the ingenuity which has been lavished upon water carriage had been devoted to overcoming the difficulties which attend the safe and decent management of dry methods, these difficulties would, I believe, have long since disappeared. If architects and builders can be impressed with thenecessity, on scientific, moral, sanitary, and economic grounds, of overcoming these difficulties, the thing is done.

The house which I own at Andover (see fig.14,B) becoming vacant, I tried the experiment of giving it a dry privy, which should be of such a kind that no lady would object to use it.

Now I hold that every closet, whether a dry closet or a water closet, should be sequestered from the main structure of a house, and should be approached by a lobby having cross ventilation. Those who in the present day put closets and waste-pipes within the four walls which enclose the living-rooms are not abreast of modern civilisation. The simplest plan for effecting my object in the present case seemed to be to throw an arch across the entrance to the stable yard, to place the ventilated passage on the top of the arch, and the closet on the far side of it, on a level with the first floor, and with a capacious vault or 'catch' beneath it. (See figs.17and18.) The catch, though larger, is exactly on the same principle as that which has been described, and it has been provided with eight large air bricks, three of which are just below the level of the closet seat, three near the ground level, and two intermediate in position. The bottom of the door of the catch is about an inch above the ground level, and in addition there is anopening for a dust-shoot, protected by a fine grating, so as to insure that only dust and ashes and not cinders or clinkers are thrown into it. There can be no doubt that plenty of fresh air will get access to this receptacle.

Without special precautions such a closet would be cold and draughty, and I have endeavoured to overcome this difficulty by a specially constructed pan, closed at the bottom by a hinged flap, which opens and shuts automatically by means of a counterpoise. (Seefig.19.)

Fig. 17. E.C. with Ventilated Lobby.Fig. 17.—E.C. with Ventilated Lobby.

Fig. 17.—E.C. with Ventilated Lobby.

By means of this specially-devised pan all up-draught is prevented; the stuff drops out of sight, and the urine, owing to the obliquity of the bottom of the pan, runs away instantly. When the closet has been used, some earth is thrown in, and this has the effect of carrying away any paper which may lodge, and of deodorising any soiling of the pan which may have taken place. There are some points connected with this closet-pan and seat which require to be mentioned:—

1. The seat and accessories are made of the bestpolished mahogany, because I am very strongly of opinion that smartness leads to cleanliness.

Fig. 18. Section through Chamber Floor E.C. and Dry Catch.Fig. 18.—Section through Chamber Floor E.C. and Dry Catch.

Fig. 18.—Section through Chamber Floor E.C. and Dry Catch.

2. The seat is only 14 inches above the ground, which is some 4 inches less than is customary. Closet seats are, as a rule, too high, and the low seat, with the position it necessitates, has certain physiological advantages, amongwhich may be mentioned the fact that the dejecta fall vertically downwards. It has one disadvantage, viz., that elderly people find a difficulty in rising; but this objection is easily overcome by fixing a handle in the wall, so that the arms may assist the feeble legs in the act of resuming the erect position.

Fig. 19. Section of Pan for Dry Closets.Fig. 19.—Section of Pan for Dry Closets.

Fig. 19.—Section of Pan for Dry Closets.

It will be observed that the back part of the pan is 3 inches beyond the rim of the seat and is nearly vertical, while the front part is set only 1 inch beyond the rim of the seat, and runs obliquely from above down and from before back.The object of this is to still further lessen the chance of the soiling of the back of the pan. The lower opening is slightly oblique, so that urine shall flow away instantly.

The supply of earth for this closet is kept in a box alongside the seat, and this box is filled from the outside by means of a hopper so arranged that the man who brings a fresh supply of earth cannot see or be seen by any chance occupant of the closet. The supply of earth is very large, being sufficient for a month or more, and there is no traffic through the house either with earth or excrement. This, again, is an important trifle.

The pans hitherto constructed on this pattern have been made of japanned iron. They have not to bear any weight or strain, and may be made very light. Enamelled iron or copper seem to me to be the best materials, but I have no doubt they could be effectually contrived in earthenware. The pans have been made for me by Messrs. Righton, 376 Euston Road. The pattern is registered.

Most of us must have remarked, either in London or some other centre of population, how little annoyance arises from cabstands. One must know of cab ranks where dozens of horses stand for hours daily from year's end to year's end, and where tons of dung and thousands of gallons of urine are spilled upon the same spot and practically without annoyance. I do not mean to say that occasionally one may not get a strongly ammoniacal whiff from such a spot when the weather is hot and muggy, but it is notorious that they are seldom foul, and that on passing them we are never prompted to hold the nose and quicken our pace.

The condition of a cabstand is in strong contrast withthe average urinal with an ordinary water supply. Such places are always pervaded with a sickening odour, and the mere addition of practically an unlimited amount of water is insufficient to keep this smell of decomposing urine (than which nothing is more offensive) in abeyance.

It is hardly too much to say that water urinals are always offensive, and that even in clubs and similar smart places the tablet of camphor, which is intended to assert itself over the head of the other smells, is not always successful.

It may, I think, be said that water urinals are never sweet except in those rare instances in which they are constantly wiped perfectly clean by an attendant. The decomposition of urine is due to micro-organisms, and it is well-known that if urine be passed into an impure vessel, its decomposition takes place with great rapidity, especially if the temperature be moderately high. All vessels intended for the reception of urine require a thorough washing and cleansing every day. The form of 'bottle' which is habitually used for bed-ridden patients is most difficult to clean, and is a very undesirable apparatus. If water urinals be provided with 'traps' in which urine, or urine and water, is allowed to stagnate, such traps must be permanently foul and become a source of annoyance if not of danger.

If urine be allowed to filter through absorbent material, the effect produced upon it is as remarkable as it is interesting. I have experimented with a variety of absorbent materials during the last six years, and now propose to shortly set forth the results, some of which have been previously published in 'Essays on Rural Hygiene' (2nd ed.: Longmans, 1894). The vessels used have been of conical form, tapering from one foot in diameter at the upper and wider end to an opening large enough to admit a big quill at the lower end (fig.20.) The length of these vessels is 30 inches, and they are supported on a metal tripod.

Some of the vessels have been made of metal—galvanised iron—and others have been made of flannel.


Back to IndexNext