PETROLEUM

Petroleum is second only to coal as an energy resource. The rapid acceleration in demand from the automobile industry and in the use of fuel oil for power seems to be limited only by the amounts of raw material available.

Production and reserves.The distribution by countries of the present annual production of petroleum, the past total production, and the estimated reserves, is indicated in terms of percentages of the world's total in the table[19]on the opposite page.

This table indicates the great dominance of the United States both in present and past production of petroleum, as well as the concentration of the industry in a few countries. In addition the United States controls much of the Mexican production as well as production in other parts of the world, making its total control of production at least 70 per cent. of the world's total. Notwithstanding its large domestic production, the United States has recently consumed more oil than it produces. Imports of crude oil are about balanced by exports of kerosene, fuel oils, lubricants, etc. The per capita consumption of petroleum in the United States is said to be twenty times greater than in England. On the other hand, the remaining principal producers consume far less than they produce, the excess being exported.

The oil from the United States, Russia, the Dutch East Indies, India, Roumania, and Galicia is for the most part treated at refineries near the source of supply or at tidewater, and exports consist of refined products. The Mexican oil is largely exported in crude form to the United States though increasing quantities are being refined within Mexico.

The figures shown in the table for oil reserves are of course the roughest approximations, particularly for some of the less explored countries. However, they are compiled from the best available sources and may serve at least to show the apparent relative positions of the different countries at this time. Further explorationis likely to change the percentages and add very greatly to the totals. The significant feature of these figures is the contrast which they indicate between distribution of reserves and distribution of past production. Particularly do they show that the reserves of the United States, which are more closely estimated than those of any other country, are in a far lower ratio to past production than are the reserves in other countries. It was estimated in 1920 that about 40 per cent of the United States reserves are exhausted.[20]

PRESENT AND PAST PRODUCTION AND RESERVES OF OIL, BY COUNTRIES, IN TERMS OF PERCENTAGE OF WORLD'S TOTAL

CountryPer cent of production, 1918Per cent of total production, 1857-1918Per cent of total oil resourcesUnited States and Alaska69.1561.4116.26Mexico12.403.8010.51Russia (southeastern Russia, southwestern7.8624.9615.69Siberia, region of the Caucasus, northernRussia, and SaghalienEast Indies2.582.517.00Roumania, Galicia, and western Europe2.794.072.64India1.551.412.31Persia and Mesopotamia1.40.1913.51Japan and Formosa.48.512.87Egypt and Algeria.40.072.15Germany.14.22—Canada.06.332.31Northern South America, including Peru,.93.4313.31Trinidad and VenezuelaChina——3.19Italy}Cuba}.02Other countries}World total100.00100.00100.00

Looking forward to the future, it is clear that there will beconsiderable shifts in the centers of principal production of petroleum in the directions indicated by the reserve figures. In particular, conspicuous development of production may be expected in the immediate future in the countries bordering the Caribbean Sea and the Gulf of Mexico. In the eastern hemisphere production is rapidly increasing in Persia and Mesopotamia; and Russia, with the stabilization of political conditions, may become ultimately the world's leading oil producer. At the now indicated rate of production, world reserves now estimated would be exhausted in eighty-six years and the peak of production would be passed earlier. With continuing acceleration of production, total reserves would be exhausted in considerably less time,—providing physical conditions would allow the oil to be pumped from the ground at the necessary speed, which they probably will not. These figures taken at face value are alarming; but the earth offers such huge possibilities for further discoveries that the life of oil reserves above indicated is likely to be considerably extended. At many times in the history of the mineral industry the end has apparently been in sight for certain products; but with the increased demand for these products has come increased activity in exploration, with the result that as yet no definite end has been approached for any one of them. The more immediate problems of the petroleum industry seem to the writer to be of rather different nature: first, whether the discovery and winning of the oil can be made to keep pace with the enormous acceleration of demand; and second, the adjustment of political and financial control of oil resources, the possession of which is becoming so increasingly vital to national prosperity.

In regard to the first question, it is a much more difficult problem today to locate and develop a supply of oil to replace the annual world production (recently half a billion barrels), than it was twenty years ago, when it was necessary for this purpose to find only one-fifth this amount; and if the demand is unchecked, it will be still more difficult to replace the three-quarters of a billion barrels of oil which will doubtless be required in a very few years. Regardless of the amount of oil actually in the ground, it is entirely possible that physical limitations on its rate of discovery and recovery will prevent its being made available as fast as necessary to meet the increasing demand. This fact is likely to makeitself felt through increase of price. Other natural results should be the development of substitutes, such as alcohol or benzol for gasoline; the larger recovery of oil from oil shales; and the general speeding up of conservational measures of various kinds. These are all palliatives and not essential remedies. To make enough alcohol to substitute for the gasoline now coming from oil would use a very considerable fraction of the world's food supply. To make enough benzol (a by-product of coke) to replace gasoline would necessitate the manufacture of many times the amount of coke now required by the world's industries. To develop the oil shale industry to a point where it could supply anything like the amount of oil now derived from oil pools would mean the building of great plants, including towns, railroads, and other equipment, equivalent to the plants of the coal mining industry. To apply any one of the various conservational measures discussed on later pages would only temporarily alleviate the situation.

The question of political and financial control of oil supplies may be illustrated by particular reference to the United States. On present figures it appears that within three to five years the peak of production in this country will be passed; and at the present rate of production the life of the reserves may not be over seventeen to twenty years. Of course production could not continue to the end at this rate, and the actual life will necessarily be longer. Again the doubtful factor is the possibility for further discoveries. Many favorable structures have been mapped which have not yet been drilled, and there are considerable unexplored areas where the outcrops are so few that there is no clue at the surface to the location of favorable structures. The future is likely to see a considerable amount of shallow drilling for the sole purpose of geological reconnaissance. For upwards of ten years important parts of the public domain have not been available for exploration, but Congress has now enacted legislation which opens up vast territories for this purpose.

Even with large allowance for these possibilities, it seems unlikely that production in the United States can increase very long at the accelerating rate of the domestic demand, which is already in excess of domestic production. The supplies of Mexico are in a large part controlled by American capital and are thus madeavailable to the United States (subject, of course, to political conditions); but even with these added, the United States is in a somewhat unfavorable situation as compared with certain other countries. This situation is directing attention to the possibility of curtailment of oil exports, and to the possibility of acquiring additional oil supplies in foreign countries. In this quest the United States is peculiarly handicapped in that most foreign countries, in recognition of the vital national importance of the oil resource, have imposed severe restrictions on exploration by outsiders. Nationals of the United States are excluded from acquiring oil concessions, or permitted to do so only under conditions which invalidate control, in the British Empire, France, Japan, Netherlands, and elsewhere, and the current is still moving strong in the direction of further exclusion. As the United States fields are yet open to all comers, it has been suggested that some restriction by the United States might be necessary for purposes of self-protection, or as an aid in securing access to foreign fields. The activity of England during and since the war has increased the amount of oil controlled by that country from an insignificant quantity to potentially over half of the world's oil reserves. The problem of future oil supplies for the United States presents an acute phase of the general question of government coöperation or participation in mineral industries, which is further discussed in Chapter XVIII.

The following table summarizes the distribution of the oil production in the United States, together with the salient features of its geologic distribution and character.

This table, in conjunction with Fig. 8 below, shows clearly that the bulk of the United States production of oil comes from two great sources—the Pennsylvanian sandstones of the Mid-Continent field in Kansas and Oklahoma, and the Cretaceous and Tertiary sediments of the southern half of California. Phenomenal development of the Central and North Texas field in 1919 increased its yield to about one-sixth of the country's total. The older Appalachian oil field, extending from New York to West Virginia and Tennessee, was the earliest area discovered; it is still one of the more productive fields, though it has long since passed its maximum production. The other principal sources of oil are the Gulf Coast field in Louisiana and Texas, the North Louisiana field, the southern Illinois field, and the Rocky Mountain region. This last region, containing large amounts of government land recently opened to exploration, bids fair to produce increasing quantities of oil for some time.

PAST PRODUCTION OF PETROLEUM IN THE UNITED STATES.(FIGURES FROM U. S. GEOLOGICAL SURVEY)

StateAge of containing rocksBaseProduction for 1919 (barrels)Total production including 1918 (barrels)AlaskaEast-Low. TertiaryParaffin(a)(a)West-JurassicCaliforniaCretaceous: TertiaryAshpalt97,531,9971,110,226,576ColoradoPierre-CretaceousParaffin143,28611,319,370IllinoisMississippian-PennsylvanianParaffin13,365,974298,225,380IndianaEast-Ordovician (Trenton)Paraffin877,558106,105,584West-PennsylvanianKansasPennsylvanianPar.-Asph.45,451,017148,450,298Kentucky,MississippianParaffin4,376,34218,213,188TennesseeLouisianaCretaceous-Quat.Paraffin16,042,600150,769,911Cretaceous-EoceneMichigan,CarboniferousParaffin(a)(a)MissouriMontana——69,323213,639New MexicoCarboniferouos-Cretaceous—(a)(a)New York,Devonian-CarboniferousParaffin8,216,655788,202,717PennsylvaniaOhio, EastOrdovician-CarboniferousParaffin7,285,005463,367,386and WestOklahomaPennsylvanianParaffin103,347,070851,320,457TexasPennsylvanian, Cretaceous-Quat.Asph.-Par.38,750,031327,550,005Utah——(b)(b)West VirginiaDevonian-Carboniferous—7,866,628294,474,710WyomingCarboniferous-CretaceousAsph.-Par.12,596,28740,019,573Other——7,943112,925355,927,7164,608,571,719(a) Included in "Other."(b)Included in Wyoming.

Figure 7Fig. 7.Chart showing the present tendency of the United States in respect to its unmined reserve of petroleum. Data from U.S. Geological Survey. After Gilbert and Pogue.ToList

Fig. 7.Chart showing the present tendency of the United States in respect to its unmined reserve of petroleum. Data from U.S. Geological Survey. After Gilbert and Pogue.ToList

Methods of estimating reserves.It may be of interest to inquire into the basis on which predictions are made of the life of an oil pool. The process is essentially a matter of platting curves of production, and of projecting them into the future with the approximate slopes exhibited in districts which are already approaching exhaustion.[21]While no two wells or two districts act exactly alike, these curves have group characteristics which are used as a rough basis for interpreting the future.

Figure 8Fig. 8.The annual output of the principal oil fields of the United States for the last twenty years. Data from U.S. Geological Survey.ToList

Fig. 8.The annual output of the principal oil fields of the United States for the last twenty years. Data from U.S. Geological Survey.ToList

A less reliable method is to calculate from geologic data the volume and porosity of the oil-bearing reservoirs, and to estimate the percentage of recovery on the basis of current practices and conditions. Complete data for this method are often not available; but in the early years of a field, before production curves are established, this method may serve for a rough approximation.

Figure 9Fig. 9.Curve showing the usual decline in oil field production after the period of maximum output is reached. After Ralph Arnold. The Petroleum Resources of the United States, Smithsonian report for 1916, p. 283. Compare this theoretical curve of final decrease with the production curve shown in Fig. 8.ToList

Fig. 9.Curve showing the usual decline in oil field production after the period of maximum output is reached. After Ralph Arnold. The Petroleum Resources of the United States, Smithsonian report for 1916, p. 283. Compare this theoretical curve of final decrease with the production curve shown in Fig. 8.ToList

Classes of oils.When crude petroleum is distilled, it gives off in succession various substances and gradually thickens until it leaves a solid residue, which may be largely either paraffin wax or asphalt. The two main classes of oils are determined by the nature of this solid residual. The products given off are natural gas and then liquid hydrocarbons of various kinds, which evaporate in the order of their lightness. Petroleum is thus a mixture or mutual solution of different liquids, gases, and solids. Nearly one-fifth of the domestic consumption of crude petroleum is burned directly as fuel, and four-fifths are refined. The several principalprimary products of refinement are gasoline, kerosene, fuel oil, and lubricating oil; but these may be broken up into other substances, each the starting point of further refinements, with the result that present commercial practice yields several hundred substances of commercial value. With increasing chemical and technical knowledge these products are being multiplied. The rapidly increasing demand for gasoline has led to the use of processes which extract a large proportion of this substance from the raw material, by "cracking" or breaking up other substances; but while, under the stress of necessity, there is possibility of slight modification of the proportions of principal substances extracted from the crude oil, it is not possible to change these proportions essentially. It is, therefore, a problem to adjust relative demands to supplies of the different products. The domestic demand for gasoline is greater than the supply. On the other hand, the demand for kerosene, which must be produced at the same time, is much less than the domestic supply. Hence the importance of maintaining export markets for kerosene.

The nature or grade of the oil of various fields is an important matter in considering reserves for the future. Perhaps half of the United States reserves consist of the asphalt-base oils of the California and certain of the Gulf fields, which yield comparatively small amounts of gasoline and other valuable light products, though they are very satisfactory for fuel purposes. Similarly the large reserve tonnages of oil in Mexico and the Caribbean countries, in Peru, and probably in Russia, are essentially of the heavier, lower grade oils. The oils of the Mid-Continental and eastern fields of the United States, of Ontario, of the Dutch East Indies, of Burma, and of Persia and Mesopotamia are reported to be largely of the paraffin base type, which, because of its larger yield of gasoline and light oils, is at present considerably more valuable. These generalizations are of course subject to qualifications, in that the oils of a given region may vary considerably, and that some oils are intermediate in character, containing both asphalt and paraffin wax.

Conservation of oil.The rapid increase in demand for oil as compared with discovery of new sources is leading naturally to a more intensive study of the conservational aspects of the industry. This is a complex and difficult subject which we shall not take upin detail, but we may point out some of the phases of the problem which are receiving especial attention.

Figure 10Fig. 10.Chart showing the relative values of the principal petroleum products manufactured in the United States from 1899 to 1914. After Gilbert and Pogue. Note the decreasing importance of kerosene in sustaining the cost of refining, and the necessity of exports for maintaining a balanced outlet of products. Data from Story B. Ladd, Petroleum Refining. Census of Manufactures: 1914, Bureau of Census, Washington, 1917, p. 10.ToList

Fig. 10.Chart showing the relative values of the principal petroleum products manufactured in the United States from 1899 to 1914. After Gilbert and Pogue. Note the decreasing importance of kerosene in sustaining the cost of refining, and the necessity of exports for maintaining a balanced outlet of products. Data from Story B. Ladd, Petroleum Refining. Census of Manufactures: 1914, Bureau of Census, Washington, 1917, p. 10.ToList

About 50 per cent of the oil in the porous strata, of oil pools is ordinarily not recovered, because it clings to the rock. Effortsare being made along various lines to increase the percentage of recovery,—as, for instance, in preventing infiltration of water to the oil beds and in the use of artificial pressures and better pumping. "Casing-head gasoline" is being recovered to an increasing extent from the natural gas which was formerly allowed to dissipate in the air.

Minute division of the ownership of a pool, with consequent multiplication of wells and unrestricted competition, tends to gross over-production and highly wasteful methods. The more rapid exhaustion of one well than the others may result in the flooding of the oil sands by salt waters coming in from below. Various efforts have been made toward a more systematic and coördinated development of oil fields.

In general, the organization and technique involved in the development of an oil field are improving in the direction of extracting a greater percentage of the total available oil.

Better methods of refining the oil, and the refining of a larger percentage of the crude oil, make the oil more available for a greater variety of purposes and therefore more valuable. Great advances have been made along these lines, particularly in the application of the "cracking" method for a greater recovery of the more valuable light oils at the expense of the less valuable heavy oils. Similarly, modifications of internal combustion engines will probably permit the use, in an increasing number of cases, of products of lower volatility than gasoline.

One of the conservational advances in coming years will probably be a restriction in the amount of crude oil used directly for fuel and road purposes without refining. These crude uses cut down the output of much desired products from the distillation of the oil. Various other restrictions in the use of oil have been proposed, such as the curtailment of the use of gasoline in pleasure cars. The gasless Sundays during the war represented an attempt of this kind. In general, it seems likely that such restrictions will come mainly through increase in the price of oil products.

The substitution of oil from oil shales, and of alcohol for gasolene, already mentioned, will be conservational so far as the oil is concerned, though perhaps not so in regard to other elements of the problem.

Organic theory of origin.According to this theory, accumulations of organic materials in sedimentary beds, usually muds or marls, have been slowly altered and distilled during geologic ages; the products of distillation have migrated chiefly upward to porous strata like sandstones or cavernous limestones, where, under suitable conditions, they have become trapped.

The original organic material is believed to have been plants of low order and animal organisms (such as foraminifera) which were deposited as organic detritus with mud and marl in the bottoms of ponds, lakes, estuaries, and on the sea bottom,—in both salt and fresh waters. Bacteria are supposed to have played a part in the early stage of alteration, sometimes called the biochemical stage. When the organic matter was buried under later sediments and subjected to pressure, physical conditions were responsible for further volatilization or distillation. This stage is called the geochemical stage. There is much in common as to origin between coal, oil shales, and petroleum. According to White,[22]

whether the ingredient organic matter, be it plant or animal, will be in part transformed to coal of the ordinary type, to cannel, to oil shale, to the organic residues in so-called bituminous shales and carbonaceous shales, or to petroleum and natural gas, is dependent upon the composition of the ingredient organic débris, the conditions of its accumulation or deposition, and the extent of the microbian action.

whether the ingredient organic matter, be it plant or animal, will be in part transformed to coal of the ordinary type, to cannel, to oil shale, to the organic residues in so-called bituminous shales and carbonaceous shales, or to petroleum and natural gas, is dependent upon the composition of the ingredient organic débris, the conditions of its accumulation or deposition, and the extent of the microbian action.

White has further developed the important principle that, in the geochemical stage of development, both coal and oil react to physical influences in much the same way; and that therefore when both are found in the same geologic series, the degree of concentration of the coal, measured by its percentage of carbon, may be an indication of the stage of development of the oil. More specifically where the coal contains more than 65 to 70 per cent of fixed carbon, chances for finding oil in the vicinity are not good (though commercial gaspools may be found), probably for the reason that the geochemical processes of distillation have gone so far as to volatilize the oils, leaving the solid residues in the rock. White also finds that the lowest rank oils, with considerable asphalt, are foundin regions and formations where the coal deposits are the least altered, and the lighter, higher rank oils, on the whole, where the coal has been brought to the correspondingly higher ranks; in other words, up to the point of complete elimination of the oil, improvement in quality of the oil accompanies increased carbonization of the coal. The principle, therefore, becomes useful in exploration in geologic series where oil is associated with coal. Where the coal is in one series and the oil in another, separated by unconformity (indicating different conditions of development), the principle may not hold, even though there is close geographical association.

The oil and gas distillates migrate upward under gas pressure and under pressure of the ground-water. If there are no overlying impervious beds to furnish suitable trapping conditions, or conditions to retard the flow, the oil may be lost. The conditions favorable for trapping are overlying impervious beds bowed into anticlines, or other structural irregularities, due either to secondary deformation or to original deposition, which may arrest the oil in its upward course. A dome-like structure or anticline may be due to stresses which have buckled up the beds, or to unequal settling of sediments varying in character or thickness; thus some of the anticlinal structures of the Mid-Continent field may be due to settling of shaley sediments around less compressible lenses of sandstone which may act as oil reservoirs, or around islands which stood above the seas in which the oil-bearing sediments were deposited and on the shores of which sands capable of acting as oil reservoirs were laid down. Favorable conditions for trapping the oil may be furnished by impervious clay "gouges" along fault planes, or by dikes of igneous rock. Favorable conditions may also be merely differences in porosity of beds in irregular zones, determined by differences either in original deposition or in later cementation.

The thickness of oil-producing strata may vary between 2 or 3 feet and 200 feet. The porosity varies between 5 and 50 per cent. In sandstones the average is from 5 to 15 per cent. In shales and clays, which are commonly the impervious "cap-rocks," porosity may be equally high, but the pores are too small and discontinuous to permit movement.

When the impervious capping is punctured by a drill hole, gas is likely to be first encountered, then oil, and then water, which is usually salty. The gas pressure is often released with almostexplosive violence, which has suggested that this is an important cause of the underground pressures. It has been supposed also that the pressures are partly those of artesian flows. The vertical arrangement of oil, gas, and water under the impervious capping is the result of the lighter materials rising to the top. In certain fields, oil and gas have been found in the tops of anticlines in water-saturated rocks, and farther down the flanks of folds or in synclines in unsaturated rocks.

The localization of oil pools is evidently determined partly by original organic deposition, often in alignment with old shore lines, and partly by the structural, textural, and other conditions which trap the oil in its migration from the source.

Effect of differential pressures and folding on oil genesis and migration.Another organic hypothesis proposed somewhat recently[23]is that oil is formed by differential movement or shearing in bituminous shales, which are often in close relationship with the producing sand of an oil field, and that the movement of oil to the adjacent sands is accomplished by capillary pressure of water and not by ordinary free circulation of water under gravity. The capillary forces have been shown to be strong enough to hold the oil in the larger pores against the influence of gravity and circulation. The accumulation of the oil into commercial pools is supposed to take place in local areas where the oil-soaked shale, due to jointing or faulting, is in direct contact with the water of the reservoir rock. This suggests lack of wide migration. This hypothesis is based on experimental work with bituminous shales. The general association of oil pools with anticlinal areas is explained on the assumption that anticlines on the whole are areas of maximum differential movement, resulting in oil distillation, and that they are ordinarily accompanied by tension joints or faults, affording the conditions for oil migration. Data are insufficient, however, to indicate the extent to which the anticlinal areas are really areas of maximum shearing. As regards the exact nature of the process, it is not clear to what extent differential movement may involve increase in temperature which may be the controlling factor in distillation,—although in McCoy's experiment oil was formed when no appreciable amount of heat was generated.

The development of petroleum by pressure alone acting on unaltered shale, as shown by these experiments, has been taken by White[24]to have a significant bearing on the geochemical processes of oil formation. Under differential stresses acting on fine-grained carbonaceous strata under sufficient load, there is considerable molecular rearrangement, as well as actual movement of the rock grains,—thus promoting the distillation of oil and gas from the organic matter in the rocks, and the squeezing out of the oil, gas, and water into adjacent rocks, such as coarse round-grained sandstones and porous limestones, which are more resistant to change of volume under pressure. Migration, concentration and segregation of the oil, gas, and water is supposed to be brought about, partly through the effect of capillary forces—the water, by reason of its greater capillary tension, tending to seize and hold the smaller voids, and thus driving the oil and gas into the larger ones—and partly through the action of gravity.

White also suggests that the process may go further where the parent carbonaceous strata are of such thickness and under such load of overlying rocks that they undergo considerable interior adjustment and volume change before yielding to stress by anticlinal buckling,—than where the strata yield quickly. It is not clear to the writer that the interior adjustment assumed under this hypothesis is necessarily slowed up or stopped by anticlinal buckling. Interior stresses are inherent in any sedimentary formation, when settling and consolidating and recrystallizing under gravity, and these may be independent of regional thrusts from without.

The first oils evolved by pressure from the organic mother substance are probably heavy, the later oils lighter, and the oils from formations and regions where the alteration is approaching the carbonization limit are characteristically of the highest grade. This is the reverse of the order of products obtained by heat distillation. Whether there is also a natural fractionation and improvement of the first heavy oils as they undergo repeated migrations is not known.

Inorganic theory of origin.Another theory of the source of oil has had some supporters, although they are much in the minority. This is the so-called "inorganic" theory, that oil comes frommagmas and volcanic exhalations. In support of this theory attention is called to the fact that igneous rocks and the gases associated with them frequently carry carbides or hydrocarbons; that many oil fields have a suggestive geographic relationship with volcanic rocks; and that certain of the oil domes, as for instance in Mexico, are caused by plugs of igneous rocks from below. It has been suggested that deep within the earth carbon is combined with iron in the form of an iron carbide, and that from the iron carbide are generated the hydrocarbons of the oil, either by or without the agency of water. Iron carbide is magnetic, and significance has been attached to the general correspondence between the locations of oil in the western United States and regions of magnetic disturbance.

It seems not unlikely that some inorganic theory of this sort is necessary to explain the ultimate source of oil or of the substances which become oil, but the evidence is overwhelming that organic agencies have been mainly responsible for the principal oil pools now known.

Oil exploration.A simple geographic basis for oil exploration is the fact that the major oil fields of the world are situated between 20° and 50° north latitude, and that thus far there are no major oil areas within the tropics or within the southern hemisphere. This broad generalization may have little value when exploration is carried further. It has also been suggested that the geographic distribution of oil corresponds roughly with the average annual temperatures, or isotherms, between 40° and 70.°[25]It is thought that this present distribution of temperatures may indicate roughly the temperatures of the past when the oil was accumulated; and the inference is drawn that there was some sort of limitation of areal deposition within these temperature limits. If this be true, the only reasons why the southern hemisphere is not productive are the relatively small size of the land areas and the lack of exploration to date.

In approaching broadly the problem of oil exploration, the geologist considers in a general way the kinds and conditions of rocks which are likely to be petroliferous or non-petroliferous. Schuchert[26]summarizes these conditions for North America as follows:

1.The impossible areas for petroliferous rocks.(a)The more extensive areas of igneous rocks and especially those of the ancient shields; exception, the smaller dikes.(b)All pre-Cambrian strata.(c)All decidedly folded mountainous tracts older than the Cretaceous; exceptions, domed and block-faulted mountains.(d)All regionally metamorphosed strata.(e)Practically all continental or fresh-water deposits; relic seas, so long as they are partly salty, and saline lakes are excluded from this classification.(f)Practically all marine formations that are thick and uniform in rock character and that are devoid of interbedded dark shales, thin-bedded dark impure limestones, dark marls, or thin-bedded limy and fossiliferous sandstones.(g)Practically all oceanic abyssal deposits; these, however, are but rarely present on the continents.2.Possible petroliferous areas.(a)Highly folded marine and brackish water strata younger than the Jurassic, but more especially those of Cenozoic time.(b)Cambrian and Ordovician unfolded strata.(c)Lake deposits formed under arid climates that cause the waters to become saline; it appears that only in salty waters (not over 4 per cent?) are the bituminous materials made and preserved in the form of kerogen, the source of petroleum; some of the Green River (Eocene) continental deposits (the oil shales of Utah and Colorado) may be of saline lakes.3.Petroliferous areas.(a)All marine and brackish water strata younger than the Ordovician and but slightly warped, faulted, or folded; here are included also the marine and brackish deposits of relic seas like the Caspian, formed during the later Cenozoic. The more certain oil-bearing strata are the porous thin-bedded sandstones, limestones, and dolomites that are interbedded with black, brown, blue, or green shales. Coal-bearing strata of fresh-water origin are excluded. Series of strata with disconformities may also be petroliferous, because beneath former erosional surfaces the top strata have induced porosity and therefore are possible reservoir rocks.(b)All marine strata that are, roughly, within 100 miles of former lands; here are more apt to occur the alternating series of thin and thick-bedded sandstones and limestones interbedded with shale zones.

The extent to which marine or brackish water conditions of sedimentation are requisite to the later formation of oil, as is suggested in the above quotation, has long been a debatable question. It may be noted that certain oil shales formed in fresh water basins contain abundant organic matter which is undoubtedly suitable for the generation of oil and gas, and that these shales on distillation yield oil essentially like that obtained from oil shales of marine origin; that certain important oil-bearing sands of the younger Appalachian formations were laid down in waters which are believed to have been only slightly saline; that natural gas is present in fresh water basins; and that it has not been demonstrated that salt in appreciable amounts is necessary for the geologic, any more than for the artificial, distillation of oil. Most of the great oil fields have been in regions of marine or other saline water deposits, but it has not been proved that this is a necessary condition. White[27]says: "At the present stage of our knowledge, fresh-water basins appearing otherwise to meet the requirements should be wildcatted without prejudice."

The principal oil-bearing horizons in any locality are comparatively few, and it is ordinarily easy to determine by stratigraphic methods the presence or absence of a favorable geologic horizon. By knowing the succession and thicknesses of the beds in a given region it is possible to infer from surface outcrops the approximate depth below the surface at which the desired horizon can be found. To do this, however, the conditions of sedimentation, the initial irregularities of the beds, the structural conditions, including unconformities, and other factors must be studied.

In exploration for oil the determination of the existence and location of the proper horizon is but an initial step. For instance, the oil of the Midcontinent field of the United States is in the beds of the Pennsylvanian, which are known to occupy an enormous area extending from Illinois and Wyoming south to the Gulf of Mexico. This information is clearly not sufficiently specific to limit the location of drill holes. Sometimes seepages of oil or showings of gas near the surface are sufficient basis for localizing the drill holes.[28]Commonly, however, it is necessary to find some structuralfeature in the nature of a dome or anticline which suggests proper trapping conditions for an oil pool. This is accomplished by geologic and topographic mapping of the surface. Levels and contours are run and outcrops are platted. As the outcrops are usually of different geologic horizons, it is necessary to select some one or more identifiable beds as horizon markers, and to map their elevations at different points as a means of determining the structural contours of the beds. When several key horizons are thus used, their elevations must be reduced to the elevations of one common horizon by the addition or subtraction of the intervals between them. For instance, knowing the succession, an outcrop of a certain sandstone may indicate that the marking horizon is 200 feet below, and the structural contour is then drawn accordingly. Observations of strike and dip at the surface are helpful; but where the beds are but slightly flexed, small irregularities in deposition may make strike and dip observations useless in determining major structures. It is then necessary to have recourse to the elevations of the marking horizons.

In the selection of key horizons, knowledge of the conditions of sedimentation is very important. For example, some of the oil fields occur in great delta deposits, where successive advances and retreats of the sea have resulted in the interleaving of marine and land deposits. The land-deposited sediments usually show great variations in character and thickness laterally and vertically; and a given bed is likely to thin out and disappear when traced for a short distance, rendering futile its use as a marker. The marine sediments, on the either hand, show a much greater degree of uniformity and continuity, and a bed of marine limestone may extend over a large area and be very useful as a key horizon.

Over large areas outcrops and records of previously drilled water and oil wells may not be sufficient to give an indication of structure; it then becomes necessary to secure cross sections by drillingshallow holes to some identifiable bed, and to determine the structure from these cross sections, in advance of deeper drilling through a favorable structure thus located. The coöperative effort of the Illinois State Survey and private interests, cited on page 306, is a good illustration of this procedure. This method is only in its infancy, because well-drilling has not yet exhausted the possibilities of structures located from surface outcrops.

The so-called anticlinal structures, which have been found by experience to be so favorable to the accumulation of oil, are by no means symmetrical in shape or uniform in size. They may be elongated arches with equal dip on the two sides, or one side may dip and the other be nearly flat. In a territory with a general dip in one direction, a slight change in the angle, though not in the direction of dip, sometimes called an arrested dip, may cause sufficient irregularity to produce the necessary trapping conditions. In other cases the anticline may be of nearly equidimensional dome form. The largest anticlines which have been found to act as specific reservoirs are rarely more than a few miles in extent, and in many cases only a mile or two. The "closure" of an anticline is the difference between the height of a given stratum at the highest point and at the edges of the structure. A considerable number of productive anticlines are known in which the beds dip so gently as to give a closure of 20 feet or less.

After the structural outlines of beds near the surface have been determined, all possible information should be used in projecting these structures downward to the oil-producing horizons. Where a number of wells have been previously drilled in the vicinity, examination of their records may indicate certain lateral variations in the thickness of the beds between the horizon which has been mapped and the producing horizon. The effect of such lateral variations may be either to accentuate the surface structure, or to cause it to disappear entirely and thus to indicate lack of favorable trapping conditions. The possibility of several oil-producing beds, at different depths—a not uncommon condition in many fields—should also be kept in mind.

As already indicated, anticlines are not always essential to make the necessary trapping conditions. In the Beaumont field of Texas, for instance, it has been shown that irregular primary deposition of sediments differing in porosity both vertically and horizontally allowed the oil to migrate upward irregularly alongthe porous beds and parts of beds, and to be trapped between the more impervious portions of the beds.

Further questions to be considered in the exploration of an area are the content of organic matter in the sediments which may have served as a source of oil, the presence of impervious cap-rocks or of variations in porosity sufficient to retain the oil, the thickness of sediments and the extent to which they have undergone differential stresses, the amount of erosion and the possibilities that oil, if formed, has escaped from the eroded edges of porous strata, and, where carbonaceous beds are present, their degree of carbonization, and many other similar matters.

Each field in fact has its own "habit," determined by the interaction of several geologic factors. This habit may be learned empirically. Geologists have often gone wrong in applying to a new district certain principles determined elsewhere, without sufficient consideration of the complexity and relative importance of the sundry geologic factors which in the aggregate determine the local habit of oil occurrence.

Geographically associated fields characterized by similarity of oil occurrence, age, and origin, are known aspetroliferous provinces. The factors entering into the classification of fields are so numerous that more precise definition of a petroliferous province is hardly yet agreed upon.

The part played by the economic geologist in oil exploration and development is a large one for the obvious reasons given above. Probably no other single division of economic geology now employs so large a number of geologists. Practically no large oil company, or large piece of oil exploration and development, is now handled without geologic advice. Quoting from Arnold:[29]


Back to IndexNext