The oxides of zirconium have high refractory properties which make them useful for refractory bricks and shapes for furnace linings, for chemical ware, and for other heat, acid, and alkali resisting articles. For these purposes they find a limited market. Experimental work seems to show possibilities of a very considerable use of zirconium as a steel alloy; indeed, results are so suggestive that during the war the government conducted an active campaign of investigation with a view to using it in ordnance and armor steel. For such purposes the alloy ferrozirconium is used, which carries 25 to 35 per cent zirconium metal.
The principal known deposits of zirconium ores, in order of commercial importance, are in Brazil, in India, and in the United States (Pablo Beach, Florida). The Brazilian and Indian deposits are also the principal sources of monazite (pp. 288-289). The United States controls one of the important Brazilian deposits. Germany before the war controlled the Indian deposits, and is reported to have taken much interest in the development of zirconium steels. During the war German influence in India was effectively broken up. The use of zirconium has been in an experimental state, and known sources of supply have been ample for all requirements.
The zirconium silicate, zircon, is a fairly common accessory constituent of granitic rocks and pegmatite veins. From these rocks it is separated by weathering, disintegration, and stream transportation, and, having a high specific gravity, it becomes concentrated in placers. The deposits of southern India, of the coast of Brazil, and of Pablo Beach, Florida, all contain zircon along with ilmenite, garnet, rutile, monazite, and other insoluble, heavy minerals, in the sands of the ocean beaches. Smaller deposits of zircon-bearing sands exist in rivers and beaches in other parts of the United States and in other countries, but none of these deposits has thus far proved to be of commercial importance.
The largest and most important zirconium deposits are on amountainous plateau in eastern Brazil and are of a unique type, entirely different from those just described. They contain the natural zirconium oxide, baddeleyite or brazilite, mixed with the silicate, the ore as produced carrying about 80 per cent zirconia (ZrO2). The ores consist both of alluvial pebbles and of extensive deposits in place. The latter are associated with phonolite (igneous) rocks, and seem to owe their origin to the agency of hot mineralizing solutions from the igneous rocks.
Titanium is sometimes used in steel manufacture to take out occluded gases and thus to increase the strength and wearing qualities. Its effect is to cure certain evils in the hardening of the molten steel, and it is not ordinarily added in amounts sufficient to form a definite steel alloy. Aluminum is frequently used in place of titanium. Titanium is added in the form of ferrotitanium, containing either about 15 per cent titanium and 6 to 8 per cent carbon, or about 25 per cent titanium and no carbon. Titanium compounds are also used in pigments, as electrodes for arc-lights, and by the army and navy for making smoke-clouds.
The United States has domestic supplies of titanium sufficient for all requirements. Production has come chiefly from Virginia. Additional quantities have been imported from Canada and Norway. The recently developed deposits of Pablo Beach, Florida, may produce important amounts of titanium minerals along with the output of zircon and monazite.
The principal titanium minerals are rutile (titanium oxide) and ilmenite (iron titanate). These minerals are formed mainly under high temperatures, either during the original solidification of igneous rocks, or as constituents of the pegmatites which follow the crystallization of the main igneous masses. The Virginia production comes from pegmatite dikes cutting through gabbros, syenites, and gneisses. The deposits contain rutile in amounts as high as 30 per cent of the mass, but averaging 4 or 5 per cent,in addition to varying amounts of ilmenite. Titaniferous magnetites, formed in many basic igneous rocks by the segregation of certain iron-bearing materials into irregular masses, contain large quantities of ilmenite which are not commercially available under present metallurgical processes.
Rutile and ilmenite both have high specific gravity and are little affected by weathering. Consequently they are not decomposed at the surface, but when carried away and subjected to the sorting action of streams and waves, they form placer deposits. Both of these minerals are recovered from the sands at Pablo Beach, Florida.
The most important use of magnesite is as a refractory material for lining furnaces and converters. It is also used in the manufacture of Sorel cement for stucco and flooring, in making paper, in fire-resisting paint, in heat insulation, and as a source for carbon dioxide. Small amounts are used in Epsom salts and other chemicals.
As taken from the ground the ore consists principally of the mineral magnesite or magnesium carbonate, with minor impurities (1 to 12 per cent) of lime, iron, silica, and alumina. In making magnesite bricks, it is calcined or "dead-burned" to drive out the carbon dioxide.
Austria-Hungary and Greece are the large European producers of magnesite and Scotland supplies a little. Most of the European production is consumed in England and the Central European countries, but part has been sent to America. Outside the United States there are American supplies in Canada, and recent developments in Venezuela and Mexico (Lower California).
Magnesite is produced in considerable quantities in the United States, in California and Washington. Some material is imported from Canada, and a small amount comes from Scotland as return cargo for ballast purposes.
Before the war only about 5 per cent of the United States requirements of magnesite were met by domestic production. The country was practically dependent on imports from various European countries; chiefly from Austria-Hungary and GreeceThe Austrian magnesite (controlled in large part by American capital) was considered especially desirable for lining open-hearth steel furnaces, because of the presence of a small percentage of iron which made the material slightly more fusible than the pure mineral. When the shipments from this source were discontinued during the war and prices rose to a high figure, experiments were made with American magnesite, and the deposits on the Pacific Coast were developed on a large scale. A process of treatment was perfected by which the Washington magnesite was made as desirable for lining furnaces as the Austrian material. At the same time large amounts were imported from Canada and Venezuela and lesser amounts from Lower California.
Under the high prices which prevailed during the war, dolomite was to some extent substituted for magnesite. Dolomite, which may be thought of as a magnesite rock high in lime, occurs in large quantities close to many points of consumption. It is cheaper but less satisfactory than magnesite, and is not likely to be used on any large scale.
While the United States has undoubtedly sufficient reserves of magnesite to supply the domestic demands for many years, the mines are far from the centers of consumption and it is expensive to transport the material. Since the war, magnesite shipped from Canada and overseas has again replaced the American product in the eastern market to some extent. The Canadian magnesite is of lower grade than the domestic and European magnesite and is consequently less desirable. Deposits in Venezuela are also expected to furnish some material for the eastern furnaces, in competition with those of Austria and Greece. Austrian magnesite, however, will be likely to dominate the market in the future if delivered at anything like pre-war prices. This situation has led to agitation for a protective tariff on magnesite.
Magnesite, as noted above, is the name of a mineral, the composition of which is magnesium carbonate. The principal magnesite deposits are of two types, of different modes of origin and of somewhat different physical characteristics.
The large magnesite deposits of Austria and of Washington, aswell as those of Quebec, occur as lenses in beds of dolomite (calcium-magnesium carbonate). They are in fairly close proximity to igneous rocks, and magnesia-bearing solutions issuing from these rocks are believed to have dissolved out the calcium carbonate of the dolomite and replaced it with magnesium carbonate. In these deposits the material is coarsely crystalline and forms fairly large, continuous bodies, which are worked by quarrying. The Washington deposits closely resemble marble, and had sometimes been mistaken for that rock until war-time needs resulted in their more thorough investigation.
The commoner type of magnesite deposits is represented by those of Greece, California, Venezuela, and many other countries. These consist of veins and replacements in serpentine. The original rock was a highly magnesian igneous rock of the peridotite type, which is very unstable under weathering conditions, and rapidly alters to serpentine. Magnesite is formed both by this process and by the further breaking down of the serpentine itself. The processes are those of katamorphism. Under these circumstances the magnesite is characteristically fine-grained or massive, and occurs in veins, lenses, and irregular bodies in cavities and fractured zones. It is usually worked by open cuts.
Magnesite is also reported to occur in sedimentary beds in which it was primarily deposited in its present form and has not undergone later alteration. Such deposits are not important commercially.
The chief use of fluorspar is as a flux in the manufacture of open-hearth steel. Minor uses are in chemical and enameling industries, in the smelting of copper, lead, and iron, and in the manufacture of the ferro-alloys in the electric furnace.
In order to be used in steel-making, the fluorspar after being concentrated should contain at least 85 per cent calcium fluoride and less than 4 per cent silica. Chemical and enameling industries require material with 95 to 98 per cent calcium fluoride and less than 1 per cent silica.
The chief foreign producer of fluorspar is Great Britain, and much of this product comes to the United States. Canadaproduces a small amount, some of which also comes to the United States. Several thousand tons are produced yearly in Germany and France, and are largely consumed there.
The production of fluorspar in the United States is several times that of any other country. The ore mined comes principally from the southern Illinois and western Kentucky field, and is used largely for fluxing purposes in open-hearth steel furnaces. Minor amounts are produced in Colorado, New Mexico, and other states.
The United States has sufficient supplies of fluorspar to meet all its own demands for this material. Small amounts, however, are imported for use in eastern furnaces because the material can be brought over from England very cheaply. The domestic fluorspar is suitable for practically all purposes for which fluorspar is used except for lenses in optical instruments. For this use very small quantities of material imported from Japan have been used, but recently fluorspar of a grade suitable for optical purposes has been found in Illinois, Kentucky, New Hampshire, and other states. For fluxing purposes domestic fluorspar is superior to the foreign product.
Fluorspar is the trade name for the mineral fluorite, which is composed of calcium fluoride. This is a common mineral in veins and replacements which carry ores of zinc, lead, silver, gold, copper, and tin. It is formed under a variety of conditions, but is always ascribed to solutions coming from nearby igneous rocks.
The large fluorspar deposits of Illinois and Kentucky contain fluorite with calcite, barite, and metallic sulphides, in wide veins filling fissures in limestones and sandstones and replacing the fissure walls. Into these sediments there are intruded certain peridotite dikes. The fluorite and associated minerals were probably deposited by hot solutions bringing the material from some large underlying igneous mass of which the dikes are off-shoots.
In the western United States many metalliferous deposits carry large amounts of fluorite, which is treated as a gangue or waste mineral, but which could be profitably extracted if there were local markets. In England, fluorite is obtained in this manner as a by-product from lead and zinc mines.
Silicon and its oxide, silica, find important applications in the manufacture of iron and steel. Silicon, like manganese, is an important constituent of many steels, the alloy ferrosilicon being added to deoxidize and purify the metal and thus to increase its tensile strength. Like titanium, it is added chiefly for its curative effect rather than as a useful ingredient. On an average 4 pounds of 50 to 55 per cent ferrosilicon are used in the United States for each ton of steel produced. A higher grade of ferrosilicon (80 to 85 per cent) is used for certain special steels, and during the war considerable quantities were used in making hydrogen gas for balloons. Lower grades (10 to 15 per cent silicon) are practically a high silicon pig iron.
Silica has an important use in the form of silica brick or "ganister" for lining furnaces and converters in which acid slags are formed. For this purpose siliceous rocks, chiefly quartzites and sandstones, are ground up, mixed with lime as a binder, and fused and pressed into bricks and shapes. For the most satisfactory results the rock should contain 96 per cent or more of silica, and very little of the alkali materials, which increase the fusibility.
In addition to its applications to the iron and steel industry, silica finds an almost universal use in a wide variety of structural and manufacturing operations. The extensive use of sand and gravel—composed chiefly of silica—for road materials and railway ballast is well known. In construction work silica is used in the form of stone, sand-lime brick, cement, mortar, concrete, etc. Large quantities of sand, or silica, are used for molds in foundries, for abrasives, for the manufacture of glass, for filters, and for a great variety of other purposes which readily suggest themselves (see pp. 84, 267).
For most uses of silica there are local supplies available. For certain purposes requiring material of a particular chemical composition or texture, however, satisfactory deposits are known in only a few places. For example, the material for silica refractories is obtained in the United States chiefly from certain regions in Pennsylvania, Missouri, and Wisconsin. The UnitedStates has ample domestic supplies of silica for practically all requirements.
Ferrosilicon of the higher grades is manufactured principally in electric furnaces at Niagara Falls. The capacity is ample to meet all demands, but cheap ferrosilicon from Canada also enters United States markets.
Silicon and oxygen, making up the compound silica, are the two most abundant elements in the earth's crust, and quartz (SiO_2) is a very abundant mineral. The processes of weathering and transportation everywhere operative on the surface of the earth tend to separate quartz from other materials, and to concentrate it into deposits of sand. Katamorphism is primarily responsible for most of the deposits of silica which are commercially used. Anamorphism—cementing and hardening the sands into sandstones and quartzites—has created additional value for certain uses, as in refractories, building stones, and abrasives (see pp. 84, 267).
[31]Report of the Royal Ontario Nickel Commission. Printed by order of the Legislative Assembly of Ontario, Toronto, 1917.
[31]Report of the Royal Ontario Nickel Commission. Printed by order of the Legislative Assembly of Ontario, Toronto, 1917.
[32]Campbell, J. Morrow, Tungsten deposits of Burma and their origin,Econ. Geol., vol. 15, 1920, p. 511.
[32]Campbell, J. Morrow, Tungsten deposits of Burma and their origin,Econ. Geol., vol. 15, 1920, p. 511.
The electrical industry is the largest consumer of copper. The manufacture of brass, bronze, and other copper alloys constitutes another chief use for the metal. Considerable quantities of copper sheets, tubes, and other wares are used outside of the electrical industry, as for instance in roofing, plumbing, and ship bottoms. Copper is also used in coinage, particularly in China, where it is the money standard of the working population.
The average grade of all copper ores mined in the United States in recent years has been about 1.7 per cent metallic copper. Ores containing as low as 0.6 per cent have been mined in the Lake Superior country, and bonanza deposits containing 20 to 60 per cent have been found and worked in some places, notably in Alaska and Wyoming. The lower-grade ores, carrying 1 to 3 per cent copper, are usually concentrated before smelting, while the richer ores, carrying 3 to 5 per cent or more, are generally smelted direct. Many of the ores contain values in gold and silver, and also in lead and zinc. An average of about 40c. worth of gold and silver per ton is obtained from all the copper ores of the United States.
In other countries the average grade of copper ores mined is somewhat higher than in the United States,—where large scale operations, particularly the use of steam-shovel methods on extensive bodies of disseminated or "porphyry" copper ores, as well as improvements in concentrating and metallurgical processes, have made possible the use of low-grade ore.
The principal sources of copper are the North American continent, Chile and Peru, Japan, south and central Africa, Australia, and Spain and Portugal. Smaller quantities are produced in Russia, Germany, Norway, Cuba, Serbia, and a number of other countries.
The United States normally produces nearly two-thirds of the world's copper and consumes only about one-third. In addition the great bulk of the South American, Mexican, and Canadian crude copper comes to the United States for refining. Through financial interests abroad and by means of refining facilities, the United States controls a quantity of foreign production which, together with the domestic production, gives it control of about 70 per cent of the world's copper. No other country produces one-sixth as much copper as the United States.
England, because of production in the British Empire (mainly Africa and Australia) and British financial control of production in various foreign countries, is not dependent upon the United States for supplies of raw copper. Japan, Spain, Portugal, and Norway are able to produce from local mines enough copper for their own needs and for export. But France, Italy, Russia, Germany, and the rest of Europe normally are dependent upon foreign sources, chiefly the United States. South America, Mexico, Canada, Africa, and Australia are exporters of copper. The control of these countries over their production in each case is political and not financial, except in the case of Canada, where about half the financial control is also Canadian. It is in these countries and in Spain that the United States and England have financial control of a large copper supply.
Before the war German interests had a considerable control over the American copper industry through close working arrangements with electrolytic refineries. Germany was the largest foreign consumer of copper, and German companies bought large quantities of the raw copper in the United States, Canada, Mexico, and South America, had it refined, and sold the finished material in both the American and foreign markets. During the war this control was broken up.
In view of the importance of copper metal as a raw material, particularly in the electrical industry, the strength of the United States in copper as a key resource ranks even above its control of petroleum.
In the United States in recent years about 40 per cent of the annual production of copper has come from Arizona, chiefly from the Bisbee, Globe, Ray-Miami, Jerome, and Morenci-Metcalf districts; about 18 per cent has come from the Butte district ofMontana; about 12 to 15 per cent from Keweenaw Point, Michigan; and about 12 per cent from Bingham, Utah. From 3 to 5 per cent of the country's output comes from each of the states of New Mexico, Nevada, Alaska, and California. All other states together produce only a little over 2 per cent of the total.
The so-called "porphyry" coppers in Utah, Arizona, Nevada, and New Mexico, described below, are the source of about 35 per cent of the present production of the United States. The deep mines of Butte and Michigan are responsible for about 30 per cent of the production, and the ore bodies of Arizona (other than porphyry) and of Alaska produce about 25 per cent.
Reserves of copper ore are such as to give no immediate concern about shortage, nor to indicate any large shift in the distribution of production in the near future. Development is on the whole considerably in advance of present demands. The principal measured reserves are in the so-called porphyry coppers of the United States and Chile. In the United States the life of these reserves now estimated is approximately 25 years. The reserves of the Chile Copper Company are the largest of any known copper deposit in the world, and the Braden copper reserve (also in Chile) is among the largest. For the deep mines of the United States, the developed reserves have a life of perhaps only five years, but for most of these mines the life will be greatly extended by further and deeper development. The porphyry coppers, because of their occurrence near the surface and the ease with which they may be explored by drilling, disclose their reserves far in advance. The deep mines are ordinarily developed for only a few years in advance of production.
The principal copper minerals may be classified into the sulphide group, the oxide group, and native copper. Native copper, mined in the Lake Superior region, is the source of 8 to 10 per cent of the world's copper supply. The oxide group of minerals—including the copper carbonates, azurite and malachite; the silicate, chrysocolla; the oxide, cuprite; the sulphates, chalcanthite and brochantite; and some native copper associated with these minerals—probably supplies another 5 per cent. The remaining 85 per cent is derived from the sulphide group. Of the sulphide group by far themost important mineral is chalcocite (cuprous sulphide), which supplies the bulk of the values in the majority of the mining camps of the western hemisphere. Locally, as at Butte, enargite (copper-arsenic sulphide) is of great value. Other minerals of considerable importance in some districts are chalcopyrite and bornite (copper-iron sulphides), tetrahedrite (copper-antimony sulphide), and covellite (cupric sulphide). Very commonly the copper sulphides are associated with large quantities of the iron sulphide, pyrite, as well as with varying amounts of lead and zinc sulphides and gold and silver minerals.
The principal copper ores originate in the earlier stages of the metamorphic cycle, in close association with igneous activity. Katamorphism or weathering, in place, has played an important part in enriching them. The processes of transportation and sedimentary deposition, which have done so much toward making valuable iron ore deposits, have contributed little to the formation of copper ores.
Copper deposits associated with igneous flows.The copper ores of the Lake Superior district, and of a few small deposits in the eastern United States, contain small percentages of native copper in pre-Cambrian volcanic flows or in sediments between the flows. The ore bodies have the form of long sheets parallel to the bedding, the copper and associated minerals filling amygdaloidal openings and small fissures in the flows, and replacing conglomeratic sediments which lie between the flows. The copper was probably deposited by hot solutions related to the igneous rocks, either issuing from the magmas or deriving heat and dissolved material from them. Secondary concentration has not been important. There is practically none of it near the present erosion surface; but it appears in one part of the district near an older erosion surface covered by Cambrian sediments, suggesting a different climatic condition at that time.
The Kennecott copper deposits of Alaska have a number of resemblances to the Lake Superior copper deposits, suggesting similarity in origin. The Kennecott deposits occur exclusively in limestone, which rests conformably on a tilted surface of igneous flows ("greenstones") not unlike those of Lake Superior. The flows carry native copper and copper sulphides in minutely disseminated form and in amygdules, but apparently not in quantitiessufficiently concentrated to mine. The flows are supposed to be the original source of the copper now in the limestone. The primary copper mineral in the limestone is chalcocite, in exceptionally rich and solid masses, showing no evidence of having replaced earlier sulphides. It is regarded as a product of primary deposition, under the influence of hot solutions related in some way to the igneous flows; but whether the solutions were magmatic, originating in the lavas or below, or whether they were meteoric waters rendered hot by contact with the extrusives, and thereby made effective in leaching copper from them, is not clear. The oxidation of the Kennecott copper ores is not extensive. It presents an interesting feature, in that since glacial time the ground has been frozen and the moisture is now present in the form of ice. The oxidation clearly took place before glacial time. Abundant fragments of both the oxide and the sulphide ores are mined from the lateral moraine of a nearby glacier. This is a good illustration of the cyclic nature of secondary concentration which is coming to be recognized in so many camps.
The Boleo copper deposits of Lower California occur in volcanic tuffs and associated conglomerates of Tertiary age. They have certain peculiar mineralogic associations—the ores containing large quantities of all the common copper oxide minerals, and a number of rare oxide minerals of copper, lead, silver, and cobalt, together with gypsum, sulphur, and much iron and manganese oxide. The copper oxides and carbonates are in places gathered into rounded concretions called "boleos" (balls). Sulphides are present in the lowest beds and may represent the form in which the copper was originally deposited. The copper-bearing beds have been much silicified, and it has been suggested that mineralization was accomplished by hot-spring waters, probably of igneous origin. These deposits have a few marked similarities to the Lake Superior copper ores.
Copper veins in igneous rocks.A second group of copper ores in igneous rocks is made up of deposits in distinct fissure veins and as replacements along such veins. The chief deposits of this type are at Butte, Montana—which is, from the standpoint of both past and present production, the greatest single copper district in the world. Here a large batholith of Tertiary granite was intruded by porphyry dikes; and faulting, accompanying and following theintrusions of the dikes, developed numerous fissures. The fissures were mineralized with copper sulphides and arsenides, iron sulphides, and locally with zinc sulphide and manganese carbonate,—all in a matrix of quartz. At the same time the wall rocks were extensively mineralized and altered; the fissure veins grade off into the wall rock, and in fact the larger part of the ore is simply altered granite with disseminated sulphides. The solutions which deposited the ores are inferred to have been hot from the nature of the wall-rock alterations, from the presence of hot-water minerals like fluorite, cassiterite, and others, and from the general association of the ores in time and place with the porphyry intrusions. The solutions are believed to have originated from the porphyry and possibly from other intrusives.
In the Butte district, and in the great majority of copper sulphide vein ores throughout the world, secondary concentration by surface waters has played a considerable part in developing ores of commercial value. Near the surface the copper is leached out and carried down by waters containing various solvents, particularly sulphuric acid from the oxidation of pyrite. A leached zone is formed containing the ordinary products of rock weathering,—rusty quartz and clay, sometimes black with manganese oxides. A small part of the copper remains in this zone as oxides, carbonates, and silicates. Below the oxidized and leached zone there is evidence of deposition of a large amount of secondary copper sulphide in the form of chalcocite. This is supposed to have been formed by the leaching of copper from above as soluble copper sulphate, and its precipitation below by iron and other sulphide minerals which the solutions meet on their downward course—a reaction which has been demonstrated experimentally. It was formerly supposed that most of the chalcocite was of this origin; but as chalcocite is found in important amounts with enargite and chalcopyrite to great depths (now 3,500 feet), where the veins are still rich and strong, it begins to appear that much of the chalcocite is of primary origin.
The fissures along which the Butte ores occur are in three main sets, which in order of age strike roughly east-west, northwest-southeast, and northeast-southwest. Two-thirds of the ore is in the first set, about 30 per cent in the second, and the remainder in the third. The mineralization of the several vein systems cannotbe discriminated, and it is thought that it was accomplished as a more or less continuous and progressive process. There is some evidence, also, that the fracturing in the several fracture systems was likewise a nearly continuous progressive process, contemporaneous with the ore deposition, and perhaps developing under a single great shear which caused more or less simultaneous and overlapping systems of fractures in the various directions.
"Porphyry coppers."Another type of copper deposits in igneous rocks is the disseminated or "porphyry" deposits. The term "porphyry" as commonly used includes true porphyries, monzonites, granites, and other igneous rocks. Ores of this type are represented by the great deposits of Bingham, Utah; Ray, Miami, and the New Cornelia mine of Arizona; Ely, Nevada; Santa Rita, New Mexico; Cananea, Sonora, Mexico; northern Chile; and many other districts of importance. They form the greatest known reserves of copper ore. These deposits contain copper minerals, usually in the marginal portions of acid porphyries, in many irregular, closely spaced veins, and in minute seams and spots disseminated through the mass of the rock. In the Ray and Miami and other districts the mineralization has spread largely through adjacent schists, but these deposits are included with the porphyry copper deposits in commercial parlance. The porphyry deposits are of an undulating blanket form of considerable areal extent and shallow depth. At the surface is a leached and weathered zone, often containing more or less of the oxides, carbonates, and silicates of copper, ranging in thickness up to 1,000 feet, but averaging 200 feet or less. Below this is a zone carrying copper in the form of chalcopyrite, enriched by chalcocite deposition from above, ranging in thickness up to 400 feet. The ore in this zone varies from one-half of 1 per cent to 6 per cent of copper and ordinarily averages between 1 and 2 per cent. The use of ore of this grade is made possible by the large quantities and by the cheap and efficient mining and metallurgical practices. The ore body grades below into a zone characterized by lean chalcopyrite, which is supposed to represent original or primary deposition from hot waters associated with the porphyry intrusion. This primary ore, or protore, was clearly formed after the solidification of the igneous rocks, though soon after, by solutions from igneous sources which followed fractured and shattered zones.
Copper in limestone near igneous contacts.Another great group of copper deposits occurs as replacements of limestone adjacent to porphyry or granitic intrusives. This type is illustrated by some of the deposits at Bingham, Utah, and at Bisbee, Arizona. The primary deposition was of chalcopyrite and other copper sulphides, together with garnet, diopside, and other minerals known to have required high temperature in their formation. The ore fills fissures and replaces extensive masses of the limestone. It is likely to show a fairly sharp contact on the side toward the intrusive, and to grade off into the country rock on the other side with numerous embayments and irregularities. These deposits have been enriched by weathering in the same manner as indicated above for the porphyry coppers, but to highly varying degrees. In the Bisbee deposits large values were found in the weathered zone, and secondary sulphide enrichment below this zone is also important. In the Bingham camp, on the other hand, the weathered zone is insignificant and most of the ore beneath is primary. The weathering of the silicated limestone gangue results in great masses of clay which are characteristic features of the oxide zones of these deposits.
Copper deposits in schists.Other copper deposits, as at Jerome, Arizona, in the Foothill and Shasta County districts of California, at Ducktown, Tennessee, etc., are irregular lenticular bodies in schists and other rocks, but all show relationship to igneous rocks. The Rio Tinto ores of Spain and Portugal, which belong in this group, have been referred to on page 108.
In the Jerome or Verde district of central Arizona, folded pre-Cambrian greenstones and sediments were invaded by masses of quartz-porphyry, and after further deformation, rendering many of the rocks schistose, were intruded by an augite-diorite. Contact metamorphism along both the quartz-porphyry and the diorite contacts was practically lacking. The ore bodies were formed as irregular pipe-like replacements of the schists, being localized in one case by a steeply pitching inverted trough of impervious diorite, and in other cases by shear zones which favored vigorous circulation. A later series of small diorite or andesite dikes cut the ore bodies. The primary ores consist of pyrite, chalcopyrite, and other sulphides, with large amounts of jaspery quartz and some calcite and dolomite. They were clearly formed byreplacement of the schists particle by particle, as shown by the frequent preservation of the schist structure in a banding of the sulphide minerals, the residual shreds of unreplaced schist material in the ores, and the usual gradual transition from unreplaced schists to those completely replaced by massive sulphides. The localization of the most important mineralization in an inverted trough is good evidence that the solutions came from below, and the nature of the mineral associations suggests an origin through the work of hot waters associated with igneous intrusives. The diorite, being most closely related in time and space with the ore bodies, seems the most logical source of the ore materials.
Secondary concentration of the Jerome ores has proceeded along the general lines previously outlined (pp. 46-50, 202). Here again the evidence is clear that the ores were concentrated in an earlier period, in this case in pre-Cambrian times, probably during the long interval required for the base-leveling of the pre-Cambrian mountains. Since Cambrian times the deposits have been for the most part buried by later sediments. Some of the deposits are still protected by this overlying blanket and mining has not yet reached the zone of altogether primary sulphides. Others have been faulted up and again exposed by erosion; but since being uncovered, steep slopes and rapid erosion have apparently favored the scattering of the copper rather than its concentration and enrichment. In the United Verde Mine, oxidizing conditions at present prevail to the bottom of the chalcocite zone.
The very large reserves of the Katanga copper belt of the Belgian Congo are in the form of tabular masses in schistose and highly metamorphosed Paleozoic sediments. The ore bodies are roughly parallel to the bedding, but in instances follow the schistosity which cuts across the bedding. They consist dominantly of the oxide minerals, though in several ore bodies sulphides have been shown by diamond-drilling. The ores have a high content of cobalt and also carry precious metals. The origin of the deposits is not known, but has been ascribed to granitic masses intrusive into the schists.
Sedimentary copper deposits.In the later phases of the metamorphic cycle, the agencies of transportation (in solution) and sedimentary deposition have resulted in some low-grade deposits of copper sulphides in sedimentary rocks. Deposits of this typeare found in the Rocky Mountain region, where they are referred to as the "Red Beds" coppers, but are of no commercial importance. Similar deposits in Germany, the Mansfield copper-bearing shales, have been worked for some time, and during the war were Germany's main source of copper. On Keweenaw Point, Michigan, deposits of native copper formed in this manner in the "Nonesuch" beds have been worked on a commercial scale. Other copper ores on Keweenaw Point are replacements of conglomerate beds between igneous flows, and are of a different origin already described (p. 200).
While much of the copper of sedimentary beds gives evidence that it was deposited from solution in cracks and as replacements of the wall rocks, often through the agency of abundant organic material in the beds, and while also comparatively little of this copper can be identified as having been deposited in detrital flakes or fragments along with the other mineral fragments, there is, nevertheless, considerable evidence that some of these deposits were formed essentially during the sedimentation of the enclosing beds and as incidents to this process. Such evidence consists of a close limitation of the copper to certain beds, its wide and uniform distribution within these beds, its absence in similar beds near at hand, the absence of evidence of feeding and escape channels of the kind which would be necessary in case the solutions were introduced long afterward, and often a minute participation of the copper minerals in the minor structures of bedding, false-bedding, and ripple-marks, which would be difficult to explain as due to secondary concentration.
The Corocoro copper deposits of Bolivia occur in beds of sandstone with no igneous rocks in the vicinity. However, they are all closely associated with a fault plane, igneous rocks occur at distances of a few miles, and the general mineralization is coextensive with the belt of igneous rocks; the deposits are therefore ascribed to a magmatic source rather than to sedimentary processes. Toward the surface the copper is in part in the form of sulphides, somewhat altered to oxide minerals, and farther down it is entirely native copper, associated with gypsum. This is the only district outside of Lake Superior where native copper has been mined on an important scale.
General comments.In general, the commercially prominentcopper deposits show a close relationship to igneous rocks in place, time, and origin. Seldom do the ores extend more than 1,000 feet away from the igneous rock.
The common downward order in sulphide deposits is: first, a weathered zone, originally formed mainly above the water table, consisting above of a leached portion and below of oxides and carbonates of copper in a gangue of quartz or clay; second, a zone of secondary sulphide enrichment, characterized by chalcocite coatings, chalcopyrite, and pyrite, with a gangue of quartz and igneous rock or limestone; and third, a zone of primary deposition with similar gangue, characterized by chalcopyrite, and at Butte by enargite and chalcocite. The oxide zone as a whole may be rich or lean in values, depending on the nature of the associated gangue material and country rock. When these are more soluble than the copper—as is commonly the case in limestone—the copper may be residually concentrated, notwithstanding the fact that much copper originally present has been carried off in solution. When the associated gangue and country rock are less soluble than the copper—as is common with quartz and igneous rocks—the oxide zone is likely to be depleted of values.
The zones formed by weathering and secondary enrichment are extremely irregular, both in distribution and depth, in any one deposit, and they overlap and grade into one another in a very complex fashion. In many places the primary zone is too lean to be mined to commercial advantage; but in other places, as at Butte, and in the limestone deposits of Bingham, the primary ores are of considerable importance.
When evidence of secondary sulphide enrichment was first recognized there was a tendency to magnify its effectiveness, and to assume that in most cases the values were due to this process; that the primary zones would be found to be valueless. In recent years the emphasis is being somewhat changed because of the recognizing in many camps of rich primary zones. While some chalcocite is clearly the result of secondary enrichment from above, other chalcocite seems to have been related closely to the primary deposition. The quantitative discrimination of the two is a matter of great difficulty.
It has come to be recognized that the zonal arrangement caused by enrichment from the surface has been imposed usually on azonal arrangement caused by the primary hot solutions and not related to the surface but to the source of the solutions. In some districts, as illustrated by Butte and Bingham, the copper-bearing minerals seem to have been deposited nearest the igneous source, while the lead, zinc, gold, and silver minerals have been deposited farther away,—suggesting the cooling of the solutions with increasing distance from the igneous source. The further investigation of this primary zonal arrangement promises interesting results with a practical bearing on exploration and development.
One of the newer features of the investigation of copper deposits has been the recognition of the cyclic nature of the secondary concentration. This process has been related not only to the present erosion surface, but to older surfaces now partly buried under later rocks. Ransome's[33]summary of conditions at the Ray-Miami camp has a somewhat general application.