Chapter 6

FOOTNOTES:[1]The conception of "Nature's Perfect Engine" was originally arrived at by the author from consideration of the phenomena of the steam-engine. The following extract from the "Review" of his work (1895) illustrates the various stages which finally lead to that conclusion:—"My first steps in the right direction came about thus. I had always been working with a cylinder and piston, and could make no progress, till at length it struck me to make my cylinder high enough to do without a piston—that is, to leave the steam to itself and observe its behaviour when left to work against gravity. The first thing I had to settle was the height of my cylinder. And I found, by calculation from Regnault's experiments that it would require to be very high, and that the exact height would depend on the temperature of the water in the boiler which was the bottom of this ideal cylinder. Now, at any ordinary temperature the height was so great that it was impossible to get known material to support its own weight, and I did not wish to use a hypothetical substance in the construction of this engine. Finally, the only course left me was to abolish the cylinder as I had done the piston. I then discovered that the engine I had been trying to evolve—the perfect engine—was not the ideal thing I had been groping after but an actual reality, in full working order, its operations taking place every day before my eyes."Every natural phenomenon fitted in exactly; it had its function to perform, and the performance of its function constituted the phenomenon. Let me trace the analogy in a few of its details. The sea corresponds to the boiler; its cylinder surrounds the earth; it has for its fuel the axial energy of the earth; it has no condenser because it has no exhaust; the work it performs is all expended in producing the fuel. Every operation in the cycle is but an energy transformation, and these various transformations constitute the visible life of the world."[2]For definite numerical examples see the author'sTerrestrial Energy(Chap. 1.).

FOOTNOTES:

[1]The conception of "Nature's Perfect Engine" was originally arrived at by the author from consideration of the phenomena of the steam-engine. The following extract from the "Review" of his work (1895) illustrates the various stages which finally lead to that conclusion:—"My first steps in the right direction came about thus. I had always been working with a cylinder and piston, and could make no progress, till at length it struck me to make my cylinder high enough to do without a piston—that is, to leave the steam to itself and observe its behaviour when left to work against gravity. The first thing I had to settle was the height of my cylinder. And I found, by calculation from Regnault's experiments that it would require to be very high, and that the exact height would depend on the temperature of the water in the boiler which was the bottom of this ideal cylinder. Now, at any ordinary temperature the height was so great that it was impossible to get known material to support its own weight, and I did not wish to use a hypothetical substance in the construction of this engine. Finally, the only course left me was to abolish the cylinder as I had done the piston. I then discovered that the engine I had been trying to evolve—the perfect engine—was not the ideal thing I had been groping after but an actual reality, in full working order, its operations taking place every day before my eyes."Every natural phenomenon fitted in exactly; it had its function to perform, and the performance of its function constituted the phenomenon. Let me trace the analogy in a few of its details. The sea corresponds to the boiler; its cylinder surrounds the earth; it has for its fuel the axial energy of the earth; it has no condenser because it has no exhaust; the work it performs is all expended in producing the fuel. Every operation in the cycle is but an energy transformation, and these various transformations constitute the visible life of the world."

[1]The conception of "Nature's Perfect Engine" was originally arrived at by the author from consideration of the phenomena of the steam-engine. The following extract from the "Review" of his work (1895) illustrates the various stages which finally lead to that conclusion:—

"My first steps in the right direction came about thus. I had always been working with a cylinder and piston, and could make no progress, till at length it struck me to make my cylinder high enough to do without a piston—that is, to leave the steam to itself and observe its behaviour when left to work against gravity. The first thing I had to settle was the height of my cylinder. And I found, by calculation from Regnault's experiments that it would require to be very high, and that the exact height would depend on the temperature of the water in the boiler which was the bottom of this ideal cylinder. Now, at any ordinary temperature the height was so great that it was impossible to get known material to support its own weight, and I did not wish to use a hypothetical substance in the construction of this engine. Finally, the only course left me was to abolish the cylinder as I had done the piston. I then discovered that the engine I had been trying to evolve—the perfect engine—was not the ideal thing I had been groping after but an actual reality, in full working order, its operations taking place every day before my eyes.

"Every natural phenomenon fitted in exactly; it had its function to perform, and the performance of its function constituted the phenomenon. Let me trace the analogy in a few of its details. The sea corresponds to the boiler; its cylinder surrounds the earth; it has for its fuel the axial energy of the earth; it has no condenser because it has no exhaust; the work it performs is all expended in producing the fuel. Every operation in the cycle is but an energy transformation, and these various transformations constitute the visible life of the world."

[2]For definite numerical examples see the author'sTerrestrial Energy(Chap. 1.).

[2]For definite numerical examples see the author'sTerrestrial Energy(Chap. 1.).

TRANSCRIBER'S NOTE:Obvious typographical errors from the original printed version of this book have been corrected without comment.Footnotes in the html version have been placed at the end of the book.Illustrations have been moved to the nearest paragraph break.

TRANSCRIBER'S NOTE:

Obvious typographical errors from the original printed version of this book have been corrected without comment.

Footnotes in the html version have been placed at the end of the book.

Illustrations have been moved to the nearest paragraph break.


Back to IndexNext