Chapter 2

Now, phosphoric acid melts in water just as sugar does, and in a few minutes these fumes will disappear. They are beginning to melt already, and the water from the pan is rising up in the bell-jar. Why is this? Consider for a moment what we have done. First, the jar was full of air, that is, of mixed oxygen and nitrogen; then the phosphorus used up the oxygen making white fumes; afterwards, the water sucked up these fumes; and so, in the jar now nitrogen is the only gas left, and the water has risen up to fill all the rest of the space that was once taken up with oxygen.

We can easily prove that there is no oxygen now in the jar. I take out the cork and let a lighted taper down into the gas. If there were any oxygen the taper would burn, but you see it goes out directly proving that all the oxygen has been used up by the phosphorous. When this experiment is made very accurately, we find that for every pint of oxygen in air there are four pints of nitrogen, so that the active oxygen-atoms are scattered about, floating in the sleepy, inactive nitrogen.

It is these oxygen-atoms which we use up when we breathe. If I had put a mouse under the bell-jar, instead of the phosphorus, the water would have risen just the same, because the mouse would have breathed in the oxygen and used it up in its body, joining it to carbon and making a bad gas, carbonic acid, which would also melt in the water, and when all the oxygen was used, the mouse would have died.

Do you see now how foolish it is to live in rooms that are closely shut up, or to hide your head under the bedclothes when you sleep? You use up all the oxygen-atoms, and then there are none left for you to breathe; and besides this, you send out of your mouth bad fumes, though you cannot see them, and these, when you breathe them in again, poison you and make you ill.

Perhaps you will say, If oxygen is so useful, why is not the air made entirely of it? But think for a moment. If there was such an immense quantity of oxygen, how fearfully fast everything would burn! Our bodies would soon rise above fever heat from the quantity of oxygen we should take in, and all fires and lights would burn furiously. In fact, a flame once lighted would spread so rapidly that no power on earth could stop it, and everything would be destroyed. So the lazy nitrogen is very useful in keeping the oxygen-atoms apart; and we have time, even when a fire is very large and powerful, to put it out before it has drawn in more and more oxygen from the surrounding air. Often, if you can shut a fire into a closed space, as in a closely-shut room or the hold of a ship, it will go out, because it has used up all the oxygen in the air.

So, you see, we shall be right in picturing this invisible air all around us as a mixture of two gases. But when we examine ordinary air very carefully, we find small quantities of other gases in it, besides oxygen and nitrogen. First, there is carbonic acid gas. This is the bad gas which we give out of our mouths after we have burnt up the oxygen with the carbon of our bodies inside our lungs; and this carbonic acid is also given out from everything that burns. If only animals lived in the world, this gas would soon poison the air; but plants get hold of it, and in the sunshine they break it up again, as we shall see in Lecture VII, and use up the carbon, throwing the oxygen back into the air for us to use. Secondly, there are very small quantities of ammonia, or the gas which almost chokes you in smelling-salts, and which, when liquid is commonly called "spirits of hartshorn." This ammonia is useful to plants, as we shall see by and by. Lastly, there is a great deal of water in the air, floating about as invisible vapour or water-dust, and this we shall speak of in the next lecture. Still, all these gases and vapours in the atmosphere are in very small quantities, and the bulk of the air is composed of oxygen and nitrogen.

Having now learned what air is, the next question which presents itself is, Why does it stay round our earth? You will remember we saw in the first lecture, that all the little atoms of a gas are trying to fly away from each other, so that if I turn on this gas-jet the atoms soon leave it, and reach you at the farther end of the room, and you can smell the gas. Why, then, do not all the atoms of oxygen and nitrogen fly away from our earth into space, and leave us without any air?

Ah! here you must look for another of our invisible forces. Have you forgotten our giant force, "gravitation," which draws things together from a distance? This force draws together the earth and the atoms of oxygen and nitrogen; and as the earth is very big and heavy, and the atoms of air are light and easily moved, they are drawn down to the earth and held there by gravitation. But for all that, the atmosphere does not leave off trying to fly away; it is always pressing upwards and outwards with all its might, while the earth is doing its best to hold it down.

The effect of this is, that near the earth, where the pull downward is very strong, the air-atoms are drawn very closely together, because gravitation gets the best of the struggle. But as we get farther and farther from the earth, the pull downward becomes weaker, and then the air-atoms spring farther apart, and the air becomes thinner. Suppose that the lines in this diagram represent layers of air. Near the earth we have to represent them as lying closely together, but as they recede from the earth they are also farther apart.

But the chief reason why the air is thicker or denser nearer the earth, is because the upper layers press it down. If you have a heap of papers lying one on the top of the other, you know that those at the bottom of the heap will be more closely pressed together than those above, and just the same is the case with the atoms of the air. Only there is this difference, if the papers have lain for some time, when you take the top ones off, the under ones remain close together. But it is not so with the air, because air is elastic, and the atoms are always trying to fly apart, so that directly you take away the pressure they spring up again as far as they can.

Week 8

I have here an ordinary pop-gun. If I push the cork in very tight, and then force the piston slowly inwards, I can compress the air a good deal. Now I am forcing the atoms nearer and nearer together, but at last they rebel so strongly against being more crowded that the cork cannot resist their pressure. Out it flies, and the atoms spread themselves out comfortably again in the air all around them. Now, just as I pressed the air together in the pop-gun, so the atmosphere high up above the earth presses on the air below and keeps the atoms closely packed together. And in this case the atoms cannot force back the air above them as they did the cork in the pop-gun; they are obliged to submit to be pressed together.

Even a short distance from the earth, however, at the top of a high mountain, the air becomes lighter, because it has less weight of atmosphere above it, and people who go up in balloons often have great difficulty in breathing, because the air is so thin and light. In 1804 a Frenchman, named Gay-Lussac, went up four miles and a half in a balloon, and brought down some air; and he found that it was much less heavy than the same quantity of air taken close down to the earth, showing that it was much thinner, or rarer, as it is called;* and when, in 1862, Mr. Glaisher and Mr. Coxwell went up five miles and a half, Mr. Glaisher's veins began to swell, and his head grew dizzy, and he fainted. The air was too thin for him to breathe enough in at a time, and it did not press heavily enough on the drums of his ears and the veins of his body. He would have died if Mr. Coxwell had not quickly let off some of the gas in the balloon, so that it sank down into denser air. (*100 cubic inches near the earth weighed 31 grains, while the same quantity taken at four and a half miles up in the air weighed only 12 grains, or two- fifths of the weight.)

And now comes another very interesting question. If the air gets less and less dense as it is farther from the earth, where does it stop altogether? We cannot go up to find out, because we should die long before we reached the limit; and for a long time we had to guess about how high the atmosphere probably was, and it was generally supposed not to be more than fifty miles. But lately, some curious bodies, which we should have never suspected would be useful to us in this way, have let us into the secret of the height of the atmosphere. These bodies are the meteors, or falling stars.

Most people, at one time or another, have seen what looks like a star shoot right across the sky, and disappear. On a clear starlight night you may often see one or more of these bright lights flash through the air; for one falls on an average in every twenty minutes, and on the nights of August 9th and November 13th there are numbers in one part of the sky. These bodies are not really stars; they are simply stones or lumps of metal flying through the air, and taking fire by clashing against the atoms of oxygen in it. There are great numbers of these masses moving round and round the sun, and when our earth comes across their path, as it does especially in August and November, they dash with such tremendous force through the atmosphere that they grow white-hot, and give out light, and then disappear, melted into vapour. Every now and then one falls to the earth before it is all melted away, and thus we learn that these stones contain tin, iron, sulphur, phosphorus, and other substances.

It is while these bodies are burning that they look to us like falling stars, and when we see them we know that hey must be dashing against our atmosphere. Now if two people stand a certain known distance, say fifty miles, apart on the earth and observe these meteors and the direction in which they each see them fall, they can calculate (by means of the angle between the two directions) how high they are above them when they first see them, and at that moment they must have struck against the atmosphere, and even travelled some way through it, to become white-hot. In this way we have learnt that meteors burst into light at least 100 miles above the surface of the earth, and so the atmosphere must be more than 100 miles high.

Our next question is as to the weight of our aerial ocean. You will easily understand that all this air weighing down upon the earth must be very heavy, even though it grows lighter as it ascends. The atmosphere does, in fact, weigh down upon land at the level of the sea as much as if a 15-pound weight were put upon every square inch of land. This little piece of linen paper, which I am holding up, measures exactly a square inch, and as it lies on the table, it is bearing a weight of 15 lbs. on its surface. But how, then, comes it that I can lift it so easily? Why am I not conscious of the weight?

To understand this you must give all your attention, for it is important and at first not very easy to grasp. you must remember, in the first place, that the air is heavy because it is attracted to the earth, and in the second place, that since air is elastic all the atoms of it are pushing upwards against this gravitation. And so, at any point in air, as for instance the place where the paper now is as I hold it up, I feel no pressure because exactly as much as gravitation is pulling the air down, so much elasticity is resisting and pushing it up. So the pressure is equal upwards, downwards, and on all sides, and I can move the paper with equal ease any way.

Even if I lay the paper on the table this is still true, because there is always some air under it. If, however, I could get the air quite away from one side of the paper, then the pressure on the other side would show itself. I can do this by simply wetting the paper and letting it fall on the table, and the water will prevent any air from getting under it. Now see! if I try to lift it by the thread in the middle, I have great difficulty, because the whole 15 pounds' weight of the atmosphere is pressing it down. A still better way of making the experiment is with a piece of leather, such as the boys often amuse themselves with in the streets. This piece of leather has been well soaked. I drop it on the floor and see! it requires all my strength to pull it up. (In fastening the string to the leather the hole must be very small and the know as flat as possible, and it is even well to put a small piece of kid under the knot. When I first made this experiment, not having taken these precautions, it did not succeed well, owing to air getting in through the hole.) I now drop it on this stone weight, and so heavily is it pressed down upon it by the atmosphere that I can lift the weight without its breaking away from it.

Have you ever tried to pick limpets off a rock? If so, you know how tight they cling. the limpet clings to the rock just in the same way as this leather does to the stone; the little animal exhausts the air inside it's shell, and then it is pressed against the rock by the whole weight of the air above.

Perhaps you will wonder how it is that if we have a weight of 15 lbs. pressing on every square inch of our bodies, it does not crush us. And, indeed, it amounts on the whole to a weight of about 15 tons upon the body of a grown man. It would crush us if it were not that there are gases and fluids inside our bodies which press outwards and balance the weight so that we do not feel it at all.

This is why Mr. Glaisher's veins swelled and he grew giddy in thin air. The gases and fluids inside his body were pressing outwards as much as when he was below, but the air outside did not press so heavily, and so all the natural condition of his body was disturbed.

I hope we now realize how heavily the air presses down upon our earth, but it is equally necessary to understand how, being elastic, it also presses upwards; and we can prove this by a simple experiment. I fill this tumbler with water, and keeping a piece of card firmly pressed against it, I turn the whole upside- down. When I now take my hand away you would naturally expect the card to fall, and the water to be spilt. But no! the card remains as if glued to the tumbler, kept there entirely by the air pressing upwards against it. (The engraver has drawn the tumbler only half full of water. The experiment will succeed quite as well in this way if the tumbler be turned over quickly, so that part of the air escapes between the tumbler and the card, and therefore the space above the water is occupied by air less dense than that outside.)

And now we are almost prepared to understand how we can weigh the invisible air. One more experiment first. I have here what is called a U tube, because it is shaped like a large U. I pour some water in it till it is about half full, and you will notice that the water stands at the same height in both arms of the tube, because the air presses on both surfaces alike. Putting my thumb on one end I tilt the tube carefully, so as to make the water run up to the end of one arm, and then turn it back again. But the water does not now return to its even position, it remains up in the arm on which my thumb rests. Why is this? Because my thumb keeps back the air from pressing at that end, and the whole weight of the atmosphere rests on the water at the other end. And so we learn that not only has the atmosphere real weight, but we can see the effects of this weight by making it balance a column of water or any other liquid. In the case of the wetted leather we felt the weight of the air, here we see its effects.

Now when we wish to see the weight of the air we consult a barometer, which works really just in the same way as the water in this tube. An ordinary upright barometer is simply a straight tube of glass filled with mercury or quicksilver, and turned upside-down in a small cup of mercury. The tube is a little more than 30 inches long, and though it is quite full of mercury before it is turned up, yet directly it stands in the cup the mercury falls, till there is a height of about 30 inches between the surface of the mercury in the cup, and that of the mercury in the tube. As it falls it leaves an empty space above the mercury which is called a vacuum, because it has no air in it. Now, the mercury is under the same conditions as the water was in the U tube, there is no pressure upon it at the top of the tube, while there is a pressure of 15 lbs. upon it in the bowl, and therefore it remains held up in the tube.

Week 9

But why will it not remain more than 30 inches high in the tube? You must remember it is only kept up in the tube at all by the air which presses on the mercury in the cup. And that column of mercury now balances the pressure of the air outside, and presses down on the mercury in the cup at its mouth just as much as the air does on the rest. So this cup and tube act exactly like a pair of scales. The air outside is the thing to be weighed at one end as it presses on the mercury, the column answers to the leaden weight at the other end which tells you how heavy the air is. Now if the bore of this tube is made an inch square, then the 30 inches of mercury in it weigh exactly 15 lbs, and so we know that the weight of the air is 15 lbs. upon every square inch, but if the bore of the tube is only half a square inch, and therefore the 30 inches of mercury only weigh 7 1/2 lbs. instead of 15 lbs., the pressure of the atmosphere will also be halved, because it will only act upon half a square inch of surface, and for this reason it will make no difference to the height of the mercury whether the tube be broad or narrow.

But now suppose the atmosphere grows lighter, as it does when it has much damp in it. The barometer will show this at once, because there will be less weight on the mercury in the cup, therefore it will not keep the mercury pushed so high up in the tube. In other words, the mercury in the tube will fall.

Let us suppose that one day the air is so much lighter that it presses down only with a weight of 14 1/2 lbs. to the square inch instead of 15 lbs. Then the mercury would fall to 29 inches, because each inch is equal to the weight of half a pound. Now, when the air is damp and very full of water-vapour it is much lighter, and so when the barometer falls we expect rain. Sometimes, however, other causes make the air light, and then, although the barometer is low, no rain comes,

Again, if the air becomes heavier the mercury is pushed up above 30 to 31 inches, and in this way we are able to weigh the invisible air-ocean all over the world, and tell when it grows lighter or heavier. This then, is the secret of the barometer. We cannot speak of the thermometer today, but I should like to warn you in passing that it has nothing to do with the weight of the air, but only with heat, and acts in quite a different way.

And now we have been so long hunting out, testing and weighing our aerial ocean, that scarcely any time is left us to speak of its movements or the pleasant breezes which it makes for us in our country walks. Did you ever try to run races on a very windy day? Ah! then you feel the air strongly enough; how it beats against your face and chest, and blows down your throat so as to take your breath away; and what hard work it is to struggle against it! Stop for a moment and rest, and ask yourself, what is the wind? Why does it blow sometimes one way and sometimes another, and sometimes not at all?

Wind is nothing more than air moving across the surface of the earth, which as it passes along bends the tops of the trees, beats against the houses, pushes the ships along by their sails, turns the windmill, carries off the smoke from cities, whistles through the keyhole, and moans as it rushes down the valley. What makes the air restless? why should it not lie still all round the earth?

It is restless because, as you will remember, its atoms are kept pressed together near the earth by the weight of the air above, and they take every opportunity, when they can find more room, to spread out violently and rush into the vacant space, and this rush we call a wind.

Imagine a great number of active schoolboys all crowded into a room till they can scarcely move their arms and legs for the crush, and then suppose all at once a large door is opened. Will they not all come tumbling out pell-mell, one over the other, into the hall beyond, so that if you stood in their way you would most likely be knocked down? Well, just this happens to the air- atoms; when they find a space before them into which they can rush, they come on helter-skelter, with such force that you have great difficulty in standing against them, and catch hold of something to support you for fear you should be blown down.

But how come they to find any empty space to receive them? To answer this we must go back again to our little active invisible fairies the sunbeams. When the sun-waves come pouring down upon the earth they pass through the air almost without heating it. But not so with the ground; there they pass down only a short distance and then are thrown back again. And when these sun- waves come quivering back they force the atoms of the air near the earth apart and make it lighter; so that the air close to the surface of the heated ground becomes less heavy than the air above it, and rises just as a cork rises in water. You know that hot air rises in the chimney; for if you put a piece of lighted paper on the fire it is carried up by the draught of air, often even before it can ignite. Now just as the hot air rises from the fire, so it rises from the heated ground up into higher parts of the atmosphere. and as it rises it leaves only thin air behind it, and this cannot resist the strong cold air whose atoms are struggling and trying to get free, and they rush in and fill the space.

One of the simplest examples of wind is to be found at the seaside. there in the daytime the land gets hot under the sunshine, and heats the air, making it grow light and rise. Meanwhile the sunshine on the water goes down deeper, and so does not send back so many heat-waves into the air; consequently the air on the top of the water is cooler and heavier, and it rushes in from over the sea to fill up the space on the shore left by the warm air as it rises. This is why the seaside is so pleasant in hot weather. During the daytime a light sea-breeze nearly always sets in from the sea to the land.

When night comes, however, then the land loses its heat very quickly, because it has not stored it up and the land-air grows cold; but the sea, which has been hoarding the sun-waves down in its depths, now gives them up to the atmosphere above it, and the sea-air becomes warm and rises. For this reason it is now the turn of the cold air from the land to spread over the sea, and you have a land-breeze blowing off the shore.

Again, the reason why there are such steady winds, called the trade winds, blowing towards the equator, is that the sun is very hot at the equator, and hot air is always rising there and making room for colder air to rush in. We have not time to travel farther with the moving air, though its journeys are extremely interesting; but if, when you read about the trade and other winds, you will always picture to yourselves warm air made light by the heat rising up into space and cold air expanding and rushing in to fill its place, I can promise you that you will not find the study of aerial currents so dry as many people imagine it to be.

We are now able to form some picture of our aerial ocean. We can imagine the active atoms of oxygen floating in the sluggish nitrogen, and being used up in every candle-flame, gas-jet and fire, and in the breath of all living beings; and coming out again tied fast to atoms of carbon and making carbonic acid. Then we can turn to trees and plants, and see them tearing these two apart again, holding the carbon fast and sending the invisible atoms of oxygen bounding back again into the air, ready to recommence work. We can picture all these air-atoms, whether of oxygen or nitrogen, packed close together on the surface of the earth, and lying gradually farther and farther apart, as they have less weight above them, till they become so scattered that we can only detect them as they rub against the flying meteors which flash into light. We can feel this great weight of air pressing the limpet on to the rock; and we can see it pressing up the mercury in the barometer and so enabling us to measure its weight. Lastly, every breath of wind that blows past us tells us how this aerial ocean is always moving to and fro on the face of the earth; and if we think for a moment how much bad air and bad matter it must carry away, as it goes from crowded cities to be purified in the country, we can see how, in even this one way alone, it is a great blessing to us.

Yet even now we have not mentioned many of the beauties of our atmosphere. It is the tiny particles floating in the air which scatter the light of the sun so that it spreads over the whole country and into shady places. The sun's rays always travel straight forward; and in the moon, where there is no atmosphere, there is no light anywhere except just where the rays fall. But on our earth the sun-waves hit against the myriads of particles in the air and glide off them into the corners of the room or the recesses of a shady lane, and so we have light spread before us wherever we walk in the daytime, instead of those deep black shadows which we can see through a telescope on the face of the moon.

Again, it is electricity playing in the air-atoms which gives us the beautiful lightning and the grand aurora borealis, and even the twinkling of the starts is produced entirely by minute changes in the air. If it were not for our aerial ocean, the stars would stare at us sternly, instead of smiling with the pleasant twinkle-twinkle which we have all learned to love as little children.

All these questions, however, we must leave for the present; only I hope you will be eager to read about them wherever you can, and open your eyes to learn their secrets. For the present we must be content if we can even picture this wonderful ocean of gas spread round our earth, and some of the work it does for us.

We said in the last lecture that without the sunbeams the earth would be cold, dark, and frost-ridden. With sunbeams, but without air, it would indeed have burning heat, side by side with darkness and ice, but it could have no soft light. our planet might look beautiful to others, as the moon does to us, but it could have comparatively few beauties of its own. With the sunbeams and the air, we see it has much to make it beautiful. But a third worker is wanted before our planet can revel in activity and life. This worker is water; and in the next lecture we shall learn something of the beauty and the usefulness of the "drops of water" on their travels.

Week 10

We are going to spend an hour to-day in following a drop of water on its travels. If I dip my finger in this basin of water and lift it up again, I bring with it a small glistening drop out of the body of water below, and hold it before you. Tell me, have you any idea where this drop has been? what changes it has undergone, and what work it has been doing during all the long ages that water has lain on the face of the earth? It is a drop now, but it was not so before I lifted it out of the basin; then it was part of a sheet of water, and will be so again if I let it fall. Again, if I were to put this basin on the stove till all the water had boiled away, where would my drop be then? Where would it go? What forms will it take before it reappears in the rain-cloud, the river, or the sparkling dew?

These are questions we are going to try to answer to-day; and first, before we can in the least understand how water travels, we must call to mind what we have learnt about the sunbeams and the air. We must have clearly pictured in our imagination those countless sun-waves which are for ever crossing space, and especially those larger and slower undulations, the dark heat- waves; for it is these, you will remember, which force the air- atoms apart and make the air light, and it is also these which are most busy in sending water on its travels. But not these alone. The sun-waves might shake the water-drops as much as they liked and turn them into invisible vapour, but they could not carry them over the earth if it were not for the winds and currents of that aerial ocean which bears the vapour on its bosom, and wafts it to different regions of the world.

Let us try to understand how these two invisible workers, the sun-waves and the air, deal with the drops of water. I have here a kettle (Fig. 18, p. 76) boiling over a spirit-lamp, and I want you to follow minutely what is going on in it. First, in the flame of the lamp, atoms of the spirit drawn up from below are clashing with the oxygen-atoms in the air. This, as you know, causes heat-waves and light-waves to move rapidly all round the lamp. The light-waves cannot pass through the kettle, but the heat-waves can, and as they enter the water inside they agitate it violently. Quicker, and still more quickly, the particles of water near the bottom of the kettle move to and fro and are shaken apart; and as they become light they rise through the colder water letting another layer come down to be heated in its turn. The motion grows more and more violent, making the water hotter and hotter, till at last the particles of which it is composed fly asunder, and escape as invisible vapour. If this kettle were transparent you would not see any steam above the water, because it is in the form of an invisible gas. But as the steam comes out of the mouth of the kettle you see a cloud. Why is this? Because the vapour is chilled by coming out into the cold air, and its particles are drawn together again into tiny, tiny drops of water, to which Dr. Tyndall has given the suggestive name of water-dust. If you hold a plate over the steam you can catch these tiny drops, though they will run into one another almost as you are catching them.

The clouds you see floating in the sky are made of exactly the same kind of water-dust as the cloud from the kettle, and I wish to show you that this is also really the same as the invisible steam within the kettle. I will do so by an experiment suggested by Dr. Tyndall. Here is another spirit-lamp, which I will hold under the cloud of steam - see! the cloud disappears! As soon as the water-dust is heated the heat-waves scatter it again into invisible particles, which float away into the room. Even without the spirit-lamp, you can convince yourself that water-vapour may be invisible; for close to the mouth of the kettle you will see a short blank space before the cloud begins. In this space there must be steam, but it is still so hot that you cannot see it; and this proves that heat-waves can so shake water apart as to carry it away invisibly right before your eyes.

Now, although we never see any water travelling from our earth up into the skies, we know that it goes there, for it comes down again in rain, and so it must go up invisibly. But where does the heat come from which makes this water invisible? Not from below, as in the case of the kettle, but from above, pouring down from the sun. Wherever the sun-waves touch the rivers, ponds, lakes, seas, or fields of ice and snow upon our earth, they carry off invisible water-vapour. They dart down through the top layers of the water, and shake the water-particles forcibly apart; and in this case the drops fly asunder more easily and before they are so hot, because they are not kept down by a great weight of water above, as in the kettle, but find plenty of room to spread themselves out in the gaps between the air-atoms of the atmosphere.

Can you imagine these water-particles, just above any pond or lake, rising up and getting entangled among the air-atoms? They are very light, much lighter than the atmosphere; and so, when a great many of them are spread about in the air which lies just over the pond, they make it much lighter than the layer of air above, and so help it to rise, while the heavier layer of air comes down ready to take up more vapour.

In this way the sun-waves and the air carry off water everyday, and all day long, from the top of lakes, rivers, pools, springs, and seas, and even from the surface of ice and snow. Without any fuss or noise or sign of any kind, the water of our earth is being drawn up invisibly into the sky.

It has been calculated that in the Indian Ocean three-quarters of an inch of water is carried off from the surface of the sea in one day and night; so that as much as 22 feet, or a depth of water about twice the height of an ordinary room, is silently and invisibly lifted up from the whole surface of the ocean in one year. It is true this is one of the hottest parts of the earth, where the sun-waves are most active; but even in our own country many feet of water are drawn up in the summer-time.

What, then, becomes of all this water? Let us follow it as it struggles upwards to the sky. We see it in our imagination first carrying layer after layer of air up with it from the sea till it rises far above our heads and above the highest mountains. But now, call to mind what happens to the air as it recedes from the earth. Do you not remember that the air-atoms are always trying to fly apart, and are only kept pressed together by the weight of air above them? Well, so this water-laden air rises up, its particles, no longer so much pressed together, begin to separate, and as all work requires an expenditure of heat, the air becomes colder, and then you know at once what must happen to the invisible vapour, — it will form into tiny water-drops, like the steam from the kettle. And so, as the air rises and becomes colder, the vapour gathers into the visible masses, and we can see it hanging in the sky, and call it clouds. When these clouds are highest they are about ten miles from the earth, but when they are made of heavy drops and hang low down, they sometimes come within a mile of the ground.

Look up at the clouds as you go home, and think that the water of which they are made has all been drawn up invisibly through the air. Not, however, necessarily here in London, for we have already seen that air travels as wind all over the world, rushing in to fill spaces made by rising air wherever they occur, and so these clouds may be made of vapour collected in the Mediterranean, or in the Gulf of Mexico off the coast of America, or even, if the wind is from the north, of chilly particles gathered from the surface of Greenland ice and snow, and brought here by the moving currents of air. Only, of one thing we may be sure, that they come from the water of our earth.

Sometimes, if the air is warm, these water-particles may travel a long way without ever forming into clouds; and on a hot, cloudless day the air is often very full of invisible vapour. Then, if a cold wind comes sweeping along, high up in the sky, and chills this vapour, it forms into great bodies of water-dust clouds, and the sky is overcast. At other times clouds hang lazily in a bright sky, and these show us that just where they are (as in Fig. 19) the air is cold and turns the invisible vapour rising from the ground into visible water-dust, so that exactly in those spaces we see it as clouds. Such clouds form often on warm, still summer's day, and they are shaped like masses of wool, ending in a straight line below. They are not merely hanging in the sky, they are really resting upon a tall column of invisible vapour which stretches right up from the earth; and that straight line under the clouds marks the place where the air becomes cold enough to turn this invisible vapour into visible drops of water.

Week 11

And now, suppose that while these or any other kind of clouds are overhead, there comes along either a very cold wind, or a wind full of vapour. As it passes through the clouds, it makes them very full of water, for, if it chills them, it makes the water- dust draw more closely together; or, if it brings a new load of water-dust, the air is fuller than it can hold. In either case a number of water-particles are set free, and our fairy force "cohesion" seizes upon them at once and forms them into large water-drops. Then they are much heavier than the air, and so they can float no longer, but down they come to the earth in a shower of rain.

There are other ways in which the air may be chilled, and rain made to fall, as, for example, when a wind laden with moisture strikes against the cold tops of mountains. Thus the Khasia Hills in India which face the Bay of Bengal, chill the air which crosses them on its way from the Indian Ocean. The wet winds are driven up the sides of the hills, the air expands, and the vapour is chilled, and forming into drops, falls in torrents of rain. Sir J. Hooker tells us that as much as 500 inches of rain fell in these hills in nine months. That is to say, if you could measure off all the ground over which the rain fell, and spread the whole nine months' rain over it, it would make a lake 500 inches, or more than 40 feet deep! You will not be surprised that the country on the other side of these hills gets hardly any rain, for all the water has been taken out of the air before it comes there. Again for example in England, the wind comes to Cumberland and Westmorland over the Atlantic, full of vapour, and as it strikes against the Pennine Hills it shakes off its watery load; so that the lake district is the most rainy in England, with the exception perhaps of Wales, where the high mountains have the same effect.

In this way, from different causes, the water of which the sun has robbed our rivers and seas, comes back to us, after it has travelled to various parts of the world, floating on the bosom of the air. But it does not always fall straight back into the rivers and seas again, a large part of it falls on the land, and has to trickle down slopes and into the earth, in order to get back to its natural home, and it is often caught on its way before it can reach the great waters.

Go to any piece of ground which is left wild and untouched you will find it covered with grass weeds, and other plants; if you dig up a small plot you will find innumerable tiny roots creeping through the ground in every direction. Each of these roots has a sponge-like mouth by which the plant takes up water. Now, imagine rain-drops falling on this plot of ground and sinking into the earth. On every side they will find rootlets thirsting to drink them in, and they will be sucked up as if by tiny sponges, and drawn into the plants, and up the stems to the leaves. Here, as we shall see in Lecture VII., they are worked up into food for the plant, and only if the leaf has more water than it needs, some drops may escape at the tiny openings under the leaf, and be drawn up again by the sun-waves as invisible vapour into the air.

Again, much of the rain falls on hard rock and stone, where it cannot sink in, and then it lies in pools till it is shaken apart again into vapour and carried off in the air. Nor is it idle here, even before it is carried up to make clouds. We have to thank this invisible vapour in the air for protecting us from the burning heat of the sun by day and intolerable frost by night.

Let us for a moment imagine that we can see all that we know exists between us and the sun. First, we have the fine ether across which the sunbeams travel, beating down upon our earth with immense force, so that in the sandy desert they are like a burning fire. Then we have the coarser atmosphere of oxygen and nitrogen atoms hanging in this ether, and bending the minute sun- waves out of their direct path. But they do very little to hinder them on their way, and this is why in very dry countries the sun's heat is so intense. The rays beat down mercilessly, and nothing opposes them. Lastly, in damp countries we have the larger but still invisible particles of vapour hanging about among the air-atoms. Now, these watery particles, although they are very few (only about one twenty-fifth part of the whole atmosphere), do hinder the sun-waves. For they are very greedy of heat, and though the light-waves pass easily through them, they catch the heat-waves and use them to help themselves to expand. And so, when there is invisible vapour in the air, the sunbeams come to us deprived of some of their heat-waves, and we can remain in the sunshine without suffering from the heat.

This is how the water-vapour shields us by day, but by night it is still more useful. During the day our earth and the air near it have been storing up the heat which has been poured down on them, and at night, when the sun goes down, all this heat begins to escape again. Now, if there were no vapour in the air, this heat would rush back into space so rapidly that the ground would become cold and frozen even on a summer's night, and all but the most hardy plants would die. But the vapour which formed a veil against the sun in the day, now forms a still more powerful veil against the escape of the heat by night. It shuts in the heat- waves, and only allows them to make their way slowly upwards from the earth - thus producing for us the soft, balmy nights of summer and preventing all life being destroyed in the winter.

Perhaps you would scarcely imagine at first that it is this screen of vapour which determines whether or not we shall have dew upon the ground. Have you ever thought why dew forms, or what power has been at work scattering the sparkling drops upon the grass? Picture to yourself that it has been a very hot summer's day, and the ground and the grass have been well warmed, and that the sun goes down in a clear sky without any clouds. At once the heat- waves which have been stored up in the ground, bound back into the air, and here some are greedily absorbed by the vapour, while others make their way slowly upwards. The grass, especially, gives out these heat-waves very quickly, because the blades, being very thin, are almost all surface. In consequence of this they part with their heat more quickly than they can draw it up from the ground, and become cold. Now the air lying just above the grass is full of invisible vapour, and the cold of the blades, as it touches them, chills the water- particles, and they are no longer able to hold apart, but are drawn together into drops on the surface of the leaves.

We can easily make artificial dew for ourselves. I have here a bottle of ice which has been kept outside the window. When I bring it into the warm room a mist forms rapidly outside the bottle. This mist is composed of water-drops, drawn out of the air of the room, because the cold glass chilled the air all round it, so that it gave up its invisible water to form dew-drops. Just in this same way the cold blades of grass chill the air lying above them, and steal its vapour.

But try the experiment, some night when a heavy dew is expected, of spreading a thin piece of muslin over some part of the grass, supporting it at the four corners with pieces of stick so that it forms an awning. Though there may be plenty of dew on the grass all round, yet under this awning you will find scarcely any. The reason of this is that the muslin checks the heat-waves as they rise from the grass, and so the grass-blades are not chilled enough to draw together the water-drops on their surface. If you walk out early in the summer mornings and look at the fine cobwebs flung across the hedges, you will see plenty of drops on the cobwebs themselves sparkling like diamonds; but underneath on the leaves there will be none, for even the delicate cobweb has been strong enough to shut in the heat-waves and keep the leaves warm.

Again, if you walk off the grass on to the gravel path, you find no dew there. Why is this? Because the stones of the gravel can draw up heat from the earth below as fast as they give it out, and so they are never cold enough to chill the air which touches them. On a cloudy night also you will often find little or no dew even on the grass. The reason of this is that the clouds give back heat to the earth, and so the grass does not become chilled enough to draw the water-drops together on its surface. But after a hot, dry day, when the plants are thirsty and there is little hope of rain to refresh them, then they are able in the evening to draw the little drops from the air and drink them in before the rising sun comes again to carry them away.

But our rain-drop undergoes other changes more strange than these. Till now we have been imagining it to travel only where the temperature is moderate enough for it to remain in a liquid state as water. But suppose that when it is drawn up into the air it meets with such a cold blast as to bring it to the freezing point. If it falls into this blast when it is already a drop, then it will freeze into a hailstone, and often on a hot summer's day we may have a severe hailstorm, because the rain-drops have crossed a bitterly cold wind as they were falling, and have been frozen into round drops of ice.

But if the water-vapour reaches the freezing air while it is still an invisible gas, and before it has been drawn into a drop, then its history is very different. The ordinary force of cohesion has then no power over the particles to make them into watery globes, but its place is taken by the fairy process of "crystallization," and they are formed into beautiful white flakes, to fall in a snow-shower. I want you to picture this process to yourselves, for if once you can take an interest in the wonderful power of nature to build up crystals, you will be astonished how often you will meet with instances of it, and what pleasure it will add to your life.

The particles of nearly all substances, when left free and not hurried, can build themselves into crystal forms. If you melt salt in water and then let all the water evaporate slowly, you will get salt-crystals; — beautiful cubes of transparent salt all built on the same pattern. The same is true of sugar; and if you will look at the spikes of an ordinary stick of sugar-candy, such as I have here, you will see the kind of crystals which sugar forms. You may even pick out such shapes as these from the common crystallized brown sugar in the sugar basin, or see them with a magnifying glass on a lump of white sugar.

But it is not only easily melted substances such as sugar and salt which form crystals. The beautiful stalactite grottos are all made of crystals of lime. Diamonds are crystals of carbon, made inside the earth. Rock-crystals, which you know probably under the name of Irish diamonds, are crystallized quartz; and so, with slightly different colourings, are agates, opals, jasper, onyx, cairngorms, and many other precious stones. Iron, copper, gold, and sulphur, when melted and cooled slowly build themselves into crystals, each of their own peculiar form, and we see that there is here a wonderful order, such as we should never have dreamt of, if we had not proved it. If you possess a microscope you may watch the growth of crystals yourself by melting some common powdered nitre in a little water till you find that no more will melt in it. Then put a few drops of this water on a warm glass slide and place it under the microscope. As the drops dry you will see the long transparent needles of nitre forming on the glass, and notice how regularly these crystals grow, not by taking food inside like living beings, but by adding particle to particle on the outside evenly and regularly.

Week 12

Can we form any idea why the crystals build themselves up so systematically? Dr. Tyndall says we can, and I hope by the help of these small bar magnets to show you how he explains it. These little pieces of steel, which I hope you can see lying on this white cardboard, have been rubbed along a magnet until they have become magnets themselves, and I can attract and lift up a needle with any one of them. But if I try to lift one bar with another, I can only do it by bringing certain ends together. I have tied a piece of red cotton (c, Fig. 21) round one end of each of the magnets, and if I bring two red ends together they will not cling together but roll apart. If, on the contrary, I put a red end against an end where there is not cotton, then the two bars cling together. This is because every magnet has two poles or points which are exactly opposite in character, and to distinguish them one is called the positive pole and the other the negative pole. Now when I bring two red ends, that is, two positive poles together, they drive each other away. See! the magnet I am not holding runs away from the other. But if I bring a red end and a black end, that is, a positive and a negative end together, then they are attracted and cling. I will make a triangle (A, Fig. 21) in which a black end and a red end always come together, and you see the triangle holds together. But now if I take off the lower bar and turn it (B, Fig. 21) so that two red ends and two black ends come together, then this bar actually rolls back from the others down the cardboard. If I were to break these bars into a thousand pieces, each piece would still have two poles, and if they were scattered about near each other in such a way that they were quite free to move, they would arrange themselves always so two different poles came together.

Now picture to yourselves that all the particles of those substances which form crystals have poles like our magnets, then you can imagine that when the heat which held them apart is withdrawn and the particles come very near together, they will arrange themselves according to the attraction of their poles and so build up regular and beautiful patterns.

So, if we could travel up to the clouds where this fairy power of crystallization is at work, we should find the particles of water-vapour in a freezing atmosphere being built up into minute solid crystals of snow. If you go out after a snow-shower and search carefully, you will see that the snow-flakes are not mere lumps of frozen water, but beautiful six-pointed crystal stars, so white and pure that when we want to speak of anything being spotlessly white, you say that it is "white as snow." Some of these crystals are simply flat slabs with six sides, others are stars with six rods or spikes springing from the centre, others with six spikes each formed like a delicate fern. No less than a thousand different forms of delicate crystals have been found among snowflakes, but though there is such a great variety, yet they are all built on the six-sided and six-pointed plan, and are all rendered dazzlingly white by the reflection of the light from the faces of the crystals and the tiny air-bubbles built up within them. This, you see, is why, when the snow melts, you have only a little dirty water in your hand; the crystals are gone and there are no more air-bubbles held prisoners to act as looking-glasses to the light. Hoar-frost is also made up of tiny water-crystals, and is nothing more than frozen dew hanging on the blades of grass and from the trees.

But how about ice? Here, you will say, is frozen water, and yet we see no crystals, only a clear transparent mass. Here, again, Dr. Tyndall helps us. He says (and as I have proved it true, so may you for yourselves, if you will) that if you take a magnifying glass, and look down on the surface of ice on a sunny day, you will see a number of dark, six-sided stars, looking like flattened flowers, and in the centre of each a bright spot. These flowers, which are seen when the ice is melting, are our old friends the crystal stars turning into water, and the bright spot in the middle is a bubble of empty space, left because the watery flower does not fill up as much room as the ice of the crystal star did.

And this leads us to notice that ice always takes up more room than water, and that this is the reason why our water-pipes burst in severe frosts; for as the water freezes it expands with great force, and the pipe is cracked, and then when the thaw comes on , and the water melts again, it pours through the crack it has made.

It is not difficult to understand why ice should take more room; for we know that if we were to try to arrange bricks end to end in star-like shapes, we must leave some spaces between, and could not pack them so closely as if they lay side by side. And so, when this giant force of crystallization constrains the atoms of frozen water to grow into star-like forms, the solid mass must fill more room than the liquid water, and when the star melts, this space reveals itself to us in the bright spot of the centre.

We have now seen our drop of water under all its various forms of invisible gas, visible steam, cloud, dew, hoar-frost, snow, and ice, and we have only time shortly to see it on its travels, not merely up and down, as hitherto, but round the world.

We must first go to the sea as the distillery, or the place from which water is drawn up invisibly, in its purest state, into the air; and we must go chiefly to the seas of the tropics, because here the sun shines most directly all the year round, sending heat-waves to shake the water-particles asunder. It has been found by experiment that, in order to turn 1 lb. of water into vapour, as much heat must be used as is required to melt 5 lbs. of iron; and if you consider for a moment how difficult iron is to melt, and how we can keep an iron poker in a hot fire and yet it remains solid, this will help you to realize how much heat the sun must pour down in order to carry off such a constant supply of vapour from the tropical seas.

Now, when all this vapour is drawn up into the air, we know that some of it will form into clouds as it gets chilled high up in the sky, and then it will pour down again in those tremendous floods of rain which occur in the tropics.

But the sun and air will not let it all fall down at once, and the winds which are blowing from the equator to the poles carry large masses of it away with them. Then, as you know, it will depend on many things how far this vapour is carried. Some of it, chilled by cold blasts, or by striking on cold mountain tops, as it travels northwards, will fall in rain in Europe and Asia, while that which travels southwards may fall in South America, Australia, or New Zealand, or be carried over the sea to the South Pole. Wherever it falls on the land as rain, and is not used by plants, it will do one of two things; either it will run down in streams and form brooks and rivers, and so at last find its way back to the sea, or it will sink deep in the earth till it comes upon some hard rock through which it cannot get, and then, being hard pressed by the water coming on behind, it will rise up again through cracks, and come to the surface as a spring. These springs, again, feed rivers, sometimes above- ground, sometimes for long distances under-ground; but one way or another at last the whole drains back into the sea.

But if the vapour travels on till it reaches high mountains in cooler lands, such as the Alps of Switzerland; or is carried to the poles and to such countries as Greenland or the Antarctic Continent, then it will come down as snow, forming immense snow- fields. And here a curious change takes place in it. If you make an ordinary snowball and work it firmly together, it becomes very hard, and if you then press it forcibly into a mould you can turn it into transparent ice. And in the same way the snow which falls in Greenland and on the high mountains of Switzerland becomes very firmly pressed together, as it slides down into the valleys. It is like a crowd of people passing from a broad thoroughfare into a narrow street. As the valley grows narrower and narrower the great mass of snow in front cannot move down quickly, while more and more is piled up by the snowfall behind, and the crowd and crush grow denser and denser. In this way the snow is pressed together till the air that was hidden in its crystals, and which gave it its beautiful whiteness, is all pressed out, and the snow-crystals themselves are squeezed into one solid mass of pure, transparent ice.

Then we have what is called a "glacier," or river of ice, and this solid river comes creeping down till, in Greenland, it reaches the edge of the sea. There it is pushed over the brink of the land, and large pieces snap off, and we have "icebergs." These icebergs - made, remember, of the same water which was first draw up from the tropics - float on the wide sea, and melting in its warm currents, topple over and over* (A floating iceberg must have about eight times as much ice under the water as it has above, and therefore, when the lower part melts in a warm current, the iceberg loses its balance and tilts over, so as to rearrange itself round the centre of gravity.) till they disappear and mix with the water, to be carried back again to the warm ocean from which they first started. In Switzerland the glaciers cannot reach the sea, but they move down into the valleys till they come to a warmer region, and there the end of the glacier melts, and flows away in a stream. The Rhone and many other rivers are fed by the glaciers of the Alps; and as these rivers flow into the sea, our drop of water again finds its way back to its home.

But when it joins itself in this way to its companions, from whom it was parted for a time, does it come back clear and transparent as it left them? From the iceberg it does indeed return pure and clear; for the fairy Crystallization will have no impurities, not even salt, in her ice-crystals, and so as they melt they give back nothing but pure water to the sea. Yet even icebergs bring down earth and stones frozen into the bottom of the ice, and so they feed the sea with mud.

But the drops of water in rivers are by no means as pure as when they rose up into the sky. We shall see in the next lecture how rivers carry down not only sand and mud all along their course, but even solid matter such as salt, lime, iron, and flint, dissolved in the clear water, just as sugar is dissolved, without our being able to see it. The water, too, which has sunk down into the earth, takes up much matter as it travels along. You all know that the water you drink from a spring is very different from rain-water, and you will often find a hard crust at the bottom of kettles and in boilers, which is formed of the carbonate of lime which is driven out of the clear water when it is boiled. The water has become "hard" in consequence of having picked up and dissolved the carbonate of lime on its way through the earth, just in the same way as water would become sweet if you poured it through a sugar-cask. You will also have heard of iron-springs, sulphur-springs, and salt-springs, which come out of the earth, even if you have never tasted any of them, and the water of all these springs finds its way back at last to the sea.

And now, can you understand why sea-water should taste salt and bitter? Every drop of water which flows from the earth to the sea carries something with it. Generally, there is so little of any substance in the water that we cannot taste it, and we call it pure water; but the purest of spring or river-water has always some solid matter dissolved in it, and all this goes to the sea. Now, when the sun-waves come to take the water out of the sea again, they will have nothing but the pure water itself; and so all these salts and carbonates and other solid substances are left behind, and we taste them in sea-water.

Some day, when you are at the seaside, take some extra water and set it on the hob till a great deal has simmered gently away, and the liquid is very thick. Then take a drop of this liquid, and examine it under a microscope. As it dries up gradually, you will see a number of crystals forming, some square - and these will be crystals of ordinary salt; some oblong - these will be crystals of gypsum or alabaster; and others of various shapes. Then, when you see how much matter from the land is contained in sea-water, you will no longer wonder that the sea is salt; on the contrary, you will ask, Why does it not grow salter every year?

The answer to this scarcely belongs to our history of a drop of water, but I must just suggest it to you. In the sea are numbers of soft-bodied animals, like the jelly animals which form the coral, which require hard material for their shells or the solid branches on which they live, and they are greedily watching for these atoms of lime, of flint, or magnesia, and of other substances brought down into the sea. It is with lime and magnesia that the tiny chalk-builders form their beautiful shells, and the coral animals their skeletons, while another class of builders use the flint; and when these creatures die, their remains go to form fresh land at the bottom of the sea; and so, though the earth is being washed away by the rivers and springs it is being built up again, out of the same materials, in the depths of the great ocean.

And now we have reached the end of the travels of our drop of water. We have seen it drawn up by the fairy "heat," invisible into the sky; there fairy "cohesion" seized it and formed it into water-drops and the giant, "gravitation," pulled it down again to the earth. Or, if it rose to freezing regions, the fairy of "crystallization" built it up into snow-crystals, again to fall to the earth, and either to be melted back into water by heat, or to slide down the valleys by force of gravitation, till it became squeezed into ice. We have detected it, when invisible, forming a veil round our earth, and keeping off the intense heat of the sun's rays by day, or shutting it in by night. We have seen it chilled by the blades of grass, forming sparkling dew-drops or crystals of hoar-frost, glistening in the early morning sun; and we have seen it in the dark underground, being drunk up greedily by the roots of plants. We have started with it from the tropics, and travelled over land and sea, watching it forming rivers, or flowing underground in springs, or moving onwards to the high mountains or the poles, and coming back again in glaciers and icebergs. Through all this, while it is being carried hither and thither by invisible power, we find no trace of its becoming worn out, or likely to rest from its labours. Ever onwards it goes, up and down, and round and round the world, taking many forms, and performing many wonderful feats. We have seen some of the work that it does, in refreshing the air, feeding the plants, giving us clear, sparkling water to drink, and carrying matter to the sea; but besides this, it does a wonderful work in altering all the face of our earth. This work we shall consider in the next lecture, on "The two great Sculptors - Water and Ice."

Week 13

In our last lecture we saw that water can exist in three forms:— 1st, as an invisible vapour; 2nd, as liquid water; 3rd, as solid snow and ice.

To-day we are going to take the two last of these forms, water and ice, and speak of them as sculptors.

To understand why they deserve this name we must first consider what the work of a sculptor is. If you go into a statuary yard you will find there large blocks of granite, marble, and other kinds of stone, hewn roughly into different shapes; but if you pass into the studio, where the sculptor himself is at work you will find beautiful statues, more or less finished; and you will see that out of rough blocks of stone he has been able to cut images which look like living forms. You can even see by their faces whether they are intended to be sad, or thoughtful, or gay, and by their attitude whether they are writhing in pain, or dancing with joy, or resting peacefully. How has all this history been worked out from the shapeless stone? It has been done by the sculptor's chisel. A piece chipped off here, a wrinkle cut there, a smooth surface rounded off in another place, so as to give a gentle curve; all these touches gradually shape the figure and mould it out of the rough stone, first into a rude shape and afterwards, by delicate strokes, into the form of a living being.

Now, just in the same way as the wrinkles and curves of a statue are cut by the sculptor's chisel, so the hills and valleys, the steep slopes and gentle curves on the face of our earth, giving it all its beauty, and the varied landscapes we love so well, have been cut out by water and ice passing over them. It is true that some of the greater wrinkles of the earth, the lofty mountains, and the high masses of land which rise above the sea , have been caused by earthquakes and shrinking of the earth. We shall not speak of these to-day, but put them aside as belonging to the rough work of the statuary yard. But when once these large masses are put ready for water to work upon, then all the rest of the rugged wrinkles and gentle slopes which make the country so beautiful are due to water and ice, and for this reason I have called them "sculptors."

Go for a walk in the country, or notice the landscape as you travel on a railway journey. You pass by hills and through valleys, through narrow steep gorges cut in hard rock, or through wild ravines up the sides of which you can hardly scramble. Then you come to grassy slopes and to smooth plains across which you can look for miles without seeing a hill; or, when you arrive at the seashore, you clamber into caves and grottos, and along dark narrow passages leading from one bay to another. All these - hills, valleys, gorges, ravines, slopes, plains, caves, grottos, and rocky shores - have been cut out by the water. Day by day and year by year, while everything seems to us to remain the same, this industrious sculptor is chipping away, a few grains here, a corner there, a large mass in another place, till he gives to the country its own peculiar scenery, just as the human sculptor gives expression to his statue.

Our work to-day will consist in trying to form some idea of the way in which water thus carves out the surface of the earth, and we will begin by seeing how much can be done by our old friends the rain-drops before they become running streams.

Everyone must have noticed that whenever rain falls on soft ground it makes small round holes in which it collects, and then sinks into the ground, forcing its way between the grains of earth. But you would hardly think that the beautiful pillars in Fig. 24 have been made entirely in this way by rain beating upon and soaking into the ground.

Where these pillars stand there was once a solid mass of clay and stones, into which the rain-drops crept, loosening the earthly particles; and then when the sun dried the earth again cracks were formed, so that the next shower loosened it still more, and carried some of the mud down into the valley below. But here and there large stones were buried in the clay, and where this happened the rain could not penetrate, and the stones became the tops of tall pillars of clay, washed into shape by the rain beating on its sides, but escaping the general destruction of the rest of the mud. In this way the whole valley has been carved out into fine pillars, some still having capping-stones, while others have lost them, and these last will soon be washed away. We have no such valleys of earth-pillars here in England, but you may sometimes see tiny pillars under bridges where the drippings have washed away the earth between the pebbles, and such small examples which you can observe for yourselves are quite as instructive as more important ones.

Another way in which rain changes the surface of the earth is by sinking down through loose soil from the top of a cliff to a depth of many feet till it comes to solid rock, and then lying spread over a wide apace. Here it makes a kind of watery mud, which is a very unsafe foundation for the hill of earth above it, and so after a time the whole mass slips down and makes a fresh piece of land at the foot of the cliff. If you have ever been at the Isle of Wight you will have seen an undulating strip of ground, called the Undercliff, at Ventnor and other places, stretching all along the sea below the high cliffs. This land was once at the top of the cliff, and came down by succession of landslips such as we have been describing. A very great landslip of this kind happened in the memory of living people, at Lyme Regis, in Dorsetshire, in the year 1839.

You will easily see how in forming earth-pillars and causing landslips rain changes the face of the country, but these are only rare effects of water. It is when the rain collects in brooks and forms rivers that it is most busy in sculpturing the land. Look out some day into the road or the garden where the ground slopes a little, and watch what happens during a shower of rain. First the rain-drops run together in every little hollow of the ground, then the water begins to flow along any ruts or channels it can find, lying here and there in pools, but always making its way gradually down the slope. Meanwhile from other parts of the ground little rills are coming, and these all meet in some larger ruts where the ground is lowest, making one great stream, which at last empties itself into the gutter or an area, or finds its way down some grating.

Now just this, which we can watch whenever a heavy shower of rain comes down on the road, happens also all over the world. Up in the mountains, where there is always a great deal of rain, little rills gather and fall over the mountain sides, meeting in some stream below. Then, as this stream flows on, it is fed by many runnels of water, which come from all parts of the country, trickling along ruts, and flowing in small brooks and rivulets down the gentle slope of the land till they reach the big stream, which at last is important enough to be called a river. Sometimes this river comes to a large hollow in the land and there the water gathers and forms a lake; but still at the lower end of this lake out it comes again, forming a new river, and growing and growing by receiving fresh streams until at last it reaches the sea.

The River Thames, which you all know, and whose course you will find clearly described in Mr. Huxley's 'Physiography,' drains in this way no less than one-seventh of the whole of England. All the rain which falls in Berkshire, Oxfordshire, Middlesex, Hertfordshire, Surrey, the north of Wiltshire and north-west of Kent, the south of Buckinghamshire and of Gloucestershire, finds its way into the Thames; making an area of 6160 square miles over which every rivulet and brook trickle down to the one great river, which bears them to the ocean. And so with every other area of land in the world there is some one channel towards which the ground on all sides slopes gently down, and into this channel all the water will run, on its way to the sea.

But what has this to do with sculpture or cutting out of valleys? If you will only take a glass of water out of any river, and let it stand for some hours, you will soon answer this question for yourself. For you will find that even from river water which looks quite clear, a thin layer of mud will fall to the bottom of the glass, and if you take the water when the river is swollen and muddy you will get quite a thick deposit. This shows that the brooks, the streams, and the rivers wash away the land as they flow over it and carry it from the mountains down to the valleys, and from the valleys away out into the sea.

But besides earthly matter, which we can see, there is much matter dissolved in the water of rivers (as we mentioned in the last lecture), and this we cannot see.

If you use water which comes out of a chalk country you will find that after a time the kettle in which you have been in the habit of boiling this water has a hard crust on its bottom and sides, and this crust is made of chalk or carbonate of lime, which the water took out of the rocks when it was passing through them. Professor Bischoff has calculated that the river Rhine carries past Bonn every year enough carbonate of lime dissolved in its water to make 332,000 million oyster-shells, and that if all these shells were built into a cube it would measure 560 feet.

Week 14

Imagine to yourselves the whole of St. Paul's churchyard filled with oyster-shells, built up in a large square till they reached half as high again as the top of the cathedral, then you will have some idea of the amount of chalk carried invisibly past Bonn in the water of the Rhine every year.

Since all this matter, whether brought down as mud or dissolved, comes from one part of the land to be carried elsewhere or out to sea, it is clear that some gaps and hollows must be left in the places from which it is taken. Let us see how these gaps are made. Have you ever clambered up the mountainside, or even up one of those small ravines in the hillside, which have generally a little stream trickling through them? If so, you must have noticed the number of pebbles, large and small, lying in patches here and there in the stream, and many pieces of broken rock, which are often scattered along the sides of the ravine; and how, as you climb, the path grows steeper, and the rocks become rugged and stick out in strange shapes.

The history of this ravine will tell us a great deal about the carving of water. Once it was nothing more than a little furrow in the hillside down which the rain found its way in a thin thread-like stream. But by and by, as the stream carried down some of the earth, and the furrow grew deeper and wider, the sides began to crumble when the sun dried up the rain which had soaked in. Then in winter, when the sides of the hill were moist with the autumn rains, frost came and turned the water to ice, and so made the cracks still larger, and the swollen steam rushing down, caught the loose pieces of rock and washed them down into its bed. Here they were rolled over and over, and grated against each other, and were ground away till they became rounded pebbles, such as lie in the foreground of the picture (Fig. 25); while the grit which was rubbed off them was carried farther down by the stream. And so in time this became a little valley, and as the stream cut it deeper and deeper, there was room to clamber along the sides of it, and ferns and mosses began to cover the naked stone, and small trees rooted themselves along the banks, and this beautiful little nook sprang up on the hill-side entirely by the sculpturing of water.

Shall you not feel a fresh interest in all the little valleys, ravines, and gorges you meet with in the country, if you can picture them being formed in this way year by year? There are many curious differences in them which you can study for yourselves. Some will be smooth, broad valleys and here the rocks have been soft and easily worn, and water trickling down the sides of the first valley has cut other channels so as to make smaller valleys running across it. In other places there will be narrow ravines, and here the rocks have been hard, so that they did not wear away gradually, but broke off and fell in blocks, leaving high cliffs on each side. In some places you will come to a beautiful waterfall, where the water has tumbled over a steep cliff, and then eaten its way back, just like a saw cutting through a piece of wood.


Back to IndexNext