There is only one place in the world where we can go for the results of soil improvement for more than a quarter of a century in connection with the growing of potatoes. Of course this place is Rothamsted, England, where as an average for twenty-six years the yield of potatoes was 51 bushels an acre on unfertilized land and exactly 102 bushels where only a phosphate fertilizer was applied. Where the same amount of phosphorus—29 pounds of the element per acre per annum—was used in connection with other minerals—300 pounds of potassium sulfate and 100 pounds each of the sulfates of magnesium and sodium—the average yield of potatoes was 109 bushels. Where 86 pounds of nitrogen was applied in sodium nitrate the average yield was 79 bushels; but where the nitrogen, phosphorus and other minerals were all applied the average yield for the twenty-six years was 203 bushels.
At 50 cents a bushel for potatoes, the investment in phosphorus alone paid 600 per cent net profit; and even the complete fertilizer, including 392 pounds of acid phosphate, 550 pounds of sodium nitrate and 500 pounds of alkali salts, aggregating 1442 pounds, and costing at moderate prices $24.28 an acre per annum, paid back $76 a year as a twenty-six year average, thus making 300 per cent even on an investment of nearly $25 an acre a year.
There is also but one place in the world where we can learn the results secured from the application of phosphorus for a period of thirty-six years in a good system of farming; and again this place is Rothamsted.
In 1848 Sir John Lawes and Sir Henry Gilbert began investigations on Agdell Field. The Norfolk rotation, already known at that time as one of the best rotation systems, was turnips, barley, clover, and wheat; and in these practical field experiments the turnips were fed on the land and the animal fertilizer thus produced was returned to the soil, which was well supplied with limestone.
During the next thirty-six years $29.52 worth of phosphorus per acre was applied to one part of the field; and in comparison with another part of the same field cropped and managed similarly, except that no phosphorus was applied, the $29.52 worth of phosphorus produced $98.02 increase in the value of the turnips, $37.45 in barley, $48.93 in clover (and beans) and $45.99 in wheat.
The total value of the crops grown on the land not receiving phosphorus during the thirty-six years was $432.43 an acre, while on the phosphated land the crop values amounted to $662.82, an increase of $230.39 from an investment of $29.52, the turnips being figured at $1.40 a ton, barley at 50 cents a bushel, clover hay at $6 a ton, beans at $1.25 a bushel, wheat at 70 cents a bushel, and phosphorus at 12 cents a pound. As a general average at these conservative prices, the investment of $3.28 an acre every four years paid back $25.60 in the four crops.
In most states the legal rate of interest is 6 per cent but here is an investment that paid the principal and 680 per cent interest every four years. And these investigations show that the phosphorus was used with profit for the production of markedly different crops, including potatoes and turnips, barley and wheat, clover and beans.
But the soil at Rothamsted is no poorer in phosphorus than is the average soil of the United States; and these results are given here not only because they are the oldest and most trustworthy the world affords, but because they are strictly applicable to the production of common crops on vast areas of agricultural land in our own country.
The unfertilized soil at the Rothamsted station contains, in 2,000,000 pounds—corresponding to about 6-2/3 inches to the acre—1000 pounds of phosphorus and 35,000 of potassium, while an acre of plowed soil of the same weight at State College, Pennsylvania, contains 1100 pounds of phosphorus and 50,700 of potassium.
In a word, normal soils are deficient in phosphorus, and the application of phosphorus in good systems of farming produces marked and profitable increases in crop yields. But what form of phosphorus shall we apply? This is a very important question in agricultural economics, for we have many different kinds of fertilizing materials that contain phosphorus, and one may cost ten times as much as another as a source of phosphorus. Thus 250 pounds of phosphorus in a ton of finely ground natural rock phosphate can be purchased at the mines in Tennessee and delivered at the farmer's railway station in the heart of the Corn Belt for $8. Or the ton of raw phosphate may be mixed with a ton of sulfuric acid in the fertilizer factory, and the two tons of acid phosphate may be sold to the same farmer for $32. Or the fertilizer manufacturer may mix the two tons of acid phosphate with two tons of "filler," containing a little nitrogen and potassium, and then sell the same farmer the four tons of so-called "complete" fertilizer for $80; and the farmer gets no more phosphorus in the four tons of "complete" fertilizer for $80 than in the one ton of natural phosphate for $8.
The Pennsylvania State College conducted an experiment for twelve years—1884 to 1895—in which $1.05 an acre was invested in ground raw rock phosphate with a rotation of corn, oats, wheat and hay (clover and timothy), and the value of the increase produced by the phosphorus amounted to $5.85 as an average for the twelve years, and to $8.41 as an average for the last four years. Thus the profit was from about 560 to 800 per cent on the investment, counting corn at 35 cents a bushel, oats at 30 cents, wheat at 70 cents, and hay at $6 a ton. These figures represent the increase produced by phosphorus over and above the value of the crops grown without phosphorus fertilizer. In this case no farm manure was used on either part of the field; but commercial nitrogen and potassium were applied alike on both parts, and clover was grown in the rotation.
Acid phosphate was also used in direct comparison; and, in answer to the question whether the general farmer should apply liberal amounts of finely ground natural rock phosphate, or whether he should pay four times as much for phosphorus after the fertilizer manufacturer has mixed one part of the raw rock with one of sulfuric acid and thus produced two parts of acid phosphate, these Pennsylvania experiments tell us that the yearly average for the twelve years gave a gain per year of $2.45 from the raw phosphate and 48 cents from the acid phosphate, at the prices used by the Pennsylvania Experiment Station. But we must not draw general conclusions from this one experiment, even though it covers twelve years.
In 1895 the Maryland Experiment Station began field experiments with different forms of phosphorus; and, as an average of six tests every year for twelve years, $1.965 invested in ground raw rock phosphate produced increases in corn, wheat and hay that were worth $22.11, at 35 cents a bushel for corn, 70 cents for wheat, $6 a ton for hay, and 3 cents a pound for phosphorus in the ground natural phosphate. How would you like 1000 per cent profit as the result of mixing brain with brawn, in connection with the improvement of your own business, thus keeping the investment under your own control?
Mind you, this does not prove that farming is profitable, but only that the intelligent use of phosphorus in farming is profitable. In other words the admixture—brains—is profitable.
In commenting upon his investigations the director of the Maryland Agricultural Experiment Station states that the raw phosphate produced a higher total average yield than acid phosphate, and at less than half the cost.
The Rhode Island Experiment Station began a series of experiments with different forms of phosphorus in 1894. If we add together all the hay and grain crops grown during the decade following the first year of these experiments, we find that the increases per acre were 14,580 pounds for raw phosphate and 14,550 pounds for acid phosphate, on unlimed land; while lime and raw phosphate produced 27,030 pounds, and lime and acid phosphate 29,690 pounds, of increase; and the acid phosphate cost three times as much as the raw phosphate.
In commenting upon these investigations the director of the Rhode Island Experiment Station states that the raw phosphate gave very good results with such farm crops as oats, peas, crimson clover, millet, soy beans, and so forth, but very poor results with such garden crops as turnips, rutabagas, cabbage, beets, lettuce, squash, and so forth, and its use for these garden crops is not advised.
In 1890 the Massachusetts Experiment Station began investigations with different phosphates applied in equal money value, and in his report for 1900 the director states that the raw rock phosphate ranks above the acid phosphate both as an average for the entire period and as an average between 1895 and 1900, during which time the land to which no phosphorus was applied produced only 55 per cent as much as where raw phosphate was used—a result worth every farmer's consideration.
The Ohio Agricultural Experiment Station has reported investigations covering sixteen years in which raw phosphate was compared with acid phosphate costing twice as much per acre. As an average of all results secured, 320 pounds of raw phosphate applied with manure on clover sod produced 8.4 bushels more corn, 4.7 bushels more wheat, and 0.49 ton more hay per acre than where manure alone was used, and 320 pounds of acid phosphate, costing twice as much money but containing only half as much phosphorus, applied with the same amount of manure, produced 7.5 bushels more corn, 5.1 bushels more wheat, and 0.46 ton more hay than where the manure alone was used.
Now I have presented the averages or summaries of all investigations that have been reported covering ten years or more where equal money values of raw phosphate and acid phosphate have been used, or where any apparent provision was made to supply some organic manure, whether as farm manure, green manure or merely as clover grown in the rotation; and I invite the reader to mix his own brains with these data and not to expect me to state whether he should use the relatively cheap ground natural phosphate rock or the more costly manufactured acidulated phosphate in the improvement of his own soil in systems of permanent profitable agriculture.
If the natural rock is used it should be ground so that at least 90 per cent will pass through a sieve with 10,000 meshes to the square inch, and of course its content of phosphorus (from 12 to 15 per cent) or of so-called "phosphoric acid" (from 27 to 34 per cent) should also be guaranteed. Moreover it should be used liberally and in connection with plenty of decaying organic matter. People sometimes ask, "How much of the phosphorus in raw phosphate is available?" The best answer to this question is, "None of it; and, if you are not going to make it available, don't use it."
On my own farm I use about one ton per acre of raw phosphate once every six years, thus adding at least 250 pounds of phosphorus at a cost of less than $8; whereas 200 pounds of the common "complete" fertilizer per acre yearly would cost $12 every six years, and would supply only 40 pounds of phosphorus. I do not use "complete" fertilizers, because there is plenty of nitrogen in the air and plenty of potassium in the soil; and because, by growing and plowing under plenty of clover, I not only secure nitrogen from the air and liberate potassium from the soil but also liberate the phosphorus from the raw rock phosphate applied to the soil. In beginning the use of raw phosphate where the supply of organic manures is limited, I apply one ton of phosphate and 600 pounds of kainit in intimate connection, turn them under, preferably with organic matter, then add ground limestone if needed, and thus prepare to grow clover.
By far the most important agencies under the farmer's control for the liberation of plant food are the decomposition products of fermenting or decaying organic matter, such as green manures, crop residues and ordinary farm manures. In the decomposition of these organic materials sour or acid products are formed. Thus vinegar, containing acetic acid, is formed from the fermentation of apple juice, hard cider being an intermediate product. Sweet, chopped, immature field corn becomes sour silage in the silo, lactic, acetic, carbonic and other acids being formed. By a similar process cabbage is turned into sauerkraut. Likewise sweet milk becomes sour, with the formation of lactic acid. Oxalic, citric, tartaric, succinic, malic, gallic and tannic are other well-known organic acids. Some of these are contained in the sap or juice of certain plants, and these or others are formed when crop residues are decomposed in the soil.
In the ultimate decomposition of organic matter the carbon appears in the form of carbon dioxid which when combined with water forms carbonic acid. Though this is a very weak acid, its solvent action is very important.
But, in addition to the various organic acids and carbonic acid, we have also to consider the formation of nitric acid in connection with the decomposition of organic manures. Nitric acid is one of the strongest known, and in solvent power it is excelled by no single acid. The nitrogen contained in crop residues and other organic manures is chiefly in chemical combination with carbon, oxygen and hydrogen, much of it in insoluble protein compounds. Normally this organic nitrogen is transformed in the soil, first into ammonia nitrogen, next into nitrite nitrogen, and lastly into nitrate nitrogen, these three transformations being effected by biochemical action produced by different kinds of living microscopic organisms called bacteria. Though detectable amounts of free nitric acid do not accumulate during this process of nitrification, the soluble nitrate or final product is formed by the action of nitric acid upon a mineral base, such as calcium, magnesium, or potassium, which may have been in the soil in insoluble form, so that the nitrogen must pass through the form of nitric acid in the transformation into nitrates.
While the organic matter applied to the soil contains about twenty times as much carbon as nitrogen, and while corresponding amounts of carbonic acid and important amounts of intermediate organic acids must be formed, it is of much interest to know that even the nitric acid formed in the transformation of organic nitrogen to nitrate nitrogen in sufficient quantity for a given crop is seven times as much acid as would be required to convert raw rock phosphate into soluble phosphate to furnish the phosphorus required for the same crop. A knowledge of this definite quantitative relationship should help us to appreciate the possibilities of decaying organic manures in the important matter of making plant food available, including potassium, calcium and magnesium as well as phosphorus and nitrogen.
The value of rye, rape, buckwheat and other non-legumes when used as green manures is very largely due to the liberation of plant food by their decomposition in contact with the natural phosphates, potash and other minerals contained in the soil. The farmer has no more important business than that of making plant food available, especially by supplying liberal amounts of decaying organic matter.
The following suggestions are offered to the land owner:
To enrich the soil apply liberal amounts of limestone, organic manures and phosphorus.
To enrich the seller apply small amounts of high-priced "complete" commercial fertilizers.
Thus the average of seventy-three "Cooperative Fertilizer Tests on Clay and Loam Soils," extending into thirty-eight different counties in Indiana (Bulletin 155), shows 13 cents as the farmer's profit from each dollar spent for "complete" fertilizers used for corn, oats, wheat, timothy, and potatoes, if valued in the field at 40 cents a bushel for corn, 30 cents for oats, 80 cents for wheat, 50 cents for potatoes, and at $10 a ton for hay, over and above the extra expense for harvesting and marketing the increase, and of course the soil grows poorer, because the crops harvested removed much more plant food than the fertilizers supplied.
THOUGH intelligent soil improvement is the most profitable business in which an honest man can engage, ordinary farming is not a highly remunerative occupation, and to a large extent the fortune of the farmer is bound up with the increase or depreciation in the market value of his land. There are at least three important factors of influence which induce people to continue farming:
First, the farmer is his own employer. He controls his own job, is his own boss and has no superior officer to lay him off because of disagreement, dull business or political preferment. Farmers constitute by far the largest class of citizens who own their own business, and are thus "independent."
Second, the farmer is able as a rule to make some sort of a living for his family very largely out of the produce of the farm, so that he gets some return for his labor in terms of food, even when there is no profit in farming as a business; whereas the wage-earner of the city, as soon as his wages stop and his savings and credit are exhausted, must see his family supported by charity or starve. This is not fiction, but fact.
Third, land is usually considered a safe investment, in which one may hold a perfect and undivided title to his property; and people will retain possession of a farm even when it pays a low rate of interest, rather than sell and invest the proceeds in some other enterprise which they cannot control as individuals or which may suddenly depreciate in earning power, fail or be utterly destroyed.
Though it is true that farm land does not pass out of existence in a day, nevertheless it is by no means a safe investment, as witness the numerous abandoned farms in the older agricultural sections of this new country. It is easily possible for one of means to become land-poor—to have investments in land which will not pay the taxes and upkeep of buildings, fences and so forth. At prevailing prices for farm produce and labor there are vast areas of land in the older states far past the point of possible self-redemption; and, as a matter of business, one might better burn his money and save his energy than to expend all his resources in half-paying for such depleted land, depending upon the immediate income from it to raise a mortgage covering the unpaid balance.
Intelligent optimism is admirable, but fact is better than fiction; and blind bigotry paraded as optimism is dangerous and condemnable. Some one has said that such a bigot is not an optimist but a "cheerful idiot." To purchase rich, well-watered land at a low price and become wealthy by merely waiting till the land increases in value tenfold, while making a living by taking fertility from the soil, has been easy and common in the great agricultural states during the last half-century. But, paradoxical as it may seem, land values have increased while fertility and productiveness have decreased and, with shorter days for higher priced and less efficient farm labor, with more middlemen absorbing the profits between the producer and the consumer, it is now difficult indeed to buy land with borrowed money and pay for it from subsequent farm profits. If continued soil depletion is practiced, ultimate failure is the only future for such investments.
That vast areas of land once cultivated with profit in the original thirteen states now lie agriculturally abandoned is common knowledge; and that the farm lands of the great Corn Belt and Wheat Belt of the North-Central states are even now undergoing the most rapid soil depletion ever witnessed is known to all who possess the facts. Unless this tendency is checked these lands will go the way of the abandoned farms.
The United States Bureau of the Census reports that the total production of our five great grain crops—corn, wheat, oats, barley and rye—amounted to 4,414,000,000 bushels in 1899, and to 4,445,000,000 bushels in 1909, an increase of less than one per cent. Furthermore, if we assume the average production reported by the United States Department of Agriculture for the three-year periods 1898 to 1900 and 1908 to 1910 as the normal for 1899, and 1909, respectively, and compare these averages with the production actually reported by that department for 1899 and 1909, we find that as an average of all these crops 1909 was a slightly more favorable season than 1899, which indicates that with strictly comparable seasons the increase from 1899 to 1909 was less than 1/2 per cent in the production of these five great grain crops of the United States.
On the other hand, the Bureau of Census reports that during the same decade the acreage of farm land in the United States increased by 4.8 per cent, and that the acreage of improved farm land-that is, farmed land-increased by 154 per cent. Thus the census data plainly show reduced yield per acre. In addition we have actual records which show that during the decade our wheat exports decreased from 210,000,000 to 108,000,000 bushels, and that our corn exports decreased from 196,000,000 to 49,000,000 bushels, in order to help feed the increase of 21 per cent in our population. And yet the people complained of the high cost of plain living and many have been forced to adopt lower standards for the table. Meanwhile the value of the farm land in the United States increased by 118 per cent during the ten years—from $13,000,000,000 to $28,500,000,000—as reported by the Bureau of Census.
The great primary reason why land values have increased so markedly during the last thirty years is that America has no more free land of good quality in humid sections. Civilized man is characterized by hunger for the ownership of land. Our population continues to increase by more than 20 per cent each decade, but all future possible additions to the farm lands of the United States amount to only 9 per cent of the present acreage, and most of this small addition requires expensive irrigation or drainage.
If it cost $4 an acre to raise corn, 5 cents a bushel to harvest and market the crop, 9 cents a bushel to maintain the fertility of the soil, and 1/2 per cent on the value of the land for taxes, then, if money is worth 5 per cent, land that produces 20 bushels of 40-cent corn is worth $21.81 an acre. On the same basis, what would land be worth that produces 40 bushels of corn and equivalent values of other crops? At first thought one might say, $43.62; but this answer would be far from the correct one, which is $116.36.
And, if we again double the yield, making it 80 bushels an acre, the value of the land becomes not $87.24, and not $232.72; but easy computation will show that the gross receipts from an 80-bushel crop will pay $7.20 an acre for soil enrichment, $4 for raising the crop, $4 for harvesting and marketing, $1.53 for taxes and 5 per cent interest on a valuation of $305.45 an acre.
The average yield of corn in the United States is only 25 bushels an acre, and the average net returns even from the farms of the Corn Belt will not pay 4 per cent interest on their present market value. But the intelligent investment of $2 an acre annually in positive soil enrichment will increase the crop yield by two bushels of corn each year—or by equivalent amounts of other crops grown in the rotation—and will maintain this increase for at least a dozen years on the average land now under cultivation in the United States; and no other safe investment can be named that will pay so great returns. Of course, the cost is $1 a bushel for the first year's increase, and even the second year the 4 bushels of corn cost $2; but what is the cost per bushel of the increase the tenth year? It is 10 cents; and the twelfth year the 24 bushels of increase cost only 8-1/3 cents a bushel, with a return of nearly 500 per cent on the annual investment in soil improvement.
And this is not based on mere theoretical considerations. The average Corn-Belt land is producing only 40 bushels of corn to the acre; while a six-year average yield of 90 bushels has been produced on the common Corn-Belt land with proper and profitable soil treatment. Thus is it too much for any farmer to adopt a definite system based upon established practical scientific information which makes it possible for his yield to increase from 40 bushels to an average of 64 bushels an acre? But let him make sure that the system he adopts is cumulative and truly permanent, and not merely stimulating and temporary.
On his 500-acre farm near Gilman, in the heart of the Illinois Corn Belt, Mr. Frank I. Mann has produced a 70-bushel average yield of corn for a five-year period, and with 200 acres of land in corn annually. It cost him only $1 an acre a year in fine-ground natural rock phosphate to produce increased yields of 16 bushels more corn, 23 bushels more oats and 1 ton more clover than the average yields secured without adding phosphorus.
But this progressive, practical farmer is only putting into profitable practice the results of the long-continued careful investigations with raw phosphate conducted by such public-service institutions as the agricultural experiment stations of Pennsylvania, Maryland, Rhode Island, Massachusetts, Ohio and Illinois. He knows also that on four different fields of typical Corn-Belt land in McLean county, Illinois, the total crop values per acre for a period of ten years were $148.75 $151-30, $149.43 and $149.96, respectively, and that on four other adjoining or intervening fields, which differed only by two liberal additions of phosphorus during the ten years, the respective crop values for the same time were $229,37, $221.30, $229.20 and $225.57.
Of course, Mr. Mann does not buy nitrogen, but he takes it from the inexhaustible supply in the air by means of clover and alfalfa or other legumes. He does not buy potassium because he knows how to liberate it from the inexhaustible supply contained in the soil, and because he knows that in the Illinois investigation just cited the crop values from four different fields not receiving potassium were $148.75, $151.30, $229.37 and $221.30; while four other adjoining fields, which differed only by liberal applications of potassium, produced during the same ten years $149.43, $149.96, $229.20 and $225.57, respectively.
Thus, as a general average, phosphorus increased the crop values by $76.50 an acre, which amounts to more than 300 per cent on the investment, and at the end of the ten years the soil on the best treated and highest yielding land was 10 per cent richer in phosphorus than at the beginning; while the crops from the unfertilized land removed an amount of phosphorus equal to nearly one-tenth of the total supply in the plowed soil. But a similar general average shows that potassium produced increased crop values worth only 86 cents, or 3 per cent of its cost.
What other results should be expected from land containing in the plowed soil of an acre less than 1200 pounds of phosphorus and more than 36,000 pounds of potassium?
If there is one agricultural fact that needs to be impressed upon the American people it is that the farmers of this country have been living, not upon the interest from their investments, but upon their principal; and whatever measure of apparent prosperity they have had has been taken from their capital stock. The boastful statement sometimes made, that the American landowner has become a scientific farmer, is as erroneous as it is optimistic. Such statements are based upon a few selected examples or rare illustrations, and not upon any adequate knowledge of general farm practice. Even to this date almost every effort put forth by the mass of American farmers has resulted in decreasing the fertility of the soil.
The productive power of normal land in humid climates depends almost wholly upon the power of the soil to feed the crop; but the American farmer does everything except to restore to the soil the plant food required to maintain permanently its crop-producing power. These ought be to have done, but not to leave the other undone. Thus, tile drainage adds nothing to the soil out of which crops are made, but only permits the removal of more fertility in the larger crops produced on the well-drained land. More thorough tillage with our improved implements of cultivation is merely "working the land for all that's in it." The use of better seed produces larger crops, but only at the expense of the soil. Even the farm manure is so limited and is spread so thinly with manure-spreaders made for the purpose that it adds but little to the soil in comparison with the crops removed and sold in grain and hay as well as in meat and milk. Clover, as commonly produced and harvested, adds little or no nitrogen to the soil.
The ordinary high-priced, manufactured, acidulated, so-called "complete" commercial fertilizers, in the small amounts that farmers can afford to use, and do use quite generally in the older states, serve in part as soil-stimulants and commonly leave the land poorer year by year; and if the farmers of the great Corn and Wheat Belts are ever to adopt systems of permanent agriculture, it must be done in the near future, or they too will awake to find their lands impoverished beyond self-redemption.
Even in the state of Massachusetts, where a most active campaign has been waged for forty years by the mixed commercial fertilizer interests, urging and persuading many farmers to use their high-priced artificial soil stimulants, very large areas of land are being agriculturally abandoned. Thus the following statement appears in the report of the United States Bureau of Census in regard to the farm land of Massachusetts:
"The area of improved land decreased without interruption until in 1910 it was only about one-half what it was in 1880."
It should not be forgotten, however, that market gardeners often sell from $100 to $300 worth of produce from an acre and they can well afford to use large amounts of soluble commercial plant food (acid phosphate, nitrates, etc.) as well as animal manures from the cities.
It is not the fault of the farmer alone that soil-robbing and land ruin have followed his work in America. Neither the average farmer of today nor any of his ancestors received any agricultural instruction in the schools; and the greedy fertilizer agent has persuaded him to buy his patent soil medicine and has taken $100 of the farmer's money and given him in return only $10 worth of what he really needs to buy; and even the Bureau of Soils of the Federal Government has for several years promulgated the erroneous and condemnable theory expressed in the following quotations:
"From the modern conception of the nature and purpose of the soil it is evident that it cannot wear out; that, so far as the mineral food is concerned, it will continue automatically to supply adequate quantities of the mineral plant foods for crops." (United States Bureau of Soils, Bulletin No. 55, p. 79.)
"There is another way in which the fertility of the soil can be maintained: namely, by arranging a system of rotation and growing each year a crop that is not injured by the excreta of the preceding crop: then when the time comes round for the first crop to be planted again, the soil has had ample time to dispose of the sewage resulting from the growth of the plant two or three years before." (United States Farmers' Bulletin No. 257, p. 21.)
"The soil is the one indestructible, immutable asset that the nation possesses. It is the one resource that cannot be exhausted; that cannot be used up." (United States Bureau of Soils, Bulletin No. 55, p. 66.)
And these are only samples of the false teaching spread abroad by this bureau of theorists, even though the congressmen of the United States can not enter the capitol of the nation from any direction without passing depleted and agriculturally abandoned lands. Is it not in order to ask the Congress or the president of the United States how long the American farmer is to be burdened with these pernicious, disproved and condemnable doctrines poured forth and spread abroad by the Federal Bureau of Soils?
It is true that these erroneous teachings have been opposed or ridiculed in Europe; they have been denounced by the Association of Official Agricultural Chemists of the United States, and rejected by every land-grant college and agricultural experiment station that has been heard from, including those in forty-seven states; and yet this doctrine, emanating from what should be the position of highest authority, is the most potent of all existing influences to prevent the proper care of our soils.
It was Baron von Liebig who taught, both in Germany and in England, that—"it is not the land itself that constitutes the farmer's wealth, but it is in the constituents of the soil, which serve for the nutrition of plants, that this wealth truly consists." And it is in the application of this teaching, completely verified by sixty years of investigation and demonstration by Lawes and Gilbert at Rothamsted, that England has been able to raise her 10-year average yield of wheat to 37-1/2 bushels an acre, while the average for the United States stands at 14 bushels.
In Illinois, where the agricultural college and experiment station, the state farmers' institute and the agricultural press have been working in perfect co-operation in teaching and demonstrating the need and value of soil enrichment as well as of seed selection and proper tillage, the 10-year average yield of wheat is already 3 bushels higher and the 10-year average yield of corn is 7-1/2 bushels higher than the averages for the 25-year period ending with 1890, before the definite information from Illinois investigations began to be widely disseminated; and yet it must be confessed that on the average Illinois is producing only 16 bushels of wheat and 36 bushels of corn to the acre, which is less than half a crop, measured by the possibilities of our soil and climate.
But what shall we say of Georgia, both an older and a larger state, and with far better climatic conditions for corn, yet with a 10-year average yield of less than 12 bushels of corn to the acre, notwithstanding the yearly expenditure of $20,000,000 for more than 2000 different brands of commercial fertilizers that have been bought by Georgia farmers? The facts are that while some profit can be secured from the use of high-priced mixed commercial fertilizers for cotton with lint at 10 cents a pound, they scarcely pay their cost when used for corn, even at Georgia prices.
But Georgia spends money enough for fertilizers to double the average crop yields of the entire state within a decade if wisely invested in positive soil enrichment in rational permanent systems of agriculture.
Why should not the farmers of Georgia and other Southern states be brought to understand and to apply the results of those most valuable investigations conducted by the Louisiana Experiment Station on typical worn upland soil of the South, which show that the use of organic manures produced upon the farm-farm manure, legume cover-crops and cottonseed meal—re-enforced by liberal additions of phosphorus, increased the crop yields from 466 to 1514 pounds per acre of seed cotton, from 9.4 to 31.4 bushels of corn, and from 16.4 to 41.8 bushels of oats, as the averages for nineteen years?
This experiment occupied 6 acres of land, but when the results are applied to a 60-acre farm it is found that the gross returns from the untreated land would amount to $595.76, while the net returns from the soil treatment amount to $956.08 annually, both the value of produce and the cost of fertilizer being computed at the prices that were used by the Louisiana Experiment Station.
Thus the combinedgrossearning power of both land and labor is less than $600 a year; while the brain work applied to the improvement of the soil on the same farm brings a net return of more than $950. Once in three years 50 pounds an acre of kainit was also applied. This would contain only 5 pounds of potassium, or less than would be required for one 7-bushel crop of corn.
These are the oldest experiments in the United States in which organic manures have been re-enforced with phosphorus, and the only addition suggested for the profitable improvement of this system is ground limestone on acid soils. These results only emphasize the fact that the average farm yields small returns upon the capital and labor invested, but the statement may well be repeated that the intelligent improvement of his soil, in systems of permanent agriculture, is the most profitable business in which the farmer and land owner can engage.
The following generous statements are quoted here only because of the hope and earnest desire that those who have read the preceding pages may continue their study of the soil—the foundation of all agriculture—until they master the subject, and make their own the existing knowledge of the fundamental principles of permanent soil fertility.
"Another Great Sermon"
Have you read it? It is "The Story of the Soil," by Doctor Cyril G. Hopkins, and not since the publication of Uncle Tom's Cabin has any writer in the world produced a book of such tremendous importance to present and future generations. This sermon is in harmony with 20th century ideals. H. A. McKEENE,Secretary Illinois State Farmers Institute.
"The Story of the Soil:" from the basis of absolute science and real life. This is an odd book. It has a love story running through it, and it has an index, not a usual appendix to a novel. And yet it is not really a novel, but a scientific book on agriculture. There is just enough story to entice the less willing reader to absorb some of the latest results of soil analysis. The young man of the story visits Virginia and New England, with a view to purchasing a worn-out farm and building it up. He finally buys such a farm, and by the methods carefully explained restores it to fertility and profit. This requires dialogs and letters on scientific husbandry, even in the love-making, and one who reads and digests it will make a better farmer.—The Independent,New York.
"The Story of the Soil" has proven an inspiration to many of our California farmers. We wish for the book a widespread circulation.—California Cultivator.
I doubt if a dozen people in the country would believe that it is possible to write a novel about the soil—these big soil problems handled so ably, so plainly that any person can understand. Here is a book that certainly every man in the land should read.—Editor CHARLES W. BURKETT,of American Agriculturist and of Ginn & Company's Country Life Education Series.
I must say that I think the book is destined to do more good, stir more thought, encourage more upward effort among the farmers of this country, than any other publication that has yet appeared. It was a happy thought making a human story of it.—Ex-Gov. W. D. HOARD,Editor of Hoard's Dairyman, Fort Atkinson, Wis.
When Dr. Cyril Hopkins sets out to write a book we know we are in for something unconventional, but this time he has excelled himself in unconventionality, and has essayed a task that no author has attempted for the last sixty years,—to tell the story of the soil in the form of a chronicle. The result is remarkable; a clear account is given of the soil in relation to the crop, and the interest of the subject is broadened by skillfully weaving in the threads of a mild novel. Light reading the book certainly is, as the author intended, but it has depth and permanent value.—DR. E.J. Russell,Director of the Rothamsted Experiment Station, England,—from "Nature."
In this book Dr. Hopkins has embodied in the shape of an interesting story, dealing with life on a farm, the science of soil fertility and permanent agriculture. He has demonstrated how the most badly run-down soil can be restored to more than virgin fertility, and with profit in the doing of the work.—Editor J. F. JACKSON,of the Southern Planter, Richmond, Va.
I wish that every farmer and farmer's family in the land could read "The Story of the Soil," for it gives in a nutshell the results of years of patient study and investigation upon the most vital question that now confronts the farmer: How shall he conserve his soil? I have read it with great pleasure and profit.—FRED L. HATCH,Farmer, Spring Grove, Ill.
In the form of a story—a real, live, interesting story—the book develops a very large number of highly important facts in connection with soils and farm fertility. We have not seen anything like it before and owing to the hold it gets upon the reader it will be a power in carrying soil and fertility facts to many who would not read the purely scientific works. The author is a leading authority and the statements in the book are reliable.—Ohio Farmer.
"The Story of the Soil," by Cyril G. Hopkins, Professor of Soils and Crops, University of Illinois, a practical farmer and a scientific soil investigator; a book of 360 pages printed on heavy wove white paper, in strong and durable binding; illustrated with photographic reproductions of actual results secured in profitable systems of permanent soil improvement; with comprehensive index and glossary. Price $1.00 Can also be obtained from the publisher for $1.12 postpaid.