c3CHAPTER IIITHE MOUTH-PARTS AND SENSE-ORGANSWhenthe outward anatomy of a flea was described, in an earlier chapter, the mouth-parts, which form a sort of beak or proboscis under the head, were mentioned. These most interesting parts of the insect must now be dealt with. The reader probably knows that some insects have mouths for sucking fluids and others mouths for biting solids. A moth or a fly cannot masticate solids, whilst a beetle or a cricket has effective biting jaws.The first naturalist who studied the mouth-parts of a flea, with such microscopes as were then available, was Leeuwenhoek. He was a Dutchman who worked at the end of the seventeenth century, and the minute accuracy of whose observations still often fills modern naturalists with wonder. Microscopic work was then in its early days, but Leeuwenhoek clearly made out the two serrated lancets (Fig. 4) which are called the mandibles. His “Microscopical observations on the structure of the proboscis of a flea” were published in theTransactions of the Royal Societyin 1706.The mouth-parts of fleas are differently constructed from those of all other insects. Around the orifice of the mouth are a number of appendages whichform a complicated apparatus for piercing and sucking. Their construction and use cannot be described without employing some technical terms. When the names of the parts have been mastered, a diagram will make their relative positions clear. It may be necessary, first, to remind the reader who is not an entomologist that the realmouthof an insect is the entrance to the alimentary canal, and that the appendages of the mouth, which act like jaws for masticating or like tubes for sucking, are really modified limbs. In fleas the mouth is suctorial. But before sucking up the blood the flea must first pierce the skin of its host. The paired mouth-parts, then, are modified limbs which correspond with those appendages on the thorax of an insect which we call the three pairs of legs.The primitive insect, of which fleas and all other insects are descendants, was, it is supposed, composed of a succession of segments each bearing a pair of jointed appendages. Insects of the present day never have more than six legs, but the foremost pairs of appendages have been bent round, reduced in size, and altered in shape so as to serve as mouth-parts.Now the mouth-parts of the flea for which only technical names exist are the maxillæ and maxillary palpi, the labium and labial palpi, the mandibles and the labrum. The labrum is considered by some authorities to be the hypopharynx. It will be bestto deal with each of these in turn and then to explain how they act in combination.The maxillæ.These are a pair of horny or chitinous triangular plates one on either side of the flea’s face. They are placed some distance away from the orifice of the mouth and to the right and left of it. They do not serve for piercing or sucking, and appear to have no active function unless they serve to separate the hairs of the host and enable the flea to reach the bare skin. In the majority of bat-fleas (Ceratopsyllidæ) the maxillæ are dumb-bell-shaped but in all other fleas they are more or less triangular. From the fore part of each springs a palpus. Like other highly chitinised parts of a flea, the maxillæ are usually dark in colour.The maxillary palpi.These are jointed hairy feelers which project forwards and were mistaken by the older naturalists for antennæ. They spring from the base of each of the maxillæ where these latter organs are joined to the head of the flea. The palpi are sense-organs as the number of sensitive hairs on their surface indicates. The maxillary palpi of fleas are always composed of four segments.The labium and labial palpi.These form together what is called therostrumof a flea. The labium is a single organ which projects beneath the aperture of the mouth. It may be described as the lower lip of the flea. At its end it divides into twocomparatively long branches. These are the labial palpi. The actual piercing organs, which will be described below, are the mandibles and labrum. They are not so conspicuous as the rostrum which protects them.When the piercing organs are at rest they are partly retracted. The external portion is encased in the tubular rostrum. The tube is formed by the two labial palpi which are situated at the apex of the short non-divided labium. The number of segments composing each labial palpus in fleas varies, so far as we know, from two to seventeen. In most fleas, however, the labial palpus consists of five segments. This appears to have been the original state of things in the ancestral flea; the palpus with more and the palpus with less segments being derived from the normal five-jointed one. The rostrum of a flea is not a piercing organ like that of a fly and a bug. The two labial palpi separate and lie flat, right and left, on the skin when the true piercing organ is driven into the host. The labial palpi therefore require to be flexible, and this is attained by increasing the number of segments or by reducing the amount of chitinisation or horniness. We shall find in the chigoes and their allies a rostrum which is pale, weak, soft and scarcely horny. Among other fleas where the rostrum is prolonged and strongly chitinised we shall find greater segmentation.The small bristles at the extreme tip of the rostrum seem to be sensory organs. They are like those at the apex of the maxillary palpus. When a hungry flea is put on one’s arm, it appears to test the skin with these bristles before it ventures to make a puncture.The mandibles.These are a pair of sharp lancets with serrated edges. They make the puncture and are interlocked with the labrum to form a sucking tube.The labrum.This is the central portion of the mouth-parts and is in fact a prolongation of the upper lip of the flea. It is a hard, sharp, awl-like instrument: in shape like a horny trough. Its edges are more or less toothed. Its apex is pointed and it is as long as the mandibles.The general appearance and the relative positions of the mouth-parts are shown inFig. 4.i43Fig. 4. Diagram of the mouth-parts of a flea. The slender awl-like structure at the top is thelabrum. Beneath are the pairedmandibleswith serrated edges. The four-jointed hairymaxillary palpusis below, only one being shown. Protruding from the base of the face is thelabiumwhich supports the jointedlabial palpi. The flat obtuse triangular structure from which the palpus springs is the right-handmaxilla. The left maxilla is concealed behind.Bearing in mind, then, that the piercing organs are the labrum and the two mandibles, and that the rostrum (composed of labium and labial palpi) is merely a sheath, it is easy to form a clear picture of a flea feeding. Anyone who is bold enough to place a hungry flea on the bare skin of the arm can readily observe through a powerful lens what happens. When the flea has chosen a spot to pierce the skin, the rostrum, with the mandibles and long upper lip or labrum inside it, is moved a little forward. The flea then lifts its abdomen upwards and presses the piercing organs down into the skin. In doing this, it uses its own weight and the strength of the foremost and middle pairs of legs. The hind pair of legs are lifted up into the air. The head can soon be seen coming nearer the skin. The rostrum thendivides in the middle. The labial palpi are forced apart as the mandibles and labrum penetrate into the victim’s flesh. Finally, they are driven entirely asunder and lie flat on the skin of the host, one to the right and the other to the left. The flea then satisfies its hunger. A stream of blood is sucked up, and when the meal is over, there is a forcible action of the legs and the mandibles and upper lip are withdrawn with a jerk. Numerous observers have remarked on the habit possessed by fleas of discharging the contents of their intestines whilst actually engaged in sucking. In many cases a drop of bright red blood is squirted from the rectum during the operation of feeding, and this appears to be a common practice among blood-sucking insects. Its bearing on the feeding operation of the flea has not been discovered. But its possible consequences in transmitting diseases from host to host will be seen in a subsequent chapter on fleas and the transmission of plague.It is said that the nervous systems and brains of fleas are not so highly developed as those of many other insects such, for instance, as ants, bees and other Hymenoptera. Having drawn attention to the distinction between the external skeleton of a flea and the internal skeleton of a vertebrate, one may with profit do the same in the case of their nervous systems. In both cases the nervous system serves toconvey sensations from the sense-organs, and movements to the muscles. In the vertebrate, as the reader doubtless knows, there is a brain, a nervous cord running from it down the backbone, and a number of nerves issuing, from the spinal cord and from the brain, in various directions. Here the main nervous system runs down thebackof the animal. In a flea, or other insect, the nervous system consists of a chain of ganglia connected by a nervous cord. A ganglion is a nerve centre and, in a sense, each is a brain which may be likened to the one brain of the vertebrate. We have in the cord of ganglia a series of brains, as it were, running from the head down to the extremity of the abdomen. Each ganglion is a mass of nerve cells, from each of which a fibre passes off to unite with the other fibres and make a nerve. The first ganglion in a flea is placed in the upper part of the head above the gullet. It may be called the brain since it receives the nerves of the antennæ and eyes. In the ancestral insect we may suppose that there was a pair of ganglia in each segment. Since the head of the flea consists of several fused segments, we may fairly draw the conclusion that the brain is the result of the fusion of several pairs of ganglia.The brain of the insect occupies the same position in the body as the brain of the vertebrate; but the rest of the nervous system lies on the floor of thebodyunderthe digestive canal of the flea, whereas in the vertebrate it lies along the back andabovethe digestive canal. The dorsal spinal cord of the vertebrate is then a ventral nervous cord in a flea.The sensory nerves, which transmit sensations from different sense-organs, and the motor nerves, which send stimuli to the muscles, take their origin from other ganglia besides the ganglion above the gullet. In bees and some other insects it has been shown that the nerves from the palpi and mouth-parts go to the next ganglion which is beneath the gullet. The same is probably the case with fleas; so when we speak of thebrainof a flea we must remember that it has a relative rather than an absolute claim to that title. A flea has really many brains.In certain blind insects, where the eyes are wanting, parts of the brain are completely atrophied. Whether this is so in the blind species of fleas does not seem to have been investigated.i47Fig. 5. The antenna of a flea. A, concealed in the groove. B, protruded from the head. The versatilebasal segmentsand the terminalclub, in this case with segments on one side of it, should be noticed.We pass now from the central nervous system to the sense-organs of the flea. The chief are the eyes, the antennæ and the pygidium. In regard to the eyes nothing more need be said. The antennæ are probably far more important organs to a flea than its eyes; but inasmuch as they are at ordinary times concealed in a groove they are not very conspicuous (Fig. 5). The first tolerably accurate plate of a flea by a naturalist will be found in Hooke’sMicrographia(1664). Robert Hooke (1635-1703) was a somewhat eccentric and irritable man of science who acted as secretary to the Royal Society. His labours were too varied to be effective. He nearly discovered the laws of gravity and also studied fleas. To him belongs the credit of having detected the antennæ groove. Just as many of the older naturalists thought that the maxillary palpi were antennæ, so others thought that the antennæ of a flea were its ears. And when, with the help of their lenses, they saw the antennæ erected and protruded from their grooves, they imagined that the insect was cocking its ears and listening after the manner of a horse or ass. But the antennæ of fleas are much more to them thanears; though it may be that they are also auditory organs. They are certainly tactile and olfactory organs as well. In outward structure each antenna consists of two parts which may be called the stalk and the club. The club is divided into a number of segments and is plentifully supplied with hairs. In some species the cuts which divide the different segments appear to be confined to one side of the club. In others a sort of central core holds the segments of the club together. The antennæ, therefore, are undoubtedly exceedingly complex organs. Such an insect as a flea may well be far more sensitive to movements of the air, vibrations of the earth, smells, light rays and sound-waves than a human being. In their origin the antennæ, like the paired mouth-parts, are modified appendages of the fused segments which compose the head of the insect. The fact that there are four pairs of appendages on the insect’s head, viz. (1) antennæ, (2) maxillæ, (3) labial palpi and (4) mandibles has been put forward by some entomologists as evidence that the head is formed of four primary segments.Antennæ apparently enable fleas to find their bearings, to communicate with one another and to discover the whereabouts of the opposite sex. But it is especially as organs of smell that they play a most important part in the flea’s social life. They enable couples to find one another; and, when thesexes come together, the antennæ of the male are usually raised and exposed from the groove. Insects generally have some means of cleansing dirt from their antennæ. Some make use of their legs, others of their mouth-parts. In fleas there is often a row of short hairs at the hind margin of the groove which may serve as a kind of comb for cleaning these delicate organs of sense. But further observation on this point would be interesting, for no one appears to have seen the comb in actual use. Female fleas are said usually to carry their antennæ ensconced in the grooves, whilst the males more frequently protrude theirs. The antennæ of the males are generally longer than those of the females.There are certain noteworthy organs of sense which appear to exist on the upper surface of a flea’s head and body. They take the form of small convexities of the body surface, lentil-shaped and each surrounded at the base by a ring. Somewhat similar sense-organs are widely spread through the insect world. As to their function, divergent views are held. Some think that they are for the perception of sounds, some for the perception of light rays, some for the perception of rays of which we are unconscious. Since these organs are placed, at times, in unprominent parts of the body it seems more probable that they are affected by sound than by light.The preference which fleas show for certain animals, and the repulsion which they manifest on being allowed to suck blood from an unaccustomed host, lead one to believe that they have a sense of taste. This sense in other insects is apparently seated in certain microscopic pits and hairs which form the ends of nerves and are distributed round the mouth. Whether fleas can hear is not, it seems, definitely known.A large number of fleas possess what is called a frontal tubercle. It is a notch in the centre of the forehead but nearer to the mouth than to the antenna. Sometimes the tubercle projects from a groove. This is most marked in the genus of African fleasListropsylla. The real nature of this organ is unknown. Some regard it as an organ of sense. Its homology is also uncertain. To some it suggests the egg-breaker of the larva and they regard it as a relic of the larval stage. To others it suggests an eye and they regard it as the remnant of an unpaired ocellus possessed by the ancestral flea.An exceedingly remarkable organ of sense, which is found in all fleas, is called the pygidium. It is a sensory-plate plentifully supplied with hairs and nerves and always placed on the back of the ninth abdominal segment. Of all its uses we are still somewhat uncertain but some observers declare that at the season of love the male flea bestows caresses on the pygidium of the female.In many species the male flea is sufficiently different in outward appearance from the female to be easily distinguished. The male is usually smaller and the last segments of the abdomen are so shaped as to give the look of a tail tilted into the air. The frontispiece represents a male flea and shows this well. The internal organs of reproduction (testes and ovaries) in the male and female are placed near the end of the abdomen. The seminal outlet and common oviduct open to the rear of the sensory plate on the ninth segment of the abdomen. The external genital armature of the male flea is exceedingly complicated and quite unlike that of any other insect. When the sexes are united, the usual position is reversed, and the male isbeneaththe female.It is well known to every entomologist that the hinder segments of insects are often modified for reproductive purposes. In male fleas it is the eighth and ninth abdominal segments which are altered. In the females the eighth, and also often a portion of the seventh, has assumed a peculiar shape. The clasping organs of the male flea are portions of the ninth segment and form together a kind of claw reminding one of the pinchers of a lobster. It is used by the male flea in the breeding season to detain and hold the female.Every entomologist also knows that the externalsexual organs of insects, of both sexes, are of special importance to the systematist or classifying naturalist. They often enable him to recognise the species when other organs do not show sufficiently striking characters. A minute study of the genitalia of fleas is an absolute necessity to the systematic entomologist, the more so as fleas do not present nearly as many, or nearly as varied, external differences as do the species of most winged insects where colour and pattern of wings are both important.c4CHAPTER IVTHE INTERNAL ORGANS OF A FLEAA flealike every other animal must feed and breathe, which leads to a consideration of the internal organs of digestion and respiration. The digestive canal is a slender tube which connects the mouth and the anus, and which is less convoluted and much straighter than in the higher vertebrates.Fig. 6will show the relative positions of the various parts, namely, the mouth, pharynx, gullet, gizzard, stomach, and rectum. Connected with the digestive canal are certain glands and organs of excretion. The alimentary tube itself passes through the middle of the flea’s body, and is kept in that position partly bymuscles and partly by the numerous branching air-tubes through which the insect breathes. Above it lies the heart, and beneath it the nervous cord or chain of ganglia.i53Fig. 6. Diagram of the alimentary canal of a flea. At the top is shown the orifice of themouth, leading into thepharynx. Next comes the shortgullet. Thegizzardis the smaller organ immediately before the stomach. At the base of thestomachare four vermiform tubes, which are theMalpighian tubules. From the base of the stomach issues theintestine, which leads to therectum, where the sixrectal glandsare shown.The mouth of a flea, as of any other insect, is merely an orifice which forms the opening into the alimentary canal. Around the orifice are the various mouth-parts which convey blood to the mouth, but these, the reader will doubtless remember, are the modified limbs or appendages of the segments that compose the flea’s head. The mouth, then, gives access to the digestive canal. The first part nearest the mouth is the pharynx which merges gradually into the gullet. Here is placed the pharyngeal pump which is provided with a sucking apparatus. Muscles attached to the dorsal part of the so-called aspiratory pharynx cause it to expand and contract, owing to the elastic reaction of its walls. The operating muscles, which do this, are in the head of the flea. When these pharyngeal muscles contract and relax in regular sequence, a rhythmic action of the pharynx itself ensues and a steady stream of blood is forced or drawn from the mouth stomachwards. In a light coloured flea, under a powerful lens, this action may be watched in the living insect.Behind the pharynx comes the gullet, which leads down to the gizzard. It is perhaps needless to add that this organ, neither in appearance nor in use, bears any resemblance to the gizzard of a bird, which grinds hard food. The food of the adult flea consists solely of liquid blood.The organ calledgizzardin the flea, for want of abetter name, is, however, remarkable. Its function is not quite certainly known. It is a bulbous expansion in the front of the stomach and situated at the junction of the stomach and the gullet. It contains a multitude of chitinous finger-like processes tapering towards their extremities. From their general arrangement the complete collection of processes would act as an effective sort of valve and prevent the return of the fluids from the stomach. It seems most probable that this is their function. During the life of the flea the stomach is constantly churning its contents. Some valvular arrangement between the stomach and the pharynx would seem to be essential; the pharynx is normally collapsed, as the reader may remember, and its walls are drawn apart by muscles attached to its exterior. When the pharynx is full of blood the muscles relax, the walls collapse like elastic, and the blood is forced into the stomach. In many cases a flea will feed when the stomach is already tensely full of blood; and some sort of valve is therefore needed to prevent regurgitation into the pharynx when the pharyngeal muscles contract and the walls of the pharynx itself are drawn asunder.This valvular arrangement at the anterior end of the flea’s stomach has been minutely studied in connection with recent plague investigations, because there was a theory that fleas carried infection byvomiting the septicæmic blood from their stomachs and so transferred the plague bacillus to the puncture which they made in the skin.But an experiment, which has been tried several times, seems to show that the supposed valve is effective. The stomach of a flea which had recently fed was dissected out intact. As long a portion of rectum as possible was left attached at the hinder end. The gullet having been severed, well in front of the valve, pressure was applied with a blunt tool with the object of forcing the blood through the gullet. The hind aperture of the stomach was, at the same time, closed by pinching up the rectum. The result was that, in no instance, was it possible to force blood through the passage which leads into the gullet. Yet sufficient pressure was applied to burst the stomach.The stomach of a flea is a pear-shaped sack which occupies an appreciable part of the insect’s abdomen. That it is capable of containing a comparatively large amount of blood is apparent from the observation that after a flea has enjoyed a good meal nearly the whole of the abdomen is seen to be filled with a bright red mass. During the investigation of the part played by fleas in spreading plague an endeavour was made to measure, as accurately as possible, the average capacity of a rat-flea’s stomach when filled with blood. Healthy fleas, taken from Bombay rats, were starvedfor twelve hours, and at the end of that time were fed on healthy animals. The stomach was then dissected out whole and floated in a salt solution. Any adherent organs or muscles were carefully removed. Under these conditions the stomach can be examined and measured under the microscope. The average capacity of a rat-flea’s stomach has been approximately estimated to be half a cubic millimetre.The stomach of a flea is therefore, comparatively speaking, very large. The blood remains in the stomach in a partially digested condition. It gradually diminishes in volume, showing clearly that absorption is taking place. At the end of so much of the digestive process as takes place in the flea’s stomach, the blood has become reduced to a thick, slimy, dark red mass. This passes down the intestine to the rectum, where it is perhaps further influenced by the secretion of the so-called rectal glands. Finally, the undigested remains pass from the rectum in the form of very minute, round, almost black, tarry drops.The terminal section of the flea’s digestive canal is called the rectum. Here are placed the rectal glands (Fig. 6), which are six in number. Their function seems not to be certainly known.The external opening of the rectum is placed at the extreme end of the flea’s body between the tergite and sternite of the tenth segment.We pass now to a couple of quite distinct appendages of the digestive canal, namely the salivary glands and the urinary tubules. In fleas the salivary glands are four in number. Two are placed on each side of the anterior end of the flea’s stomach. Each is a simple acinous gland embedded in the body and lined with cells which secrete the saliva. The four ducts from the pairs of glands unite to form two ducts; and the two ducts thus formed run forward and open into the salivary pump. A spiral chitinous membrane lines the inside of the ducts, keeps them distended, and gives them somewhat the appearance of tracheal tubes. The salivary pump is placed quite in the front part of the insect’s head, and is an organ worthy of special notice. It receives the saliva from the glands by means of the two salivary ducts which have just been described, and propels it through the exit duct of the pump into the salivary canal in the mandibles. The pump itself is a hollow chitinous organ. Muscles attached to the walls alternately contract and relax, drawing up the salivary secretion and expelling it through the exit-duct. The opening of the exit-duct is adjusted so as to be opposite to the canals which extend down the mandibles like troughs.It would seem that when the flea is feeding, saliva is pumped into the puncture and blood is pumped out. There is, as it were, an effluent and an affluent stream passing along the mouth parts.The urinary tubules are excretory organs which carry off, in solution, the waste products of the flea’s body. They are sometimes also called Malpighian tubes (Fig. 6). This name they received after Malpighi (1628-94), a famous Italian anatomist, who, four years after Harvey’s death, saw with his own eyes the capillary circulation of which Harvey had only inferred the existence. He also was the first to detect the urinary tubes of insects. These tubules answer to the kidneys of the higher vertebrate. They vary in number in different insects from two to over a hundred. In fleas there are four. They are longish, slender, tubular glands which are closed at one end, but, at the other, open into the rectum. The urinary excretions come from the blood, pass down the tubes into the rectum, and so leave the flea’s body by the anus. In insects the urinary excretion is, generally, only partially liquid.The organs of respiration in a flea consist of a series of tracheæ, or air-tubes, which open by apertures, called stigmata, at the sides of the body. These air-tubes branch and form an elaborate system of ramifications. They have a horny lining and are supported by a spirally-wound thread-like thickening. In this way air is conveyed from the external world, and the oxygen, which vital processes require, is conducted to all parts of the insect’s body.The blood-system of a flea is far less completethan that of the lowest vertebrate. The blood is almost colourless. A large contractile heart drives it into the main blood-vessel. There is, however, no closed system of arteries, capillaries, and veins such as the higher animals possess; and the blood circulates in the whole cavity which intervenes between the body-wall and the various internal organs. There is little need for an elaborate system of blood-vessels since the internal tissues are supplied with oxygen by the ramifying air-tubes. Fleas have more of the air-holes called stigmata than any other insects. Each of the three segments of the thorax has a pair, as well as the second to the eighth segments of the abdomen. The spiracles or apertures lie free on the outside of the body. In beetles, and other insects which run through dusty places, they are lodged in the thin membrane between the segments.The heart of a flea is a very delicate pulsating tube which lies along the back, above the digestive canal and immediately beneath the integument. One may attribute some of the extraordinary strength and vital energy of a flea to the fact that, by the blood-system and the air-system, the tissues of the body are kept richly supplied with oxygen. The blood of a flea is a thin fluid and, of course, without red corpuscles. The blood that is shed when a flea is crushed comes from the stomach and not from the blood-vessels of the insect.The internal organs of fleas cannot be studied without dissection under a microscope. Dissection is best carried on in a solution of salt and water. Fine needles mounted in penholders are the most handy implements. But the point of even the finest commercial needle that can be bought is too blunt for fine dissections, and it is necessary to sharpen it. This can be done by the help of a rapidly revolving emery wheel, varying the inclination of the needle-point to the wheel, so as to grind off the angles. The flea to be dissected is put in a drop of salt solution, on a slide placed on the stage of the dissecting microscope. In the left hand should be a needle with a blunt conical point, in the right a needle with an oblique point. The antennary groove of the flea should then be transfixed and held firmly by the left-hand needle.The point of the right-hand needle is then inserted under the edge of the third or fourth abdominal segments. The segments can then be peeled off by a skilful dissector much as we peel off the skin of a shrimp for our tea at the sea-side. The internal organs of the flea then float off in the salt solution; and by using two very fine pointed needles they can be further separated. It is useful to have one needle ready with a hooked end and another fashioned into a minute knife or scalpel.The most conspicuous of the internal organs willbe the stomach and intestine. The salivary glands will be found at the side of the stomach with a certain amount of fat round them. Their extraction is not so difficult as might be supposed. The hooked needle can be used to hook the salivary duct.The most difficult parts to dissect are the organs connected with the mouth and rostrum. It is best to remove the head and transfix it with the left-hand needle, then to scalp the head by removing the dorsal half of the chitinous carapace. A bold plunge with the right-hand needle will sometimes effect what is desired. A pull on the labium will sometimes bring out the pharynx. It must be confessed that successful dissections are often obtained more by good luck than by skilful management. The use of dilute potash solution facilitates the study of chitinous parts by jellifying the muscles.c5CHAPTER VTHE HUMAN FLEA AND OTHER SPECIESThehuman flea (Pulex irritans) appears to occupy an isolated position. The genusPulexwhich Linnæus established has now been reduced until it contains one species only. The human flea belongs to the group with eyes and without combs. In somerespects it is the most specialized of all thePulicidæ. The chigoes (Sarcopsyllidæ) resemble it and are doubtless derived from thePulicidæ. The chief structural character of this interesting insect is the greatly reduced thorax. But it can be distinguished from any other known flea by the fact that the upper segment of the hind leg (hind coxa) bears a number of hairs on the inner surface of the posterior portion. A more noteworthy feature in this flea is the presence, in a large proportion of specimens of both sexes, of a small tooth at the edge of the head. This small tooth is sometimes absent; but, when present, both its position and its structure indicate that it corresponds to the fifth tooth in the head comb of the dog-flea (Ctenocephalus canis) (Fig. 7). In the hedgehog-flea (Ct. erinacei) the teeth of the combs both on the head and on the thorax are small in size and few in number. Occasionally they almost disappear. The conclusion seems justified that the human flea is descended from an ancestral form with combs. To discuss whether the combs became useless and were lost when the host lost the hairy covering of its body would lead into regions of vague speculation and occupy time unprofitably.The nearest allies of the human flea, which are found on various animals, are all inhabitants of the Old World. The indigenous fleas of America are only distant relatives ofPulex irritans. Our knowledgeof the present and former distribution of this species is deplorably meagre. The many books of travel published in the early part of the nineteenth century contain hardly any records of fleas. The human flea is now cosmopolitan. Specimens identical with those from Europe are found almost everywhere. But it may be doubted whether this was the case before the great era of travel and steam began in last century.There is one strange and, indeed, inexplicable fact in connection with the distribution of this cosmopolitan species of flea. It is absent from the oases of the Sahara and the Haussa countries immediately to the south of the great desert. These countries have long been in communication with places wherePulex irritansis known to abound. There is no natural barrier. The habits of the natives would encourage fleas to thrive, and other forms of human vermin are plentiful. There is, apparently, only one explanation that is forthcoming. It is suggested that the soil and climate in these regions of Africa are, for some reason, unsuited to fleas. In other parts of the Dark Continent, where there are European settlements, the human flea seems to thrive surprisingly well and to attack Europeans and natives, as well as wild and domestic animals. In those parts of Asia where there are European colonies and much intercourse between settlers and Orientals,Pulex irritansis awell-established and thriving parasite. Unfortunately, there is no means of knowing whether this was the case among the native populations before European travellers and traders arrived.Pulex irritanshas, however, recently been found on the natives of German New Guinea living some 10,000 feet above sea-level and in great isolation. Seaports are everywhere infested with fleas.Another problem on which no light has been thrown concerns the evolution of the human flea. It would be of great interest to know whether the present species has undergone modifications of form since it became a parasite of the human race; whether we inherited the species from our simian ancestors; or whether the flea of one of the lower mammals became parasitic on mankind. In the Old World this flea is essentially a parasite of man. It occurs only occasionally on other mammals. In America it certainly appears to occur more frequently on mammals, other than man, than it does in the Old World. Human fleas can propagate in deserted human dwellings. The larvæ find nourishment in any refuse that has been left behind, and the adult insect can apparently continue for some time to reproduce itself without a meal of any sort and certainly without human blood. Travellers in the East and in Africa have described how on entering huts in deserted villages they have found theirclothing covered with myriads of fleas, sometimes ravenous, and at others weak from long fasting.The human flea is a good deal more select in the choice of a host than some other species. The cat-flea (Ctenocephalus felis) has been found not only on the cat, but also on the dog, tiger, leopard, goat, horse, rat, hedgehog, kangaroo, deer, guinea-pig, rabbit, and on man. Many of these were specimens collected in zoological gardens. Although when hungry and confined in a test-tube the human flea will readily bite a rat or a guinea-pig, it has been found that human fleas kept with no other food-supply than rats and guinea-pigs soon die off.When large numbers of human fleas were wanted for experiments in Bombay, guinea-pigs were used as traps to attract them. On one occasion two guinea-pigs placed in a house which had been vacant for some days, and in which fleas must have been short of food, failed to attract any of this species; while a man who entered the house shortly afterwards acted as an admirable trap. Those who have not had experience of the abundance and voracity of fleas in oriental countries can hardly believe the numbers of human fleas that may be captured by sending a bare-legged man into a deserted house and then picking the fleas off him. In one house 31P. irritanswere taken on a man’s legs in a few minutes. In another house 84P. irritans, 8 cat-fleas and1 bird-flea were caught. In a third, 150P. irritansand 4 cat-fleas were captured in a short time.The piercing organs of the human flea are strong and well developed. This is rare in a flea which, far from having adopted stationary habits, is a very active insect. It has been suggested, with some show of probability, that the wide and strongly serrated mandibles were acquired after man became the host. The naked skin and rough garment of mankind would render the claws and legs of the flea insufficient to keep the insect in a steady position when feeding. Natural selection would, in due course, strengthen the mouth organs.The division of mankind into different races, many of which are quite as distinct as the various species of some genus among other animals, leads one to expect various races among the fleas which are parasitic on them. If the sand-martin and the house-martin, the rat and the mouse have distinguishable fleas, one might suppose that the Caucasian and the Hottentot, the Australian native and the Red Indian would follow suit. It may be that further study will show that the human flea now consists of a number of different races. In only one case, however, does a development of this kind in fact appear. Fleas taken off Mexican Indians show slight but fairly constant differences from the truePulex irritans. The specimens are smaller in size,the rostrum is longer and the clasper of the male is more pointed. If the Mexican Indians have a special race of human flea it must have developed after the Indians came to America, or they must have brought it with them when they came. In the latter case this race of flea may still exist in the country whence these Indians originally came.Apart from this apparently constant race, the individual variation in specimens of the human flea is slight. If a large series of mounted specimens are examined with the microscope, it will be noticed that the bristles or spines on the legs are sometimes more or less numerous. But, with this exception, marked varieties such as are frequently found among other insects seem to be rare.Although mankind is the true host of this flea, it has been obtained in various parts of the world on various mammals and occasionally on birds. But in England, and probably in other parts of Europe as well,Pulex irritansis an undoubted parasite of the badger. A good series of the insect has been got from wild badgers freshly captured near Reading in Berkshire and Hastings in Sussex. In other parts of the world it has been obtained from a variety of small carnivora: cats, dogs, foxes, jackals and polecats. It has also been found on Rodents (Gerbillus) and on Insectivora (Erinaceus). In South Africa it has been taken off a caracal and in North America off a lynx.Sandy places such as sea-beaches and picnic grounds, where humanity congregates for pleasure or business, frequently swarm with this species of flea waiting an opportunity to feed. The larvæ are bred in the sand and feed on organic refuse.The genus most closely allied to that which contains the human flea consists also of a single species only. It is a large flea (Pariodontis riggenbachi) found on porcupines all over Africa and in India.Mankind is, occasionally, bitten by a variety of other species besidesPulex irritans. In hot countries the chigoe (Dermatophilus penetrans) is a serious and troublesome pest, particularly to bare-footed people. In temperate regions there are rat-fleas, cat-fleas, dog-fleas and bird-fleas which occasionally transfer themselves to man and feast on his blood. But, on the whole, hunger and propinquity rather than free inclination seem to actuate these fleas of which man is only the occasional host. There are besides very numerous species which have never under any circumstances been known to bite man. There is no doubt that some persons are more attractive to fleas than others. The reason for this we do not know. It may depend on the tenderness of their skin, the quality and taste of their blood, or their personal smell, or possibly all three combined.The various forms of rat-flea which are important in carrying plague from rodents to the human raceare dealt with later on. Among the commonest fowl-fleas which bite man areCeratophyllus gallinæandC. gallinulæ. Both species infest the nests of many common passerine birds besides the domestic fowl. A common parasite of the pigeon isC. columbæ, which also bites man.i71Fig. 7. The head of a female dog-flea (above) and a female cat-flea (below) to illustrate the difference in shape. In the males the difference is less strongly marked but quite perceptible. FromNovitates Zoologicæ, Vol.XII, January, 1905.Dog-fleas and cat-fleas frequently transfer themselves to man. It has been asserted that the flea of the dog and the flea of the cat are indistinguishable. Several great authorities on fleas, such as Dr Carlo Tiraboschi in Italy and Mr Carl Baker in the United States, have maintained that the differences betweenCtenocephalus canisandCt. feliswere unreliable and that they are not distinct species. Mr Charles Rothschild has, however, shown that the two species are abundantly distinct. Themalesof these two insects can be readily distinguished from each other by differences exhibited in their respective sexual organs. Thefemalescan be distinguished, at a glance, by the different shape of their respective heads.Fig. 7, which shows the head of a female dog-flea above and of a female cat-flea below, illustrates this. It will be seen thatCt. felishas a much longer and more pointed head thanCt. canis. In themalesthe difference in the shape of the head is less strongly marked, but is quite perceptible. There are several minor differences in addition which serve, but less clearly, to distinguish these two insects. The first genal spine, or first tooth in the head-comb, is shorter in the dog-fleas of both sexes than it is in the cat-fleas. The abdominal stigmata appear to be larger in a dog-flea than in a cat-flea, and there are differences in the bristles which seem to be constant.Both species are perceptibly larger than human fleas, and dog-fleas have always afforded good material for dissection. Very few dogs seem to be exempt from fleas, and the little pets which are carried in ladies’ arms are often swarming with them.This account of a despised and detested group of insects would be very imperfect if it did not mention those educated or performing fleas which have evoked so much astonishment among people who have watched them. It will be best to say, at once, that the fleas are not educated and that the performance can only be attributed to their desire to escape. It is stated that a performing flea may be broken of the habit of jumping by being put in a pill-box with glass sides which is made to revolve like a lottery wheel. A short course of this tread-mill teaches the flea that the objectionable practice of hopping is useless and exhausting. It is said that the life of performing fleas averages eight months, which seems surprising. They are fed every few days, and the trainers delight in showing the punctures on their arms where the swarm of pets has been fed.Performing fleas are first of all securely fastened, and this is nine-tenths of the secret, and the art of education. A very fine silk fibre is put round the body and knotted on the back. The flea may then be cemented to some moveable or immoveable object. It may pull a coach by being attached to a pole madeof a bristle. A little paper object stuck on its back is termed by courtesy an equestrian or a ball-dress. The lively imagination of the spectators is of great help. The strength of a flea is wonderful, and on being placed on a sheet of blotting-paper, so that the hooks of the feet get a hold, the coach travels at a fine pace. In the intervals of the performance the coach is turned over, and the performer with its feet in the air does not get exhausted with needless struggles. Or else the fleas are fixed head uppermost, with their legs extended horizontally, to an upright wire driven into the table. Ladies have fans of tissue paper gummed to their limbs. Gentlemen are in the same way supplied with swords made out of fine segments of wire. When two swordsmen are placed opposite each other and the table is knocked they move their limbs. The swords then clash by chance, and we have a representation of a duel not much worse than may be seen in provincial or even London melodrama.More wonderful are dancing fleas, for there we have a real representation of a ball-room filled with waltzers. The orchestra of fleas, all securely fixed with cement, is placed above a little musical-box. The music proceeds from the box, but the vibrations make the fleas gesticulate violently over their musical instruments. The dancers spin round on the ball-room floor. The couples are fastened by a rigid baropposite each other, so that they cannot touch or part. Each is pointed in an opposite direction, and tries to run away. A rotary motion ensues which, to the spectators if not to the fleas, is very like waltzing.
c3CHAPTER IIITHE MOUTH-PARTS AND SENSE-ORGANSWhenthe outward anatomy of a flea was described, in an earlier chapter, the mouth-parts, which form a sort of beak or proboscis under the head, were mentioned. These most interesting parts of the insect must now be dealt with. The reader probably knows that some insects have mouths for sucking fluids and others mouths for biting solids. A moth or a fly cannot masticate solids, whilst a beetle or a cricket has effective biting jaws.The first naturalist who studied the mouth-parts of a flea, with such microscopes as were then available, was Leeuwenhoek. He was a Dutchman who worked at the end of the seventeenth century, and the minute accuracy of whose observations still often fills modern naturalists with wonder. Microscopic work was then in its early days, but Leeuwenhoek clearly made out the two serrated lancets (Fig. 4) which are called the mandibles. His “Microscopical observations on the structure of the proboscis of a flea” were published in theTransactions of the Royal Societyin 1706.The mouth-parts of fleas are differently constructed from those of all other insects. Around the orifice of the mouth are a number of appendages whichform a complicated apparatus for piercing and sucking. Their construction and use cannot be described without employing some technical terms. When the names of the parts have been mastered, a diagram will make their relative positions clear. It may be necessary, first, to remind the reader who is not an entomologist that the realmouthof an insect is the entrance to the alimentary canal, and that the appendages of the mouth, which act like jaws for masticating or like tubes for sucking, are really modified limbs. In fleas the mouth is suctorial. But before sucking up the blood the flea must first pierce the skin of its host. The paired mouth-parts, then, are modified limbs which correspond with those appendages on the thorax of an insect which we call the three pairs of legs.The primitive insect, of which fleas and all other insects are descendants, was, it is supposed, composed of a succession of segments each bearing a pair of jointed appendages. Insects of the present day never have more than six legs, but the foremost pairs of appendages have been bent round, reduced in size, and altered in shape so as to serve as mouth-parts.Now the mouth-parts of the flea for which only technical names exist are the maxillæ and maxillary palpi, the labium and labial palpi, the mandibles and the labrum. The labrum is considered by some authorities to be the hypopharynx. It will be bestto deal with each of these in turn and then to explain how they act in combination.The maxillæ.These are a pair of horny or chitinous triangular plates one on either side of the flea’s face. They are placed some distance away from the orifice of the mouth and to the right and left of it. They do not serve for piercing or sucking, and appear to have no active function unless they serve to separate the hairs of the host and enable the flea to reach the bare skin. In the majority of bat-fleas (Ceratopsyllidæ) the maxillæ are dumb-bell-shaped but in all other fleas they are more or less triangular. From the fore part of each springs a palpus. Like other highly chitinised parts of a flea, the maxillæ are usually dark in colour.The maxillary palpi.These are jointed hairy feelers which project forwards and were mistaken by the older naturalists for antennæ. They spring from the base of each of the maxillæ where these latter organs are joined to the head of the flea. The palpi are sense-organs as the number of sensitive hairs on their surface indicates. The maxillary palpi of fleas are always composed of four segments.The labium and labial palpi.These form together what is called therostrumof a flea. The labium is a single organ which projects beneath the aperture of the mouth. It may be described as the lower lip of the flea. At its end it divides into twocomparatively long branches. These are the labial palpi. The actual piercing organs, which will be described below, are the mandibles and labrum. They are not so conspicuous as the rostrum which protects them.When the piercing organs are at rest they are partly retracted. The external portion is encased in the tubular rostrum. The tube is formed by the two labial palpi which are situated at the apex of the short non-divided labium. The number of segments composing each labial palpus in fleas varies, so far as we know, from two to seventeen. In most fleas, however, the labial palpus consists of five segments. This appears to have been the original state of things in the ancestral flea; the palpus with more and the palpus with less segments being derived from the normal five-jointed one. The rostrum of a flea is not a piercing organ like that of a fly and a bug. The two labial palpi separate and lie flat, right and left, on the skin when the true piercing organ is driven into the host. The labial palpi therefore require to be flexible, and this is attained by increasing the number of segments or by reducing the amount of chitinisation or horniness. We shall find in the chigoes and their allies a rostrum which is pale, weak, soft and scarcely horny. Among other fleas where the rostrum is prolonged and strongly chitinised we shall find greater segmentation.The small bristles at the extreme tip of the rostrum seem to be sensory organs. They are like those at the apex of the maxillary palpus. When a hungry flea is put on one’s arm, it appears to test the skin with these bristles before it ventures to make a puncture.The mandibles.These are a pair of sharp lancets with serrated edges. They make the puncture and are interlocked with the labrum to form a sucking tube.The labrum.This is the central portion of the mouth-parts and is in fact a prolongation of the upper lip of the flea. It is a hard, sharp, awl-like instrument: in shape like a horny trough. Its edges are more or less toothed. Its apex is pointed and it is as long as the mandibles.The general appearance and the relative positions of the mouth-parts are shown inFig. 4.i43Fig. 4. Diagram of the mouth-parts of a flea. The slender awl-like structure at the top is thelabrum. Beneath are the pairedmandibleswith serrated edges. The four-jointed hairymaxillary palpusis below, only one being shown. Protruding from the base of the face is thelabiumwhich supports the jointedlabial palpi. The flat obtuse triangular structure from which the palpus springs is the right-handmaxilla. The left maxilla is concealed behind.Bearing in mind, then, that the piercing organs are the labrum and the two mandibles, and that the rostrum (composed of labium and labial palpi) is merely a sheath, it is easy to form a clear picture of a flea feeding. Anyone who is bold enough to place a hungry flea on the bare skin of the arm can readily observe through a powerful lens what happens. When the flea has chosen a spot to pierce the skin, the rostrum, with the mandibles and long upper lip or labrum inside it, is moved a little forward. The flea then lifts its abdomen upwards and presses the piercing organs down into the skin. In doing this, it uses its own weight and the strength of the foremost and middle pairs of legs. The hind pair of legs are lifted up into the air. The head can soon be seen coming nearer the skin. The rostrum thendivides in the middle. The labial palpi are forced apart as the mandibles and labrum penetrate into the victim’s flesh. Finally, they are driven entirely asunder and lie flat on the skin of the host, one to the right and the other to the left. The flea then satisfies its hunger. A stream of blood is sucked up, and when the meal is over, there is a forcible action of the legs and the mandibles and upper lip are withdrawn with a jerk. Numerous observers have remarked on the habit possessed by fleas of discharging the contents of their intestines whilst actually engaged in sucking. In many cases a drop of bright red blood is squirted from the rectum during the operation of feeding, and this appears to be a common practice among blood-sucking insects. Its bearing on the feeding operation of the flea has not been discovered. But its possible consequences in transmitting diseases from host to host will be seen in a subsequent chapter on fleas and the transmission of plague.It is said that the nervous systems and brains of fleas are not so highly developed as those of many other insects such, for instance, as ants, bees and other Hymenoptera. Having drawn attention to the distinction between the external skeleton of a flea and the internal skeleton of a vertebrate, one may with profit do the same in the case of their nervous systems. In both cases the nervous system serves toconvey sensations from the sense-organs, and movements to the muscles. In the vertebrate, as the reader doubtless knows, there is a brain, a nervous cord running from it down the backbone, and a number of nerves issuing, from the spinal cord and from the brain, in various directions. Here the main nervous system runs down thebackof the animal. In a flea, or other insect, the nervous system consists of a chain of ganglia connected by a nervous cord. A ganglion is a nerve centre and, in a sense, each is a brain which may be likened to the one brain of the vertebrate. We have in the cord of ganglia a series of brains, as it were, running from the head down to the extremity of the abdomen. Each ganglion is a mass of nerve cells, from each of which a fibre passes off to unite with the other fibres and make a nerve. The first ganglion in a flea is placed in the upper part of the head above the gullet. It may be called the brain since it receives the nerves of the antennæ and eyes. In the ancestral insect we may suppose that there was a pair of ganglia in each segment. Since the head of the flea consists of several fused segments, we may fairly draw the conclusion that the brain is the result of the fusion of several pairs of ganglia.The brain of the insect occupies the same position in the body as the brain of the vertebrate; but the rest of the nervous system lies on the floor of thebodyunderthe digestive canal of the flea, whereas in the vertebrate it lies along the back andabovethe digestive canal. The dorsal spinal cord of the vertebrate is then a ventral nervous cord in a flea.The sensory nerves, which transmit sensations from different sense-organs, and the motor nerves, which send stimuli to the muscles, take their origin from other ganglia besides the ganglion above the gullet. In bees and some other insects it has been shown that the nerves from the palpi and mouth-parts go to the next ganglion which is beneath the gullet. The same is probably the case with fleas; so when we speak of thebrainof a flea we must remember that it has a relative rather than an absolute claim to that title. A flea has really many brains.In certain blind insects, where the eyes are wanting, parts of the brain are completely atrophied. Whether this is so in the blind species of fleas does not seem to have been investigated.i47Fig. 5. The antenna of a flea. A, concealed in the groove. B, protruded from the head. The versatilebasal segmentsand the terminalclub, in this case with segments on one side of it, should be noticed.We pass now from the central nervous system to the sense-organs of the flea. The chief are the eyes, the antennæ and the pygidium. In regard to the eyes nothing more need be said. The antennæ are probably far more important organs to a flea than its eyes; but inasmuch as they are at ordinary times concealed in a groove they are not very conspicuous (Fig. 5). The first tolerably accurate plate of a flea by a naturalist will be found in Hooke’sMicrographia(1664). Robert Hooke (1635-1703) was a somewhat eccentric and irritable man of science who acted as secretary to the Royal Society. His labours were too varied to be effective. He nearly discovered the laws of gravity and also studied fleas. To him belongs the credit of having detected the antennæ groove. Just as many of the older naturalists thought that the maxillary palpi were antennæ, so others thought that the antennæ of a flea were its ears. And when, with the help of their lenses, they saw the antennæ erected and protruded from their grooves, they imagined that the insect was cocking its ears and listening after the manner of a horse or ass. But the antennæ of fleas are much more to them thanears; though it may be that they are also auditory organs. They are certainly tactile and olfactory organs as well. In outward structure each antenna consists of two parts which may be called the stalk and the club. The club is divided into a number of segments and is plentifully supplied with hairs. In some species the cuts which divide the different segments appear to be confined to one side of the club. In others a sort of central core holds the segments of the club together. The antennæ, therefore, are undoubtedly exceedingly complex organs. Such an insect as a flea may well be far more sensitive to movements of the air, vibrations of the earth, smells, light rays and sound-waves than a human being. In their origin the antennæ, like the paired mouth-parts, are modified appendages of the fused segments which compose the head of the insect. The fact that there are four pairs of appendages on the insect’s head, viz. (1) antennæ, (2) maxillæ, (3) labial palpi and (4) mandibles has been put forward by some entomologists as evidence that the head is formed of four primary segments.Antennæ apparently enable fleas to find their bearings, to communicate with one another and to discover the whereabouts of the opposite sex. But it is especially as organs of smell that they play a most important part in the flea’s social life. They enable couples to find one another; and, when thesexes come together, the antennæ of the male are usually raised and exposed from the groove. Insects generally have some means of cleansing dirt from their antennæ. Some make use of their legs, others of their mouth-parts. In fleas there is often a row of short hairs at the hind margin of the groove which may serve as a kind of comb for cleaning these delicate organs of sense. But further observation on this point would be interesting, for no one appears to have seen the comb in actual use. Female fleas are said usually to carry their antennæ ensconced in the grooves, whilst the males more frequently protrude theirs. The antennæ of the males are generally longer than those of the females.There are certain noteworthy organs of sense which appear to exist on the upper surface of a flea’s head and body. They take the form of small convexities of the body surface, lentil-shaped and each surrounded at the base by a ring. Somewhat similar sense-organs are widely spread through the insect world. As to their function, divergent views are held. Some think that they are for the perception of sounds, some for the perception of light rays, some for the perception of rays of which we are unconscious. Since these organs are placed, at times, in unprominent parts of the body it seems more probable that they are affected by sound than by light.The preference which fleas show for certain animals, and the repulsion which they manifest on being allowed to suck blood from an unaccustomed host, lead one to believe that they have a sense of taste. This sense in other insects is apparently seated in certain microscopic pits and hairs which form the ends of nerves and are distributed round the mouth. Whether fleas can hear is not, it seems, definitely known.A large number of fleas possess what is called a frontal tubercle. It is a notch in the centre of the forehead but nearer to the mouth than to the antenna. Sometimes the tubercle projects from a groove. This is most marked in the genus of African fleasListropsylla. The real nature of this organ is unknown. Some regard it as an organ of sense. Its homology is also uncertain. To some it suggests the egg-breaker of the larva and they regard it as a relic of the larval stage. To others it suggests an eye and they regard it as the remnant of an unpaired ocellus possessed by the ancestral flea.An exceedingly remarkable organ of sense, which is found in all fleas, is called the pygidium. It is a sensory-plate plentifully supplied with hairs and nerves and always placed on the back of the ninth abdominal segment. Of all its uses we are still somewhat uncertain but some observers declare that at the season of love the male flea bestows caresses on the pygidium of the female.In many species the male flea is sufficiently different in outward appearance from the female to be easily distinguished. The male is usually smaller and the last segments of the abdomen are so shaped as to give the look of a tail tilted into the air. The frontispiece represents a male flea and shows this well. The internal organs of reproduction (testes and ovaries) in the male and female are placed near the end of the abdomen. The seminal outlet and common oviduct open to the rear of the sensory plate on the ninth segment of the abdomen. The external genital armature of the male flea is exceedingly complicated and quite unlike that of any other insect. When the sexes are united, the usual position is reversed, and the male isbeneaththe female.It is well known to every entomologist that the hinder segments of insects are often modified for reproductive purposes. In male fleas it is the eighth and ninth abdominal segments which are altered. In the females the eighth, and also often a portion of the seventh, has assumed a peculiar shape. The clasping organs of the male flea are portions of the ninth segment and form together a kind of claw reminding one of the pinchers of a lobster. It is used by the male flea in the breeding season to detain and hold the female.Every entomologist also knows that the externalsexual organs of insects, of both sexes, are of special importance to the systematist or classifying naturalist. They often enable him to recognise the species when other organs do not show sufficiently striking characters. A minute study of the genitalia of fleas is an absolute necessity to the systematic entomologist, the more so as fleas do not present nearly as many, or nearly as varied, external differences as do the species of most winged insects where colour and pattern of wings are both important.
c3
THE MOUTH-PARTS AND SENSE-ORGANS
Whenthe outward anatomy of a flea was described, in an earlier chapter, the mouth-parts, which form a sort of beak or proboscis under the head, were mentioned. These most interesting parts of the insect must now be dealt with. The reader probably knows that some insects have mouths for sucking fluids and others mouths for biting solids. A moth or a fly cannot masticate solids, whilst a beetle or a cricket has effective biting jaws.
The first naturalist who studied the mouth-parts of a flea, with such microscopes as were then available, was Leeuwenhoek. He was a Dutchman who worked at the end of the seventeenth century, and the minute accuracy of whose observations still often fills modern naturalists with wonder. Microscopic work was then in its early days, but Leeuwenhoek clearly made out the two serrated lancets (Fig. 4) which are called the mandibles. His “Microscopical observations on the structure of the proboscis of a flea” were published in theTransactions of the Royal Societyin 1706.
The mouth-parts of fleas are differently constructed from those of all other insects. Around the orifice of the mouth are a number of appendages whichform a complicated apparatus for piercing and sucking. Their construction and use cannot be described without employing some technical terms. When the names of the parts have been mastered, a diagram will make their relative positions clear. It may be necessary, first, to remind the reader who is not an entomologist that the realmouthof an insect is the entrance to the alimentary canal, and that the appendages of the mouth, which act like jaws for masticating or like tubes for sucking, are really modified limbs. In fleas the mouth is suctorial. But before sucking up the blood the flea must first pierce the skin of its host. The paired mouth-parts, then, are modified limbs which correspond with those appendages on the thorax of an insect which we call the three pairs of legs.
The primitive insect, of which fleas and all other insects are descendants, was, it is supposed, composed of a succession of segments each bearing a pair of jointed appendages. Insects of the present day never have more than six legs, but the foremost pairs of appendages have been bent round, reduced in size, and altered in shape so as to serve as mouth-parts.
Now the mouth-parts of the flea for which only technical names exist are the maxillæ and maxillary palpi, the labium and labial palpi, the mandibles and the labrum. The labrum is considered by some authorities to be the hypopharynx. It will be bestto deal with each of these in turn and then to explain how they act in combination.
The maxillæ.These are a pair of horny or chitinous triangular plates one on either side of the flea’s face. They are placed some distance away from the orifice of the mouth and to the right and left of it. They do not serve for piercing or sucking, and appear to have no active function unless they serve to separate the hairs of the host and enable the flea to reach the bare skin. In the majority of bat-fleas (Ceratopsyllidæ) the maxillæ are dumb-bell-shaped but in all other fleas they are more or less triangular. From the fore part of each springs a palpus. Like other highly chitinised parts of a flea, the maxillæ are usually dark in colour.
The maxillary palpi.These are jointed hairy feelers which project forwards and were mistaken by the older naturalists for antennæ. They spring from the base of each of the maxillæ where these latter organs are joined to the head of the flea. The palpi are sense-organs as the number of sensitive hairs on their surface indicates. The maxillary palpi of fleas are always composed of four segments.
The labium and labial palpi.These form together what is called therostrumof a flea. The labium is a single organ which projects beneath the aperture of the mouth. It may be described as the lower lip of the flea. At its end it divides into twocomparatively long branches. These are the labial palpi. The actual piercing organs, which will be described below, are the mandibles and labrum. They are not so conspicuous as the rostrum which protects them.
When the piercing organs are at rest they are partly retracted. The external portion is encased in the tubular rostrum. The tube is formed by the two labial palpi which are situated at the apex of the short non-divided labium. The number of segments composing each labial palpus in fleas varies, so far as we know, from two to seventeen. In most fleas, however, the labial palpus consists of five segments. This appears to have been the original state of things in the ancestral flea; the palpus with more and the palpus with less segments being derived from the normal five-jointed one. The rostrum of a flea is not a piercing organ like that of a fly and a bug. The two labial palpi separate and lie flat, right and left, on the skin when the true piercing organ is driven into the host. The labial palpi therefore require to be flexible, and this is attained by increasing the number of segments or by reducing the amount of chitinisation or horniness. We shall find in the chigoes and their allies a rostrum which is pale, weak, soft and scarcely horny. Among other fleas where the rostrum is prolonged and strongly chitinised we shall find greater segmentation.
The small bristles at the extreme tip of the rostrum seem to be sensory organs. They are like those at the apex of the maxillary palpus. When a hungry flea is put on one’s arm, it appears to test the skin with these bristles before it ventures to make a puncture.
The mandibles.These are a pair of sharp lancets with serrated edges. They make the puncture and are interlocked with the labrum to form a sucking tube.
The labrum.This is the central portion of the mouth-parts and is in fact a prolongation of the upper lip of the flea. It is a hard, sharp, awl-like instrument: in shape like a horny trough. Its edges are more or less toothed. Its apex is pointed and it is as long as the mandibles.
The general appearance and the relative positions of the mouth-parts are shown inFig. 4.
i43
Fig. 4. Diagram of the mouth-parts of a flea. The slender awl-like structure at the top is thelabrum. Beneath are the pairedmandibleswith serrated edges. The four-jointed hairymaxillary palpusis below, only one being shown. Protruding from the base of the face is thelabiumwhich supports the jointedlabial palpi. The flat obtuse triangular structure from which the palpus springs is the right-handmaxilla. The left maxilla is concealed behind.
Fig. 4. Diagram of the mouth-parts of a flea. The slender awl-like structure at the top is thelabrum. Beneath are the pairedmandibleswith serrated edges. The four-jointed hairymaxillary palpusis below, only one being shown. Protruding from the base of the face is thelabiumwhich supports the jointedlabial palpi. The flat obtuse triangular structure from which the palpus springs is the right-handmaxilla. The left maxilla is concealed behind.
Fig. 4. Diagram of the mouth-parts of a flea. The slender awl-like structure at the top is thelabrum. Beneath are the pairedmandibleswith serrated edges. The four-jointed hairymaxillary palpusis below, only one being shown. Protruding from the base of the face is thelabiumwhich supports the jointedlabial palpi. The flat obtuse triangular structure from which the palpus springs is the right-handmaxilla. The left maxilla is concealed behind.
Bearing in mind, then, that the piercing organs are the labrum and the two mandibles, and that the rostrum (composed of labium and labial palpi) is merely a sheath, it is easy to form a clear picture of a flea feeding. Anyone who is bold enough to place a hungry flea on the bare skin of the arm can readily observe through a powerful lens what happens. When the flea has chosen a spot to pierce the skin, the rostrum, with the mandibles and long upper lip or labrum inside it, is moved a little forward. The flea then lifts its abdomen upwards and presses the piercing organs down into the skin. In doing this, it uses its own weight and the strength of the foremost and middle pairs of legs. The hind pair of legs are lifted up into the air. The head can soon be seen coming nearer the skin. The rostrum thendivides in the middle. The labial palpi are forced apart as the mandibles and labrum penetrate into the victim’s flesh. Finally, they are driven entirely asunder and lie flat on the skin of the host, one to the right and the other to the left. The flea then satisfies its hunger. A stream of blood is sucked up, and when the meal is over, there is a forcible action of the legs and the mandibles and upper lip are withdrawn with a jerk. Numerous observers have remarked on the habit possessed by fleas of discharging the contents of their intestines whilst actually engaged in sucking. In many cases a drop of bright red blood is squirted from the rectum during the operation of feeding, and this appears to be a common practice among blood-sucking insects. Its bearing on the feeding operation of the flea has not been discovered. But its possible consequences in transmitting diseases from host to host will be seen in a subsequent chapter on fleas and the transmission of plague.
It is said that the nervous systems and brains of fleas are not so highly developed as those of many other insects such, for instance, as ants, bees and other Hymenoptera. Having drawn attention to the distinction between the external skeleton of a flea and the internal skeleton of a vertebrate, one may with profit do the same in the case of their nervous systems. In both cases the nervous system serves toconvey sensations from the sense-organs, and movements to the muscles. In the vertebrate, as the reader doubtless knows, there is a brain, a nervous cord running from it down the backbone, and a number of nerves issuing, from the spinal cord and from the brain, in various directions. Here the main nervous system runs down thebackof the animal. In a flea, or other insect, the nervous system consists of a chain of ganglia connected by a nervous cord. A ganglion is a nerve centre and, in a sense, each is a brain which may be likened to the one brain of the vertebrate. We have in the cord of ganglia a series of brains, as it were, running from the head down to the extremity of the abdomen. Each ganglion is a mass of nerve cells, from each of which a fibre passes off to unite with the other fibres and make a nerve. The first ganglion in a flea is placed in the upper part of the head above the gullet. It may be called the brain since it receives the nerves of the antennæ and eyes. In the ancestral insect we may suppose that there was a pair of ganglia in each segment. Since the head of the flea consists of several fused segments, we may fairly draw the conclusion that the brain is the result of the fusion of several pairs of ganglia.
The brain of the insect occupies the same position in the body as the brain of the vertebrate; but the rest of the nervous system lies on the floor of thebodyunderthe digestive canal of the flea, whereas in the vertebrate it lies along the back andabovethe digestive canal. The dorsal spinal cord of the vertebrate is then a ventral nervous cord in a flea.
The sensory nerves, which transmit sensations from different sense-organs, and the motor nerves, which send stimuli to the muscles, take their origin from other ganglia besides the ganglion above the gullet. In bees and some other insects it has been shown that the nerves from the palpi and mouth-parts go to the next ganglion which is beneath the gullet. The same is probably the case with fleas; so when we speak of thebrainof a flea we must remember that it has a relative rather than an absolute claim to that title. A flea has really many brains.
In certain blind insects, where the eyes are wanting, parts of the brain are completely atrophied. Whether this is so in the blind species of fleas does not seem to have been investigated.
i47
Fig. 5. The antenna of a flea. A, concealed in the groove. B, protruded from the head. The versatilebasal segmentsand the terminalclub, in this case with segments on one side of it, should be noticed.
Fig. 5. The antenna of a flea. A, concealed in the groove. B, protruded from the head. The versatilebasal segmentsand the terminalclub, in this case with segments on one side of it, should be noticed.
Fig. 5. The antenna of a flea. A, concealed in the groove. B, protruded from the head. The versatilebasal segmentsand the terminalclub, in this case with segments on one side of it, should be noticed.
We pass now from the central nervous system to the sense-organs of the flea. The chief are the eyes, the antennæ and the pygidium. In regard to the eyes nothing more need be said. The antennæ are probably far more important organs to a flea than its eyes; but inasmuch as they are at ordinary times concealed in a groove they are not very conspicuous (Fig. 5). The first tolerably accurate plate of a flea by a naturalist will be found in Hooke’sMicrographia(1664). Robert Hooke (1635-1703) was a somewhat eccentric and irritable man of science who acted as secretary to the Royal Society. His labours were too varied to be effective. He nearly discovered the laws of gravity and also studied fleas. To him belongs the credit of having detected the antennæ groove. Just as many of the older naturalists thought that the maxillary palpi were antennæ, so others thought that the antennæ of a flea were its ears. And when, with the help of their lenses, they saw the antennæ erected and protruded from their grooves, they imagined that the insect was cocking its ears and listening after the manner of a horse or ass. But the antennæ of fleas are much more to them thanears; though it may be that they are also auditory organs. They are certainly tactile and olfactory organs as well. In outward structure each antenna consists of two parts which may be called the stalk and the club. The club is divided into a number of segments and is plentifully supplied with hairs. In some species the cuts which divide the different segments appear to be confined to one side of the club. In others a sort of central core holds the segments of the club together. The antennæ, therefore, are undoubtedly exceedingly complex organs. Such an insect as a flea may well be far more sensitive to movements of the air, vibrations of the earth, smells, light rays and sound-waves than a human being. In their origin the antennæ, like the paired mouth-parts, are modified appendages of the fused segments which compose the head of the insect. The fact that there are four pairs of appendages on the insect’s head, viz. (1) antennæ, (2) maxillæ, (3) labial palpi and (4) mandibles has been put forward by some entomologists as evidence that the head is formed of four primary segments.
Antennæ apparently enable fleas to find their bearings, to communicate with one another and to discover the whereabouts of the opposite sex. But it is especially as organs of smell that they play a most important part in the flea’s social life. They enable couples to find one another; and, when thesexes come together, the antennæ of the male are usually raised and exposed from the groove. Insects generally have some means of cleansing dirt from their antennæ. Some make use of their legs, others of their mouth-parts. In fleas there is often a row of short hairs at the hind margin of the groove which may serve as a kind of comb for cleaning these delicate organs of sense. But further observation on this point would be interesting, for no one appears to have seen the comb in actual use. Female fleas are said usually to carry their antennæ ensconced in the grooves, whilst the males more frequently protrude theirs. The antennæ of the males are generally longer than those of the females.
There are certain noteworthy organs of sense which appear to exist on the upper surface of a flea’s head and body. They take the form of small convexities of the body surface, lentil-shaped and each surrounded at the base by a ring. Somewhat similar sense-organs are widely spread through the insect world. As to their function, divergent views are held. Some think that they are for the perception of sounds, some for the perception of light rays, some for the perception of rays of which we are unconscious. Since these organs are placed, at times, in unprominent parts of the body it seems more probable that they are affected by sound than by light.
The preference which fleas show for certain animals, and the repulsion which they manifest on being allowed to suck blood from an unaccustomed host, lead one to believe that they have a sense of taste. This sense in other insects is apparently seated in certain microscopic pits and hairs which form the ends of nerves and are distributed round the mouth. Whether fleas can hear is not, it seems, definitely known.
A large number of fleas possess what is called a frontal tubercle. It is a notch in the centre of the forehead but nearer to the mouth than to the antenna. Sometimes the tubercle projects from a groove. This is most marked in the genus of African fleasListropsylla. The real nature of this organ is unknown. Some regard it as an organ of sense. Its homology is also uncertain. To some it suggests the egg-breaker of the larva and they regard it as a relic of the larval stage. To others it suggests an eye and they regard it as the remnant of an unpaired ocellus possessed by the ancestral flea.
An exceedingly remarkable organ of sense, which is found in all fleas, is called the pygidium. It is a sensory-plate plentifully supplied with hairs and nerves and always placed on the back of the ninth abdominal segment. Of all its uses we are still somewhat uncertain but some observers declare that at the season of love the male flea bestows caresses on the pygidium of the female.
In many species the male flea is sufficiently different in outward appearance from the female to be easily distinguished. The male is usually smaller and the last segments of the abdomen are so shaped as to give the look of a tail tilted into the air. The frontispiece represents a male flea and shows this well. The internal organs of reproduction (testes and ovaries) in the male and female are placed near the end of the abdomen. The seminal outlet and common oviduct open to the rear of the sensory plate on the ninth segment of the abdomen. The external genital armature of the male flea is exceedingly complicated and quite unlike that of any other insect. When the sexes are united, the usual position is reversed, and the male isbeneaththe female.
It is well known to every entomologist that the hinder segments of insects are often modified for reproductive purposes. In male fleas it is the eighth and ninth abdominal segments which are altered. In the females the eighth, and also often a portion of the seventh, has assumed a peculiar shape. The clasping organs of the male flea are portions of the ninth segment and form together a kind of claw reminding one of the pinchers of a lobster. It is used by the male flea in the breeding season to detain and hold the female.
Every entomologist also knows that the externalsexual organs of insects, of both sexes, are of special importance to the systematist or classifying naturalist. They often enable him to recognise the species when other organs do not show sufficiently striking characters. A minute study of the genitalia of fleas is an absolute necessity to the systematic entomologist, the more so as fleas do not present nearly as many, or nearly as varied, external differences as do the species of most winged insects where colour and pattern of wings are both important.
c4
CHAPTER IVTHE INTERNAL ORGANS OF A FLEAA flealike every other animal must feed and breathe, which leads to a consideration of the internal organs of digestion and respiration. The digestive canal is a slender tube which connects the mouth and the anus, and which is less convoluted and much straighter than in the higher vertebrates.Fig. 6will show the relative positions of the various parts, namely, the mouth, pharynx, gullet, gizzard, stomach, and rectum. Connected with the digestive canal are certain glands and organs of excretion. The alimentary tube itself passes through the middle of the flea’s body, and is kept in that position partly bymuscles and partly by the numerous branching air-tubes through which the insect breathes. Above it lies the heart, and beneath it the nervous cord or chain of ganglia.i53Fig. 6. Diagram of the alimentary canal of a flea. At the top is shown the orifice of themouth, leading into thepharynx. Next comes the shortgullet. Thegizzardis the smaller organ immediately before the stomach. At the base of thestomachare four vermiform tubes, which are theMalpighian tubules. From the base of the stomach issues theintestine, which leads to therectum, where the sixrectal glandsare shown.The mouth of a flea, as of any other insect, is merely an orifice which forms the opening into the alimentary canal. Around the orifice are the various mouth-parts which convey blood to the mouth, but these, the reader will doubtless remember, are the modified limbs or appendages of the segments that compose the flea’s head. The mouth, then, gives access to the digestive canal. The first part nearest the mouth is the pharynx which merges gradually into the gullet. Here is placed the pharyngeal pump which is provided with a sucking apparatus. Muscles attached to the dorsal part of the so-called aspiratory pharynx cause it to expand and contract, owing to the elastic reaction of its walls. The operating muscles, which do this, are in the head of the flea. When these pharyngeal muscles contract and relax in regular sequence, a rhythmic action of the pharynx itself ensues and a steady stream of blood is forced or drawn from the mouth stomachwards. In a light coloured flea, under a powerful lens, this action may be watched in the living insect.Behind the pharynx comes the gullet, which leads down to the gizzard. It is perhaps needless to add that this organ, neither in appearance nor in use, bears any resemblance to the gizzard of a bird, which grinds hard food. The food of the adult flea consists solely of liquid blood.The organ calledgizzardin the flea, for want of abetter name, is, however, remarkable. Its function is not quite certainly known. It is a bulbous expansion in the front of the stomach and situated at the junction of the stomach and the gullet. It contains a multitude of chitinous finger-like processes tapering towards their extremities. From their general arrangement the complete collection of processes would act as an effective sort of valve and prevent the return of the fluids from the stomach. It seems most probable that this is their function. During the life of the flea the stomach is constantly churning its contents. Some valvular arrangement between the stomach and the pharynx would seem to be essential; the pharynx is normally collapsed, as the reader may remember, and its walls are drawn apart by muscles attached to its exterior. When the pharynx is full of blood the muscles relax, the walls collapse like elastic, and the blood is forced into the stomach. In many cases a flea will feed when the stomach is already tensely full of blood; and some sort of valve is therefore needed to prevent regurgitation into the pharynx when the pharyngeal muscles contract and the walls of the pharynx itself are drawn asunder.This valvular arrangement at the anterior end of the flea’s stomach has been minutely studied in connection with recent plague investigations, because there was a theory that fleas carried infection byvomiting the septicæmic blood from their stomachs and so transferred the plague bacillus to the puncture which they made in the skin.But an experiment, which has been tried several times, seems to show that the supposed valve is effective. The stomach of a flea which had recently fed was dissected out intact. As long a portion of rectum as possible was left attached at the hinder end. The gullet having been severed, well in front of the valve, pressure was applied with a blunt tool with the object of forcing the blood through the gullet. The hind aperture of the stomach was, at the same time, closed by pinching up the rectum. The result was that, in no instance, was it possible to force blood through the passage which leads into the gullet. Yet sufficient pressure was applied to burst the stomach.The stomach of a flea is a pear-shaped sack which occupies an appreciable part of the insect’s abdomen. That it is capable of containing a comparatively large amount of blood is apparent from the observation that after a flea has enjoyed a good meal nearly the whole of the abdomen is seen to be filled with a bright red mass. During the investigation of the part played by fleas in spreading plague an endeavour was made to measure, as accurately as possible, the average capacity of a rat-flea’s stomach when filled with blood. Healthy fleas, taken from Bombay rats, were starvedfor twelve hours, and at the end of that time were fed on healthy animals. The stomach was then dissected out whole and floated in a salt solution. Any adherent organs or muscles were carefully removed. Under these conditions the stomach can be examined and measured under the microscope. The average capacity of a rat-flea’s stomach has been approximately estimated to be half a cubic millimetre.The stomach of a flea is therefore, comparatively speaking, very large. The blood remains in the stomach in a partially digested condition. It gradually diminishes in volume, showing clearly that absorption is taking place. At the end of so much of the digestive process as takes place in the flea’s stomach, the blood has become reduced to a thick, slimy, dark red mass. This passes down the intestine to the rectum, where it is perhaps further influenced by the secretion of the so-called rectal glands. Finally, the undigested remains pass from the rectum in the form of very minute, round, almost black, tarry drops.The terminal section of the flea’s digestive canal is called the rectum. Here are placed the rectal glands (Fig. 6), which are six in number. Their function seems not to be certainly known.The external opening of the rectum is placed at the extreme end of the flea’s body between the tergite and sternite of the tenth segment.We pass now to a couple of quite distinct appendages of the digestive canal, namely the salivary glands and the urinary tubules. In fleas the salivary glands are four in number. Two are placed on each side of the anterior end of the flea’s stomach. Each is a simple acinous gland embedded in the body and lined with cells which secrete the saliva. The four ducts from the pairs of glands unite to form two ducts; and the two ducts thus formed run forward and open into the salivary pump. A spiral chitinous membrane lines the inside of the ducts, keeps them distended, and gives them somewhat the appearance of tracheal tubes. The salivary pump is placed quite in the front part of the insect’s head, and is an organ worthy of special notice. It receives the saliva from the glands by means of the two salivary ducts which have just been described, and propels it through the exit duct of the pump into the salivary canal in the mandibles. The pump itself is a hollow chitinous organ. Muscles attached to the walls alternately contract and relax, drawing up the salivary secretion and expelling it through the exit-duct. The opening of the exit-duct is adjusted so as to be opposite to the canals which extend down the mandibles like troughs.It would seem that when the flea is feeding, saliva is pumped into the puncture and blood is pumped out. There is, as it were, an effluent and an affluent stream passing along the mouth parts.The urinary tubules are excretory organs which carry off, in solution, the waste products of the flea’s body. They are sometimes also called Malpighian tubes (Fig. 6). This name they received after Malpighi (1628-94), a famous Italian anatomist, who, four years after Harvey’s death, saw with his own eyes the capillary circulation of which Harvey had only inferred the existence. He also was the first to detect the urinary tubes of insects. These tubules answer to the kidneys of the higher vertebrate. They vary in number in different insects from two to over a hundred. In fleas there are four. They are longish, slender, tubular glands which are closed at one end, but, at the other, open into the rectum. The urinary excretions come from the blood, pass down the tubes into the rectum, and so leave the flea’s body by the anus. In insects the urinary excretion is, generally, only partially liquid.The organs of respiration in a flea consist of a series of tracheæ, or air-tubes, which open by apertures, called stigmata, at the sides of the body. These air-tubes branch and form an elaborate system of ramifications. They have a horny lining and are supported by a spirally-wound thread-like thickening. In this way air is conveyed from the external world, and the oxygen, which vital processes require, is conducted to all parts of the insect’s body.The blood-system of a flea is far less completethan that of the lowest vertebrate. The blood is almost colourless. A large contractile heart drives it into the main blood-vessel. There is, however, no closed system of arteries, capillaries, and veins such as the higher animals possess; and the blood circulates in the whole cavity which intervenes between the body-wall and the various internal organs. There is little need for an elaborate system of blood-vessels since the internal tissues are supplied with oxygen by the ramifying air-tubes. Fleas have more of the air-holes called stigmata than any other insects. Each of the three segments of the thorax has a pair, as well as the second to the eighth segments of the abdomen. The spiracles or apertures lie free on the outside of the body. In beetles, and other insects which run through dusty places, they are lodged in the thin membrane between the segments.The heart of a flea is a very delicate pulsating tube which lies along the back, above the digestive canal and immediately beneath the integument. One may attribute some of the extraordinary strength and vital energy of a flea to the fact that, by the blood-system and the air-system, the tissues of the body are kept richly supplied with oxygen. The blood of a flea is a thin fluid and, of course, without red corpuscles. The blood that is shed when a flea is crushed comes from the stomach and not from the blood-vessels of the insect.The internal organs of fleas cannot be studied without dissection under a microscope. Dissection is best carried on in a solution of salt and water. Fine needles mounted in penholders are the most handy implements. But the point of even the finest commercial needle that can be bought is too blunt for fine dissections, and it is necessary to sharpen it. This can be done by the help of a rapidly revolving emery wheel, varying the inclination of the needle-point to the wheel, so as to grind off the angles. The flea to be dissected is put in a drop of salt solution, on a slide placed on the stage of the dissecting microscope. In the left hand should be a needle with a blunt conical point, in the right a needle with an oblique point. The antennary groove of the flea should then be transfixed and held firmly by the left-hand needle.The point of the right-hand needle is then inserted under the edge of the third or fourth abdominal segments. The segments can then be peeled off by a skilful dissector much as we peel off the skin of a shrimp for our tea at the sea-side. The internal organs of the flea then float off in the salt solution; and by using two very fine pointed needles they can be further separated. It is useful to have one needle ready with a hooked end and another fashioned into a minute knife or scalpel.The most conspicuous of the internal organs willbe the stomach and intestine. The salivary glands will be found at the side of the stomach with a certain amount of fat round them. Their extraction is not so difficult as might be supposed. The hooked needle can be used to hook the salivary duct.The most difficult parts to dissect are the organs connected with the mouth and rostrum. It is best to remove the head and transfix it with the left-hand needle, then to scalp the head by removing the dorsal half of the chitinous carapace. A bold plunge with the right-hand needle will sometimes effect what is desired. A pull on the labium will sometimes bring out the pharynx. It must be confessed that successful dissections are often obtained more by good luck than by skilful management. The use of dilute potash solution facilitates the study of chitinous parts by jellifying the muscles.
THE INTERNAL ORGANS OF A FLEA
A flealike every other animal must feed and breathe, which leads to a consideration of the internal organs of digestion and respiration. The digestive canal is a slender tube which connects the mouth and the anus, and which is less convoluted and much straighter than in the higher vertebrates.Fig. 6will show the relative positions of the various parts, namely, the mouth, pharynx, gullet, gizzard, stomach, and rectum. Connected with the digestive canal are certain glands and organs of excretion. The alimentary tube itself passes through the middle of the flea’s body, and is kept in that position partly bymuscles and partly by the numerous branching air-tubes through which the insect breathes. Above it lies the heart, and beneath it the nervous cord or chain of ganglia.
i53
Fig. 6. Diagram of the alimentary canal of a flea. At the top is shown the orifice of themouth, leading into thepharynx. Next comes the shortgullet. Thegizzardis the smaller organ immediately before the stomach. At the base of thestomachare four vermiform tubes, which are theMalpighian tubules. From the base of the stomach issues theintestine, which leads to therectum, where the sixrectal glandsare shown.
Fig. 6. Diagram of the alimentary canal of a flea. At the top is shown the orifice of themouth, leading into thepharynx. Next comes the shortgullet. Thegizzardis the smaller organ immediately before the stomach. At the base of thestomachare four vermiform tubes, which are theMalpighian tubules. From the base of the stomach issues theintestine, which leads to therectum, where the sixrectal glandsare shown.
Fig. 6. Diagram of the alimentary canal of a flea. At the top is shown the orifice of themouth, leading into thepharynx. Next comes the shortgullet. Thegizzardis the smaller organ immediately before the stomach. At the base of thestomachare four vermiform tubes, which are theMalpighian tubules. From the base of the stomach issues theintestine, which leads to therectum, where the sixrectal glandsare shown.
The mouth of a flea, as of any other insect, is merely an orifice which forms the opening into the alimentary canal. Around the orifice are the various mouth-parts which convey blood to the mouth, but these, the reader will doubtless remember, are the modified limbs or appendages of the segments that compose the flea’s head. The mouth, then, gives access to the digestive canal. The first part nearest the mouth is the pharynx which merges gradually into the gullet. Here is placed the pharyngeal pump which is provided with a sucking apparatus. Muscles attached to the dorsal part of the so-called aspiratory pharynx cause it to expand and contract, owing to the elastic reaction of its walls. The operating muscles, which do this, are in the head of the flea. When these pharyngeal muscles contract and relax in regular sequence, a rhythmic action of the pharynx itself ensues and a steady stream of blood is forced or drawn from the mouth stomachwards. In a light coloured flea, under a powerful lens, this action may be watched in the living insect.
Behind the pharynx comes the gullet, which leads down to the gizzard. It is perhaps needless to add that this organ, neither in appearance nor in use, bears any resemblance to the gizzard of a bird, which grinds hard food. The food of the adult flea consists solely of liquid blood.
The organ calledgizzardin the flea, for want of abetter name, is, however, remarkable. Its function is not quite certainly known. It is a bulbous expansion in the front of the stomach and situated at the junction of the stomach and the gullet. It contains a multitude of chitinous finger-like processes tapering towards their extremities. From their general arrangement the complete collection of processes would act as an effective sort of valve and prevent the return of the fluids from the stomach. It seems most probable that this is their function. During the life of the flea the stomach is constantly churning its contents. Some valvular arrangement between the stomach and the pharynx would seem to be essential; the pharynx is normally collapsed, as the reader may remember, and its walls are drawn apart by muscles attached to its exterior. When the pharynx is full of blood the muscles relax, the walls collapse like elastic, and the blood is forced into the stomach. In many cases a flea will feed when the stomach is already tensely full of blood; and some sort of valve is therefore needed to prevent regurgitation into the pharynx when the pharyngeal muscles contract and the walls of the pharynx itself are drawn asunder.
This valvular arrangement at the anterior end of the flea’s stomach has been minutely studied in connection with recent plague investigations, because there was a theory that fleas carried infection byvomiting the septicæmic blood from their stomachs and so transferred the plague bacillus to the puncture which they made in the skin.
But an experiment, which has been tried several times, seems to show that the supposed valve is effective. The stomach of a flea which had recently fed was dissected out intact. As long a portion of rectum as possible was left attached at the hinder end. The gullet having been severed, well in front of the valve, pressure was applied with a blunt tool with the object of forcing the blood through the gullet. The hind aperture of the stomach was, at the same time, closed by pinching up the rectum. The result was that, in no instance, was it possible to force blood through the passage which leads into the gullet. Yet sufficient pressure was applied to burst the stomach.
The stomach of a flea is a pear-shaped sack which occupies an appreciable part of the insect’s abdomen. That it is capable of containing a comparatively large amount of blood is apparent from the observation that after a flea has enjoyed a good meal nearly the whole of the abdomen is seen to be filled with a bright red mass. During the investigation of the part played by fleas in spreading plague an endeavour was made to measure, as accurately as possible, the average capacity of a rat-flea’s stomach when filled with blood. Healthy fleas, taken from Bombay rats, were starvedfor twelve hours, and at the end of that time were fed on healthy animals. The stomach was then dissected out whole and floated in a salt solution. Any adherent organs or muscles were carefully removed. Under these conditions the stomach can be examined and measured under the microscope. The average capacity of a rat-flea’s stomach has been approximately estimated to be half a cubic millimetre.
The stomach of a flea is therefore, comparatively speaking, very large. The blood remains in the stomach in a partially digested condition. It gradually diminishes in volume, showing clearly that absorption is taking place. At the end of so much of the digestive process as takes place in the flea’s stomach, the blood has become reduced to a thick, slimy, dark red mass. This passes down the intestine to the rectum, where it is perhaps further influenced by the secretion of the so-called rectal glands. Finally, the undigested remains pass from the rectum in the form of very minute, round, almost black, tarry drops.
The terminal section of the flea’s digestive canal is called the rectum. Here are placed the rectal glands (Fig. 6), which are six in number. Their function seems not to be certainly known.
The external opening of the rectum is placed at the extreme end of the flea’s body between the tergite and sternite of the tenth segment.
We pass now to a couple of quite distinct appendages of the digestive canal, namely the salivary glands and the urinary tubules. In fleas the salivary glands are four in number. Two are placed on each side of the anterior end of the flea’s stomach. Each is a simple acinous gland embedded in the body and lined with cells which secrete the saliva. The four ducts from the pairs of glands unite to form two ducts; and the two ducts thus formed run forward and open into the salivary pump. A spiral chitinous membrane lines the inside of the ducts, keeps them distended, and gives them somewhat the appearance of tracheal tubes. The salivary pump is placed quite in the front part of the insect’s head, and is an organ worthy of special notice. It receives the saliva from the glands by means of the two salivary ducts which have just been described, and propels it through the exit duct of the pump into the salivary canal in the mandibles. The pump itself is a hollow chitinous organ. Muscles attached to the walls alternately contract and relax, drawing up the salivary secretion and expelling it through the exit-duct. The opening of the exit-duct is adjusted so as to be opposite to the canals which extend down the mandibles like troughs.
It would seem that when the flea is feeding, saliva is pumped into the puncture and blood is pumped out. There is, as it were, an effluent and an affluent stream passing along the mouth parts.
The urinary tubules are excretory organs which carry off, in solution, the waste products of the flea’s body. They are sometimes also called Malpighian tubes (Fig. 6). This name they received after Malpighi (1628-94), a famous Italian anatomist, who, four years after Harvey’s death, saw with his own eyes the capillary circulation of which Harvey had only inferred the existence. He also was the first to detect the urinary tubes of insects. These tubules answer to the kidneys of the higher vertebrate. They vary in number in different insects from two to over a hundred. In fleas there are four. They are longish, slender, tubular glands which are closed at one end, but, at the other, open into the rectum. The urinary excretions come from the blood, pass down the tubes into the rectum, and so leave the flea’s body by the anus. In insects the urinary excretion is, generally, only partially liquid.
The organs of respiration in a flea consist of a series of tracheæ, or air-tubes, which open by apertures, called stigmata, at the sides of the body. These air-tubes branch and form an elaborate system of ramifications. They have a horny lining and are supported by a spirally-wound thread-like thickening. In this way air is conveyed from the external world, and the oxygen, which vital processes require, is conducted to all parts of the insect’s body.
The blood-system of a flea is far less completethan that of the lowest vertebrate. The blood is almost colourless. A large contractile heart drives it into the main blood-vessel. There is, however, no closed system of arteries, capillaries, and veins such as the higher animals possess; and the blood circulates in the whole cavity which intervenes between the body-wall and the various internal organs. There is little need for an elaborate system of blood-vessels since the internal tissues are supplied with oxygen by the ramifying air-tubes. Fleas have more of the air-holes called stigmata than any other insects. Each of the three segments of the thorax has a pair, as well as the second to the eighth segments of the abdomen. The spiracles or apertures lie free on the outside of the body. In beetles, and other insects which run through dusty places, they are lodged in the thin membrane between the segments.
The heart of a flea is a very delicate pulsating tube which lies along the back, above the digestive canal and immediately beneath the integument. One may attribute some of the extraordinary strength and vital energy of a flea to the fact that, by the blood-system and the air-system, the tissues of the body are kept richly supplied with oxygen. The blood of a flea is a thin fluid and, of course, without red corpuscles. The blood that is shed when a flea is crushed comes from the stomach and not from the blood-vessels of the insect.
The internal organs of fleas cannot be studied without dissection under a microscope. Dissection is best carried on in a solution of salt and water. Fine needles mounted in penholders are the most handy implements. But the point of even the finest commercial needle that can be bought is too blunt for fine dissections, and it is necessary to sharpen it. This can be done by the help of a rapidly revolving emery wheel, varying the inclination of the needle-point to the wheel, so as to grind off the angles. The flea to be dissected is put in a drop of salt solution, on a slide placed on the stage of the dissecting microscope. In the left hand should be a needle with a blunt conical point, in the right a needle with an oblique point. The antennary groove of the flea should then be transfixed and held firmly by the left-hand needle.
The point of the right-hand needle is then inserted under the edge of the third or fourth abdominal segments. The segments can then be peeled off by a skilful dissector much as we peel off the skin of a shrimp for our tea at the sea-side. The internal organs of the flea then float off in the salt solution; and by using two very fine pointed needles they can be further separated. It is useful to have one needle ready with a hooked end and another fashioned into a minute knife or scalpel.
The most conspicuous of the internal organs willbe the stomach and intestine. The salivary glands will be found at the side of the stomach with a certain amount of fat round them. Their extraction is not so difficult as might be supposed. The hooked needle can be used to hook the salivary duct.
The most difficult parts to dissect are the organs connected with the mouth and rostrum. It is best to remove the head and transfix it with the left-hand needle, then to scalp the head by removing the dorsal half of the chitinous carapace. A bold plunge with the right-hand needle will sometimes effect what is desired. A pull on the labium will sometimes bring out the pharynx. It must be confessed that successful dissections are often obtained more by good luck than by skilful management. The use of dilute potash solution facilitates the study of chitinous parts by jellifying the muscles.
c5CHAPTER VTHE HUMAN FLEA AND OTHER SPECIESThehuman flea (Pulex irritans) appears to occupy an isolated position. The genusPulexwhich Linnæus established has now been reduced until it contains one species only. The human flea belongs to the group with eyes and without combs. In somerespects it is the most specialized of all thePulicidæ. The chigoes (Sarcopsyllidæ) resemble it and are doubtless derived from thePulicidæ. The chief structural character of this interesting insect is the greatly reduced thorax. But it can be distinguished from any other known flea by the fact that the upper segment of the hind leg (hind coxa) bears a number of hairs on the inner surface of the posterior portion. A more noteworthy feature in this flea is the presence, in a large proportion of specimens of both sexes, of a small tooth at the edge of the head. This small tooth is sometimes absent; but, when present, both its position and its structure indicate that it corresponds to the fifth tooth in the head comb of the dog-flea (Ctenocephalus canis) (Fig. 7). In the hedgehog-flea (Ct. erinacei) the teeth of the combs both on the head and on the thorax are small in size and few in number. Occasionally they almost disappear. The conclusion seems justified that the human flea is descended from an ancestral form with combs. To discuss whether the combs became useless and were lost when the host lost the hairy covering of its body would lead into regions of vague speculation and occupy time unprofitably.The nearest allies of the human flea, which are found on various animals, are all inhabitants of the Old World. The indigenous fleas of America are only distant relatives ofPulex irritans. Our knowledgeof the present and former distribution of this species is deplorably meagre. The many books of travel published in the early part of the nineteenth century contain hardly any records of fleas. The human flea is now cosmopolitan. Specimens identical with those from Europe are found almost everywhere. But it may be doubted whether this was the case before the great era of travel and steam began in last century.There is one strange and, indeed, inexplicable fact in connection with the distribution of this cosmopolitan species of flea. It is absent from the oases of the Sahara and the Haussa countries immediately to the south of the great desert. These countries have long been in communication with places wherePulex irritansis known to abound. There is no natural barrier. The habits of the natives would encourage fleas to thrive, and other forms of human vermin are plentiful. There is, apparently, only one explanation that is forthcoming. It is suggested that the soil and climate in these regions of Africa are, for some reason, unsuited to fleas. In other parts of the Dark Continent, where there are European settlements, the human flea seems to thrive surprisingly well and to attack Europeans and natives, as well as wild and domestic animals. In those parts of Asia where there are European colonies and much intercourse between settlers and Orientals,Pulex irritansis awell-established and thriving parasite. Unfortunately, there is no means of knowing whether this was the case among the native populations before European travellers and traders arrived.Pulex irritanshas, however, recently been found on the natives of German New Guinea living some 10,000 feet above sea-level and in great isolation. Seaports are everywhere infested with fleas.Another problem on which no light has been thrown concerns the evolution of the human flea. It would be of great interest to know whether the present species has undergone modifications of form since it became a parasite of the human race; whether we inherited the species from our simian ancestors; or whether the flea of one of the lower mammals became parasitic on mankind. In the Old World this flea is essentially a parasite of man. It occurs only occasionally on other mammals. In America it certainly appears to occur more frequently on mammals, other than man, than it does in the Old World. Human fleas can propagate in deserted human dwellings. The larvæ find nourishment in any refuse that has been left behind, and the adult insect can apparently continue for some time to reproduce itself without a meal of any sort and certainly without human blood. Travellers in the East and in Africa have described how on entering huts in deserted villages they have found theirclothing covered with myriads of fleas, sometimes ravenous, and at others weak from long fasting.The human flea is a good deal more select in the choice of a host than some other species. The cat-flea (Ctenocephalus felis) has been found not only on the cat, but also on the dog, tiger, leopard, goat, horse, rat, hedgehog, kangaroo, deer, guinea-pig, rabbit, and on man. Many of these were specimens collected in zoological gardens. Although when hungry and confined in a test-tube the human flea will readily bite a rat or a guinea-pig, it has been found that human fleas kept with no other food-supply than rats and guinea-pigs soon die off.When large numbers of human fleas were wanted for experiments in Bombay, guinea-pigs were used as traps to attract them. On one occasion two guinea-pigs placed in a house which had been vacant for some days, and in which fleas must have been short of food, failed to attract any of this species; while a man who entered the house shortly afterwards acted as an admirable trap. Those who have not had experience of the abundance and voracity of fleas in oriental countries can hardly believe the numbers of human fleas that may be captured by sending a bare-legged man into a deserted house and then picking the fleas off him. In one house 31P. irritanswere taken on a man’s legs in a few minutes. In another house 84P. irritans, 8 cat-fleas and1 bird-flea were caught. In a third, 150P. irritansand 4 cat-fleas were captured in a short time.The piercing organs of the human flea are strong and well developed. This is rare in a flea which, far from having adopted stationary habits, is a very active insect. It has been suggested, with some show of probability, that the wide and strongly serrated mandibles were acquired after man became the host. The naked skin and rough garment of mankind would render the claws and legs of the flea insufficient to keep the insect in a steady position when feeding. Natural selection would, in due course, strengthen the mouth organs.The division of mankind into different races, many of which are quite as distinct as the various species of some genus among other animals, leads one to expect various races among the fleas which are parasitic on them. If the sand-martin and the house-martin, the rat and the mouse have distinguishable fleas, one might suppose that the Caucasian and the Hottentot, the Australian native and the Red Indian would follow suit. It may be that further study will show that the human flea now consists of a number of different races. In only one case, however, does a development of this kind in fact appear. Fleas taken off Mexican Indians show slight but fairly constant differences from the truePulex irritans. The specimens are smaller in size,the rostrum is longer and the clasper of the male is more pointed. If the Mexican Indians have a special race of human flea it must have developed after the Indians came to America, or they must have brought it with them when they came. In the latter case this race of flea may still exist in the country whence these Indians originally came.Apart from this apparently constant race, the individual variation in specimens of the human flea is slight. If a large series of mounted specimens are examined with the microscope, it will be noticed that the bristles or spines on the legs are sometimes more or less numerous. But, with this exception, marked varieties such as are frequently found among other insects seem to be rare.Although mankind is the true host of this flea, it has been obtained in various parts of the world on various mammals and occasionally on birds. But in England, and probably in other parts of Europe as well,Pulex irritansis an undoubted parasite of the badger. A good series of the insect has been got from wild badgers freshly captured near Reading in Berkshire and Hastings in Sussex. In other parts of the world it has been obtained from a variety of small carnivora: cats, dogs, foxes, jackals and polecats. It has also been found on Rodents (Gerbillus) and on Insectivora (Erinaceus). In South Africa it has been taken off a caracal and in North America off a lynx.Sandy places such as sea-beaches and picnic grounds, where humanity congregates for pleasure or business, frequently swarm with this species of flea waiting an opportunity to feed. The larvæ are bred in the sand and feed on organic refuse.The genus most closely allied to that which contains the human flea consists also of a single species only. It is a large flea (Pariodontis riggenbachi) found on porcupines all over Africa and in India.Mankind is, occasionally, bitten by a variety of other species besidesPulex irritans. In hot countries the chigoe (Dermatophilus penetrans) is a serious and troublesome pest, particularly to bare-footed people. In temperate regions there are rat-fleas, cat-fleas, dog-fleas and bird-fleas which occasionally transfer themselves to man and feast on his blood. But, on the whole, hunger and propinquity rather than free inclination seem to actuate these fleas of which man is only the occasional host. There are besides very numerous species which have never under any circumstances been known to bite man. There is no doubt that some persons are more attractive to fleas than others. The reason for this we do not know. It may depend on the tenderness of their skin, the quality and taste of their blood, or their personal smell, or possibly all three combined.The various forms of rat-flea which are important in carrying plague from rodents to the human raceare dealt with later on. Among the commonest fowl-fleas which bite man areCeratophyllus gallinæandC. gallinulæ. Both species infest the nests of many common passerine birds besides the domestic fowl. A common parasite of the pigeon isC. columbæ, which also bites man.i71Fig. 7. The head of a female dog-flea (above) and a female cat-flea (below) to illustrate the difference in shape. In the males the difference is less strongly marked but quite perceptible. FromNovitates Zoologicæ, Vol.XII, January, 1905.Dog-fleas and cat-fleas frequently transfer themselves to man. It has been asserted that the flea of the dog and the flea of the cat are indistinguishable. Several great authorities on fleas, such as Dr Carlo Tiraboschi in Italy and Mr Carl Baker in the United States, have maintained that the differences betweenCtenocephalus canisandCt. feliswere unreliable and that they are not distinct species. Mr Charles Rothschild has, however, shown that the two species are abundantly distinct. Themalesof these two insects can be readily distinguished from each other by differences exhibited in their respective sexual organs. Thefemalescan be distinguished, at a glance, by the different shape of their respective heads.Fig. 7, which shows the head of a female dog-flea above and of a female cat-flea below, illustrates this. It will be seen thatCt. felishas a much longer and more pointed head thanCt. canis. In themalesthe difference in the shape of the head is less strongly marked, but is quite perceptible. There are several minor differences in addition which serve, but less clearly, to distinguish these two insects. The first genal spine, or first tooth in the head-comb, is shorter in the dog-fleas of both sexes than it is in the cat-fleas. The abdominal stigmata appear to be larger in a dog-flea than in a cat-flea, and there are differences in the bristles which seem to be constant.Both species are perceptibly larger than human fleas, and dog-fleas have always afforded good material for dissection. Very few dogs seem to be exempt from fleas, and the little pets which are carried in ladies’ arms are often swarming with them.This account of a despised and detested group of insects would be very imperfect if it did not mention those educated or performing fleas which have evoked so much astonishment among people who have watched them. It will be best to say, at once, that the fleas are not educated and that the performance can only be attributed to their desire to escape. It is stated that a performing flea may be broken of the habit of jumping by being put in a pill-box with glass sides which is made to revolve like a lottery wheel. A short course of this tread-mill teaches the flea that the objectionable practice of hopping is useless and exhausting. It is said that the life of performing fleas averages eight months, which seems surprising. They are fed every few days, and the trainers delight in showing the punctures on their arms where the swarm of pets has been fed.Performing fleas are first of all securely fastened, and this is nine-tenths of the secret, and the art of education. A very fine silk fibre is put round the body and knotted on the back. The flea may then be cemented to some moveable or immoveable object. It may pull a coach by being attached to a pole madeof a bristle. A little paper object stuck on its back is termed by courtesy an equestrian or a ball-dress. The lively imagination of the spectators is of great help. The strength of a flea is wonderful, and on being placed on a sheet of blotting-paper, so that the hooks of the feet get a hold, the coach travels at a fine pace. In the intervals of the performance the coach is turned over, and the performer with its feet in the air does not get exhausted with needless struggles. Or else the fleas are fixed head uppermost, with their legs extended horizontally, to an upright wire driven into the table. Ladies have fans of tissue paper gummed to their limbs. Gentlemen are in the same way supplied with swords made out of fine segments of wire. When two swordsmen are placed opposite each other and the table is knocked they move their limbs. The swords then clash by chance, and we have a representation of a duel not much worse than may be seen in provincial or even London melodrama.More wonderful are dancing fleas, for there we have a real representation of a ball-room filled with waltzers. The orchestra of fleas, all securely fixed with cement, is placed above a little musical-box. The music proceeds from the box, but the vibrations make the fleas gesticulate violently over their musical instruments. The dancers spin round on the ball-room floor. The couples are fastened by a rigid baropposite each other, so that they cannot touch or part. Each is pointed in an opposite direction, and tries to run away. A rotary motion ensues which, to the spectators if not to the fleas, is very like waltzing.
c5
THE HUMAN FLEA AND OTHER SPECIES
Thehuman flea (Pulex irritans) appears to occupy an isolated position. The genusPulexwhich Linnæus established has now been reduced until it contains one species only. The human flea belongs to the group with eyes and without combs. In somerespects it is the most specialized of all thePulicidæ. The chigoes (Sarcopsyllidæ) resemble it and are doubtless derived from thePulicidæ. The chief structural character of this interesting insect is the greatly reduced thorax. But it can be distinguished from any other known flea by the fact that the upper segment of the hind leg (hind coxa) bears a number of hairs on the inner surface of the posterior portion. A more noteworthy feature in this flea is the presence, in a large proportion of specimens of both sexes, of a small tooth at the edge of the head. This small tooth is sometimes absent; but, when present, both its position and its structure indicate that it corresponds to the fifth tooth in the head comb of the dog-flea (Ctenocephalus canis) (Fig. 7). In the hedgehog-flea (Ct. erinacei) the teeth of the combs both on the head and on the thorax are small in size and few in number. Occasionally they almost disappear. The conclusion seems justified that the human flea is descended from an ancestral form with combs. To discuss whether the combs became useless and were lost when the host lost the hairy covering of its body would lead into regions of vague speculation and occupy time unprofitably.
The nearest allies of the human flea, which are found on various animals, are all inhabitants of the Old World. The indigenous fleas of America are only distant relatives ofPulex irritans. Our knowledgeof the present and former distribution of this species is deplorably meagre. The many books of travel published in the early part of the nineteenth century contain hardly any records of fleas. The human flea is now cosmopolitan. Specimens identical with those from Europe are found almost everywhere. But it may be doubted whether this was the case before the great era of travel and steam began in last century.
There is one strange and, indeed, inexplicable fact in connection with the distribution of this cosmopolitan species of flea. It is absent from the oases of the Sahara and the Haussa countries immediately to the south of the great desert. These countries have long been in communication with places wherePulex irritansis known to abound. There is no natural barrier. The habits of the natives would encourage fleas to thrive, and other forms of human vermin are plentiful. There is, apparently, only one explanation that is forthcoming. It is suggested that the soil and climate in these regions of Africa are, for some reason, unsuited to fleas. In other parts of the Dark Continent, where there are European settlements, the human flea seems to thrive surprisingly well and to attack Europeans and natives, as well as wild and domestic animals. In those parts of Asia where there are European colonies and much intercourse between settlers and Orientals,Pulex irritansis awell-established and thriving parasite. Unfortunately, there is no means of knowing whether this was the case among the native populations before European travellers and traders arrived.Pulex irritanshas, however, recently been found on the natives of German New Guinea living some 10,000 feet above sea-level and in great isolation. Seaports are everywhere infested with fleas.
Another problem on which no light has been thrown concerns the evolution of the human flea. It would be of great interest to know whether the present species has undergone modifications of form since it became a parasite of the human race; whether we inherited the species from our simian ancestors; or whether the flea of one of the lower mammals became parasitic on mankind. In the Old World this flea is essentially a parasite of man. It occurs only occasionally on other mammals. In America it certainly appears to occur more frequently on mammals, other than man, than it does in the Old World. Human fleas can propagate in deserted human dwellings. The larvæ find nourishment in any refuse that has been left behind, and the adult insect can apparently continue for some time to reproduce itself without a meal of any sort and certainly without human blood. Travellers in the East and in Africa have described how on entering huts in deserted villages they have found theirclothing covered with myriads of fleas, sometimes ravenous, and at others weak from long fasting.
The human flea is a good deal more select in the choice of a host than some other species. The cat-flea (Ctenocephalus felis) has been found not only on the cat, but also on the dog, tiger, leopard, goat, horse, rat, hedgehog, kangaroo, deer, guinea-pig, rabbit, and on man. Many of these were specimens collected in zoological gardens. Although when hungry and confined in a test-tube the human flea will readily bite a rat or a guinea-pig, it has been found that human fleas kept with no other food-supply than rats and guinea-pigs soon die off.
When large numbers of human fleas were wanted for experiments in Bombay, guinea-pigs were used as traps to attract them. On one occasion two guinea-pigs placed in a house which had been vacant for some days, and in which fleas must have been short of food, failed to attract any of this species; while a man who entered the house shortly afterwards acted as an admirable trap. Those who have not had experience of the abundance and voracity of fleas in oriental countries can hardly believe the numbers of human fleas that may be captured by sending a bare-legged man into a deserted house and then picking the fleas off him. In one house 31P. irritanswere taken on a man’s legs in a few minutes. In another house 84P. irritans, 8 cat-fleas and1 bird-flea were caught. In a third, 150P. irritansand 4 cat-fleas were captured in a short time.
The piercing organs of the human flea are strong and well developed. This is rare in a flea which, far from having adopted stationary habits, is a very active insect. It has been suggested, with some show of probability, that the wide and strongly serrated mandibles were acquired after man became the host. The naked skin and rough garment of mankind would render the claws and legs of the flea insufficient to keep the insect in a steady position when feeding. Natural selection would, in due course, strengthen the mouth organs.
The division of mankind into different races, many of which are quite as distinct as the various species of some genus among other animals, leads one to expect various races among the fleas which are parasitic on them. If the sand-martin and the house-martin, the rat and the mouse have distinguishable fleas, one might suppose that the Caucasian and the Hottentot, the Australian native and the Red Indian would follow suit. It may be that further study will show that the human flea now consists of a number of different races. In only one case, however, does a development of this kind in fact appear. Fleas taken off Mexican Indians show slight but fairly constant differences from the truePulex irritans. The specimens are smaller in size,the rostrum is longer and the clasper of the male is more pointed. If the Mexican Indians have a special race of human flea it must have developed after the Indians came to America, or they must have brought it with them when they came. In the latter case this race of flea may still exist in the country whence these Indians originally came.
Apart from this apparently constant race, the individual variation in specimens of the human flea is slight. If a large series of mounted specimens are examined with the microscope, it will be noticed that the bristles or spines on the legs are sometimes more or less numerous. But, with this exception, marked varieties such as are frequently found among other insects seem to be rare.
Although mankind is the true host of this flea, it has been obtained in various parts of the world on various mammals and occasionally on birds. But in England, and probably in other parts of Europe as well,Pulex irritansis an undoubted parasite of the badger. A good series of the insect has been got from wild badgers freshly captured near Reading in Berkshire and Hastings in Sussex. In other parts of the world it has been obtained from a variety of small carnivora: cats, dogs, foxes, jackals and polecats. It has also been found on Rodents (Gerbillus) and on Insectivora (Erinaceus). In South Africa it has been taken off a caracal and in North America off a lynx.
Sandy places such as sea-beaches and picnic grounds, where humanity congregates for pleasure or business, frequently swarm with this species of flea waiting an opportunity to feed. The larvæ are bred in the sand and feed on organic refuse.
The genus most closely allied to that which contains the human flea consists also of a single species only. It is a large flea (Pariodontis riggenbachi) found on porcupines all over Africa and in India.
Mankind is, occasionally, bitten by a variety of other species besidesPulex irritans. In hot countries the chigoe (Dermatophilus penetrans) is a serious and troublesome pest, particularly to bare-footed people. In temperate regions there are rat-fleas, cat-fleas, dog-fleas and bird-fleas which occasionally transfer themselves to man and feast on his blood. But, on the whole, hunger and propinquity rather than free inclination seem to actuate these fleas of which man is only the occasional host. There are besides very numerous species which have never under any circumstances been known to bite man. There is no doubt that some persons are more attractive to fleas than others. The reason for this we do not know. It may depend on the tenderness of their skin, the quality and taste of their blood, or their personal smell, or possibly all three combined.
The various forms of rat-flea which are important in carrying plague from rodents to the human raceare dealt with later on. Among the commonest fowl-fleas which bite man areCeratophyllus gallinæandC. gallinulæ. Both species infest the nests of many common passerine birds besides the domestic fowl. A common parasite of the pigeon isC. columbæ, which also bites man.
i71
Fig. 7. The head of a female dog-flea (above) and a female cat-flea (below) to illustrate the difference in shape. In the males the difference is less strongly marked but quite perceptible. FromNovitates Zoologicæ, Vol.XII, January, 1905.
Fig. 7. The head of a female dog-flea (above) and a female cat-flea (below) to illustrate the difference in shape. In the males the difference is less strongly marked but quite perceptible. FromNovitates Zoologicæ, Vol.XII, January, 1905.
Fig. 7. The head of a female dog-flea (above) and a female cat-flea (below) to illustrate the difference in shape. In the males the difference is less strongly marked but quite perceptible. FromNovitates Zoologicæ, Vol.XII, January, 1905.
Dog-fleas and cat-fleas frequently transfer themselves to man. It has been asserted that the flea of the dog and the flea of the cat are indistinguishable. Several great authorities on fleas, such as Dr Carlo Tiraboschi in Italy and Mr Carl Baker in the United States, have maintained that the differences betweenCtenocephalus canisandCt. feliswere unreliable and that they are not distinct species. Mr Charles Rothschild has, however, shown that the two species are abundantly distinct. Themalesof these two insects can be readily distinguished from each other by differences exhibited in their respective sexual organs. Thefemalescan be distinguished, at a glance, by the different shape of their respective heads.Fig. 7, which shows the head of a female dog-flea above and of a female cat-flea below, illustrates this. It will be seen thatCt. felishas a much longer and more pointed head thanCt. canis. In themalesthe difference in the shape of the head is less strongly marked, but is quite perceptible. There are several minor differences in addition which serve, but less clearly, to distinguish these two insects. The first genal spine, or first tooth in the head-comb, is shorter in the dog-fleas of both sexes than it is in the cat-fleas. The abdominal stigmata appear to be larger in a dog-flea than in a cat-flea, and there are differences in the bristles which seem to be constant.Both species are perceptibly larger than human fleas, and dog-fleas have always afforded good material for dissection. Very few dogs seem to be exempt from fleas, and the little pets which are carried in ladies’ arms are often swarming with them.
This account of a despised and detested group of insects would be very imperfect if it did not mention those educated or performing fleas which have evoked so much astonishment among people who have watched them. It will be best to say, at once, that the fleas are not educated and that the performance can only be attributed to their desire to escape. It is stated that a performing flea may be broken of the habit of jumping by being put in a pill-box with glass sides which is made to revolve like a lottery wheel. A short course of this tread-mill teaches the flea that the objectionable practice of hopping is useless and exhausting. It is said that the life of performing fleas averages eight months, which seems surprising. They are fed every few days, and the trainers delight in showing the punctures on their arms where the swarm of pets has been fed.
Performing fleas are first of all securely fastened, and this is nine-tenths of the secret, and the art of education. A very fine silk fibre is put round the body and knotted on the back. The flea may then be cemented to some moveable or immoveable object. It may pull a coach by being attached to a pole madeof a bristle. A little paper object stuck on its back is termed by courtesy an equestrian or a ball-dress. The lively imagination of the spectators is of great help. The strength of a flea is wonderful, and on being placed on a sheet of blotting-paper, so that the hooks of the feet get a hold, the coach travels at a fine pace. In the intervals of the performance the coach is turned over, and the performer with its feet in the air does not get exhausted with needless struggles. Or else the fleas are fixed head uppermost, with their legs extended horizontally, to an upright wire driven into the table. Ladies have fans of tissue paper gummed to their limbs. Gentlemen are in the same way supplied with swords made out of fine segments of wire. When two swordsmen are placed opposite each other and the table is knocked they move their limbs. The swords then clash by chance, and we have a representation of a duel not much worse than may be seen in provincial or even London melodrama.
More wonderful are dancing fleas, for there we have a real representation of a ball-room filled with waltzers. The orchestra of fleas, all securely fixed with cement, is placed above a little musical-box. The music proceeds from the box, but the vibrations make the fleas gesticulate violently over their musical instruments. The dancers spin round on the ball-room floor. The couples are fastened by a rigid baropposite each other, so that they cannot touch or part. Each is pointed in an opposite direction, and tries to run away. A rotary motion ensues which, to the spectators if not to the fleas, is very like waltzing.