BOOK IVASTRONOMIC SCIENCE

Tisserand found that, if the Newtonian attraction conformed to Weber's law there resulted, for Mercury's perihelion, secular variation of 14´´,of the same sense as that which has been observed and could not be explained, but smaller, since this is 38´´.

Let us recur to the hypotheses A, B and C, and study first the motion of a planet attracted by a fixed center. The hypotheses B and C are no longer distinguished, since, if the attracting point is fixed, the field it produces is a purely electrostatic field, where the attraction varies inversely as the square of the distance, in conformity with Coulomb's electrostatic law, identical with that of Newton.

The vis viva equation holds good, taking for vis viva the new definition; in the same way, the equation of areas is replaced by another equivalent to it; the moment of the quantity of motion is a constant, but the quantity of motion must be defined as in the new dynamics.

The only sensible effect will be a secular motion of the perihelion. With the theory of Lorentz, we shall find, for this motion, half of what Weber's law would give; with the theory of Abraham, two fifths.

If now we suppose two moving bodies gravitating around their common center of gravity, the effects are very little different, though the calculations may be a little more complicated. The motion of Mercury's perihelion would therefore be 7´´ in the theory of Lorentz and 5´´.6 in that of Abraham.

The effect moreover is proportional ton3a2, wherenis the star's mean motion and a the radius of its orbit. For the planets, in virtue of Kepler's law, the effect varies then inversely as √a5; it is therefore insensible, save for Mercury.

It is likewise insensible for the moon thoughnis great, becauseais extremely small; in sum, it is five times less for Venus, and six hundred times less for the moon than for Mercury. We may add that as to Venus and the earth, the motion of the perihelion (for the same angular velocity of this motion) would be much more difficult to discern by astronomic observations, because the excentricity of their orbits is much less than for Mercury.

To sum up,the only sensible effect upon astronomic observations would be a motion of Mercury's perihelion, in the same sense as that which has been observed without being explained, but notably slighter.

That can not be regarded as an argument in favor of the new dynamics, since it will always be necessary to seek another explanation for the greater part of Mercury's anomaly; but still less can it be regarded as an argument against it.

It is interesting to compare these considerations with a theory long since proposed to explain universal gravitation.

Suppose that, in the interplanetary spaces, circulate in every direction, with high velocities, very tenuous corpuscles. A body isolated in space will not be affected, apparently, by the impacts of these corpuscles, since these impacts are equally distributed in all directions. But if two bodiesAandBare present, the bodyBwill play the rôle of screen and will intercept part of the corpuscles which, without it, would have struckA. Then, the impacts received byAin the direction opposite that fromBwill no longer have a counterpart, or will now be only partially compensated, and this will pushAtowardB.

Such is the theory of Lesage; and we shall discuss it, taking first the view-point of ordinary mechanics.

First, how should the impacts postulated by this theory take place; is it according to the laws of perfectly elastic bodies, or according to those of bodies devoid of elasticity, or according to an intermediate law? The corpuscles of Lesage can not act as perfectly elastic bodies; otherwise the effect would be null,since the corpuscles intercepted by the bodyBwould be replaced by others which would have rebounded fromB, and calculation proves that the compensation would be perfect. It is necessary then that the impact make the corpuscles lose energy, and this energy should appear under the form of heat. But how much heat would thus be produced? Note that attraction passes through bodies; it is necessary therefore to represent to ourselves the earth, for example, not as a solid screen, but as formed of a very great number of very small spherical molecules, which play individually the rôle of little screens, but between which the corpuscles of Lesage may freely circulate. So, not only the earth is not a solid screen, but it is not even a cullender, since the voids occupy much more space than the plenums. To realize this, recall that Laplace has demonstrated that attraction, in traversing the earth, is weakened at most by one ten-millionth part, and his proof is perfectly satisfactory: in fact, if attraction were absorbed by the body it traverses, it would no longer be proportional to the masses; it would berelativelyweaker for great bodies than for small, since it would have a greater thickness to traverse. The attraction of the sun for the earth would therefore berelativelyweaker than that of the sun for the moon, and thence would result, in the motion of the moon, a very sensible inequality. We should therefore conclude, if we adopt the theory of Lesage, that the total surface of the spherical molecules which compose the earth is at most the ten-millionth part of the total surface of the earth.

Darwin has proved that the theory of Lesage only leads exactly to Newton's law when we postulate particles entirely devoid of elasticity. The attraction exerted by the earth on a mass 1 at a distance 1 will then be proportional, at the same time, to the total surfaceSof the spherical molecules composing it, to the velocityvof the corpuscles, to the square root of the density ρ of the medium formed by the corpuscles. The heat produced will be proportional toS, to the density ρ, and to the cube of the velocityv.

But it is necessary to take account of the resistance experienced by a body moving in such a medium; it can not move, in fact, without going against certain impacts, in fleeing, on the contrary,before those coming in the opposite direction, so that the compensation realized in the state of rest can no longer subsist. The calculated resistance is proportional toS, to ρ and tov; now, we know that the heavenly bodies move as if they experienced no resistance, and the precision of observations permits us to fix a limit to the resistance of the medium.

This resistance varying asSρv, while the attraction varies asS√(ρv), we see that the ratio of the resistance to the square of the attraction is inversely as the productSv.

We have therefore a lower limit of the productSv. We have already an upper limit ofS(by the absorption of attraction by the body it traverses); we have therefore a lower limit of the velocityv, which must be at least 24·1017times that of light.

From this we are able to deduce ρ and the quantity of heat produced; this quantity would suffice to raise the temperature 1026degrees a second; the earth would receive in a given time 1020times more heat than the sun emits in the same time; I am not speaking of the heat the sun sends to the earth, but of that it radiates in all directions.

It is evident the earth could not long stand such a régime.

We should not be led to results less fantastic if, contrary to Darwin's views, we endowed the corpuscles of Lesage with an elasticity imperfect without being null. In truth, the vis viva of these corpuscles would not be entirely converted into heat, but the attraction produced would likewise be less, so that it would be only the part of this vis viva converted into heat, which would contribute to produce the attraction and that would come to the same thing; a judicious employment of the theorem of the viriel would enable us to account for this.

The theory of Lesage may be transformed; suppress the corpuscles and imagine the ether overrun in all senses by luminous waves coming from all points of space. When a material object receives a luminous wave, this wave exercises upon it a mechanical action due to the Maxwell-Bartholi pressure, just as if it had received the impact of a material projectile. The waves in question could therefore play the rôle of the corpuscles of Lesage. This is what is supposed, for example, by M. Tommasina.

The difficulties are not removed for all that; the velocity ofpropagation can be only that of light, and we are thus led, for the resistance of the medium, to an inadmissible figure. Besides, if the light is all reflected, the effect is null, just as in the hypothesis of the perfectly elastic corpuscles.

That there should be attraction, it is necessary that the light be partially absorbed; but then there is production of heat. The calculations do not differ essentially from those made in the ordinary theory of Lesage, and the result retains the same fantastic character.

On the other hand, attraction is not absorbed by the body it traverses, or hardly at all; it is not so with the light we know. Light which would produce the Newtonian attraction would have to be considerably different from ordinary light and be, for example, of very short wave length. This does not count that, if our eyes were sensible of this light, the whole heavens should appear to us much more brilliant than the sun, so that the sun would seem to us to stand out in black, otherwise the sun would repel us instead of attracting us. For all these reasons, light which would permit of the explanation of attraction would be much more like Röntgen rays than like ordinary light.

And besides, the X-rays would not suffice; however penetrating they may seem to us, they could not pass through the whole earth; it would be necessary therefore to imagine X´-rays much more penetrating than the ordinary X-rays. Moreover a part of the energy of these X´-rays would have to be destroyed, otherwise there would be no attraction. If you do not wish it transformed into heat, which would lead to an enormous heat production, you must suppose it radiated in every direction under the form of secondary rays, which might be called X´´ and which would have to be much more penetrating still than the X´-rays, otherwise they would in their turn derange the phenomena of attraction.

Such are the complicated hypotheses to which we are led when we try to give life to the theory of Lesage.

But all we have said presupposes the ordinary laws of mechanics.

Will things go better if we admit the new dynamics? And first, can we conserve the principles of relativity? Let us give atfirst to the theory of Lesage its primitive form, and suppose space ploughed by material corpuscles; if these corpuscles were perfectly elastic, the laws of their impact would conform to this principle of relativity, but we know that then their effect would be null. We must therefore suppose these corpuscles are not elastic, and then it is difficult to imagine a law of impact compatible with the principle of relativity. Besides, we should still find a production of considerable heat, and yet a very sensible resistance of the medium.

If we suppress these corpuscles and revert to the hypothesis of the Maxwell-Bartholi pressure, the difficulties will not be less. This is what Lorentz himself has attempted in his Memoir to the Amsterdam Academy of Sciences of April 25, 1900.

Consider a system of electrons immersed in an ether permeated in every sense by luminous waves; one of these electrons, struck by one of these waves, begins to vibrate; its vibration will be synchronous with that of light; but it may have a difference of phase, if the electron absorbs a part of the incident energy. In fact, if it absorbs energy, this is because the vibration of the etherimpelsthe electron; the electron must therefore be slower than the ether. An electron in motion is analogous to a convection current; therefore every magnetic field, in particular that due to the luminous perturbation itself, must exert a mechanical action upon this electron. This action is very slight; moreover, it changes sign in the current of the period; nevertheless, the mean action is not null if there is a difference of phase between the vibrations of the electron and those of the ether. The mean action is proportional to this difference, consequently to the energy absorbed by the electron. I can not here enter into the detail of the calculations; suffice it to say only that the final result is an attraction of any two electrons, varying inversely as the square of the distance and proportional to the energy absorbed by the two electrons.

Therefore there can not be attraction without absorption of light and, consequently, without production of heat, and this it is which determined Lorentz to abandon this theory, which, at bottom, does not differ from that of Lesage-Maxwell-Bartholi. He would have been much more dismayed still if he had pushedthe calculation to the end. He would have found that the temperature of the earth would have to increase 1012degrees a second.

I have striven to give in few words an idea as complete as possible of these new doctrines; I have sought to explain how they took birth; otherwise the reader would have had ground to be frightened by their boldness. The new theories are not yet demonstrated; far from it; only they rest upon an aggregate of probabilities sufficiently weighty for us not to have the right to treat them with disregard.

New experiments will doubtless teach us what we should finally think of them. The knotty point of the question lies in Kaufmann's experiment and those that may be undertaken to verify it.

In conclusion, permit me a word of warning. Suppose that, after some years, these theories undergo new tests and triumph; then our secondary education will incur a great danger; certain professors will doubtless wish to make a place for the new theories.

Novelties are so attractive, and it is so hard not to seem highly advanced! At least there will be the wish to open vistas to the pupils and, before teaching them the ordinary mechanics, to let them know it has had its day and was at best good enough for that old dolt Laplace. And then they will not form the habit of the ordinary mechanics.

Is it well to let them know this is only approximative? Yes; but later, when it has penetrated to their very marrow, when they shall have taken the bent of thinking only through it, when there shall no longer be risk of their unlearning it, then one may, without inconvenience, show them its limits.

It is with the ordinary mechanics that they must live; this alone will they ever have to apply. Whatever be the progress of automobilism, our vehicles will never attain speeds where it is not true. The other is only a luxury, and we should think of the luxury only when there is no longer any risk of harming the necessary.

The considerations to be here developed have scarcely as yet drawn the attention of astronomers; there is hardly anything to cite except an ingenious idea of Lord Kelvin's, which has opened a new field of research, but still waits to be followed out. Nor have I original results to impart, and all I can do is to give an idea of the problems presented, but which no one hitherto has undertaken to solve. Every one knows how a large number of modern physicists represent the constitution of gases; gases are formed of an innumerable multitude of molecules which, at high speeds, cross and crisscross in every direction. These molecules probably act at a distance one upon another, but this action decreases very rapidly with distance, so that their trajectories remain sensibly straight; they cease to be so only when two molecules happen to pass very near to each other; in this case, their mutual attraction or repulsion makes them deviate to right or left. This is what is sometimes called an impact; but the wordimpactis not to be understood in its usual sense; it is not necessary that the two molecules come into contact, it suffices that they approach sufficiently near each other for their mutual attractions to become sensible. The laws of the deviation they undergo are the same as for a veritable impact.

It seems at first that the disorderly impacts of this innumerable dust can engender only an inextricable chaos before which analysis must recoil. But the law of great numbers, that supreme law of chance, comes to our aid; in presence of a semi-disorder, we must despair, but in extreme disorder, this statistical lawreestablishes a sort of mean order where the mind can recover. It is the study of this mean order which constitutes the kinetic theory of gases; it shows us that the velocities of the molecules are equally distributed among all the directions, that the rapidity of these velocities varies from one molecule to another, but that even this variation is subject to a law called Maxwell's law. This law tells us how many of the molecules move with such and such a velocity. As soon as the gas departs from this law, the mutual impacts of the molecules, in modifying the rapidity and direction of their velocities, tend to bring it promptly back. Physicists have striven, not without success, to explain in this way the experimental properties of gases; for example Mariotte's law.

Consider now the milky way; there also we see an innumerable dust; only the grains of this dust are not atoms, they are stars; these grains move also with high velocities; they act at a distance one upon another, but this action is so slight at great distance that their trajectories are straight; and yet, from time to time, two of them may approach near enough to be deviated from their path, like a comet which has passed too near Jupiter. In a word, to the eyes of a giant for whom our suns would be as for us our atoms, the milky way would seem only a bubble of gas.

Such was Lord Kelvin's leading idea. What may be drawn from this comparison? In how far is it exact? This is what we are to investigate together; but before reaching a definite conclusion, and without wishing to prejudge it, we foresee that the kinetic theory of gases will be for the astronomer a model he should not follow blindly, but from which he may advantageously draw inspiration. Up to the present, celestial mechanics has attacked only the solar system or certain systems of double stars. Before the assemblage presented by the milky way, or the agglomeration of stars, or the resolvable nebulae it recoils, because it sees therein only chaos. But the milky way is not more complicated than a gas; the statistical methods founded upon the calculus of probabilities applicable to a gas are also applicable to it. Before all, it is important to grasp the resemblance of the two cases, and their difference.

Lord Kelvin has striven to determine in this manner thedimensions of the milky way; for that we are reduced to counting the stars visible in our telescopes; but we are not sure that behind the stars we see, there are not others we do not see; so that what we should measure in this way would not be the size of the milky way, it would be the range of our instruments.

The new theory comes to offer us other resources. In fact, we know the motions of the stars nearest us, and we can form an idea of the rapidity and direction of their velocities. If the ideas above set forth are exact, these velocities should follow Maxwell's law, and their mean value will tell us, so to speak, that which corresponds to the temperature of our fictitious gas. But this temperature depends itself upon the dimensions of our gas bubble. In fact, how will a gaseous mass let loose in the void act, if its elements attract one another according to Newton's law? It will take a spherical form; moreover, because of gravitation, the density will be greater at the center, the pressure also will increase from the surface to the center because of the weight of the outer parts drawn toward the center; finally, the temperature will increase toward the center: the temperature and the pressure being connected by the law called adiabatic, as happens in the successive layers of our atmosphere. At the surface itself, the pressure will be null, and it will be the same with the absolute temperature, that is to say with the velocity of the molecules.

A question comes here: I have spoken of the adiabatic law, but this law is not the same for all gases, since it depends upon the ratio of their two specific heats; for the air and like gases, this ratio is 1.42; but is it to air that it is proper to liken the milky way? Evidently not, it should be regarded as a mono-atomic gas, like mercury vapor, like argon, like helium, that is to say that the ratio of the specific heats should be taken equal to 1.66. And, in fact, one of our molecules would be for example the solar system; but the planets are very small personages, the sun alone counts, so that our molecule is indeed mono-atomic. And even if we take a double star, it is probable that the action of a strange star which might approach it would become sufficiently sensible to deviate the motion of general translation of the system much before being able to trouble the relative orbitsof the two components; the double star, in a word, would act like an indivisible atom.

However that may be, the pressure, and consequently the temperature, at the center of the gaseous sphere would be by so much the greater as the sphere was larger since the pressure increases by the weight of all the superposed layers. We may suppose that we are nearly at the center of the milky way, and by observing the mean proper velocity of the stars, we shall know that which corresponds to the central temperature of our gaseous sphere and we shall determine its radius.

We may get an idea of the result by the following considerations: make a simpler hypothesis: the milky way is spherical, and in it the masses are distributed in a homogeneous manner; thence results that the stars in it describe ellipses having the same center. If we suppose the velocity becomes nothing at the surface, we may calculate this velocity at the center by the equation of vis viva. Thus we find that this velocity is proportional to the radius of the sphere and to the square root of its density. If the mass of this sphere was that of the sun and its radius that of the terrestrial orbit, this velocity would be (it is easy to see) that of the earth in its orbit. But in the case we have supposed, the mass of the sun should be distributed in a sphere of radius 1,000,000 times greater, this radius being the distance of the nearest stars; the density is therefore 1018times less; now, the velocities are of the same order, therefore it is necessary that the radius be 109times greater, be 1,000 times the distance of the nearest stars, which would give about a thousand millions of stars in the milky way.

But you will say these hypothesis differ greatly from the reality; first, the milky way is not spherical and we shall soon return to this point, and again the kinetic theory of gases is not compatible with the hypothesis of a homogeneous sphere. But in making the exact calculation according to this theory, we should find a different result, doubtless, but of the same order of magnitude; now in such a problem the data are so uncertain that the order of magnitude is the sole end to be aimed at.

And here a first remark presents itself; Lord Kelvin's result, which I have obtained again by an approximative calculation,agrees sensibly with the evaluations the observers have made with their telescopes; so that we must conclude we are very near to piercing through the milky way. But that enables us to answer another question. There are the stars we see because they shine; but may there not be dark stars circulating in the interstellar spaces whose existence might long remain unknown? But then, what Lord Kelvin's method would give us would be the total number of stars, including the dark stars; as his figure is comparable to that the telescope gives, this means there is no dark matter, or at least not so much as of shining matter.

Before going further, we must look at the problem from another angle. Is the milky way thus constituted truly the image of a gas properly so called? You know Crookes has introduced the notion of a fourth state of matter, where gases having become too rarefied are no longer true gases and become what he calls radiant matter. Considering the slight density of the milky way, is it the image of gaseous matter or of radiant matter? The consideration of what is called thefree pathwill furnish us the answer.

The trajectory of a gaseous molecule may be regarded as formed of straight segments united by very small arcs corresponding to the successive impacts. The length of each of these segments is what is called the free path; of course this length is not the same for all the segments and for all the molecules; but we may take a mean; this is what is called themean path. This is the greater the less the density of the gas. The matter will be radiant if the mean path is greater than the dimensions of the receptacle wherein the gas is enclosed, so that a molecule has a chance to go across the whole receptacle without undergoing an impact; if the contrary be the case, it is gaseous. From this it follows that the same fluid may be radiant in a little receptacle and gaseous in a big one; this perhaps is why, in a Crookes tube, it is necessary to make the vacuum by so much the more complete as the tube is larger.

How is it then for the milky way? This is a mass of gas of which the density is very slight, but whose dimensions are very great; has a star chances of traversing it without undergoing an impact, that is to say without passing sufficiently near anotherstar to be sensibly deviated from its route! What do we mean bysufficiently near? That is perforce a little arbitrary; take it as the distance from the sun to Neptune, which would represent a deviation of a dozen degrees; suppose therefore each of our stars surrounded by a protective sphere of this radius; could a straight pass between these spheres? At the mean distance of the stars of the milky way, the radius of these spheres will be seen under an angle of about a tenth of a second; and we have a thousand millions of stars. Put upon the celestial sphere a thousand million little circles of a tenth of a second radius. Are the chances that these circles will cover a great number of times the celestial sphere? Far from it; they will cover only its sixteen thousandth part. So the milky way is not the image of gaseous matter, but of Crookes' radiant matter. Nevertheless, as our foregoing conclusions are happily not at all precise, we need not sensibly modify them.

But there is another difficulty: the milky way is not spherical, and we have reasoned hitherto as if it were, since this is the form of equilibrium a gas isolated in space would take. To make amends, agglomerations of stars exist whose form is globular and to which would better apply what we have hitherto said. Herschel has already endeavored to explain their remarkable appearances. He supposed the stars of the aggregates uniformly distributed, so that an assemblage is a homogeneous sphere; each star would then describe an ellipse and all these orbits would be passed over in the same time, so that at the end of a period the aggregate would take again its primitive configuration and this configuration would be stable. Unluckily, the aggregates do not appear to be homogeneous; we see a condensation at the center, we should observe it even were the sphere homogeneous, since it is thicker at the center; but it would not be so accentuated. We may therefore rather compare an aggregate to a gas in adiabatic equilibrium, which takes the spherical form because this is the figure of equilibrium of a gaseous mass.

But, you will say, these aggregates are much smaller than the milky way, of which they even in probability make part, and even though they be more dense, they will rather present something analogous to radiant matter; now, gases attain their adiabaticequilibrium only through innumerable impacts of the molecules. That might perhaps be adjusted. Suppose the stars of the aggregate have just enough energy for their velocity to become null when they reach the surface; then they may traverse the aggregate without impact, but arrived at the surface they will go back and will traverse it anew; after a great number of crossings, they will at last be deviated by an impact; under these conditions, we should still have a matter which might be regarded as gaseous; if perchance there had been in the aggregate stars whose velocity was greater, they have long gone away out of it, they have left it never to return. For all these reasons, it would be interesting to examine the known aggregates, to seek to account for the law of the densities, and to see if it is the adiabatic law of gases.

But to return to the milky way; it is not spherical and would rather be represented as a flattened disc. It is clear then that a mass starting without velocity from the surface will reach the center with different velocities, according as it starts from the surface in the neighborhood of the middle of the disc or just on the border of the disc; the velocity would be notably greater in the latter case. Now, up to the present, we have supposed that the proper velocities of the stars, those we observe, must be comparable to those which like masses would attain; this involves a certain difficulty. We have given above a value for the dimensions of the milky way, and we have deduced it from the observed proper velocities which are of the same order of magnitude as that of the earth in its orbit; but which is the dimension we have thus measured? Is it the thickness? Is it the radius of the disc? It is doubtless something intermediate; but what can we say then of the thickness itself, or of the radius of the disc? Data are lacking to make the calculation; I shall confine myself to giving a glimpse of the possibility of basing an evaluation at least approximate upon a deeper discussion of the proper motions.

And then we find ourselves facing two hypotheses: either the stars of the milky way are impelled by velocities for the most part parallel to the galactic plane, but otherwise distributed uniformly in all directions parallel to this plane. If this be so, observation of the proper motions should show a preponderance of components parallel to the milky way; this is to be determined,because I do not know whether a systematic discussion has ever been made from this view-point. On the other hand, such an equilibrium could only be provisory, since because of impacts the molecules, I mean the stars, would in the long run acquire notable velocities in the sense perpendicular to the milky way and would end by swerving from its plane, so that the system would tend toward the spherical form, the only figure of equilibrium of an isolated gaseous mass.

Or else the whole system is impelled by a common rotation, and for that reason is flattened like the earth, like Jupiter, like all bodies that twirl. Only, as the flattening is considerable, the rotation must be rapid; rapid doubtless, but it must be understood in what sense this word is used. The density of the milky way is 1023times less than that of the sun; a velocity of rotation √1025times less than that of the sun, for it would, therefore, be the equivalent so far as concerns flattening; a velocity 1012times slower than that of the earth, say a thirtieth of a second of arc in a century, would be a very rapid rotation, almost too rapid for stable equilibrium to be possible.

In this hypothesis, the observable proper motions would appear to us uniformly distributed, and there would no longer be a preponderance of components parallel to the galactic plane.

They will tell us nothing about the rotation itself, since we belong to the turning system. If the spiral nebulæ are other milky ways, foreign to ours, they are not borne along in this rotation, and we might study their proper motions. It is true they are very far away; if a nebula has the dimensions of the milky way and if its apparent radius is for example 20´´, its distance is 10,000 times the radius of the milky way.

But that makes no difference, since it is not about the translation of our system that we ask information from them, but about its rotation. The fixed stars, by their apparent motion, reveal to us the diurnal rotation of the earth, though their distance is immense. Unluckily, the possible rotation of the milky way, however rapid it may be relatively, is very slow viewed absolutely, and besides the pointings on nebulæ can not be very precise; therefore thousands of years of observations would be necessary to learn anything.

However that may be, in this second hypothesis, the figure of the milky way would be a figure of final equilibrium.

I shall not further discuss the relative value of these two hypotheses since there is a third which is perhaps more probable. We know that among the irresolvable nebulæ, several kinds may be distinguished: the irregular nebulæ like that of Orion, the planetary and annular nebulæ, the spiral nebulæ. The spectra of the first two families have been determined, they are discontinuous; these nebulæ are therefore not formed of stars; besides, their distribution on the heavens seems to depend upon the milky way; whether they have a tendency to go away from it, or on the contrary to approach it, they make therefore a part of the system. On the other hand, the spiral nebulæ are generally considered as independent of the milky way; it is supposed that they, like it, are formed of a multitude of stars, that they are, in a word, other milky ways very far away from ours. The recent investigations of Stratonoff tend to make us regard the milky way itself as a spiral nebula, and this is the third hypothesis of which I wish to speak.

How can we explain the very singular appearances presented by the spiral nebulæ, which are too regular and too constant to be due to chance? First of all, to take a look at one of these representations is enough to see that the mass is in rotation; we may even see what the sense of the rotation is; all the spiral radii are curved in the same sense; it is evident that themoving winglags behind the pivot and that fixes the sense of the rotation. But this is not all; it is evident that these nebulæ can not be likened to a gas at rest, nor even to a gas in relative equilibrium under the sway of a uniform rotation; they are to be compared to a gas in permanent motion in which internal currents prevail.

Suppose, for example, that the rotation of the central nucleus is rapid (you know what I mean by this word), too rapid for stable equilibrium; then at the equator the centrifugal force will drive it away over the attraction, and the stars will tend to break away at the equator and will form divergent currents; but in going away, as their moment of rotation remains constant, while the radius vector augments, their angular velocity will diminish, and this is why the moving wing seems to lag back.

From this point of view, there would not be a real permanent motion, the central nucleus would constantly lose matter which would go out of it never to return, and would drain away progressively. But we may modify the hypothesis. In proportion as it goes away, the star loses its velocity and ends by stopping; at this moment attraction regains possession of it and leads it back toward the nucleus; so there will be centripetal currents. We must suppose the centripetal currents are the first rank and the centrifugal currents the second rank, if we adopt the comparison with a troop in battle executing a change of front; and, in fact, it is necessary that the composite centrifugal force be compensated by the attraction exercised by the central layers of the swarm upon the extreme layers.

Besides, at the end of a certain time a permanent régime establishes itself; the swarm being curved, the attraction exercised upon the pivot by the moving wing tends to slow up the pivot and that of the pivot upon the moving wing tends to accelerate the advance of this wing which no longer augments its lag, so that finally all the radii end by turning with a uniform velocity. We may still suppose that the rotation of the nucleus is quicker than that of the radii.

A question remains; why do these centripetal and centrifugal swarms tend to concentrate themselves in radii instead of disseminating themselves a little everywhere? Why do these rays distribute themselves regularly? If the swarms concentrate themselves, it is because of the attraction exercised by the already existing swarms upon the stars which go out from the nucleus in their neighborhood. After an inequality is produced, it tends to accentuate itself in this way.

Why do the rays distribute themselves regularly? That is less obvious. Suppose there is no rotation, that all the stars are in two planes at right angles, in such a way that their distribution is symmetric with regard to these two planes.

By symmetry, there would be no reason for their going out of these planes, nor for the symmetry changing. This configuration would give us therefore equilibrium, butthis would be an unstable equilibrium.

If on the contrary, there is rotation, we shall find an analogousconfiguration of equilibrium with four curved rays, equal to each other and intersecting at 90°, and if the rotation is sufficiently rapid, this equilibrium is stable.

I am not in position to make this more precise: enough if you see that these spiral forms may perhaps some day be explained by only the law of gravitation and statistical consideration recalling those of the theory of gases.

What has been said of internal currents shows it is of interest to discuss systematically the aggregate of proper motions; this may be done in a hundred years, when the second edition is issued of the chart of the heavens and compared with the first, that we now are making.

But, in conclusion, I wish to call your attention to a question, that of the age of the milky way or the nebulæ. If what we think we see is confirmed, we can get an idea of it. That sort of statistical equilibrium of which gases give us the model is established only in consequence of a great number of impacts. If these impacts are rare, it can come about only after a very long time; if really the milky way (or at least the agglomerations which are contained in it), if the nebulæ have attained this equilibrium, this means they are very old, and we shall have an inferior limit of their age. Likewise we should have of it a superior limit; this equilibrium is not final and can not last always. Our spiral nebulæ would be comparable to gases impelled by permanent motions; but gases in motion are viscous and their velocities end by wearing out. What here corresponds to the viscosity (and which depends upon the chances of impact of the molecules) is excessively slight, so that the present régime may persist during an extremely long time, yet not forever, so that our milky ways can not live eternally nor become infinitely old.

And this is not all. Consider our atmosphere: at the surface must reign a temperature infinitely small and the velocity of the molecules there is near zero. But this is a question only of the mean velocity; as a consequence of impacts, one of these molecules may acquire (rarely, it is true) an enormous velocity, and then it will rush out of the atmosphere, and once out, it will never return; therefore our atmosphere drains off thus with extreme slowness. The milky way also from time to time loses astar by the same mechanism, and that likewise limits its duration.

Well, it is certain that if we compute in this manner the age of the milky way, we shall get enormous figures. But here a difficulty presents itself. Certain physicists, relying upon other considerations, reckon that suns can have only an ephemeral existence, about fifty million years; our minimum would be much greater than that. Must we believe that the evolution of the milky way began when the matter was still dark? But how have the stars composing it reached all at the same time adult age, an age so briefly to endure? Or must they reach there all successively, and are those we see only a feeble minority compared with those extinguished or which shall one day light up? But how reconcile that with what we have said above on the absence of a noteworthy proportion of dark matter? Should we abandon one of the two hypotheses, and which? I confine myself to pointing out the difficulty without pretending to solve it; I shall end therefore with a big interrogation point.

However, it is interesting to set problems, even when their solution seems very far away.

Every one understands our interest in knowing the form and dimensions of our earth; but some persons will perhaps be surprised at the exactitude sought after. Is this a useless luxury? What good are the efforts so expended by the geodesist?

Should this question be put to a congressman, I suppose he would say: "I am led to believe that geodesy is one of the most useful of the sciences; because it is one of those costing us most dear." I shall try to give you an answer a little more precise.

The great works of art, those of peace as well as those of war, are not to be undertaken without long studies which save much groping, miscalculation and useless expense. These studies can only be based upon a good map. But a map will be only a valueless phantasy if constructed without basing it upon a solid framework. As well make stand a human body minus the skeleton.

Now, this framework is given us by geodesic measurements; so, without geodesy, no good map; without a good map, no great public works.

These reasons will doubtless suffice to justify much expense; but these are arguments for practical men. It is not upon these that it is proper to insist here; there are others higher and, everything considered, more important.

So we shall put the question otherwise; can geodesy aid us the better to know nature? Does it make us understand its unity and harmony? In reality an isolated fact is of slight value, and the conquests of science are precious only if they prepare for new conquests.

If therefore a little hump were discovered on the terrestrial ellipsoid, this discovery would be by itself of no great interest. On the other hand, it would become precious if, in seeking the cause of this hump, we hoped to penetrate new secrets.

Well, when, in the eighteenth century, Maupertuis and La Condamine braved such opposite climates, it was not solely tolearn the shape of our planet, it was a question of the whole world-system.

If the earth was flattened, Newton triumphed and with him the doctrine of gravitation and the whole modern celestial mechanics.

And to-day, a century and a half after the victory of the Newtonians, think you geodesy has nothing more to teach us?

We know not what is within our globe. The shafts of mines and borings have let us know a layer of 1 or 2 kilometers thickness, that is to say, the millionth part of the total mass; but what is beneath?

Of all the extraordinary journeys dreamed by Jules Verne, perhaps that to the center of the earth took us to regions least explored.

But these deep-lying rocks we can not reach, exercise from afar their attraction which operates upon the pendulum and deforms the terrestrial spheroid. Geodesy can therefore weigh them from afar, so to speak, and tell us of their distribution. Thus will it make us really see those mysterious regions which Jules Verne only showed us in imagination.

This is not an empty illusion. M. Faye, comparing all the measurements, has reached a result well calculated to surprise us. Under the oceans, in the depths, are rocks of very great density; under the continents, on the contrary, are empty spaces.

New observations will modify perhaps the details of these conclusions.

In any case, our venerated dean has shown us where to search and what the geodesist may teach the geologist, desirous of knowing the interior constitution of the earth, and even the thinker wishing to speculate upon the past and the origin of this planet.

And now, why have I entitled this chapterFrench Geodesy? It is because, in each country, this science has taken, more than all others, perhaps, a national character. It is easy to see why.

There must be rivalry. The scientific rivalries are always courteous, or at least almost always; in any case, they are necessary, because they are always fruitful. Well, in those enterprises which require such long efforts and so many collaborators, the individual is effaced, in spite of himself, of course; no one has the right to say: this is my work. Therefore it is not between men, but between nations that rivalries go on.

So we are led to seek what has been the part of France. Her part I believe we are right to be proud of.

At the beginning of the eighteenth century, long discussions arose between the Newtonians who believed the earth flattened, as the theory of gravitation requires, and Cassini, who, deceived by inexact measurements, believed our globe elongated. Only direct observation could settle the question. It was our Academy of Sciences that undertook this task, gigantic for the epoch.

While Maupertuis and Clairaut measured a degree of meridian under the polar circle, Bouguer and La Condamine went toward the Andes Mountains, in regions then under Spain which to-day are the Republic of Ecuador.

Our envoys were exposed to great hardships. Traveling was not as easy as at present.

Truly, the country where Maupertuis operated was not a desert and he even enjoyed, it is said, among the Laplanders those sweet satisfactions of the heart that real arctic voyagers never know. It was almost the region where, in our days, comfortable steamers carry, each summer, hosts of tourists and young English people. But in those days Cook's agency did not exist and Maupertuis really believed he had made a polar expedition.

Perhaps he was not altogether wrong. The Russians and the Swedes carry out to-day analogous measurements at Spitzbergen, in a country where there is real ice-cap. But they have quite other resources, and the difference of time makes up for that of latitude.

The name of Maupertuis has reached us much scratched by the claws of Doctor Akakia; the scientist had the misfortune to displease Voltaire, who was then the king of mind. He was first praised beyond measure; but the flatteries of kings are as much to be dreaded as their displeasure, because the days after are terrible. Voltaire himself knew something of this.

Voltaire called Maupertuis, my amiable master in thinking, marquis of the polar circle, dear flattener out of the world and Cassini, and even, flattery supreme, Sir Isaac Maupertuis; he wrote him: "Only the king of Prussia do I put on a level with you; he only lacks being a geometer." But soon the scene changes, he no longer speaks of deifying him, as in days of yorethe Argonauts, or of calling down from Olympus the council of the gods to contemplate his works, but of chaining him up in a madhouse. He speaks no longer of his sublime mind, but of his despotic pride, plated with very little science and much absurdity.

I care not to relate these comico-heroic combats; but permit me some reflections on two of Voltaire's verses. In his 'Discourse on Moderation' (no question of moderation in praise and criticism), the poet has written:


Back to IndexNext