CHAPTER IV

What happens then? Among the great numbers of combinations blindly formed by the subliminal self, almost all are without interest and without utility; but just for that reason they are also without effect upon the esthetic sensibility. Consciousness will never know them; only certain ones are harmonious, and, consequently, at once useful and beautiful. They will be capable of touching this special sensibility of the geometer of which I have just spoken, and which, once aroused, will call our attention to them, and thus give them occasion to become conscious.

This is only a hypothesis, and yet here is an observation which may confirm it: when a sudden illumination seizes upon the mind of the mathematician, it usually happens that it does not deceive him, but it also sometimes happens, as I have said, that it does not stand the test of verification; well, we almost always notice that this false idea, had it been true, would have gratified our natural feeling for mathematical elegance.

Thus it is this special esthetic sensibility which plays the rôle of the delicate sieve of which I spoke, and that sufficiently explains why the one lacking it will never be a real creator.

Yet all the difficulties have not disappeared. The conscious self is narrowly limited, and as for the subliminal self we know not its limitations, and this is why we are not too reluctant in supposing that it has been able in a short time to make more different combinations than the whole life of a conscious being could encompass. Yet these limitations exist. Is it likely that it is able to form all the possible combinations, whose number would frighten the imagination? Nevertheless that would seem necessary, because if it produces only a small part of these combinations, and if it makes them at random, there would be smallchance that thegood, the one we should choose, would be found among them.

Perhaps we ought to seek the explanation in that preliminary period of conscious work which always precedes all fruitful unconscious labor. Permit me a rough comparison. Figure the future elements of our combinations as something like the hooked atoms of Epicurus. During the complete repose of the mind, these atoms are motionless, they are, so to speak, hooked to the wall; so this complete rest may be indefinitely prolonged without the atoms meeting, and consequently without any combination between them.

On the other hand, during a period of apparent rest and unconscious work, certain of them are detached from the wall and put in motion. They flash in every direction through the space (I was about to say the room) where they are enclosed, as would, for example, a swarm of gnats or, if you prefer a more learned comparison, like the molecules of gas in the kinematic theory of gases. Then their mutual impacts may produce new combinations.

What is the rôle of the preliminary conscious work? It is evidently to mobilize certain of these atoms, to unhook them from the wall and put them in swing. We think we have done no good, because we have moved these elements a thousand different ways in seeking to assemble them, and have found no satisfactory aggregate. But, after this shaking up imposed upon them by our will, these atoms do not return to their primitive rest. They freely continue their dance.

Now, our will did not choose them at random; it pursued a perfectly determined aim. The mobilized atoms are therefore not any atoms whatsoever; they are those from which we might reasonably expect the desired solution. Then the mobilized atoms undergo impacts which make them enter into combinations among themselves or with other atoms at rest which they struck against in their course. Again I beg pardon, my comparison is very rough, but I scarcely know how otherwise to make my thought understood.

However it may be, the only combinations that have a chance of forming are those where at least one of the elements is one of those atoms freely chosen by our will. Now, it is evidentlyamong these that is found what I called thegood combination. Perhaps this is a way of lessening the paradoxical in the original hypothesis.

Another observation. It never happens that the unconscious work gives us the result of a somewhat long calculationall made, where we have only to apply fixed rules. We might think the wholly automatic subliminal self particularly apt for this sort of work, which is in a way exclusively mechanical. It seems that thinking in the evening upon the factors of a multiplication we might hope to find the product ready made upon our awakening, or again that an algebraic calculation, for example a verification, would be made unconsciously. Nothing of the sort, as observation proves. All one may hope from these inspirations, fruits of unconscious work, is a point of departure for such calculations. As for the calculations themselves, they must be made in the second period of conscious work, that which follows the inspiration, that in which one verifies the results of this inspiration and deduces their consequences. The rules of these calculations are strict and complicated. They require discipline, attention, will, and therefore consciousness. In the subliminal self, on the contrary, reigns what I should call liberty, if we might give this name to the simple absence of discipline and to the disorder born of chance. Only, this disorder itself permits unexpected combinations.

I shall make a last remark: when above I made certain personal observations, I spoke of a night of excitement when I worked in spite of myself. Such cases are frequent, and it is not necessary that the abnormal cerebral activity be caused by a physical excitant as in that I mentioned. It seems, in such cases, that one is present at his own unconscious work, made partially perceptible to the over-excited consciousness, yet without having changed its nature. Then we vaguely comprehend what distinguishes the two mechanisms or, if you wish, the working methods of the two egos. And the psychologic observations I have been able thus to make seem to me to confirm in their general outlines the views I have given.

Surely they have need of it, for they are and remain in spite of all very hypothetical: the interest of the questions is so great that I do not repent of having submitted them to the reader.

"How dare we speak of the laws of chance? Is not chance the antithesis of all law?" So says Bertrand at the beginning of hisCalcul des probabiltités. Probability is opposed to certitude; so it is what we do not know and consequently it seems what we could not calculate. Here is at least apparently a contradiction, and about it much has already been written.

And first, what is chance? The ancients distinguished between phenomena seemingly obeying harmonious laws, established once for all, and those which they attributed to chance; these were the ones unpredictable because rebellious to all law. In each domain the precise laws did not decide everything, they only drew limits between which chance might act. In this conception the word chance had a precise and objective meaning; what was chance for one was also chance for another and even for the gods.

But this conception is not ours to-day. We have become absolute determinists, and even those who want to reserve the rights of human free will let determinism reign undividedly in the inorganic world at least. Every phenomenon, however minute, has a cause; and a mind infinitely powerful, infinitely well-informed about the laws of nature, could have foreseen it from the beginning of the centuries. If such a mind existed, we could not play with it at any game of chance; we should always lose.

In fact for it the word chance would not have any meaning, or rather there would be no chance. It is because of our weakness and our ignorance that the word has a meaning for us. And, even without going beyond our feeble humanity, what is chance for the ignorant is not chance for the scientist. Chance is only the measure of our ignorance. Fortuitous phenomena are, by definition, those whose laws we do not know.

But is this definition altogether satisfactory? When the firstChaldean shepherds followed with their eyes the movements of the stars, they knew not as yet the laws of astronomy; would they have dreamed of saying that the stars move at random? If a modern physicist studies a new phenomenon, and if he discovers its law Tuesday, would he have said Monday that this phenomenon was fortuitous? Moreover, do we not often invoke what Bertrand calls the laws of chance, to predict a phenomenon? For example, in the kinetic theory of gases we obtain the known laws of Mariotte and of Gay-Lussac by means of the hypothesis that the velocities of the molecules of gas vary irregularly, that is to say at random. All physicists will agree that the observable laws would be much less simple if the velocities were ruled by any simple elementary law whatsoever, if the molecules were, as we say,organized, if they were subject to some discipline. It is due to chance, that is to say, to our ignorance, that we can draw our conclusions; and then if the word chance is simply synonymous with ignorance what does that mean? Must we therefore translate as follows?

"You ask me to predict for you the phenomena about to happen. If, unluckily, I knew the laws of these phenomena I could make the prediction only by inextricable calculations and would have to renounce attempting to answer you; but as I have the good fortune not to know them, I will answer you at once. And what is most surprising, my answer will be right."

So it must well be that chance is something other than the name we give our ignorance, that among phenomena whose causes are unknown to us we must distinguish fortuitous phenomena about which the calculus of probabilities will provisionally give information, from those which are not fortuitous and of which we can say nothing so long as we shall not have determined the laws governing them. For the fortuitous phenomena themselves, it is clear that the information given us by the calculus of probabilities will not cease to be true upon the day when these phenomena shall be better known.

The director of a life insurance company does not know when each of the insured will die, but he relies upon the calculus of probabilities and on the law of great numbers, and he is not deceived, since he distributes dividends to his stockholders. Thesedividends would not vanish if a very penetrating and very indiscreet physician should, after the policies were signed, reveal to the director the life chances of the insured. This doctor would dissipate the ignorance of the director, but he would have no influence on the dividends, which evidently are not an outcome of this ignorance.

To find a better definition of chance we must examine some of the facts which we agree to regard as fortuitous, and to which the calculus of probabilities seems to apply; we then shall investigate what are their common characteristics.

The first example we select is that of unstable equilibrium; if a cone rests upon its apex, we know well that it will fall, but we do not know toward what side; it seems to us chance alone will decide. If the cone were perfectly symmetric, if its axis were perfectly vertical, if it were acted upon by no force other than gravity, it would not fall at all. But the least defect in symmetry will make it lean slightly toward one side or the other, and if it leans, however little, it will fall altogether toward that side. Even if the symmetry were perfect, a very slight tremor, a breath of air could make it incline some seconds of arc; this will be enough to determine its fall and even the sense of its fall which will be that of the initial inclination.

A very slight cause, which escapes us, determines a considerable effect which we can not help seeing, and then we say this effect is due to chance. If we could know exactly the laws of nature and the situation of the universe at the initial instant, we should be able to predict exactly the situation of this same universe at a subsequent instant. But even when the natural laws should have no further secret for us, we could know the initial situation onlyapproximately. If that permits us to foresee the subsequent situationwith the same degree of approximation, this is all we require, we say the phenomenon has been predicted, that it is ruled by laws. But this is not always the case; it may happen that slight differences in the initial conditions produce very great differences in the final phenomena; a slight error in the former would make an enormous error in thelatter. Prediction becomes impossible and we have the fortuitous phenomenon.

Our second example will be very analogous to the first and we shall take it from meteorology. Why have the meteorologists such difficulty in predicting the weather with any certainty? Why do the rains, the tempests themselves seem to us to come by chance, so that many persons find it quite natural to pray for rain or shine, when they would think it ridiculous to pray for an eclipse? We see that great perturbations generally happen in regions where the atmosphere is in unstable equilibrium. The meteorologists are aware that this equilibrium is unstable, that a cyclone is arising somewhere; but where they can not tell; one-tenth of a degree more or less at any point, and the cyclone bursts here and not there, and spreads its ravages over countries it would have spared. This we could have foreseen if we had known that tenth of a degree, but the observations were neither sufficiently close nor sufficiently precise, and for this reason all seems due to the agency of chance. Here again we find the same contrast between a very slight cause, unappreciable to the observer, and important effects, which are sometimes tremendous disasters.

Let us pass to another example, the distribution of the minor planets on the zodiac. Their initial longitudes may have been any longitudes whatever; but their mean motions were different and they have revolved for so long a time that we may say they are now distributedat randomalong the zodiac. Very slight initial differences between their distances from the sun, or, what comes to the same thing, between their mean motions, have ended by giving enormous differences between their present longitudes. An excess of the thousandth of a second in the daily mean motion will give in fact a second in three years, a degree in ten thousand years, an entire circumference in three or four million years, and what is that to the time which has passed since the minor planets detached themselves from the nebula of Laplace? Again therefore we see a slight cause and a great effect; or better, slight differences in the cause and great differences in the effect.

The game of roulette does not take us as far as might seemfrom the preceding example. Assume a needle to be turned on a pivot over a dial divided into a hundred sectors alternately red and black. If it stops on a red sector I win; if not, I lose. Evidently all depends upon the initial impulse I give the needle. The needle will make, suppose, ten or twenty turns, but it will stop sooner or not so soon, according as I shall have pushed it more or less strongly. It suffices that the impulse vary only by a thousandth or a two thousandth to make the needle stop over a black sector or over the following red one. These are differences the muscular sense can not distinguish and which elude even the most delicate instruments. So it is impossible for me to foresee what the needle I have started will do, and this is why my heart throbs and I hope everything from luck. The difference in the cause is imperceptible, and the difference in the effect is for me of the highest importance, since it means my whole stake.

Permit me, in this connection, a thought somewhat foreign to my subject. Some years ago a philosopher said that the future is determined by the past, but not the past by the future; or, in other words, from knowledge of the present we could deduce the future, but not the past; because, said he, a cause can have only one effect, while the same effect might be produced by several different causes. It is clear no scientist can subscribe to this conclusion. The laws of nature bind the antecedent to the consequent in such a way that the antecedent is as well determined by the consequent as the consequent by the antecedent. But whence came the error of this philosopher? We know that in virtue of Carnot's principle physical phenomena are irreversible and the world tends toward uniformity. When two bodies of different temperature come in contact, the warmer gives up heat to the colder; so we may foresee that the temperature will equalize. But once equal, if asked about the anterior state, what can we answer? We might say that one was warm and the other cold, but not be able to divine which formerly was the warmer.

And yet in reality the temperatures will never reach perfect equality. The difference of the temperatures only tends asymptotically toward zero. There comes a moment when ourthermometers are powerless to make it known. But if we had thermometers a thousand times, a hundred thousand times as sensitive, we should recognize that there still is a slight difference, and that one of the bodies remains a little warmer than the other, and so we could say this it is which formerly was much the warmer.

So then there are, contrary to what we found in the former examples, great differences in cause and slight differences in effect. Flammarion once imagined an observer going away from the earth with a velocity greater than that of light; for him time would have changed sign. History would be turned about, and Waterloo would precede Austerlitz. Well, for this observer, effects and causes would be inverted; unstable equilibrium would no longer be the exception. Because of the universal irreversibility, all would seem to him to come out of a sort of chaos in unstable equilibrium. All nature would appear to him delivered over to chance.

Now for other examples where we shall see somewhat different characteristics. Take first the kinetic theory of gases. How should we picture a receptacle filled with gas? Innumerable molecules, moving at high speeds, flash through this receptacle in every direction. At every instant they strike against its walls or each other, and these collisions happen under the most diverse conditions. What above all impresses us here is not the littleness of the causes, but their complexity, and yet the former element is still found here and plays an important rôle. If a molecule deviated right or left from its trajectory, by a very small quantity, comparable to the radius of action of the gaseous molecules, it would avoid a collision or sustain it under different conditions, and that would vary the direction of its velocity after the impact, perhaps by ninety degrees or by a hundred and eighty degrees.

And this is not all; we have just seen that it is necessary to deflect the molecule before the clash by only an infinitesimal, to produce its deviation after the collision by a finite quantity. If then the molecule undergoes two successive shocks, it will suffice to deflect it before the first by an infinitesimal of the second order, for it to deviate after the first encounter by an infinitesimalof the first order, and after the second hit, by a finite quantity. And the molecule will not undergo merely two shocks; it will undergo a very great number per second. So that if the first shock has multiplied the deviation by a very large numberA, afternshocks it will be multiplied byAn. It will therefore become very great not merely becauseAis large, that is to say because little causes produce big effects, but because the exponentnis large, that is to say because the shocks are very numerous and the causes very complex.

Take a second example. Why do the drops of rain in a shower seem to be distributed at random? This is again because of the complexity of the causes which determine their formation. Ions are distributed in the atmosphere. For a long while they have been subjected to air-currents constantly changing, they have been caught in very small whirlwinds, so that their final distribution has no longer any relation to their initial distribution. Suddenly the temperature falls, vapor condenses, and each of these ions becomes the center of a drop of rain. To know what will be the distribution of these drops and how many will fall on each paving-stone, it would not be sufficient to know the initial situation of the ions, it would be necessary to compute the effect of a thousand little capricious air-currents.

And again it is the same if we put grains of powder in suspension in water. The vase is ploughed by currents whose law we know not, we only know it is very complicated. At the end of a certain time the grains will be distributed at random, that is to say uniformly, in the vase; and this is due precisely to the complexity of these currents. If they obeyed some simple law, if for example the vase revolved and the currents circulated around the axis of the vase, describing circles, it would no longer be the same, since each grain would retain its initial altitude and its initial distance from the axis.

We should reach the same result in considering the mixing of two liquids or of two fine-grained powders. And to take a grosser example, this is also what happens when we shuffle playing-cards. At each stroke the cards undergo a permutation (analogous to that studied in the theory of substitutions). What will happen? The probability of a particular permutation (forexample, that bringing to thenth place the card occupying the ϕ(n)th place before the permutation) depends upon the player's habits. But if this player shuffles the cards long enough, there will be a great number of successive permutations, and the resulting final order will no longer be governed by aught but chance; I mean to say that all possible orders will be equally probable. It is to the great number of successive permutations, that is to say to the complexity of the phenomenon, that this result is due.

A final word about the theory of errors. Here it is that the causes are complex and multiple. To how many snares is not the observer exposed, even with the best instrument! He should apply himself to finding out the largest and avoiding them. These are the ones giving birth to systematic errors. But when he has eliminated those, admitting that he succeeds, there remain many small ones which, their effects accumulating, may become dangerous. Thence come the accidental errors; and we attribute them to chance because their causes are too complicated and too numerous. Here again we have only little causes, but each of them would produce only a slight effect; it is by their union and their number that their effects become formidable.

We may take still a third point of view, less important than the first two and upon which I shall lay less stress. When we seek to foresee an event and examine its antecedents, we strive to search into the anterior situation. This could not be done for all parts of the universe and we are content to know what is passing in the neighborhood of the point where the event should occur, or what would appear to have some relation to it. An examination can not be complete and we must know how to choose. But it may happen that we have passed by circumstances which at first sight seemed completely foreign to the foreseen happening, to which one would never have dreamed of attributing any influence and which nevertheless, contrary to all anticipation, come to play an important rôle.

A man passes in the street going to his business; some one knowing the business could have told why he started at such atime and went by such a street. On the roof works a tiler. The contractor employing him could in a certain measure foresee what he would do. But the passer-by scarcely thinks of the tiler, nor the tiler of him; they seem to belong to two worlds completely foreign to one another. And yet the tiler drops a tile which kills the man, and we do not hesitate to say this is chance.

Our weakness forbids our considering the entire universe and makes us cut it up into slices. We try to do this as little artificially as possible. And yet it happens from time to time that two of these slices react upon each other. The effects of this mutual action then seem to us to be due to chance.

Is this a third way of conceiving chance? Not always; in fact most often we are carried back to the first or the second. Whenever two worlds usually foreign to one another come thus to react upon each other, the laws of this reaction must be very complex. On the other hand, a very slight change in the initial conditions of these two worlds would have been sufficient for the reaction not to have happened. How little was needed for the man to pass a second later or the tiler to drop his tile a second sooner.

All we have said still does not explain why chance obeys laws. Does the fact that the causes are slight or complex suffice for our foreseeing, if not their effectsin each case, at least what their effects will be,on the average? To answer this question we had better take up again some of the examples already cited.

I shall begin with that of the roulette. I have said that the point where the needle will stop depends upon the initial push given it. What is the probability of this push having this or that value? I know nothing about it, but it is difficult for me not to suppose that this probability is represented by a continuous analytic function. The probability that the push is comprised between α and α + ε will then be sensibly equal to the probability of its being comprised between α + ε and α + 2ε,providedεbe very small. This is a property common to all analytic functions. Minute variations of the function are proportional to minute variations of the variable.

But we have assumed that an exceedingly slight variation of the push suffices to change the color of the sector over which the needle finally stops. From α to α + ε it is red, from α + ε to α + 2ε it is black; the probability of each red sector is therefore the same as of the following black, and consequently the total probability of red equals the total probability of black.

The datum of the question is the analytic function representing the probability of a particular initial push. But the theorem remains true whatever be this datum, since it depends upon a property common to all analytic functions. From this it follows finally that we no longer need the datum.

What we have just said for the case of the roulette applies also to the example of the minor planets. The zodiac may be regarded as an immense roulette on which have been tossed many little balls with different initial impulses varying according to some law. Their present distribution is uniform and independent of this law, for the same reason as in the preceding case. Thus we see why phenomena obey the laws of chance when slight differences in the causes suffice to bring on great differences in the effects. The probabilities of these slight differences may then be regarded as proportional to these differences themselves, just because these differences are minute, and the infinitesimal increments of a continuous function are proportional to those of the variable.

Take an entirely different example, where intervenes especially the complexity of the causes. Suppose a player shuffles a pack of cards. At each shuffle he changes the order of the cards, and he may change them in many ways. To simplify the exposition, consider only three cards. The cards which before the shuffle occupied respectively the places 123, may after the shuffle occupy the places

123, 231, 312, 321, 132, 213.

Each of these six hypotheses is possible and they have respectively for probabilities:

p1,p2,p3,p4,p5,p6.

The sum of these six numbers equals 1; but this is all we know of them; these six probabilities depend naturally upon the habits of the player which we do not know.

At the second shuffle and the following, this will recommence, and under the same conditions; I mean thatp4for example represents always the probability that the three cards which occupied after thenth shuffle and before then+ 1th the places 123, occupy the places 321 after then+ 1th shuffle. And this remains true whatever be the numbern, since the habits of the player and his way of shuffling remain the same.

But if the number of shuffles is very great, the cards which before the first shuffle occupied the places 123 may, after the last shuffle, occupy the places

123, 231, 312, 321, 132, 213

and the probability of these six hypotheses will be sensibly the same and equal to 1/6; and this will be true whatever be the numbersp1...p6which we do not know. The great number of shuffles, that is to say the complexity of the causes, has produced uniformity.

This would apply without change if there were more than three cards, but even with three cards the demonstration would be complicated; let it suffice to give it for only two cards. Then we have only two possibilities 12, 21 with the probabilitiesp1andp2= 1 −p1.

Supposenshuffles and suppose I win one franc if the cards are finally in the initial order and lose one if they are finally inverted. Then, my mathematical expectation will be (p1−p2)n.

The differencep1−p2is certainly less than 1; so that ifnis very great my expectation will be zero; we need not learnp1andp2to be aware that the game is equitable.

There would always be an exception if one of the numbersp1andp2was equal to 1 and the other naught.Then it would not apply because our initial hypotheses would be too simple.

What we have just seen applies not only to the mixing of cards, but to all mixings, to those of powders and of liquids; and even to those of the molecules of gases in the kinetic theory of gases.

To return to this theory, suppose for a moment a gas whose molecules can not mutually clash, but may be deviated by hitting the insides of the vase wherein the gas is confined. If the formof the vase is sufficiently complex the distribution of the molecules and that of the velocities will not be long in becoming uniform. But this will not be so if the vase is spherical or if it has the shape of a cuboid. Why? Because in the first case the distance from the center to any trajectory will remain constant; in the second case this will be the absolute value of the angle of each trajectory with the faces of the cuboid.

So we see what should be understood by conditionstoo simple; they are those which conserve something, which leave an invariant remaining. Are the differential equations of the problem too simple for us to apply the laws of chance? This question would seem at first view to lack precise meaning; now we know what it means. They are too simple if they conserve something, if they admit a uniform integral. If something in the initial conditions remains unchanged, it is clear the final situation can no longer be independent of the initial situation.

We come finally to the theory of errors. We know not to what are due the accidental errors, and precisely because we do not know, we are aware they obey the law of Gauss. Such is the paradox. The explanation is nearly the same as in the preceding cases. We need know only one thing: that the errors are very numerous, that they are very slight, that each may be as well negative as positive. What is the curve of probability of each of them? We do not know; we only suppose it is symmetric. We prove then that the resultant error will follow Gauss's law, and this resulting law is independent of the particular laws which we do not know. Here again the simplicity of the result is born of the very complexity of the data.

But we are not through with paradoxes. I have just recalled the figment of Flammarion, that of the man going quicker than light, for whom time changes sign. I said that for him all phenomena would seem due to chance. That is true from a certain point of view, and yet all these phenomena at a given moment would not be distributed in conformity with the laws of chance, since the distribution would be the same as for us, who, seeing them unfold harmoniously and without coming out of a primal chaos, do not regard them as ruled by chance.

What does that mean? For Lumen, Flammarion's man, slight causes seem to produce great effects; why do not things go on as for us when we think we see grand effects due to little causes? Would not the same reasoning be applicable in his case?

Let us return to the argument. When slight differences in the causes produce vast differences in the effects, why are these effects distributed according to the laws of chance? Suppose a difference of a millimeter in the cause produces a difference of a kilometer in the effect. If I win in case the effect corresponds to a kilometer bearing an even number, my probability of winning will be 1/2. Why? Because to make that, the cause must correspond to a millimeter with an even number. Now, according to all appearance, the probability of the cause varying between certain limits will be proportional to the distance apart of these limits, provided this distance be very small. If this hypothesis were not admitted there would no longer be any way of representing the probability by a continuous function.

What now will happen when great causes produce small effects? This is the case where we should not attribute the phenomenon to chance and where on the contrary Lumen would attribute it to chance. To a difference of a kilometer in the cause would correspond a difference of a millimeter in the effect. Would the probability of the cause being comprised between two limitsnkilometers apart still be proportional ton? We have no reason to suppose so, since this distance,nkilometers, is great. But the probability that the effect lies between two limitsnmillimeters apart will be precisely the same, so it will not be proportional ton, even though this distance,nmillimeters, be small. There is no way therefore of representing the law of probability of effects by a continuous curve. This curve, understand, may remain continuous in theanalyticsense of the word; toinfinitesimalvariations of the abscissa will correspond infinitesimal variations of the ordinate. Butpracticallyit will not be continuous, sincevery smallvariations of the ordinate would not correspond to very small variations of the abscissa. It would become impossible to trace the curve with an ordinary pencil; that is what I mean.

So what must we conclude? Lumen has no right to say thatthe probability of the cause (hiscause, our effect) should be represented necessarily by a continuous function. But then why have we this right? It is because this state of unstable equilibrium which we have been calling initial is itself only the final outcome of a long previous history. In the course of this history complex causes have worked a great while: they have contributed to produce the mixture of elements and they have tended to make everything uniform at least within a small region; they have rounded off the corners, smoothed down the hills and filled up the valleys. However capricious and irregular may have been the primitive curve given over to them, they have worked so much toward making it regular that finally they deliver over to us a continuous curve. And this is why we may in all confidence assume its continuity.

Lumen would not have the same reasons for such a conclusion. For him complex causes would not seem agents of equalization and regularity, but on the contrary would create only inequality and differentiation. He would see a world more and more varied come forth from a sort of primitive chaos. The changes he could observe would be for him unforeseen and impossible to foresee. They would seem to him due to some caprice or another; but this caprice would be quite different from our chance, since it would be opposed to all law, while our chance still has its laws. All these points call for lengthy explications, which perhaps would aid in the better comprehension of the irreversibility of the universe.

We have sought to define chance, and now it is proper to put a question. Has chance thus defined, in so far as this is possible, objectivity?

It may be questioned. I have spoken of very slight or very complex causes. But what is very little for one may be very big for another, and what seems very complex to one may seem simple to another. In part I have already answered by saying precisely in what cases differential equations become too simple for the laws of chance to remain applicable. But it is fitting to examine the matter a little more closely, because we may take still other points of view.

What means the phrase 'very slight'? To understand it we need only go back to what has already been said. A difference is very slight, an interval is very small, when within the limits of this interval the probability remains sensibly constant. And why may this probability be regarded as constant within a small interval? It is because we assume that the law of probability is represented by a continuous curve, continuous not only in the analytic sense, butpracticallycontinuous, as already explained. This means that it not only presents no absolute hiatus, but that it has neither salients nor reentrants too acute or too accentuated.

And what gives us the right to make this hypothesis? We have already said it is because, since the beginning of the ages, there have always been complex causes ceaselessly acting in the same way and making the world tend toward uniformity without ever being able to turn back. These are the causes which little by little have flattened the salients and filled up the reentrants, and this is why our probability curves now show only gentle undulations. In milliards of milliards of ages another step will have been made toward uniformity, and these undulations will be ten times as gentle; the radius of mean curvature of our curve will have become ten times as great. And then such a length as seems to us to-day not very small, since on our curve an arc of this length can not be regarded as rectilineal, should on the contrary at that epoch be called very little, since the curvature will have become ten times less and an arc of this length may be sensibly identified with a sect.

Thus the phrase 'very slight' remains relative; but it is not relative to such or such a man, it is relative to the actual state of the world. It will change its meaning when the world shall have become more uniform, when all things shall have blended still more. But then doubtless men can no longer live and must give place to other beings—should I say far smaller or far larger? So that our criterion, remaining true for all men, retains an objective sense.

And on the other hand what means the phrase 'very complex'? I have already given one solution, but there are others. Complex causes we have said produce a blend more and more intimate,but after how long a time will this blend satisfy us? When will it have accumulated sufficient complexity? When shall we have sufficiently shuffled the cards? If we mix two powders, one blue, the other white, there comes a moment when the tint of the mixture seems to us uniform because of the feebleness of our senses; it will be uniform for the presbyte, forced to gaze from afar, before it will be so for the myope. And when it has become uniform for all eyes, we still could push back the limit by the use of instruments. There is no chance for any man ever to discern the infinite variety which, if the kinetic theory is true, hides under the uniform appearance of a gas. And yet if we accept Gouy's ideas on the Brownian movement, does not the microscope seem on the point of showing us something analogous?

This new criterion is therefore relative like the first; and if it retains an objective character, it is because all men have approximately the same senses, the power of their instruments is limited, and besides they use them only exceptionally.

It is just the same in the moral sciences and particularly in history. The historian is obliged to make a choice among the events of the epoch he studies; he recounts only those which seem to him the most important. He therefore contents himself with relating the most momentous events of the sixteenth century, for example, as likewise the most remarkable facts of the seventeenth century. If the first suffice to explain the second, we say these conform to the laws of history. But if a great event of the seventeenth century should have for cause a small fact of the sixteenth century which no history reports, which all the world has neglected, then we say this event is due to chance. This word has therefore the same sense as in the physical sciences; it means that slight causes have produced great effects.

The greatest bit of chance is the birth of a great man. It is only by chance that meeting of two germinal cells, of different sex, containing precisely, each on its side, the mysterious elements whose mutual reaction must produce the genius. One will agree that these elements must be rare and that their meeting is still more rare. How slight a thing it would have required to deflect from its route the carrying spermatozoon. It would havesufficed to deflect it a tenth of a millimeter and Napoleon would not have been born and the destinies of a continent would have been changed. No example can better make us understand the veritable characteristics of chance.

One more word about the paradoxes brought out by the application of the calculus of probabilities to the moral sciences. It has been proven that no Chamber of Deputies will ever fail to contain a member of the opposition, or at least such an event would be so improbable that we might without fear wager the contrary, and bet a million against a sou.

Condorcet has striven to calculate how many jurors it would require to make a judicial error practically impossible. If we had used the results of this calculation, we should certainly have been exposed to the same disappointments as in betting, on the faith of the calculus, that the opposition would never be without a representative.

The laws of chance do not apply to these questions. If justice be not always meted out to accord with the best reasons, it uses less than we think the method of Bridoye. This is perhaps to be regretted, for then the system of Condorcet would shield us from judicial errors.

What is the meaning of this? We are tempted to attribute facts of this nature to chance because their causes are obscure; but this is not true chance. The causes are unknown to us, it is true, and they are even complex; but they are not sufficiently so, since they conserve something. We have seen that this it is which distinguishes causes 'too simple.' When men are brought together they no longer decide at random and independently one of another; they influence one another. Multiplex causes come into action. They worry men, dragging them to right or left, but one thing there is they can not destroy, this is their Panurge flock-of-sheep habits. And this is an invariant.

Difficulties are indeed involved in the application of the calculus of probabilities to the exact sciences. Why are the decimals of a table of logarithms, why are those of the number π distributed in accordance with the laws of chance? Elsewhere I have already studied the question in so far as it concernslogarithms, and there it is easy. It is clear that a slight difference of argument will give a slight difference of logarithm, but a great difference in the sixth decimal of the logarithm. Always we find again the same criterion.

But as for the number π, that presents more difficulties, and I have at the moment nothing worth while to say.

There would be many other questions to resolve, had I wished to attack them before solving that which I more specially set myself. When we reach a simple result, when we find for example a round number, we say that such a result can not be due to chance, and we seek, for its explanation, a non-fortuitous cause. And in fact there is only a very slight probability that among 10,000 numbers chance will give a round number; for example, the number 10,000. This has only one chance in 10,000. But there is only one chance in 10,000 for the occurrence of any other one number; and yet this result will not astonish us, nor will it be hard for us to attribute it to chance; and that simply because it will be less striking.

Is this a simple illusion of ours, or are there cases where this way of thinking is legitimate? We must hope so, else were all science impossible. When we wish to check a hypothesis, what do we do? We can not verify all its consequences, since they would be infinite in number; we content ourselves with verifying certain ones and if we succeed we declare the hypothesis confirmed, because so much success could not be due to chance. And this is always at bottom the same reasoning.

I can not completely justify it here, since it would take too much time; but I may at least say that we find ourselves confronted by two hypotheses, either a simple cause or that aggregate of complex causes we call chance. We find it natural to suppose that the first should produce a simple result, and then, if we find that simple result, the round number for example, it seems more likely to us to be attributable to the simple cause which must give it almost certainly, than to chance which could only give it once in 10,000 times. It will not be the same if we find a result which is not simple; chance, it is true, will not give this more than once in 10,000 times; but neither has the simple cause any more chance of producing it.

It is impossible to represent to oneself empty space; all our efforts to imagine a pure space, whence should be excluded the changing images of material objects, can result only in a representation where vividly colored surfaces, for example, are replaced by lines of faint coloration, and we can not go to the very end in this way without all vanishing and terminating in nothingness. Thence comes the irreducible relativity of space.

Whoever speaks of absolute space uses a meaningless phrase. This is a truth long proclaimed by all who have reflected upon the matter, but which we are too often led to forget.

I am at a determinate point in Paris, place du Panthéon for instance, and I say: I shall come backhereto-morrow. If I be asked: Do you mean you will return to the same point of space, I shall be tempted to answer: yes; and yet I shall be wrong, since by to-morrow the earth will have journeyed hence, carrying with it the place du Panthéon, which will have traveled over more than two million kilometers. And if I tried to speak more precisely, I should gain nothing, since our globe has run over these two million kilometers in its motion with relation to the sun, while the sun in its turn is displaced with reference to the Milky Way, while the Milky Way itself is doubtless in motion without our being able to perceive its velocity. So that we are completely ignorant, and always shall be, of how much the place du Panthéon is displaced in a day.

In sum, I meant to say: To-morrow I shall see again the domeand the pediment of the Panthéon, and if there were no Panthéon my phrase would be meaningless and space would vanish.

This is one of the most commonplace forms of the principle of the relativity of space; but there is another, upon which Delbeuf has particularly insisted. Suppose that in the night all the dimensions of the universe become a thousand times greater: the world will have remainedsimilarto itself, giving to the wordsimilitudethe same meaning as in Euclid, Book VI. Only what was a meter long will measure thenceforth a kilometer, what was a millimeter long will become a meter. The bed whereon I lie and my body itself will be enlarged in the same proportion.

When I awake to-morrow morning, what sensation shall I feel in presence of such an astounding transformation? Well, I shall perceive nothing at all. The most precise measurements will be incapable of revealing to me anything of this immense convulsion, since the measures I use will have varied precisely in the same proportion as the objects I seek to measure. In reality, this convulsion exists only for those who reason as if space were absolute. If I for a moment have reasoned as they do, it is the better to bring out that their way of seeing implies contradiction. In fact it would be better to say that, space being relative, nothing at all has happened, which is why we have perceived nothing.

Has one the right, therefore, to say he knows the distance between two points? No, since this distance could undergo enormous variations without our being able to perceive them, provided the other distances have varied in the same proportion. We have just seen that when I say: I shall be here to-morrow, this does not mean: To-morrow I shall be at the same point of space where I am to-day, but rather: To-morrow I shall be at the same distance from the Panthéon as to-day. And we see that this statement is no longer sufficient and that I should say: To-morrow and to-day my distance from the Panthéon will be equal to the same number of times the height of my body.

But this is not all; I have supposed the dimensions of the world to vary, but that at least the world remained always similar to itself. We might go much further, and one of the most astonishing theories of modern physics furnishes us the occasion.

According to Lorentz and Fitzgerald, all the bodies borne along in the motion of the earth undergo a deformation.

This deformation is, in reality, very slight, since all dimensions parallel to the movement of the earth diminish by a hundred millionth, while the dimensions perpendicular to this movement are unchanged. But it matters little that it is slight, that it exists suffices for the conclusion I am about to draw. And besides, I have said it was slight, but in reality I know nothing about it; I have myself been victim of the tenacious illusion which makes us believe we conceive an absolute space; I have thought of the motion of the earth in its elliptic orbit around the sun, and I have allowed thirty kilometers as its velocity. But its real velocity (I mean, this time, not its absolute velocity, which is meaningless, but its velocity with relation to the ether), I do not know that, and have no means of knowing it: it is perhaps, 10, 100 times greater, and then the deformation will be 100, 10,000 times more.

Can we show this deformation? Evidently not; here is a cube with edge one meter; in consequence of the earth's displacement it is deformed, one of its edges, that parallel to the motion, becomes smaller, the others do not change. If I wish to assure myself of it by aid of a meter measure, I shall measure first one of the edges perpendicular to the motion and shall find that my standard meter fits this edge exactly; and in fact neither of these two lengths is changed, since both are perpendicular to the motion. Then I wish to measure the other edge, that parallel to the motion; to do this I displace my meter and turn it so as to apply it to the edge. But the meter, having changed orientation and become parallel to the motion, has undergone, in its turn, the deformation, so that though the edge be not a meter long, it will fit exactly, I shall find out nothing.

You ask then of what use is the hypothesis of Lorentz and of Fitzgerald if no experiment can permit of its verification? It is my exposition that has been incomplete; I have spoken only of measurements that can be made with a meter; but we can also measure a length by the time it takes light to traverse it, on condition we suppose the velocity of light constant and independent of direction. Lorentz could have accounted for thefacts by supposing the velocity of light greater in the direction of the earth's motion than in the perpendicular direction. He preferred to suppose that the velocity is the same in these different directions but that the bodies are smaller in the one than in the other. If the wave surfaces of light had undergone the same deformations as the material bodies we should never have perceived the Lorentz-Fitzgerald deformation.

In either case, it is not a question of absolute magnitude, but of the measure of this magnitude by means of some instrument; this instrument may be a meter, or the path traversed by light; it is only the relation of the magnitude to the instrument that we measure; and if this relation is altered, we have no way of knowing whether it is the magnitude or the instrument which has changed.

But what I wish to bring out is, that in this deformation the world has not remained similar to itself; squares have become rectangles, circles ellipses, spheres ellipsoids. And yet we have no way of knowing whether this deformation be real.

Evidently one could go much further: in place of the Lorentz-Fitzgerald deformation, whose laws are particularly simple, we could imagine any deformation whatsoever. Bodies could be deformed according to any laws, as complicated as we might wish, we never should notice it provided all bodies without exception were deformed according to the same laws. In saying, all bodies without exception, I include of course our own body and the light rays emanating from different objects.

If we look at the world in one of those mirrors of complicated shape which deform objects in a bizarre way, the mutual relations of the different parts of this world would not be altered; if, in fact two real objects touch, their images likewise seem to touch. Of course when we look in such a mirror we see indeed the deformation, but this is because the real world subsists alongside of its deformed image; and then even were this real world hidden from us, something there is could not be hidden, ourself; we could not cease to see, or at least to feel, our body and our limbs which have not been deformed and which continue to serve us as instruments of measure.

But if we imagine our body itself deformed in the same wayas if seen in the mirror, these instruments of measure in their turn will fail us and the deformation will no longer be ascertainable.

Consider in the same way two worlds images of one another; to each objectPof the worldAcorresponds in the worldBan objectP´, its image; the coordinates of this imageP´are determinate functions of those of the objectP; moreover these functions may be any whatsoever; I only suppose them chosen once for all. Between the position ofPand that ofP´there is a constant relation; what this relation is, matters not; enough that it be constant.

Well, these two worlds will be indistinguishable one from the other. I mean the first will be for its inhabitants what the second is for its. And so it will be as long as the two worlds remain strangers to each other. Suppose we lived in worldA, we shall have constructed our science and in particular our geometry; during this time the inhabitants of worldBwill have constructed a science, and as their world is the image of ours, their geometry will also be the image of ours or, better, it will be the same. But if for us some day a window is opened upon worldB, how we shall pity them: "Poor things," we shall say, "they think they have made a geometry, but what they call so is only a grotesque image of ours; their straights are all twisted, their circles are humped, their spheres have capricious inequalities." And we shall never suspect they say the same of us, and one never will know who is right.

We see in how broad a sense should be understood the relativity of space; space is in reality amorphous and the things which are therein alone give it a form. What then should be thought of that direct intuition we should have of the straight or of distance? So little have we intuition of distance in itself that in the night, as we have said, a distance might become a thousand times greater without our being able to perceive it, if all other distances had undergone the same alteration. And even in a night the worldBmight be substituted for the worldAwithout our having any way of knowing it, and then the straight lines of yesterday would have ceased to be straight and we should never notice.

One part of space is not by itself and in the absolute sense of the word equal to another part of space; because if so it is for us, it would not be for the dwellers in worldB; and these have just as much right to reject our opinion as we to condemn theirs.

I have elsewhere shown what are the consequences of these facts from the viewpoint of the idea we should form of non-Euclidean geometry and other analogous geometries; to that I do not care to return; and to-day I shall take a somewhat different point of view.

If this intuition of distance, of direction, of the straight line, if this direct intuition of space in a word does not exist, whence comes our belief that we have it? If this is only an illusion, why is this illusion so tenacious? It is proper to examine into this. We have said there is no direct intuition of size and we can only arrive at the relation of this magnitude to our instruments of measure. We should therefore not have been able to construct space if we had not had an instrument to measure it; well, this instrument to which we relate everything, which we use instinctively, it is our own body. It is in relation to our body that we place exterior objects, and the only spatial relations of these objects that we can represent are their relations to our body. It is our body which serves us, so to speak, as system of axes of coordinates.

For example, at an instant α, the presence of the objectAis revealed to me by the sense of sight; at another instant, β, the presence of another object,B, is revealed to me by another sense, that of hearing or of touch, for instance. I judge that this objectBoccupies the same place as the objectA. What does that mean? First that does not signify that these two objects occupy, at two different moments, the same point of an absolute space, which even if it existed would escape our cognition, since, between the instants α and β, the solar system has moved and we can not know its displacement. That means these two objects occupy the same relative position with reference to our body.

But even this, what does it mean? The impressions that have come to us from these objects have followed paths absolutelydifferent, the optic nerve for the objectA, the acoustic nerve for the objectB. They have nothing in common from the qualitative point of view. The representations we are able to make of these two objects are absolutely heterogeneous, irreducible one to the other. Only I know that to reach the objectAI have just to extend the right arm in a certain way; even when I abstain from doing it, I represent to myself the muscular sensations and other analogous sensations which would accompany this extension, and this representation is associated with that of the objectA.

Now, I likewise know I can reach the objectBby extending my right arm in the same manner, an extension accompanied by the same train of muscular sensations. And when I say these two objects occupy the same place, I mean nothing more.

I also know I could have reached the objectAby another appropriate motion of the left arm and I represent to myself the muscular sensations which would have accompanied this movement; and by this same motion of the left arm, accompanied by the same sensations, I likewise could have reached the objectB.

And that is very important, since thus I can defend myself against dangers menacing me from the objectAor the objectB. With each of the blows we can be hit, nature has associated one or more parries which permit of our guarding ourselves. The same parry may respond to several strokes; and so it is, for instance, that the same motion of the right arm would have allowed us to guard at the instant α against the objectAand at the instant β against the objectB. Just so, the same stroke can be parried in several ways, and we have said, for instance, the objectAcould be reached indifferently either by a certain movement of the right arm or by a certain movement of the left arm.

All these parries have nothing in common except warding off the same blow, and this it is, and nothing else, which is meant when we say they are movements terminating at the same point of space. Just so, these objects, of which we say they occupy the same point of space, have nothing in common, except that the same parry guards against them.

Or, if you choose, imagine innumerable telegraph wires, some centripetal, others centrifugal. The centripetal wires warn us ofaccidents happening without; the centrifugal wires carry the reparation. Connections are so established that when a centripetal wire is traversed by a current this acts on a relay and so starts a current in one of the centrifugal wires, and things are so arranged that several centripetal wires may act on the same centrifugal wire if the same remedy suits several ills, and that a centripetal wire may agitate different centrifugal wires, either simultaneously or in lieu one of the other when the same ill may be cured by several remedies.

It is this complex system of associations, it is this table of distribution, so to speak, which is all our geometry or, if you wish, all in our geometry that is instinctive. What we call our intuition of the straight line or of distance is the consciousness we have of these associations and of their imperious character.

And it is easy to understand whence comes this imperious character itself. An association will seem to us by so much the more indestructible as it is more ancient. But these associations are not, for the most part, conquests of the individual, since their trace is seen in the new-born babe: they are conquests of the race. Natural selection had to bring about these conquests by so much the more quickly as they were the more necessary.

On this account, those of which we speak must have been of the earliest in date, since without them the defense of the organism would have been impossible. From the time when the cellules were no longer merely juxtaposed, but were called upon to give mutual aid, it was needful that a mechanism organize analogous to what we have described, so that this aid miss not its way, but forestall the peril.

When a frog is decapitated, and a drop of acid is placed on a point of its skin, it seeks to wipe off the acid with the nearest foot, and, if this foot be amputated, it sweeps it off with the foot of the opposite side. There we have the double parry of which I have just spoken, allowing the combating of an ill by a second remedy, if the first fails. And it is this multiplicity of parries, and the resulting coordination, which is space.

We see to what depths of the unconscious we must descend to find the first traces of these spatial associations, since only the inferior parts of the nervous system are involved. Why beastonished then at the resistance we oppose to every attempt made to dissociate what so long has been associated? Now, it is just this resistance that we call the evidence for the geometric truths; this evidence is nothing but the repugnance we feel toward breaking with very old habits which have always proved good.

The space so created is only a little space extending no farther than my arm can reach; the intervention of the memory is necessary to push back its limits. There are points which will remain out of my reach, whatever effort I make to stretch forth my hand; if I were fastened to the ground like a hydra polyp, for instance, which can only extend its tentacles, all these points would be outside of space, since the sensations we could experience from the action of bodies there situated, would be associated with the idea of no movement allowing us to reach them, of no appropriate parry. These sensations would not seem to us to have any spatial character and we should not seek to localize them.

But we are not fixed to the ground like the lower animals; we can, if the enemy be too far away, advance toward him first and extend the hand when we are sufficiently near. This is still a parry, but a parry at long range. On the other hand, it is a complex parry, and into the representation we make of it enter the representation of the muscular sensations caused by the movements of the legs, that of the muscular sensations caused by the final movement of the arm, that of the sensations of the semicircular canals, etc. We must, besides, represent to ourselves, not a complex of simultaneous sensations, but a complex of successive sensations, following each other in a determinate order, and this is why I have just said the intervention of memory was necessary. Notice moreover that, to reach the same point, I may approach nearer the mark to be attained, so as to have to stretch my arm less. What more? It is not one, it is a thousand parries I can oppose to the same danger. All these parries are made of sensations which may have nothing in common and yet we regard them as defining the same point of space, since they may respond to the same danger and are all associated with the notion of this danger. It is the potentiality of warding off thesame stroke which makes the unity of these different parries, as it is the possibility of being parried in the same way which makes the unity of the strokes so different in kind, which may menace us from the same point of space. It is this double unity which makes the individuality of each point of space, and, in the notion of point, there is nothing else.

The space before considered, which might be calledrestricted space, was referred to coordinate axes bound to my body; these axes were fixed, since my body did not move and only my members were displaced. What are the axes to which we naturally refer theextended space? that is to say the new space just defined. We define a point by the sequence of movements to be made to reach it, starting from a certain initial position of the body. The axes are therefore fixed to this initial position of the body.

But the position I call initial may be arbitrarily chosen among all the positions my body has successively occupied; if the memory more or less unconscious of these successive positions is necessary for the genesis of the notion of space, this memory may go back more or less far into the past. Thence results in the definition itself of space a certain indetermination, and it is precisely this indetermination which constitutes its relativity.

There is no absolute space, there is only space relative to a certain initial position of the body. For a conscious being fixed to the ground like the lower animals, and consequently knowing only restricted space, space would still be relative (since it would have reference to his body), but this being would not be conscious of this relativity, because the axes of reference for this restricted space would be unchanging! Doubtless the rock to which this being would be fettered would not be motionless, since it would be carried along in the movement of our planet; for us consequently these axes would change at each instant; but for him they would be changeless. We have the faculty of referring our extended space now to the positionAof our body, considered as initial, again to the positionB, which it had some moments afterward, and which we are free to regard in its turn as initial; we make therefore at each instant unconscious transformations of coordinates. This faculty would be lacking in our imaginarybeing, and from not having traveled, he would think space absolute. At every instant, his system of axes would be imposed upon him; this system would have to change greatly in reality, but for him it would be always the same, since it would be always theonlysystem. Quite otherwise is it with us, who at each instant have many systems between which we may choose at will, on condition of going back by memory more or less far into the past.

This is not all; restricted space would not be homogeneous; the different points of this space could not be regarded as equivalent, since some could be reached only at the cost of the greatest efforts, while others could be easily attained. On the contrary, our extended space seems to us homogeneous, and we say all its points are equivalent. What does that mean?

If we start from a certain placeA, we can, from this position, make certain movements,M, characterized by a certain complex of muscular sensations. But, starting from another position,B, we make movementsM´characterized by the same muscular sensations. Leta, then, be the situation of a certain point of the body, the end of the index finger of the right hand for example, in the initial positionA, andbthe situation of this same index when, starting from this positionA, we have made the motionsM. Afterwards, leta´be the situation of this index in the positionB, andb´its situation when, starting from the positionB, we have made the motionsM´.

Well, I am accustomed to say that the points of spaceaandbare related to each other just as the pointsa´andb´, and this simply means that the two series of movementsMandM´are accompanied by the same muscular sensations. And as I am conscious that, in passing from the positionAto the positionB, my body has remained capable of the same movements, I know there is a point of space related to the pointa´just as any pointbis to the pointa, so that the two pointsaanda´are equivalent. This is what is called the homogeneity of space. And, at the same time, this is why space is relative, since its properties remain the same whether it be referred to the axesAor to the axesB. So that the relativity of space and its homogeneity are one sole and same thing.


Back to IndexNext