CHAPTER IV

Earth and Macadam RoadsEarth and Macadam Roads[Built by convict labor in Mecklenburg County, North Carolina]

Earth and Macadam Roads

[Built by convict labor in Mecklenburg County, North Carolina]

The total cost of maintaining roads in good order ranges, on account of varying conditions, between as wide limits almost as the initial cost of construction. Suffice it to say that all money spent on repairing earth roads becomes each year a total losswithout materially improving their condition. They are, as a rule, the most expensive roads that can be used, while on the other hand stone roads, if properly constructed of good material and kept in perfect condition, are the most satisfactory, the cheapest, and most economical roads that can be constructed.

The road that will best suit the needs of the farmer, in the first place, must not be too costly; and, in the second place, must be of the very best kind, for farmers should be able to do their heavy hauling over them when their fields are too wet to work and their teams would otherwise be idle.

The best road for the farmer, all things being considered, is a solid, well-built stone road, so narrow as to be only a single track, but having a firm earth road on one or both sides. Where the traffic is not very extensive the purposes of good roads are better served by narrow tracks than by wide ones, while many of the objectionable features of wide tracks are removed, the initial cost of construction is cut down one-half or more, and the charges for repair reduced in proportion.

[6]By Hon. Maurice O. Eldridge, Assistant Director Office of Public Road Inquiries.

[6]By Hon. Maurice O. Eldridge, Assistant Director Office of Public Road Inquiries.

No one rock can be said to be a universally excellent road material. The climatic conditions vary so much in different localities, and the volume and character of traffic vary so much on different roads, that the properties necessary to meet all the requirements can be found in no one rock. If the best macadam road be desired, that material should be selected which best meets the conditions of the particular road for which it is intended.

The movement for better country roads which has received such an impetus from the bicycle organizations is still felt, and is gaining force from the rapid introduction of horseless vehicles. To this demand, which comes in a large measurefrom the urban population, is to be added that of the farmer, who is wakening to the fact that good roads greatly increase the profits from his farm produce, and thus materially better his condition; and to the farmer, indeed, we must look for any real improvement in our country roads.

In considering the comparative values of different rocks for road-building, it must be taken for granted in all cases that the road is properly laid out, constructed, and maintained. For if this is not the case, only inferior results can be expected, no matter how good the material may be.

In most cases the selection of a material for road-making is determined more by its cheapness and convenience of location than by any properties it may possess. But when we consider the number of roads all over our country which are bad from neglect and from obsolete methods of maintenance that would be much improved by the use of any rock, this regard for economy is not to be entirely deprecated. At the same time, as a careless selection leads to costly and inferior results, too much care cannot be used inselecting the proper material when good roads are desired at the lowest cost. When macadam roads are first introduced into a district they are at worst so far superior to the old earth roads that the question is rarely asked, whether, if another material had been used, better roads would not have been obtained, and this at a smaller cost. When mistakes are made they are not generally discovered until much time and money have been expended on inferior roads. Such errors can in a great measure be avoided if reasonable care is taken in the selection of a suitable material. To select a material in a haphazard way, without considering the needs of the particular road on which it is to be used, is not unlike an ill person taking the nearest medicine at hand, without reference to the nature of the malady or the properties of the drug. If a road is bad, the exact trouble must first be ascertained before the proper remedy can be applied. If the surface of a macadam road continues to be too muddy or dusty after the necessary drainage precautions have been followed, then the rock of which it is constructedlacks sufficient hardness or toughness to meet the traffic to which it is subjected. If, on the contrary, the fine binding material of the surface is carried off by wind and rain and is not replaced by the wear of the coarser fragments, the surface stones will soon loosen and allow water to make its way freely to the foundation and bring about the destruction of the road. Such conditions are brought about by an excess of hardness or toughness of the rock for the traffic. Under all conditions a rock of high cementing value is desirable; for, other things being equal, such a rock better resists the wear of traffic and the action of wind and rain. This subject, however, will be referred to again.

Until comparatively recent years but little was known of the relative values of the different varieties of rock as road material, and good results were obtained more by chance and general observation than through any special knowledge of the subject. These conditions, however, do not obtain at present, for the subject has received a great deal of careful study, and a fairly accurate estimate can be made ofthe fitness of a rock for any conditions of climate and traffic.

In road-building the attempt should be made to get a perfectly smooth surface, not too hard, too slippery, or too noisy, and as free as possible from mud and dust, and these results are to be attained and maintained as cheaply as possible. Such results, however, can only be had by selecting the material and methods of construction best suited to the conditions.

In selecting a road material it is well to consider the agencies of destruction to roads that have to be met. Among the most important are the wearing action of wheels and horses' feet, frost, rain, and wind. To find materials that can best withstand these agencies under all conditions is the great problem that confronts the road-builder.

Before going further, it will be well to consider some of the physical properties of rock which are important in road-building, for the value of a road material is dependent in a large measure on the degree to which it possesses these properties. There are many such properties that affectroad-building, but only three need be mentioned here. They are hardness, toughness, and cementing or binding power.

By hardness is meant the power possessed by a rock to resist the wearing action caused by the abrasion of wheels and horses' feet. Toughness, as understood by road-builders, is the adhesion between the crystal and fine particles of a rock, which gives it power to resist fracture when subjected to the blows of traffic. This important property, while distinct from hardness, is yet intimately associated with it, and can in a measure make up for a deficiency in hardness. Hardness, for instance, would be the resistance offered by a rock to the grinding of an emery wheel; toughness, the resistance to fracture when struck with a hammer. Cementing or binding power is the property possessed by the dust of a rock to act, after wetting, as a cement to the coarser fragments composing the road, binding them together and forming a smooth, impervious shell over the surface. Such a shell, formed by a rock of high cementing value, protects the underlying material from wearand acts as a cushion to the blows from horses' feet, and at the same time resists the waste of material caused by wind and rain, and preserves the foundation by shedding the surface water. Binding power is thus, probably, the most important property to be sought for in a road-building rock, as its presence is always necessary for the best results. The hardness and toughness of the binder surface more than of the rock itself represents the hardness and toughness of the road, for if the weight of traffic is sufficient to destroy the bond of cementation of the surface, the stones below are soon loosened and forced out of place. When there is an absence of binding material, which often occurs when the rock is too hard for the traffic to which it is subjected, the road soon loosens or ravels.

Experience shows that a rock possessing all three of the properties mentioned in a high degree does not under all conditions make a good road material; on the contrary, under certain conditions it may be altogether unsuitable. As an illustration of this, if a country road or city park way, where only a light traffic prevails, werebuilt of a very hard and tough rock with a high cementing value, neither the best, nor, if a softer rock were available, would the cheapest results be obtained. Such a rock would so effectively resist the wear of a light traffic that the amount of fine dust worn off would be carried away by wind and rain faster than it would be supplied by wear. Consequently the binder supplied by wear would be insufficient, and if not supplied from some other source the road would soon go to pieces. The first cost of such a rock would in most instances be greater than that of a softer one and the necessary repairs resulting from its use would also be very expensive.

A very good illustration of this point is the first road built by the Massachusetts Highway Commission. This road is on the island of Nantucket and was subjected to a very light traffic. The commission desired to build the best possible road, and consequently ordered a very hard and tough trap rock from Salem, considered then to be the best macadam rock in the state. Delivered on the road this rock cost $3.50 per ton, the excessive price being due to the cost oftransportation. The road was in every way properly constructed, and thoroughly rolled with a steam roller; but in spite of every precaution it soon began to ravel, and repeated rolling was only of temporary benefit, for the rock was too hard and tough for the traffic. Subsequently, when the road was resurfaced with limestone, which was much softer than the trap, it became excellent. Since then all roads built on the island have been constructed of native granite bowlders with good results, and at a much lower cost.

If, however, this hard and tough rock, which gave such poor results at Nantucket, were used on a road where the traffic was sufficient to wear off an ample supply of binder, very much better results would be obtained than if a rock lacking both hardness and toughness were used; for, in the latter case, the wear would be so great that ruts would be formed which would prevent rain water draining from the surface. The water thus collecting on the surface would soon make its way to the foundation and destroy the road. The dust in dry weather would also be excessive.

Only two examples of the misuse of a road material have been given, but, as they represent extreme conditions, it is easy to see the large number of intermediate mistakes that can be made, for there are few rocks even of the same variety that possess the same physical properties in a like degree. The climatic and physical conditions to which roads are subjected are equally varied. The excellence of a road material may, therefore, be said to depend entirely on the conditions which it is intended to meet.

It may be well to mention a few other properties of rock that bear on road-building, though they will not be discussed here. There are some rocks, such as limestones, that are hygroscopic, or possess the power of absorbing moisture from the air, and in dry climates such rocks are distinctly valuable, as the cementation of rock dust is in a large measure dependent for its full development on the presence of water. The degree to which a rock absorbs water may also be important, for in cold climates this to some extent determines the liability of a rock to fracture by freezing. It is not soimportant, however, as the absorptive power of the road itself, for if a road holds much water the destruction wrought by frost is very great. This trouble is generally due to faulty construction rather than to the material. The density or weight of a rock is also considered of importance, as the heavier the rock the better it stays in place and the better it resists the action of wind and rain.

Only a few of the properties of rock important to road builders have been considered, but if these are borne in mind when a material is to be selected better results are sure to be obtained. In selecting a road material the conditions to which it is to be subjected should first be considered. These are principally the annual rainfall, the average winter temperature, the character of prevailing winds, the grades, and the volume and character of the traffic that is to pass over the road. The climatic conditions are readily obtained from the Weather Bureau, and a satisfactory record of the volume and character of the traffic can be made by any competent person living in view of the road.

In France the measuring of traffic has received a great deal of attention, and a census is kept for all the national highways. The traffic there is rated and reduced to units in the following manner: A horse hauling a public vehicle or cart loaded with produce or merchandise is considered as the unit of traffic. Each horse hauling an empty cart or private carriage counts as one-half unit; each horse, cow, or ox, unharnessed, and each saddle horse, one-fifth unit; each small animal (sheep, goat, or hog), one-thirtieth unit.

A record is made of the traffic every thirteenth day throughout the year, and an average taken to determine its mean amount. Some such general method of classifying traffic in units is desirable, as it permits the traffic of a road to be expressed in one number.

Before this French method can be applied to the traffic of our country it will be necessary to modify considerably the mode of rating. This, however, is a matter which can be studied and properly adjusted by the Office of Public Road Inquiries. It is most important to obtain a record of theaverage number of horses and vehicles and kind of vehicles that pass over an earth road in a day before the macadam road is built. The small cost of such a record is trifling when compared with the cost of a macadam road (from $4,000 to $10,000 per mile for a fifteen-foot road), in view of the fact that an error in the selection of material may cost a much larger sum of money. After a record of the traffic is obtained, if the road is to be built of crushed rock for the first time, an allowance for an immediate increase in traffic amounting at least to ten or fifteen per cent had best be made, for the improved road generally brings traffic from adjoining roads.

To simplify the matter somewhat, the different classes of traffic to which roads are subjected may be divided into five groups, which may be called city, urban, suburban, highway, and country road traffic, respectively. City traffic is a traffic so great that no macadam road can withstand it, and is such as exists on the business streets of large cities. For such a traffic stone and wood blocks, asphalt, brick, orsome such materials are necessary. Urban traffic is such as exists on city streets which are not subjected to continuous heavy teaming, but which have to withstand very heavy wear, and need the hardest and toughest macadam rock. Suburban traffic is such as is common in the suburbs of a city and the main streets of country towns. Highway traffic is a traffic equal to that of the main country roads. Country road traffic is a traffic equal to that of the less frequented country roads.

The city traffic will not be considered here. For an urban traffic, the hardest and toughest rock, or in other words, a rock of the highest wearing quality that can be found, is best. For a suburban traffic the best rock would be one of high toughness but of less hardness than one for urban traffic. For highway traffic a rock of medium hardness and toughness is best. For country road traffic it is best to use a comparatively soft rock of medium toughness. In all cases high cementing value should be sought, and especially if the locality is very wet or windy.

Rocks belonging to the same species andhaving the same name, such as traps, granites, quartzites, etc., vary almost as much in different localities in their physical road-building properties as they do from rocks of distinct species. This variation is also true of the mineral composition of rocks of the same species, as well as in the size and arrangement of their crystals. It is impossible, therefore, to classify rocks for road-building by simply giving their specific names. It can be said, however, that certain species of rock possess in common some road-building properties. For instance, the trap[8]rocks as a class are hard and tough and usually have binding power, and consequently stand heavy traffic well; and for this reason they are frequently spoken of as the best rocks for road-building. This, however, is not always true, for numerous examples can beshown where trap rock having the above properties in the highest degree has failed to give good results on light traffic roads. The reason trap rock has gained so much favor with road-builders is because a large majority of macadam roads in our country are built to stand an urban traffic, and the traps stand such a traffic better than any other single class of rocks. There are, however, other rocks that will stand an urban traffic perfectly well, and there are traps that are not sufficiently hard and tough for a suburban or highway traffic. The granites are generally brittle, and many of them do not bind well, but there are a great many which when used under proper conditions make excellent roads. The felsites are usually very hard and brittle, and many have excellent binding power, some varieties being suitable for the heaviest macadam traffic. Limestones generally bind well, are soft, and frequently hygroscopic. Quartzites are almost always very hard, brittle, and have very low binding power. The slates are usually soft, brittle, and lack binding power.

The above generalizations are ofnecessity vague, and for practical purposes are of little value, since rocks of the same variety occurring in different localities have very wide ranges of character. It consequently happens in many cases, particularly where there are a number of rocks to choose from, that the difficulty of making the best selection is great, and this difficulty is constantly increasing with the rapidly growing facilities of transportation and the increased range of choice which this permits. On account of their desirable road properties some rocks are now shipped several hundred miles for use.

There are but two ways in which the value of a rock as a road material can be accurately determined. One way, and beyond all doubt the surest, is to build sample roads of all the rocks available in a locality, to measure the traffic and wear to which they are subjected, and keep an accurate account of the cost both of construction and annual repairs for each. By this method actual results are obtained, but it has grave and obvious disadvantages. It is very costly (especially so when the results are negative), and it requires so greata lapse of time before results are obtained that it cannot be considered a practical method when macadam roads are first being built in a locality. Further than this, results thus obtained are not applicable to other roads and materials. Such a method, while excellent in its results, can only be adopted by communities which can afford the necessary time and money, and is entirely inadequate for general use.

The other method is to make laboratory tests of the physical properties of available rocks in a locality, study the conditions obtaining on the particular road that is to be built, and then select the material that best suits the conditions. This method has the advantages of giving speedy results and of being inexpensive, and as far as the results of laboratory tests have been compared with the results of actual practice they have been found to agree.

Laboratory tests on road materials were first adopted in France about thirty years ago, and their usefulness has been thoroughly established. The tests for rock there are to determine its degree of hardness, resistance to abrasion, and resistanceto compression. In 1893 the Massachusetts Highway Commission established a laboratory at Harvard University for testing road materials. The French abrasion test was adopted, and tests for determining the cementing power and toughness of rock were added. Since then similar laboratories have been established at Johns Hopkins University, Columbia University, Wisconsin Geological Survey, Cornell University, and the University of California.

The Department of Agriculture has now established a road-material laboratory in the Division of Chemistry, where any person residing in the United States may have road materials tested free by applying for instructions to the Office of Public Road Inquiries. The laboratory is equipped with the apparatus necessary for carrying on such work, and the Department intends to carry on general investigations on roads. Part of the general plan will be to make tests on actual roads for the purpose of comparing the results with those obtained in the laboratory.

Besides testing road materials for the public, blank forms for recording trafficwill be supplied by the department to any one intending to build a road. When these forms are filled and returned to the laboratory, together with the samples of materials available for building the road, the traffic of the road will be rated in its proper group, as described above; each property of the materials will be tested and similarly rated according to its degree, the climatic conditions will be considered, and expert advice given as to the proper choice to be made.

[7]By Logan Waller Page, expert in charge of Road Material Laboratory, Division of Chemistry.

[7]By Logan Waller Page, expert in charge of Road Material Laboratory, Division of Chemistry.

[8]This term is derived from the Swedish wordtrappa, meaning steps, and was originally applied to the crystallized basalts of the coast of Sweden, which much resemble steps in appearance. As now used by road builders, it embraces a large variety of igneous rocks, chiefly those of fine crystalline structure and of dark-blue, gray, and green colors. They are generally diabases, diorites, trachytes, and basalts.—Page.

[8]This term is derived from the Swedish wordtrappa, meaning steps, and was originally applied to the crystallized basalts of the coast of Sweden, which much resemble steps in appearance. As now used by road builders, it embraces a large variety of igneous rocks, chiefly those of fine crystalline structure and of dark-blue, gray, and green colors. They are generally diabases, diorites, trachytes, and basalts.—Page.

As New Jersey contains a great variety of soils, there are many conditions to be met with in road construction. The northern part of the state is hilly, where we have clay, soft stone, hard stones, loose stones, quicksand, and marshes. In the eastern part of the state, particularly in the seashore sections, the roads are at their worst in summer in consequence of loose, dry sand, which sometimes drifts like snow. In west New Jersey, which comprises the southern end of the state, there is much loose, soft sand, considerable clay, marshes, and low lands not easily drained.

In addition to the condition of the soil, there is the economic condition to be considered. In the vicinity of large towns orcities, where there is heavy carting by reason of manufactories and produce marketing, it is necessary to have heavy, thick, substantial roads, while in more rural districts and along the seashore, where the travel is principally by light carriages, a lighter roadbed construction is preferred. In rural districts, where the roads are used for immediate neighborhood purposes, an inexpensive road is desirable. The main thoroughfares have to be constructed with a view to considerable increase of travel, as farmers in the outlying districts who formerly devoted their time to grazing of stock, raising of grain, etc., find it more profitable to change the mode of farming to that of truck raising, fruit growing, etc.

The road engineers of New Jersey find that they cannot follow old paths and make their roads after one style or pattern. Technical engineering in road construction must yield to the practical, common-sense plan of action. An engineer with plenty of money and material at hand can construct a good road almost anywhere and meet any condition, but with limited resources and a variety of physical conditionshe has to "cut the garment to suit the cloth." We start out with this dilemma. We must have better roads, and our means for getting them being very limited, if we cannot get them as good as we would like, let us get them as good as we can.

Let me give a practical illustration. Stone-road construction outside of turnpike corporations in West Jersey was begun in the spring of 1891. I was called on by the township committee of Chester Township, Burlington County, to construct some roads. Moorestown is a thriving town of about three thousand inhabitants in the center of the township. The roads to be constructed, with one exception, ran out of the town to the township limits, being from one-half to three miles in length. The roads were generally for local purposes. There were ten roads, aggregating about eleven miles. The bonding of the township was voted upon, and it was necessary, in order to carry the bonding project of $40,000, to have all these roads constructed of stone macadam. The roads to be improved were determined on at a town meeting without consulting an engineer as to the cost, etc.,so that the plain question submitted to me was, Can you construct eleven miles of stone road nine feet wide for $40,000? The conditions to be met were these: There was no stone suitable for road-building nearer than from sixty to eighty miles; cost of freight, about seventy-five cents per ton; the hauls from the railroad siding averaged about one and three-quarter miles; price of teams in summer, when farmers were busy, about $3.50 per day. In preparation for road construction there were several hills to be cut from one to three feet; causeways and embankments to be made over wet and swampy ground. For this latter work the property holders and others interested along the road agreed to furnish teams, the township paying for laborers. The next difficulty was the kind of a road to build. As the width was fixed at nine feet as a part of the conditions for bonding, there seemed only one way left to apply the economics—that was, in the depth of the roads.

On the dry, sandy soils I put the macadam six inches deep; this depth was applied to about six miles of road. On roadswhere the heaviest travel would come the roadbed was made eight inches deep. On soils having springs and on embankments over causeways the depth was ten inches with stone foundation, known as telford. Where springs existed, they were cut off by underdrains.

It had been the practice of engineers in their specifications to call for the best trap rock for all the stone construction. As this rock is hard to crush and difficult to be transported some seventy or eighty miles to this part of New Jersey, I found that in order to construct all of the road from this best material it would take more money than the bonds would provide; so I had half of the depth which forms the foundation made of good dry sedimentary rock. Of course, in this there is considerable slate, but the breaking is not nearly so costly as the breaking of syenite or Jersey trap rock, and there was a saving of thirty per cent. As the surface of the road had to take all the wear, I required the best trap rock for this purpose.

Since the construction of these roads in Chester Township, roads are now builtunder the state-aid act by county officials and paid for as follows: One-third by the state, ten per cent by the adjoining property holders, and the balance (56-2/3 per cent) by the county. The roads constructed under this act are generally leading roads and those mostly traversed by heavy teams. They are constructed similarly to those in Chester Township, excepting that they are generally twelve feet wide and from ten to twelve inches deep. Many of them have a telford foundation, which is now put down at about the same price as macadam, and meets most of the conditions better than macadam. The less expensive stone is used for foundations, and the best and more costly for surface only. In this way the cost of construction has been greatly reduced.

In regard to the width, a road nine or ten feet wide has been found to be quite as serviceable as one of greater width, unless it is made fourteen feet and over. It is not claimed that a narrow road is just as good as a wide road, but it has been found better to have the cost in length than in width in rural districts. In and near towns,where there is almost constant passing, the road should not be less than from fourteen to twenty feet in width. The difficulty in getting on and off the stone road where teams are passing is not so great as is supposed. To meet this difficulty in the past, on each side of the road the specifications require the contractor to make a shoulder of clay, gravel, or other hard earth; this is never less than three feet and sometimes six to eight feet in width, according to the kinds of soil the road is composed of and the liability of frequent meeting and passing. In rural districts the top-dressing of these shoulders is taken from the side ditches; grass sods are mixed in when found, and in some cases grass seed is sown. As the stone roadbed takes the travel the grass soon begins to grow, receiving considerable fertilizing material from the washing of the road; and when the sod is once formed the waste material from the wear of the road is lodged in the grass sod and the shoulder becomes hard and firm, except when the frost is coming out.

Another mode of building a rural road cheaply and still have room for passingwithout getting off the stone construction is to make the roadbed proper about ten feet wide, ten or twelve inches deep; then have wings of macadam on each side three feet wide and five or six inches deep. In case ten feet is used the two wings would make the stone construction six feet wide. If the road is made considerably higher in the center than the sides, as it should be, the travel, particularly the loaded teams, will keep in the center, and the wings will only be used in passing and should last as long as the thicker part of the road.

The preparation of the road and making it suitable for the stone bed is one of the most important parts of road construction. This, once done properly, is permanent. Wherever it is possible the hills should be cut and low places filled, so that the maximum grade will not exceed five or six feet rise in one hundred feet; where hills cannot be reduced to this grade without incurring too much expense, the hill, if possible, should be avoided by relaying the road in another place.

Wherever stone roads have been constructed it has been found that those usingthem for drawing heavy loads will increase the capacity of their wagons so as to carry three or four times the load formerly carried. This can easily be done where the road has a maximum grade of not greater than five or six per cent, as before stated; but when the grade is greater than this the power to be expended on such loads upon such grades will exhaust and wear out the horses; thus a supposed saving in heavy loading may prove to be a loss.

In the preparation of the road it is necessary to have the ditches wide and deep enough to carry all the water to the nearest natural water way. These ditches should at all times be kept clear of weeds and trash, so that the water will not be retained in pools. Bad roads often occur because this important matter is overlooked.

On hills the slope or side grade in construction from center of road to side ditches should be increased so as to exceed that of the longitudinal grade; that is, if the latter is, say, five per cent, the slope to side should be at least six per cent and over.

Where the road in rural districts is onrolling ground and hills do not exceed three or four per cent, it is an unnecessary expense to cut the small ones, but all short rises should be cut and small depressions filled. A rolling road is not objectionable, and besides there is no better roadbed for laying on metal than the hard crust formed by ordinary travel. In putting on the metal, particularly on narrow roads, the roadbed should be "set high;" it will soon get "flat enough." It is better to put the shouldering up to the stone than to dig a trench to put the stone in. If the road after preparation is about level from side to side and the stone or metal construction is to be, say, ten inches deep, the sides of the roadbed to receive the metal should be cut about three inches and placed on the side to help form the shoulder; the rest of the shoulder, when suitable, being taken from the ditches and sides in forming the proper slope. The foundation to receive the metal, if the natural roadbed is not used and the bed is of soft earth, should be rolled until it is hard and compact. It should also conform to the same slope as the road when finished from center to sides.If the bed or foundation is of soft sand rolling will be of little use. In this case care must be taken to keep the bed as uniform as possible while the stone is being placed on the foundation.

When the road passes through villages and towns the grading should reduce the roadbed to a grade as nearly level as possible. It must be borne in mind that the side ditches need not necessarily always conform to the center grade of the road. When the center grade is level the side ditches should be graded to carry off the water. In some cases I have found it necessary to run the grade for the side ditches in an opposite direction from the grade of the road. This, however, does not often occur. The main thing is to get the water off the road as soon as possible after it falls, and then not allow it to remain in the ditches. And just here the engineer will meet with many difficulties. The landowners in rural districts are opposed to having the water from the roads let onto their lands, and disputes often arise as to where the natural water way is located. This should be determined by the peoplein the neighborhood, or by the local authorities. I have found in several cases, where the water from side ditches was allowed to run on the land, that the land was generally benefited by having the soil enriched by the fertilizing matter from the road.

After the roadbed has been thoroughly prepared, if made of loam or clay, it should be rolled and made as hard and compact as possible. Wherever a depression appears it should be filled up and made uniformly hard. Place upon it a light coat of loam or fine clay, which will act as a binder. If the roller used is not too heavy it may be rolled to advantage, but the rolling of this course depends upon the character of the stones. If the stones are cubical in form rolling is beneficial, but if they are of shale and many of them thin and flat, rolling has a tendency to bring the flat sides to the surface. When this is the case the next course of fine stone for the surface will not firmly compact and unite with them.

When the foundation is of telford it is important that stones not too large should be used. They should not exceed ten inches in length, six inches on one side,which is laid next to the earth, and four inches on top, the depth depending on the thickness of the road. If the thickness of the finished road is eight inches, the telford pavement should not exceed five inches; if it is ten or more inches deep, then the telford could be six inches. It need in no case be greater than this, as this is sufficient to form the base or foundation of the metal construction. The surface of the telford pavement should be as uniform as possible, all projecting points broken off, and interstices filled in with small stone. Care should be taken to keep the stone set up perpendicular with the roadbed and set lengthwise across the road with joints broken. This foundation should be well hammered down with sledge hammers and made hard and compact. Upon this feature greatly depends the smoothness of the surface of the road and uniform wear. If put down compactly rolling is not necessary, and if not put down solid rolling might do it damage in causing the large stones to lean and set on their edges instead of on the flat sides. I refer to instances where the road is to be ten inches and over.Then put on a light coat or course of one and one-half inch stone, with a light coat of binding, and then put on the roller, thus setting the finer stone well with the foundation and compacting the whole mass together.

After the macadam or telford foundation is well laid and compacted, the surface or wearing stone is put on. If the thickness of the road is great enough, say twelve or fourteen inches, this surface stone should be put on in courses, say of three and four inches, as may be required for the determined thickness of the road. On each course there should be applied a binding, but only sufficient to bind the metal together or fill up the small interstices. It must be remembered that broken stone is used in order to form a compact mass. The sides of the stone should come together and not be kept apart by what we call binding material; therefore only such quantity should be used as will fill up the small interstices made by reason of the irregularity of the stone. Each course should be thoroughly rolled to get the metal as compact as possible. When the stone construction is madeto the required depth or thickness, the whole surface should be subjected to a coat of screenings about one inch thick. This must be kept damp by sprinkling, and thoroughly rolled until the whole mass becomes consolidated and the surface smooth and uniform. Before the rolling is finished the shoulders should be made up and covered with gravel or other hard earth and dressed off to the side ditches. When practicable these should have the same grade or slope as the stone construction. This finish should also be rolled and made uniform, so that, in order that the water may pass off freely, there will be no obstruction between the stone roadbed and side ditches. To prevent washes and insure as much hardness as possible on roads in rural districts, grass should be encouraged to grow so as to make a stiff sod.

For shouldering, when the natural soil is of soft sand, a stiff clay is desirable. When the natural soil is of clay, then gravel or coarse sand can be used, covering the whole with the ditch scrapings or other fertilizing material, where grass sod isdesirable. Of course this is not desirable in villages and towns.

For binding, what is called garden loam is the best. When this cannot be found use any soft clay or earth free from clods or round stones. It must be spread on very lightly and uniformly.

Any good dry stone not liable to disintegrate can be used as metal for foundation for either telford or macadam construction. For the surface it is necessary to have the best stone obtainable. Like the edge of a tool, it does the service and must take the wear. As in the tool it pays to have the best of steel, so on the road, which is subject to the wear and tear of steel horseshoes and heavy iron tires, it is found the cheapest to have the best of stone.

It is difficult to describe the kind of stone that is best. The best is generally syenite trap rock, but this term does not give any definite idea. The kind used in New Jersey is called the general name of Jersey trap rock. It is a gray syenite, and is found in great quantities in a range running from Jersey City, on the Hudson River, to a point on the Delaware betweenTrenton and Lambertville. There are quantities of good stone lying north of this ledge, but none south of it.

The best is at or near Jersey City. The same kind of stone is found in the same ranges of hills in Pennsylvania, but in the general run it is not so good. The liability to softness and disintegration increases after leaving the eastern part of New Jersey, and while good stone may be found, the veins of poorer stone increase as we go south and west.

It is generally believed that the hardest stones are best for road purposes, but this is not the case. The hard quartz will crush under the wheels of a heavy load. It is toughness in the stone that is necessary; therefore a mixed stone, like syenite, is the best. This wears smooth, as the rough edges of the stone come in contact with the wheels. It requires good judgment based on experience to determine the right kind of stone to take the constant wear of horseshoes and wagon tires.

If good roads are desired, the work is not done when the road is completed and ready for travel. There are many causeswhich make repairing necessary. I will refer to only a few of them. Stone roads are liable to get out of order because of too much water or want of water; also, when the natural roadbed is soft and springy and has not been sufficiently drained; when water is allowed to stand in ditches and form pools along the road, and when the "open winters" give us a superabundance of wet. Before the road becomes thoroughly consolidated by travel it is liable to become soft and stones get loose and move under the wheels of the heavily loaded wagons. In the earth foundation on which the stone bed rests the water finds the soft spots. The wheels of the loaded teams form ruts, and particularly where narrow tires are used.

The work of repair should begin as soon as defects appear, for, if neglected, after every rain the depressions make little pools of water and hold it like a basin. In every case this water softens the material, and the wagon tires and horseshoes churn up the bottoms of the basins. This is the beginning of the work of destruction. If allowed to go on, the road becomes rough,and the wear and tear of the horses and wagons are increased. Stone roads out of repair, like any common road in similar condition, will be found expensive to those who use and maintain them. The way to do is to look over a road after a rain, when the depressions and basins will show themselves. Whenever one is large enough to receive a shovelful of broken stone, scrape out the soft dirt and let it form a ring around the depression. Fill with broken stone to about an inch or two above the surface of the road. The ring of dirt around will keep the stone above the surface in place, and the passing wheels will work it on the broken stone and also act as a binder. The whole will work down and become compact and even with the road surface. The ruts are treated in the same way. Use one and one-half inch stone for this; smaller stones will soon grind up and the hole appear again.

The second cause of the necessity for road repairs is want of water. This occurs in summer during hot, dry spells. The surface stone "unravels;" that is, becomes loose where the horses travel. Thiscondition is more liable to be found on dry, sandy soils, and where the roadbed is subject to the direct rays of the sun, and where the winds sweep off all the binding material from the surface. In clay soil there is little or no trouble from "unraveling." The cause being found, the remedy is applied in this way: Put on water with the sprinkler before all the binding material is blown off. If the hot, dry weather continues, sprinkling should continue. Do this in the evening or late in the afternoon.

The next mode is to repair the road by placing the material back as it was originally. The loose stones are placed in the depressions and good binding material—garden loam or fine clay—is put on, then roll the whole repeatedly and dampen by sprinkling as needed until the whole surface becomes smooth and hard. Care must be taken that too much binding material is not used. If too much is used it will injure the road in winter when there is an excess of water.

When a road has been neglected and allowed to become uneven and rough, or isby constant use worn down to the foundation stones, there should be a general repairing. In the first place, if it is the roughness and unevenness that is the only defect, this may be remedied by the use of a large, heavy roller with steel spikes in its rolling wheels. This will puncture the surface so that an ordinary harrow will tear up the surface stones. Then take the spikes out of the roller wheels, and, with sprinkling and rolling, the roadbed can be repaired and made like a new road. But if the cause of the roughness is from wearing away of the stone, so that the surface of the road is brought down to or near the foundation, then the road needs resurfacing. The mode of treatment is the same as in the other case.

In districts where there is stone suitable for road construction the county, town, township, or other municipality, proposing to construct stone roads, should own a stone quarry and a stone crusher. For grading and preparing the road for construction, dressing up sides, clearing out side ditches, etc., a good road machine is necessary. For constructing roads and repairing thema roller is necessary, the weight depending upon the kind of road constructed. If the road is not wide a roller of from four to six tons is all the weight necessary. The rolling should be continued until compactness is obtained. For wide, heavy roads a steam roller of fifteen tons can be used to advantage. A sprinkling wagon completes the list that is necessary for the county or town or other municipality constructing its own roads.


Back to IndexNext