CHAPTER III.

Fig. 6. -- A diagrammatic cross-section, showing how, by faulting, the apparent thickness of the quartzite would be increased.See larger image

The Potsdam sandstone (and conglomerate).—So soon as the sea began to overspread the region, its bottom became the site of deposition, and the deposition continued as long as the submergence lasted. It is to the sediments deposited during the earlier part of this submergence that the namePotsdamis given.

The sources of the sediments are not far to seek. As the former land was depressed beneath the sea, its surface was doubtless covered with the products of rock decay, consisting of earths, sands, small bits and larger masses of quartzite. These materials, or at least the finer parts, were handled by the waves of the shallow waters, for they were at first shallow, and assorted and re-distributed. Thus the residuary products on the submerged surface, were one source of sediments.

From the shores also, so long as land areas remained, the waves derived sediments. These were composed in part of the weathered products of the rock, and in part of the undecomposedrock against which the waves beat, after the loose materials had been worn away. These sediments derived from the shore were shifted, and finally mingled with those derived from the submerged surface.

So long as any part of the older land remained above the water, its streams brought sediments to the sea. These also were shifted by the waves and shore currents, and finally deposited with the others on the eroded surface of the quartzite. Thus sediments derived in various ways, but inherently essentially similar, entered into the new formation.

Fig. 7. -- Diagram to illustrate the theoretical disposition of sediments about an island.See larger image

Fig. 8. -- Same as Fig.7, except that the land has been depressed.See larger image

The first material to be deposited on the surface of the quartzite as it was submerged, was the coarsest part of the sediment. Of the sediment derived by the waves from the coasts, and brought down to the sea by rivers, the coarsest would at each stage be left nearest the shore, while the finer was carried progressively farther and farther from it. Thus at each stage the sand was deposited farther from the shore than the gravel, and the mud farther than the sand, where the water was so deep that the bottom was subject to little agitation by waves. The theoretical distribution of sediments about an island as it was depressed, is illustrated by the following diagrams, Figs.7and8. It will be seen that the surface of the quartzite is immediately overlain by conglomerate, but that the conglomerate near its top is younger than that near its base.

In conformity with this natural distribution of sediments, the basal beds of the Potsdam formation are often conglomeratic (Fig.9, PlateIII Fig. 2, and PlateXXV). This may oftenest be seen near the quartzite ridges, for here only is the base of the formation commonly exposed. The pebbles and larger masses of the conglomerate are quartzite, like that of the subjacent beds, and demonstrate the source of at least some of the material of the younger formation. That the pebbles and bowlders are of quartzite is significant, for it shows that the older formation had been changed from sandstone to quartzite, before the deposition of the Potsdam sediments. The sand associated with the pebbles may well have come from the breaking up of the quartzite, though some of it may have been washed in from other sources by the waters in which the deposition took place.

Fig. 9. -- Sketch showing relation of basal Potsdam conglomerate and sandstone to the quartzite, on the East bluff at Devil's lake, behind the Cliff house.See larger image

The basal conglomerate may be seen at many places, but nowhere about Devil's lake is it so well exposed as at Parfrey's glen (a, PlateXXXVII), where the rounded stones of which it is composed vary from pebbles, the size of a pea, to bowlders more than three feet in diameter. Other localities where the conglomerates may be seen to advantage are Dorward's glen (b, PlateXXXVII), the East bluff at Devil's lake just above the Cliff house, and at the Upper narrows of the Baraboo, above Ablemans.

While the base of the Potsdam is conglomeratic in many places, the main body of it is so generally sandstone that the formation as a whole is commonly known as the Potsdam sandstone.

The first effect of the sedimentation which followed submergence was to even up the irregular surface of the quartzite, for the depressions in the surface were the first to be submerged, and the first to be filled. As the body of sediment thickened, it buried the lower hills and the lower parts of the higher ones. The extent to which the Potsdam formation buried the main ridge may never be known. It may have buried it completely, for as already stated (p.19) patches of sandstone are found upon the main range. These patches make it clear that some formation younger than the quartzite once covered essentially all of the higher ridge. Other evidence to be adduced later, confirms this conclusion. It has, however, not been demonstrated that the high-level patches of sandstone are Potsdam.

There is abundant evidence that the subsidence which let the Potsdam seas in over the eroded surface of the Huronian quartzite was gradual. One line of evidence is found in the cross-bedding of the sandstone (PlateXII) especially well exhibited in the Dalles of the Wisconsin. The beds of sandstone are essentially horizontal, but within the horizontal beds there are often secondary layers which depart many degrees from horizontality, the maximum being about 24°. PlatesXXVIIandXIIgive a better idea of the structure here referred to than verbal description can.

The explanation of cross-bedding is to be found in the varying conditions under which sand was deposited. Cross-bedding denotes shallow water, where waves and shore currents were effective at the bottom where deposition is in progress. For a time, beds were deposited off shore at a certain angle, much as in the building of a delta (Fig.10). Then by subsidence of the bottom, other layers with like structure were deposited over the first. By this sequence of events, the dip of the secondary layers should be toward the open water, and in this region their dip is

WISCONSIN GEOL. AND NAT. HIST. SURVEY. BULLETIN NO. V., PL. XII.

Steamboat rock -- an island in the Dalles of the Wisconsin.See larger image

generally to the south. At any stage of deposition the waves engendered by storms were liable to erode the surface of the deposits already made, and new layers, discordant with those below, were likely to be laid down upon them. The subordinate layers of each deposit might dip in any direction. If this process were repeated many times during the submergence, the existing complexity would be explained.

Fig. 10. -- A diagrammatic cross-section of a delta.See larger image

The maximum known thickness of the Potsdam sandstone in Wisconsin is about 1,000 feet, but its thickness in this region is much less. Where not capped by some younger formation, its upper surface has suffered extensive erosion, and the present thickness therefore falls short of the original. The figures given above may not be too great for the latter.

The Lower Magnesian limestone.—The conditions of sedimentation finally changed in the area under consideration. When the sand of the sandstone was being deposited, adjacent lands were the source whence the sediments were chiefly derived. The evidence that the region was sinking while the sand was being deposited shows that the land masses which were supplying the sand, were becoming progressively smaller. Ultimately the sand ceased to be washed out to the region here described, either because the water became too deep[3], or because the source of supply was too distant. When these relations were brought about, the conditions were favorable for the deposition of sediments which were to become limestone. These sediments consisted chiefly of the shells of marine life, together with an unknown amount of lime carbonate precipitated from the waters of the sea. The limestone contains no coarse, and but little fine material derived from the land, and the surfaces of its layersare rarely if ever ripple-marked. The materials of which it is made must therefore have been laid down in quiet waters which were essentially free from land-derived sediments. The depth of the water in which it was deposited was not, however, great, for the fossils are not the remains of animals which lived in abysmal depths.

The deposition of limestone sediments following the deposition of the Potsdam sands, does not necessarily mean that there was more or different marine life while the younger formation was making, but only that the shells, etc., which before had been mingled with the sand, making fossiliferous sandstone, were now accumulated essentially free from land-derived sediment, and therefore made limestone.

Like the sandstone beneath, the limestone formation has a wide distribution outside the area here under discussion, showing that conditions similar to those of central Wisconsin were widely distributed at this time.

The beds of limestone are conformable on those of the sandstone, and the conformable relations of the two formations indicate that the deposition of the upper followed that of the lower, without interruption.

The thickness of the Lower Magnesian limestone varies from less than 100 to more than 200 feet, but in this region its thickness is nearer the lesser figure than the larger. The limestone is now present only in the eastern and southern parts of the area, though it originally covered the whole area.

The St. Peters sandstone.—Overlying the Lower Magnesian limestone at a few points, are seen remnants of St. Peters sandstone. The constitution of this formation shows that conditions of sedimentation had again changed, so that sand was again deposited where the conditions had been favorable to the deposition of limestone but a short time before. This formation has been recognized at but two places (dande) within the area shown on PlateXXXVII, but the relations at these two points are such as to lead to the conclusion that the formation may once have covered the entire region. This sandstone formation is very likethe sandstone below. Its materials doubtless came from the lands which then existed. The formation is relatively thin, ranging from somewhat below to somewhat above 100 feet.

The change from the deposition of limestone sediments to sand may well have resulted from the shoaling of the waters, which allowed the sand to be carried farther from shore. Rise of the land may have accompanied the shoaling of the waters, and the higher lands would have furnished more and coarser sediments to the sea.

Fig. 11. -- The geological formations of southern Wisconsin in the order of their occurrence. Not all of these are found about Devil's lake.Fig. 11. -- The geological formations of southern Wisconsin in the order of their occurrence. Not all of these are found about Devil's lake.

Younger beds.—That formations younger than the St. Peters sandstone once overlaid this part of Wisconsin is almost certain, though no remnants of them now exist. Evidence which cannot be here detailed[4]indicates that sedimentation about the quartzite ridges went on not only until the irregularities of surface were evened up, but until even the highest peaks of the quartzite were buried, and that formations as high in the series as the Niagara limestone once overlay their crests. Before this condition was reached, the quartzite ridges had of course ceased to be islands, and at the same time had ceased to be a source of supply of sediments. The aggregate thickness of the Paleozoic beds in the region, as first deposited, was probably not less than 1,500 feet, and it may have been much more. This thickness would have buried the crests of the quartzite ridges under several hundred feet of sediment (see Fig.11).

It is by no means certain that south central Wisconsin was continuously submerged while this thick series of beds was being deposited. Indeed, there is good reason to believe that there was at least one period of emergence, followed, after a considerable lapse of time, by re-submergence and renewed deposition, before the Paleozoic series of the region was complete. These movements, however, had little effect on the geography of the region.

Finally the long period of submergence, during which several changes in sedimentation had taken place, came to an end, and the area under discussion was again converted into land.

Time involved.—Though it cannot be reduced to numerical terms, the time involved in the deposition of these several formations of the Paleozoic must have been very long. It is probably to be reckoned in millions of years, rather than in denominations of a lower order.

Climatic conditions.—Little is known concerning the climate of this long period of sedimentation. Theoretical considerations have usually been thought to lead to the conclusion that the climate during this part of the earth's history was uniform, moist, and warm; but the conclusion seems not to be so well founded as to command great confidence.

The uplift.—After sedimentation had proceeded to some such extent as indicated, the sea again retired from central Wisconsin. This may have been because the sea bottom of this region rose, or because the sea bottom in other places was depressed, thus drawing off the water. The topography of this new land, like the topography of those portions of the sea bottom which are similarly situated, must have been for the most part level. Low swells and broad undulations may have existed, but no considerable prominences, and no sudden change of slope. The surface was probably so flat that it would have been regarded as a level surface had it been seen.

The height to which the uplift carried the new land surface at the outset must ever remain a matter of conjecture. Some estimate may be made of the amount of uplift which the regionhas suffered since the beginning of this uplift, but it is unknown how much took place at this time, and how much in later periods of geological history.

The new land surface at once became the site of new activities. All processes of land erosion at once attacked the new surface, in the effort to carry its materials back to the sea. The sculpturing of this plain, which, with some interruption, has continued to the present day, has given the region the chief elements of its present topography. But before considering the special history of erosion in this region, it may be well to consider briefly the general principles and processes of land degradation.

Elements of erosion.—The general process of subaerial erosion is divisible into the several sub-processes of weathering, transportation, and corrasion.[5]

Weatheringis the term applied to all those processes which disintegrate and disrupt exposed surfaces of rock. It is accomplished chiefly by solution, changes in temperature, the wedge-work of ice and roots, the borings of animals, and such chemical changes as surface water and air effect. The products of weathering are transported by the direct action of gravity, by glaciers, by winds, and by running water. Of these the last is the most important.

Corrasionis accomplished chiefly by the mechanical wear of streams, aided by the hard fragments such as sand, gravel and bowlders, which they carry. The solution effected by the waters of a stream may also be regarded as a part of corrasion. Under ordinary circumstances solution by streams is relatively unimportant, but where the rock is relatively soluble, and where conditions are not favorable for abrasion, solution may be more important than mechanical wear.

So soon as sea bottom is raised to the estate of land, it is attacked by the several processes of degradation. The processes of weathering at once begin to loosen the material of the surface if it be solid; winds shift the finer particles about, and with the first shower transportation by running water begins. Weathering prepares the material for transportation and transportation leads to corrasion. Since the goal of all material transported byrunning water is the sea, subaerial erosion means degradation of the surface.

Erosion without valleys.—In the work of degradation the valley becomes the site of greatest activity, and in the following pages especial attention is given to the development of valleys and to the phases of topography to which their development leads.

If a new land surface were to come into existence, composed of materials which were perfectly homogeneous, with slopes of absolute uniformity in all directions, and if the rain, the winds and all other surface agencies acted uniformly over the entire area, valleys would not be developed. That portion of the rainfall which was not evaporated and did not sink beneath the surface, would flow off the land in a sheet. The wear which it would effect would be equal in all directions from the center. If the angle of the slope were constant from center to shore, or if it increased shoreward, the wear effected by this sheet of water would be greatest at the shore, because here the sheet of flowing water would be deepest and swiftest, and therefore most effective in corrasion.

The beginning of a valley.—But land masses as we know them do not have equal and uniform slopes to the sea in all directions, nor is the material over any considerable area perfectly homogeneous. Departure from these conditions, even in the smallest degree, would lead to very different results.

That the surface of newly emerged land masses would, as a rule, not be rough, is evident from the fact that the bottom of the sea is usually rather smooth. Much of it indeed is so nearly plane that if the water were withdrawn, the eye would scarcely detect any departure from planeness. The topography of a land mass newly exposed either by its own elevation or by the withdrawal of the sea, would ordinarily be similar to that which would exist in the vicinity of Necedah and east of Camp Douglas, if the few lone hills were removed, and the very shallow valleys filled. Though such a surface would seem to be moderately uniform as to its slopes, and homogeneous as to its material,neither the uniformity nor the homogeneity are perfect, and the rain water would not run off in sheets, and the wear would not be equal at all points.

Let it be supposed that an area of shallow sea bottom is raised above the sea, and that the elevation proceeds until the land has an altitude of several hundred feet. So soon as it appears above the sea, the rain falling upon it begins to modify its surface. Some of the water evaporates at once, and has little effect on the surface; some of it sinks beneath the surface and finds its way underground to the sea; and some of it runs off over the surface and performs the work characteristic of streams. So far as concerns modifications of the surface, the run-off is the most important part.

The run-off of the surface would tend to gather in the depressions of the surface, however slight they may be. This tendency is shown on almost every hillside during and after a considerable shower. The water concentrated in the depressions is in excess of that flowing over other parts of the surface, and therefore flows faster. Flowing faster, it erodes the surface over which it flows more rapidly, and as a result the initial depressions are deepened, andwashesorgulliesare started.

Should the run-off not find irregularities of slope, it would, at the outset, fail of concentration; but should it find the material more easily eroded along certain lines than along others, the lines of easier wear would become the sites of greater erosion. This would lead to the development of gullies, that is, to irregularities of slope. Either inequality of slope or material may therefore determine the location of a gully, and one of these conditions is indispensable.

Once started, each wash or gully becomes the cause of its own growth, for the gully developed by the water of one shower, determines greater concentration of water during the next. Greater concentration means faster flow, faster flow means more rapid wear, and this means corresponding enlargement of the depression through which the flow takes place. The enlargement effected by successive showers affects a gully in all dimensions.

WISCONSIN GEOL. AND NAT. HIST. SURVEY. BULLETIN NO. V., PL. XIII.

FIG. 1. A very young valley.FIG. 1.A very young valley.FIG. 2. A valley in a later stage of development.FIG. 2.A valley in a later stage of development.

FIG. 1. A very young valley.FIG. 1.A very young valley.

FIG. 2. A valley in a later stage of development.FIG. 2.A valley in a later stage of development.

FIG. 3.Young valleys.

The water coming in at its head carries the head back into the land (head erosion), thus lengthening the gully; the water coming in at its sides wears back the lateral slopes, thus widening it; and the water flowing along its bottom deepens it. Thus gullies grow to be ravines, and farther enlargement by the same processes converts ravines into valleys. A river valley therefore is often but a gully grown big.

The course of a valley.—In the lengthening of a gully or valley headward, the growth will be in the direction of greatest wear. Thus in PlateXIII Fig. 1, if the water coming in at the head of the gully effects most wear in the directiona, the head of the gully will advance in that direction; if there be most wear in the directionborc, the head will advance toward one of these points. The direction of greatest wear will be determined either by the slope of the surface, or by the nature of the surface material. The slope may lead to the concentration of the entering waters along one line, and the surface material may be less resistant in one direction than in another. If these factors favor the same direction of head-growth, the lengthening will be more rapid than if but one is favorable. If there be more rapid growth along two lines, asbandc, PlateXIII Fig. 1, than between them, two gullies may develop (PlateXIII Fig. 2). The frequent and tortuous windings common to ravines and valleys are therefore to be explained by the inequalities of slope or material which affected the surface while the valley was developing.

Tributary valleys.—Following out this simple conception of valley growth, we have to inquire how a valley system (a main valley and its tributaries) is developed. The conditions which determine the location and development of gullies in a new land surface, determine the location and development of tributary gullies. In flowing over the lateral slopes of a gully or ravine, the water finds either slope or surface material failing of uniformity. Both conditions lead to the concentration of the water along certain lines, and concentration of flow on the slope of an erosion depression, be it valley or gully, leads to the developmentof a tributary depression. In its growth, the tributary repeats, in all essential respects, the history of its main. It is lengthened headward by water coming in at its upper end, is widened by side wash, and deepened by the downward cutting of the water which flows along its axis. The factors controlling its development are the same as those which controlled the valley to which it is tributary.

There is one peculiarity of the courses of tributaries which deserves mention. Tributaries, as a rule, join their mains with an acute angle up stream. In general, new land surfaces, such as are now under consideration, slope toward the sea. If a tributary gully were to start back from its main at right angles, more water would come in on the side away from the shore, on account of the seaward slope of the land. This would be true of the head of the gully as well as of other portions, and the effect would be to turn the head more and more toward parallelism with the main valley. Local irregularities of surface may, and frequently do, interfere with these normal relations, so that the general course of a tributary is occasionally at right angles to its main. Still more rarely does the general course of a tributary make an acute angle with its main on the down stream side. Local irregularities of surface determine the windings of a tributary, so that their courses for longer or shorter distances may be in violation of the general rule (c, Fig.43); but on the whole, the valleys of a system whose history has not been interrupted in a region where the surface material is not notably heterogeneous, follow the course indicated above. This is shown by nearly every drainage system on the Atlantic Coastal plain which represents more nearly than any other portion of our continent, the conditions here under consideration. Fig.12represents the drainage system of the Mullica river in southern New Jersey and is a type of the Coastal plain river system.

How a valley gets a stream.—Valleys may become somewhat deep and long and wide without possessing permanent streams, though from their inception they havetemporarystreams, the water for which is furnished by showers or melting snow. Yetsooner or later, valleys come to have permanent streams. How are they acquired? Does the valley find the stream or the stream the valley? For the answer to these questions, a brief digression will be helpful.

Fig. 12. -- A typical river system of the Coastal type.See larger image

In cultivated regions, wells are of frequent occurrence. In a flat region of uniform structure, the depth at which well water may be obtained is essentially constant at all points. If holes (wells 1 and 2, Fig.13) be excavated below this level, water seeps into them, and in a series of wells the water stands at a nearly common level. This means that the sub-structure is full of water up to that level. These relations are illustrated by Fig.13. The diagram represents a vertical section through a flat region from the surface (s s) down below the bottom of wells. The water stands at the same level in the two cells (1 and 2), and the plane through them, at the surface of the water, is theground water level. If in such a surface a valley were to be cut until itsbottom was below the ground water level, the water would seep into it, as it does into the wells; and if the amount were sufficient, a permanent stream would be established. This is illustrated in Fig.13. The line A A represents the ground water level, and the level at which the water stands in the wells, under ordinary circumstances. The bottom of the valley is below the level of the ground water, and the water seeps into it from either side. Its tendency is to fill the valley to the level A A. But instead of accumulating in the open valley as it does in the enclosed wells, it flows away, and the ground water level on either hand is drawn down.

Fig. 13. -- Diagram illustrating the relations of ground water to streams.

The level of the ground water fluctuates. It is depressed when the season is dry (A' A'), and raised when precipitation is abundant (A'' A''). When it is raised, the water in the wells rises, and the stream in the valley is swollen. When it falls, the ground water surface is depressed, and the water in the wells becomes lower. If the water surface sinks below the bottom of the wells, the wells "go dry;" if below the bottom of the valley, the valley becomes for the time being, a "dry run." When a well is below the lowest ground-water level its supply of water never fails, and when the valley is sufficiently below the same level, its stream does not cease to flow, even in periods of drought. On account of the free evaporation in the open valley, the valley depression must be somewhat below the level necessary for a well, in order that the flow may be constant.

It will be seen thatintermittentstreams, that is, streams which flow in wet seasons and fail in dry, are intermediate between streams which flow after showers only, and those which flow without interruption. In the figure the stream would become dry if the ground water level sank to A' A'.

It is to be noted that a permanent stream does not normally precede its valley, but that the valley, developed through gully-hood and ravine-hood to valley-hood by means of the temporary streams supplied by the run-off of occasional showers,finds a stream, just as diggers of wells find water. The case is not altered if the stream be fed by springs, for the valley finds the spring, as truly as the well-digger finds a "vein" of water.

Limits of a valley.—So soon as a valley acquires a permanent stream, its development goes on without the interruption to which it was subject while the stream was intermittent. The permanent stream, like the temporary one which preceded it, tends to deepen and widen its valley, and, under certain conditions, to lengthen it as well. The means by which these enlargements are affected are the same as before. There are limits, however, in length, depth, and width, beyond which a valley may not go. No stream can cut below the level of the water into which it flows, and it can cut to that level only at its outlet. Up stream from that point, a gentle gradient will be established over which the water will flow without cutting. In this condition the stream isat grade. Its channel has reached baselevel, that is, the level to which the stream can wear its bed. This grade is, however, not necessarily permanent, for what wasbaselevelfor a small stream in an early stage of its development, is not necessarily baselevel for the larger stream which succeeds it at a later time.

Weathering, wash, and lateral corrasion of the stream continue to widen the valley after it has reached baselevel. The bluffs of valleys are thus forced to recede, and the valley is widened at the expense of the upland. Two valleys widening on opposite sides of a divide, narrow the divide between them, and may ultimately wear it out. When this is accomplished, the two valleys become one. The limit to which a valley may widen on either side is therefore its neighboring valley, and since, after two valleys have become one by the elimination of the ridge between them, there are still valleys on either hand, the final result of the widening of all valleys must be to reduceall the area which they drain to baselevel. As this process goes forward, the upper flat into which the valleys were cut is being restricted in area, while the lower flats developed by the streams in the valley bottoms are being enlarged. Thus the lower flats grow at the expense of the higher.

There are also limits in length which a valley may not exceed. The head of any valley may recede until some other valley is reached. The recession may not stop even there, for if, on opposite sides of a divide, erosion is unequal, as between1aand1b, Fig.14, the divide will be moved toward the side of less rapid erosion, and it will cease to recede only when erosion on the two sides becomes equal (4aand4b). In homogeneous material this will be when the slopes on the two sides are equal.

Fig. 14. -- Diagram showing the shifting of a divide. The slopes 1A and 1B are unequal. The steeper slope is worn more rapidly and the divide is shifted from 1 to 4, where the two slopes become equal and the migration of the divide ceases.

It should be noted that the lengthening of a valley headward is not normally the work of the permanent stream, for the permanent stream begins some distance below the head of the valley. At the head, therefore, erosion goes on as at the beginning, even after a permanent stream is acquired.

Under certain circumstances, the valley may be lengthened at its debouchure. If the detritus carried by it is deposited at its mouth, or if the sea bottom beyond that point rise, the land may be extended seaward, and over this extension the stream will find its way. Thus at their lower, as well as at their upper ends, both the stream and its valley may be lengthened.

A cycle of erosion.—If, along the borders of a new-born land mass, a series of valleys were developed, essentially parallel to one another, they would constitute depressions separated by elevations, representing the original surface not yet notably affected

WISCONSIN GEOL. AND NAT. HIST. SURVEY. BULLETIN NO. V., PL. XIV.

FIG. 1. The same valleys as shown in Plate XIII Fig. 3, in a later stage of development.FIG. 1.The same valleys as shown in PlateXIII Fig. 3, in a later stage of development.See larger imageFIG. 2. Same valleys as shown in Fig. 1, in a still later stage of development.FIG. 2.Same valleys as shown in Fig. 1, in a still later stage of development.See larger image

FIG. 1. The same valleys as shown in Plate XIII Fig. 3, in a later stage of development.FIG. 1.The same valleys as shown in PlateXIII Fig. 3, in a later stage of development.See larger image

FIG. 2. Same valleys as shown in Fig. 1, in a still later stage of development.FIG. 2.Same valleys as shown in Fig. 1, in a still later stage of development.See larger image

by erosion (see PlateXIV Fig. 1). These inter-valley areas might at first be wide or narrow, but in process of time they would necessarily become narrow, for, once, a valley is started, all the water which enters it from either side helps to wear back its slopes, and the wearing back of the slopes means the widening of the valleys on the one hand and the narrowing of the inter-valley ridges on the other. Not only would the water running over the slopes of a valley wear back its walls, but many other processes conspire to the same end. The wetting and drying, the freezing and the thawing, the roots of plants and the borings of animals, all tend to loosen the material on the slopes or walls of the valleys, and gravity helps the loosened material to descend. Once in the valley bottom, the running water is likely to carry it off, landing it finally in the sea. Thus the growth of the valley is not the result of running water alone, though this is the most important single factor in the process.

Even if valleys developed no tributaries, they would, in the course of time, widen to such an extent as to nearly obliterate the intervening ridges. The surface, however, would not easily be reduced to perfect flatness. For a long time at least there would remain something of slope from the central axis of the former inter-stream ridge, toward the streams on either hand; but if the process of erosion went on for a sufficiently long period of time, the inter-stream ridge would be brought very low, and the result would be an essentially flat surface between the streams, much below the level of the old one.

The first valleys which started on the land surface (see PlateXIII Fig. 3) would be almost sure to develop numerous tributaries. Into tributary valleys water would flow from their sides and from their heads, and as a result they would widen and deepen and lengthen just as their mains had done before them. By lengthening headward they would work back from their mains some part, or even all of the way across the divides separating the main valleys. By this process, the tributaries cut the divides between the main streams into shorter cross-ridges. With the development of tributary valleys there would be many lines of drainage instead of two, working at the area between two mainstreams. The result would be that the surface would be brought low much more rapidly, for it is clear that many valleys within the area between the main streams, widening at the same time, would diminish the aggregate area of the upland much more rapidly than two alone could do.

The same thing is made clear in another way. It will be seen (PlateXIV Figs. 1 and 2) that the tributaries would presently dissect an area of uniform surface, tending to cut it into a series of short ridges or hills. In this way the amount of sloping surface is greatly increased, and as a result, every shower would have much more effect in washing loose materials down to lower levels, whence the streams could carry them to the sea.

Fig. 15. -- Cross-sections showing various stages of erosion in one cycle.

The successive stages in the process of lowering a surface are suggested by Fig.15, which represents a series of cross-sections of a land mass in process of degradation. The uppermost section represents a level surface crossed by young valleys. The next lower represents the same surface at a later stage, when the

WISCONSIN GEOL. AND NAT. HIST. SURVEY. BULLETIN NO. V., PL. XV.

Diagram illustrating how a hard inclined layer of rock becomes a ridge in the process of degradation.See larger image

valleys have grown larger, while the third and succeeding sections represent still later stages in the process of degradation. PlateXIII Fig. 3, and PlateXIV Figs. 1 and 2, represent in another way the successive stages of stream work in the general process of degradation.

In this manner a series of rivers, operating for a sufficiently long period of time, might reduce even a high land mass to a low level, scarcely above the sea. The new level would be developed soonest near the sea, and the areas farthest from it would be the last—other things being equal—to be brought low. The time necessary for the development of such a surface is known as acycle of erosion, and the resulting surface is abase-level plain, that is, a plain as near sea level as river erosion can bring it. At a stage shortly preceding the base-level stage the surface would be apeneplain. A peneplain, therefore, is a surface which has been brought toward, but not to base-level. Land surfaces are often spoken of as young or old in their erosion history according to the stage of advancement which has been made toward baseleveling. Thus the Colorado canyon, deep and impressive as it is, is, in terms of erosion, a young valley, for the river has done but a small part of the work which must be done in order to bring its basin to baselevel.

Effects of unequal hardness.—The process of erosion thus sketched would ultimately bring the surface of the land down to base-level, and in case the material of the land were homogeneous, the last points to be reduced would be those most remote from the axes of the streams doing the work of leveling. But if the material of the land were of unequal hardness, those parts which were hardest would resist the action of erosion most effectively. The areas of softer rock would be brought low, and the outcrops of hard rock (PlateXV) would constitute ridges during the later stages of an erosion cycle. If there were bodies of hard rock, such as the Baraboo quartzite, surrounded by sandstone, such as the Potsdam, the sandstone on either hand would be worn down much more readily than the quartzite, and in the course of degradation the latter wouldcome to stand out prominently. The region in the vicinity of Devil's lake is in that stage of erosion in which the quartzite ridges are conspicuous (PlateXXXVII). The less resistant sandstone has been removed from about them, and erosion has not advanced so far since the isolation of the quartzite ridges as to greatly lower their crests. The harder strata are at a level where surface water can still work effectively, even though slowly, upon them, and in spite of their great resistance they will ultimately be brought down to the common level. It will be seen that, from the point of view of subaerial erosion, a base-level plain is the only land surface which is in a condition of approximate stability.

Falls and rapids.—If in lowering its channel a stream crosses one layer of rock much harder than the next underlying, the deepening will go on more rapidly on the less resistant bed. Where the stream crosses from the harder to the less hard, the gradient is likely to become steep, and a rapids is formed. These conditions are suggested in Fig.16which represents the successive profiles (a b, a c, d e, f e, g e,andh e) of a stream crossing from a harder to a softer formation. Below the pointathe


Back to IndexNext