FOOTNOTES:

FORBES'S RESEARCHES.

Previous observers had mistaken the lamination for stratification; but M. Guyot not only clearly saw that they were different, but in the comparison which he makes he touches, I believe, on the true cause of the glacier-structure. He did not hazard an explanation of the phenomenon, and I believe his memoir remained unprinted. In 1841 the structure was noticed by Professor Forbes during his visit to M. Agassiz on the lower Aar Glacier, and described in a communication presented by him to the Royal Society of Edinburgh. He subsequently devoted much time to the subject, and his great merit in connexion with it consists in the significance which he ascribed to the phenomenon when he first observed it, and in the fact of his having proved it to be a constitutional feature of glaciers in general.

FORBES'S THEORY.

The first explanation given of those veins by Professor Forbes was, that they were small fissures formed in the ice by its motion; that these were filled with the water of the melted ice in summer, which froze in winter so as to form the blue veins. This is the explanation given in his 'Travels,' page 377; and in a letter published in the 'Edinburgh New Philosophical Journal,' October, 1844, it is re-affirmed in these words:—"With the abundance of blue bands before us in the direction in which the differential motion must take place (in this case sensibly parallel to the sides of the glacier), it is impossible to doubt that these infiltrated crevices (for such they undoubtedly are) have this origin." This theory was examined by Mr. Huxley and myself in our joint paper; but it has been since alleged that ours was unnecessary labour, Prof. Forbes himselfhaving in his Thirteenth Letter renounced the theory, and substituted another in its place. The latter theory differs, so far as I can understand it, from the former in this particular, that thefreezing of the waterin the fissures is discarded, their sides being now supposed to be united "by the simple effects of time and cohesion."[B]For a statement of the change which his opinions have undergone, I would refer to the Prefatory Note which precedes the volume of 'Occasional Papers' recently published by Prof. Forbes; but it would have diminished my difficulty had the author given, in connexion with his new volume, a more distinct statement of his present views regarding the veined structure. With many of his observations and remarks I should agree; with many others I cannot say whether I agree or not; and there are others still with which I do not think I should agree: but in hardly any case am I certain of his precise views, excepting, indeed, the cardinal one, wherein he and others agree in ascribing to the structure a different origin from stratification. Thus circumstanced, my proper course, I think, will be to state what I believe to be the cause of the structure, and leave it to the reader to decide how far our views harmonize; or to what extent either of them is a true interpretation of nature.

USUAL ASPECT OF BLUE VEINS.

Most of the earlier observers considered the structure to be due to the stratification of the mountain-snows—a view which has received later development at the hands of Mr. John Ball; and the practical difficulty of distinguishing the undoubted effects ofstratificationfrom the phenomenapresented bystructure, entitles this view to the fullest consideration. The blue veins of glaciers are, however, not always, nor even generally, such as we should expect to result from stratification. The latter would furnish us with distinct planes extending parallel to each other for considerable distances through the glacier; but this, though sometimes the case, is by no means the general character of the structure. We observe blue streaks, from a few inches to several feet in length, upon the walls of the same crevasse, and varying from the fraction of an inch to several inches in thickness. In some cases the streaks are definitely bounded, giving rise to an appearance resembling the section of a lens, and hence called the "lenticular structure" by Mr. Huxley and myself; but more usually they fade away in pale washy streaks through the general mass of the whitish ice. InFig. 39I have given a representation of the structure as it is very commonly exhibited on the walls of crevasses. Its aspect is not that which we should expect from the consolidation of successive beds of mountain snow.

Fig. 39. Veined Structure of the walls of crevasses.

Further, at the bases of ice-cascades the structural laminæ are usuallyvertical: below the cascade of the Talèfre, of the Noire, of the Strahleck branch of the Lower Grindelwald Glacier, of the Rhone, and other ice-falls, this is the case; and it seems extremely difficult to conceive that a mass horizontally stratified at the summit of the fall, should, in its descent, contrive to turn its strata perfectly on end.

Again, we often find a very feebly-developed structure at the central portions of a glacier, while the lateral portions are very decidedly laminated. This is the case where the inclination of the glacier is nearly uniform throughout; and where no medial moraines occur to complicate the phenomenon. But if the veins mark the bedding, there seems to be no sufficient reason for their appearance at the lateral portions of the glacier, and their absence from the centre.

ILLUSTRATIVE EXPERIMENTS.

This leads me to the point at which what I consider to be the true cause of the structure may be referred to. The theoretic researches of Mr. Hopkins have taught us a good deal regarding the pressures and tensions consequent upon glacier-motion. Aided by this knowledge, and also by a mode of experiment first introduced by Professor Forbes, I will now endeavour to explain the significance of the fact referred to in the last paragraph. If a plastic substance, such as mud, flow down a sloping canal, the lateral portions, being held back by friction, will be outstripped by the central ones. When the flow is so regulated that the velocity of a point at the centre shall not vary throughout the entire length of the canal, a coloured circle stamped upon the centre of the mud stream, near its origin, will move along with the mud, and still retain its circular form; for, inasmuch as the velocity of all points along the centre is the same, there can be no elongation of the circle longitudinally or transversely by either strain or pressure. A similar absence of longitudinal pressure may exist in a glacier, and, where it exists throughout, no central structure can, in my opinion, be developed.

But let a circle be stamped upon the mud-stream near its side, then, when the mud flows, this circle will be distorted to an oval, with its major axis oblique to the direction of motion; the cause of this is that the portionof the circle farthest from the side of the canal moves more freely than that adjacent to the side. The mechanical effect of the slower lateral motion is to squeeze the circle in one direction, and draw it out in the perpendicular one.

MARGINAL STRUCTURE.

Fig. 40. Figure explanatory of the Marginal Structure.

A glance atFig. 40will render all that I have said intelligible. The three circles are first stamped on the mud in the same transverse line; but after they have moved downwards they will be in the same straight line no longer. The central one will be the foremost; while the lateral ones have their forms changed from circles to ovals. In a glacier of the shape of this canal exactly similar effects are produced. Now the shorter axism nof each oval is a line of squeezing or pressure; the longer axis is a line of strain or tension; and the associated glacier-phenomena are as follows:—Across the linem n, or perpendicular to the pressure, we have theveined structuredeveloped, while across the line of tension the glacier usually breaks and formsmarginal crevasses. Mr. Hopkins has shown that the lines of greatest pressure and of greatest strain are at right angles to each other, and that in valleys of a uniform width they enclose an angle of forty-five degrees with the side of the glacier. To the structure thus formed I have applied the termmarginal structure. Here, then, we see that there are mechanical agencies at work near the side of such a glacier which are absent from the centre, and we have effects developed—I believeby the pressure—in the lateral ice, which are not produced in the central.

I have used the term "uniform inclination" in connexion with the marginal structure, and my reason for doing so will now appear. In many glaciers the structure,instead of being confined to the margins, sweeps quite across them. This is the case, for example, on the Glacier du Géant, the structure of which is prolonged into the Mer de Glace. In passing the strait at Trélaporte, however, the curves are squeezed and their apices bruised, so that the structure is thrown into a state of confusion; and thus upon the Mer de Glace we encounter difficulty in tracing it fairly from side to side. Now the key to this transverse structure I believe to be the following: Where the inclination of the glacier suddenly changes from a steep slope to a gentler, as at the bases of the "cascades,"—the ice to a certain depth must be thrown into a state of violent longitudinal compression; and along with this we have the resistance which the gentler slope throws athwart the ice descending from the steep one. At such places a structure is developed transverse to the axis of the glacier, and likewise transverse to the pressure. The quicker flow of the centre causes this structure to bend more and more, and after a time it sweeps in vast curves across the entire glacier.

STRUCTURE OF GRINDELWALD GLACIER.

In illustration of this point I will refer, in the first place, to that tributary of the Lower Glacier of Grindelwald which descends from the Strahleck. Walking up this tributary we come at length to the base of an ice-fall. Let the observer here leave the ice, and betake himself to either side of the flanking mountain. On attaining a point which commands a view both of the fall and of the glacier below it, an inspection of the glacier will, I imagine, solve to his satisfaction the case of structure now under consideration.

It is indeed a grand experiment which Nature here submits to our inspection. The glacier descending from itsnévéreaches the summit of the cascade, and is broken transversely as it crosses the brow; it afterwards descends the fall in a succession of cliffy ice-ridges with transversehollows between them. In these latter the broken ice and débris collect, thus partially choking the fissures formed in the first instance. Carrying the eye downwards along the fall, we see, as we approach the base, these sharp ridges toned down; and a little below the base they dwindle into rounded protuberances which sweep in curves quite across the glacier. At the base of the fall the structure begins to appear, feebly at first, but becoming gradually more pronounced, until, at a short distance below the base of the fall, the eye can follow the fine superficial groovings from side to side; while at the same time the ice underneath the surface has become laminated in the most beautiful manner.

It is difficult to convey by writing the force of the evidence which the actual observation of this natural experiment places before the mind. The ice at the base of the fall, retarded by the gentler inclination of the valley, has to bear the thrust of the descending mass, the sudden change of inclination producing powerful longitudinal compression. The protuberances are squeezed more closely together, the hollows between them appear to wrinkle up in submission to the pressure—in short, the entire aspect of the glacier suggests the powerful operations of the latter force. At the place whereitis exerted the veined structure makes its appearance; and being once formed, it moves downwards, and gives a character to other portions of the glacier which had no share in its formation.

BASE OF CASCADE A "STRUCTURE-MILL."

An illustration almost as good, and equally accessible, is furnished by the Glacier of the Rhone. I have examined the grand cascade of this glacier from both sides; and an ordinary mountaineer will find little difficulty in reaching a point from which the fall and the terminal portion of the glacier are both distinctly visible. Here also he will find the cliffy ridges separated fromeach other by transverse chasms, becoming more and more subdued at the bottom of the fall, and disappearing entirely lower down the glacier. As in the case of the Grindelwald Glacier the squeezing of the protuberances and of the spaces between them, is quite apparent, and where this squeezing commences the transverse structure makes its appearance. All the ice that forms the lower portion of this glacier has to pass through thestructure-millat the bottom of the fall, and the consequence is thatit is all laminated.

STRUCTURE OF RHONE GLACIER.

Fig. 41. Plan of part of ice-fall, and of glacier below it (Glacier of the Rhone).

Fig. 42. Section of part of ice-fall, and of glacier below it (Glacier of the Rhone).

TRANSVERSE STRUCTURE.

This case of structural development will be better appreciated on reference toFigs. 41and42, the former of whichis a plan, and the latter a section, of a part of the ice-fall and of the glacier below it;a b e fis the gorge of the fall,f bbeing the base. The transverse cliffy ice-ridges are shown crossing the cascade, being subdued at the base to protuberances which gradually disappear as they advance downwards. The structure sweeps over the glacier in the direction of the fine curved lines; and I have also endeavoured to show the direction of the radial crevasses, which, in the centre at least, are at right angles to the veins. To the manifestation of structure here considered I have, for the sake of convenient reference, applied the termtransverse structure.

A third exhibition of the structure is now to be noticed. We sometimes find it in themiddleof a glacier and runningparallelto its length. On the centre of the ice-fall of the Talèfre, for example, we have a structure of this kind which preserves itself parallel to the axis of the fall from top to bottom. But we discover its origin higher up. The structure here has been produced at the extremity of the Jardin, where the divided ice meets, and not only brings into partial parallelism the veins previously existing along the sides of the Jardin, but develops them still further by the mutual pressure of the portions of newly welded ice. Where two tributary glaciers unite, this is perhaps without exception the case. Underneath the moraine formed by the junction of the Talèfre and Léchaud the structure is finely developed, and the veins run in the direction of the moraine. The same is true of the ice under the moraine formed by the junction of the Léchaud and Géant. These afterwards form the great medial moraines of the Mer de Glace, and hence the structure of the trunk-stream underneath these moraines is parallel to the direction of the glacier. This is also true of the system of moraines formed by the glaciers of Monte Rosa. It is true in an especial manner of the lower glacier of the Aar,whose medial moraine perhaps attains grander proportions than any other in the Alps, and underneath which the structure is finely developed.

LONGITUDINAL STRUCTURE.

Fig. 43. Figure explanatory of Longitudinal Structure.

The manner in which I have illustrated the production of this structure will be understood fromFig. 43.b bare two wooden boxes, communicating by sluice-fronts with two branch canals, which unite to a common trunk atg. They are intended to represent respectively the trunk and tributaries of the Unteraar Glacier, the partgbeing the Abschwung, where the Lauteraar and Finsteraar glaciers unite to form the Unteraar. The mud is first permitted to flow beneath the two sluices until it has covered the bottom of the trough for some distance, when it is arrested. The end of a glass tube is then dipped into a mixture of rouge and water, and small circles are stamped upon the mud. The two branches are thickly covered with these circles. The sluices being again raised, the mud in the branches moves downwards, carrying with it the circles stamped upon it; and the manner in which these circles are distorted enables us to infer the strains and pressures to which the mud is subjected during its descent. The figure represents approximately what takes place. The side-circles, as might be expected, are squeezed to oblique ovals, but it is at the junction of the branches that the chief effect of pressure isproduced. Here, by the mutual thrust of the branches, the circles are not only changed to elongated ellipses, but even squeezed to straight lines. In the case of the glacier this is the region at which the structure receives its main development. To this manifestation of the veins I have applied the termlongitudinal structure.

The three main sources of the blue veins are, I think, here noted; but besides these there are many local causes which influence their production. I have seen them well formed where a glacier is opposed by the sudden bend of a valley, or by a local promontory which presents an obstacle sufficient to bring the requisite pressure into play. In the glaciers of the Tyrol and of the Oberland I have seen examples of this kind; but the three principal sources of the veins are, I think, those stated above.

EFFORTS TO SOLVE QUESTION.

It was long before I cleared my mind of doubt regarding the origin of the lamination. When on the Mer de Glace in 1857 I spared neither risk nor labour to instruct myself regarding it. I explored the Talèfre basin, its cascade, and the ice beneath it. Several days were spent amid the ice humps and cliffs at the lower portion of the fall. I suppose I traversed the Glacier du Géant twenty times, and passed eight or ten days amid the confusion of its great cascade. I visited those places where, it had been affirmed, the veins were produced. I endeavoured to satisfy myself of the mutability which had been ascribed to them; but a close examination reduced the value of each particular case so much that I quitted the glacier that year with nothing more than anopinionthat the structure and the stratification were two different things. I, however, drew up a statement of the facts observed, with the view of presenting it to the Royal Society; but I afterwards felt that in thus acting I should merely swell the literature of the subject without adding anything certain. I therefore withheld the paper, andresolved to devote another year to a search among the chief glaciers of the Oberland, of the Canton Valais, and of Savoy, for proofs which should relieve my mind of all doubt upon the subject.

EXPEDITION FOR THIS PURPOSE.

Accordingly in 1858 I visited the glaciers of Rosenlaui, Schwartzwald, Grindelwald, the Aar, the Rhone, and the Aletsch, to the examination of which latter I devoted more than a week. I afterwards went to Zermatt, and, taking up my quarters at the Riffelberg, devoted eleven days to the examination of the great system of glaciers of Monte Rosa. I explored the Görner Glacier up almost to the Cima de Jazzi; and believed that in it I could trace the structure from portions of the glacier where it vanished, through various stages of perfection, up to its full development. I believe this still; but yet it is nothing but a belief, which the utmost labour that I could bestow did not raise to a certainty. The Western glacier of Monte Rosa, the Schwartze Glacier, the Trifti Glacier, the glacier of the little Mont Cervin, and of St. Théodule, were all examined in connexion with the great trunk-stream of the Görner, to which they weld themselves; and though the more I pursued the subject the stronger my conviction became that pressure was the cause of the structure, a crucial case was still wanting.

In the phenomena of slaty cleavage, it is often, if not usually, found that the true cleavagecutsthe planes of stratification—sometimes at a very high angle. Had this not been proved by the observations of Sedgwick and others, geologists would not have been able to conclude that cleavage and bedding were two different things, and needed wholly different explanations. My aim, throughout the expedition of 1858, was to discover in the ice a parallel case to the above; to find a clear and undoubted instance where the veins and the stratification were simultaneously exhibited, cutting each other at an unmistakable angle.On the 6th of August, while engaged with Professor Ramsay upon the Great Aletsch Glacier, not far from its junction with the Middle Aletsch, I observed what appeared to me to be the lines of bedding running nearly horizontal along the wall of a great crevasse, while cutting them at a large angle was the true veined structure. I drew my friend's attention to the fact, and to him it appeared perfectly conclusive. It is from a sketch made by him at the place thatFig. 44has been taken.

CASE OF STRUCTURE ON THE ALETSCH.

Fig. 44. Structure and bedding on the Great Aletsch Glacier.

This was the only case of the kind which I observed upon the Aletsch Glacier; and as I afterwards spent day after day upon the Monte Rosa glaciers, vainly seeking a similar instance, the thought again haunted me that we might have been mistaken upon the Aletsch. In this state of mind I remained until the 18th of August, a day devoted to the examination of the Furgge Glacier, which lies at the base of the Mont Cervin.

STRUCTURE OF THE FURGGE GLACIER.

Crossing the valley of the Görner Glacier, and taking a plunge as I passed into the Schwarze See, I reached, in good time, the object of my day's excursion. Walking up the glacier, I at length found myself opposed by a frozen cascade composed of four high terraces of ice. The highest of these was chiefly composed of ice-cliffs andséracs, many of which had fallen, and now stood likerocking-stones upon the edge of the second terrace. The glacier at the base of the cascade was strewn with broken ice, and some blocks two hundred cubic feet in volume had been cast to a considerable distance down the glacier.

Upon the faces of the terraces the stratification of thenévéwas most beautifully shown, running in parallel and horizontal lines along the weathered surface. The snow-field above the cascade is a frozen plain, smooth almost as a sheltered lake. The successive snow-falls deposit themselves with great regularity, and at the summit of the cascade the sections of thenévéare for the first time exposed. Hence their peculiar beauty and definition.

ICE TERRACE EXAMINED.

Indeed the figure of a lake pouring itself over a rocky barrier which curves convexly upwards, thus causing the water to fall down it, not only longitudinally over the vertex of the curve, but laterally over its two arms, will convey a tolerably correct conception of the shape of the fall. Towards the centre the ice was powerfully squeezed laterally, the beds were bent, and their continuity often broken by faults. On inspecting the ice from a distance with my opera glass, I thought I saw structural groovings cutting the strata at almost a right angle. Had the question been an undisputed one, I should perhaps have felt so sure of this as not to incur the danger of pushing the inquiry further; but, under the circumstances, danger was a secondary point. Resigning, therefore, my glass to my guide, who was to watch the tottering blocks overhead, and give me warning should they move, I advanced to the base of the fall, removed with my hatchet the weathered surface of the ice, and found underneath it the true veined structure, cutting, at nearly a right angle, the planes of stratification. The superficial groovings were not uniformly distributed over the fall, but appeared most decided at those places where the ice appeared to havebeen most squeezed. I examined three or four of these places, and in each case found the true veins nearly vertical, while the bedding was horizontal. Having perfectly satisfied myself of these facts, I made a speedy retreat, for the ice-blocks seemed most threatening, and the sunny hour was that at which they fall most frequently.

I next tried the ascent of the glacier up a dislocated declivity to the right. The ice was much riven, but still practicable. My way for a time lay amid fissures which exposed magnificent sections, and every step I took added further demonstration to what I had observed below. The strata were perfectly distinct, the structure equally so, and one crossed the other at an angle of seventy or eighty degrees. Mr. Sorby has adduced a case of the crumpling of a bed of sandstone through which the cleavage passes: here on the glacier I had parallel cases; the beds were bent and crumpled, but the structure ran through the ice in sharp straight lines. This perhaps was the most pleasant day I ever spent upon the glaciers: my mind was relieved of a long brooding doubt, and the intellectual freedom thus obtained added a subjective grandeur to the noble scene before me. Climbing the cliffs near the base of the Matterhorn, I walked along the rocky spine which extends to the Hörnli, and afterwards descended by the valley of Zmutt to Zermatt.

A year after my return to England a remark contained in Professor Mousson's interesting little work 'Die Gletscher der Jetzzeit' caused me to refer to the atlas of M. Agassiz's 'Système Glaciaire,' from which I learned that this indefatigable observer had figured a case of stratification and structure cutting each other. If, however, I had seen this figure beforehand, it would not have changed my movements; for the case, as sketched, would not have convinced me. I have now no doubt that M. Agassiz haspreceded me in this observation, and hence my results are to be taken as mere confirmations of his.

LAMINATION AND STRATIFICATION.

Fig. 45represents a crumpled portion of the ice with the lines of lamination passing through the strata.Fig. 46represents a case where a fault had occurred, the veins at both sides of the line of dislocation being inclined towards each other.

Fig. 45. Structure and Stratification on the Furgge glacier.

Fig. 46. Structure and Stratification on the Furgge glacier.

[Figs. 45and46are from sketches made on the Furgge Glacier.—L. C. T.]

FOOTNOTES:[A]In reply to a question in connexion with this subject, General Sabine has favoured me with the following note:—"My dear Tyndall,"It was in the summer of 1841, at the Lower Grindelwald Glacier, that I first saw, and was greatly impressed and interested by examining and endeavouring to understand (in which I did not succeed), the veined structure of the ice. I do not remember when I mentioned it to Forbes, but it must be before 1843, because it is noticed in his book, p. 29. I had never observed it in the glaciers of Spitzbergen or Baffin's Bay, or in the icebergs of the shores and straits of Davis or Barrow. I feel the more confident of this, because, when I first saw the veined structure in Switzerland, my Arctic experience was more fresh in my recollection, and I recollected nothing like it."Veinsare indeed not uncommon in icebergs, but they quite resemble veins in rocks, and are formed by water filling fissures and freezing into blue ice, finely contrasted with the white granular substance of the berg."The ice of the Grindelwald Glacier (where I examined the veined structure) was broken up into very large masses, which by pressure had been upturned, so that a very poor judgment would be formed of the direction of the veins as they existed in the glacier before it had broken up."Sincerely yours,"Edward Sabine."Feb. 20, 1860."[B]In a letter to myself, published in the 17th volume of the 'Philosophical Magazine,' Professor Forbes writes as follows:—"In 1846, then, I abandoned no part of the theory of the veined structure, on which as you say so much labour had been expended, except the admission, always yielded with reluctance, and got rid of with satisfaction, that the congelation of water in the crevices of the glacier may extend in winter to a great depth."

[A]In reply to a question in connexion with this subject, General Sabine has favoured me with the following note:—"My dear Tyndall,"It was in the summer of 1841, at the Lower Grindelwald Glacier, that I first saw, and was greatly impressed and interested by examining and endeavouring to understand (in which I did not succeed), the veined structure of the ice. I do not remember when I mentioned it to Forbes, but it must be before 1843, because it is noticed in his book, p. 29. I had never observed it in the glaciers of Spitzbergen or Baffin's Bay, or in the icebergs of the shores and straits of Davis or Barrow. I feel the more confident of this, because, when I first saw the veined structure in Switzerland, my Arctic experience was more fresh in my recollection, and I recollected nothing like it."Veinsare indeed not uncommon in icebergs, but they quite resemble veins in rocks, and are formed by water filling fissures and freezing into blue ice, finely contrasted with the white granular substance of the berg."The ice of the Grindelwald Glacier (where I examined the veined structure) was broken up into very large masses, which by pressure had been upturned, so that a very poor judgment would be formed of the direction of the veins as they existed in the glacier before it had broken up."Sincerely yours,"Edward Sabine."Feb. 20, 1860."

[A]In reply to a question in connexion with this subject, General Sabine has favoured me with the following note:—

"My dear Tyndall,"It was in the summer of 1841, at the Lower Grindelwald Glacier, that I first saw, and was greatly impressed and interested by examining and endeavouring to understand (in which I did not succeed), the veined structure of the ice. I do not remember when I mentioned it to Forbes, but it must be before 1843, because it is noticed in his book, p. 29. I had never observed it in the glaciers of Spitzbergen or Baffin's Bay, or in the icebergs of the shores and straits of Davis or Barrow. I feel the more confident of this, because, when I first saw the veined structure in Switzerland, my Arctic experience was more fresh in my recollection, and I recollected nothing like it."Veinsare indeed not uncommon in icebergs, but they quite resemble veins in rocks, and are formed by water filling fissures and freezing into blue ice, finely contrasted with the white granular substance of the berg."The ice of the Grindelwald Glacier (where I examined the veined structure) was broken up into very large masses, which by pressure had been upturned, so that a very poor judgment would be formed of the direction of the veins as they existed in the glacier before it had broken up.

"My dear Tyndall,

"It was in the summer of 1841, at the Lower Grindelwald Glacier, that I first saw, and was greatly impressed and interested by examining and endeavouring to understand (in which I did not succeed), the veined structure of the ice. I do not remember when I mentioned it to Forbes, but it must be before 1843, because it is noticed in his book, p. 29. I had never observed it in the glaciers of Spitzbergen or Baffin's Bay, or in the icebergs of the shores and straits of Davis or Barrow. I feel the more confident of this, because, when I first saw the veined structure in Switzerland, my Arctic experience was more fresh in my recollection, and I recollected nothing like it.

"Veinsare indeed not uncommon in icebergs, but they quite resemble veins in rocks, and are formed by water filling fissures and freezing into blue ice, finely contrasted with the white granular substance of the berg.

"The ice of the Grindelwald Glacier (where I examined the veined structure) was broken up into very large masses, which by pressure had been upturned, so that a very poor judgment would be formed of the direction of the veins as they existed in the glacier before it had broken up.

"Sincerely yours,"Edward Sabine.

"Feb. 20, 1860."

"Feb. 20, 1860."

[B]In a letter to myself, published in the 17th volume of the 'Philosophical Magazine,' Professor Forbes writes as follows:—"In 1846, then, I abandoned no part of the theory of the veined structure, on which as you say so much labour had been expended, except the admission, always yielded with reluctance, and got rid of with satisfaction, that the congelation of water in the crevices of the glacier may extend in winter to a great depth."

[B]In a letter to myself, published in the 17th volume of the 'Philosophical Magazine,' Professor Forbes writes as follows:—"In 1846, then, I abandoned no part of the theory of the veined structure, on which as you say so much labour had been expended, except the admission, always yielded with reluctance, and got rid of with satisfaction, that the congelation of water in the crevices of the glacier may extend in winter to a great depth."

DIFFERENTIAL MOTION GREATEST AT EDGES.

I have now to examine briefly the explanation of the structure which refers it to differential motion—to a sliding of the particles of ice past each other, which leaves the traces of its existence in the blue veins. The fact is emphatically dwelt upon by those who hold this view, that the structure is best developed nearest to the sides of the glacier, where the differential motion is greatest. Why the differential motion is at its maximum near to the sides is easily understood. Leta b,c d,Fig. 47, represent the two sides of a glacier, moving in the direction of the arrow, and letm a b c nbe a straight line of stakes set out across the glacier to-day. Six months hence this line, by the motion of the ice downwards, will be bent to the formm a' b' c' n: this curve will not be circular, it will be flattened in the middle; the pointsaandc, at some distance on each side of the centreb, move in fact with nearly the same velocity as the centre itself. Not so with the sides:—a'andc'have moved considerably in advance ofmandn, and hence we say that the difference of motion, or the differential motion, of the particles of ice near to the side is a maximum.

Fig. 47. Diagram illustrating Differential Motion.

During all this time the pointsm a' b' c' nhave been moving straight down the glacier; and hence it will be understood that the sliding of the parts past each other,or, in other words, the differential motion,is parallel to the sides of the glacier. This, indeed, is the only differential motion that experiment has ever established; and consequently, when we find the best blue veins referred to the sides of the glacier because the differential motion is there greatest, we naturally infer that the motion meant is parallel to the sides.

STRUCTURE OBLIQUE TO SIDES.

But the fact is, that this motion would not at all account for the blue veins, for they are not parallel to the sides, butobliqueto them. This difficulty revealed itself after a time to those who first propounded the theory of differential motion, and caused them to modify their explanation of the structure. Differential motion is still assumed to be the cause of the veins, but now a motion is meant oblique to the sides, and it is supposed to be obtained in the following way:—Through the quicker motion of the pointc'the ice between it andnbecomes distended; that is to say, the linec' nis in a state of strain—there is adrag, it is said, oblique to the sides of the glacier; and it is therefore in this direction that the particles will be caused to slide past each other. Dr. Whewell, who advocates this view, thus expounds it. He supposes the case of an alpine valley filled with india-rubber which has been warmed until it has partially melted, or become viscous, and then asks, "What will now be the condition of the mass? The sides and bottom will still be held back by the friction; the middle and upper part will slide forwards, but not freely. This want of freedom in the motion (arising from the viscosity) will produce a drag towards the middle of the valley, where the motion is freest; hence the direction in which the filaments slide past each other will be obliquely directed towards the middle. The sliding will separate the mass according to such lines; and though new attachments will take place, the mass may be expected to retain the results of this separation in the traces of parallelfissures."[A]Nothing can be clearer than the image of the process thus placed before the mind's eye.

One fact of especial importance is to be borne in mind: the sliding of filaments which is thus supposed to take place oblique to the glacier has never been proved; it is wholly assumed. A moraine, it is admitted, will run parallel to the side of a glacier, or a block will move in the same direction from beginning to end, without being sensibly drawn towards the centre, but still it is supposed that the sliding of parts exists, though of a character so small as to render it insensible to measurement.

STRUCTURE CROSSES LINES OF SLIDING.

My chief difficulty as regards this theory may be expressed in a very few words. If the structure be produced by differential motion, why is the large andrealdifferential motion which experiments have established incompetent to produce it? And how can the veins run, as they are admitted to do,across the lines of maximum slidingfrom their origin throughout the glacier to its end?

That a drag towards the centre of the glacier exists is undeniable, but that in consequence of the drag there is a sliding of filaments in this direction, is quite another thing. I have in another place[B]endeavoured to show experimentally that no such sliding takes place, that the drag on any point towards the centre expresses only half the conditions of the problem; being exactly neutralized by the thrust towards the sides. It has been, moreover, shown by Mr. Hopkins that the lines of maximum strain and of maximum sliding cannot coincide; indeed, if all the particles be urged by the same force, no matter how strong the pull may be, there will be no tendency of one to slide past the other.

FOOTNOTES:[A]'Philosophical Magazine,' Ser. III., vol. xxvi.[B]'Proceedings of the Royal Institution,' vol. ii. p. 324.

[A]'Philosophical Magazine,' Ser. III., vol. xxvi.

[A]'Philosophical Magazine,' Ser. III., vol. xxvi.

[B]'Proceedings of the Royal Institution,' vol. ii. p. 324.

[B]'Proceedings of the Royal Institution,' vol. ii. p. 324.

THEORY STATED.

The assumption of oblique sliding, and the production thereby of the marginal structure, have, however, been fortified by considerations of an ingenious and very interesting kind. "How," I have asked, "can the oblique structure persist across the lines of greatest differential motion throughout the length of the glacier?" But here I am met by another question which at first sight might seem equally unanswerable—"How do ripple-marks on the surface of a flowing river, which are nothing else than lines of differential motion of a low order, cross the river from the sides obliquely, while the direction of greatest differential motion is parallel to the sides?" If I understand aright, this is the main argument of Professor Forbes in favour of his theory of the oblique marginal structure. It is first introduced in a note at page 378 of his 'Travels;' he alludes to it in a letter written the following year; in his paper in the 'Philosophical Transactions' he develops the theory. He there gives drawings of ripple-marks observed in smooth gutters after rain, and which he finds to be inclined to the course of the stream, exactly as the marginal structure is inclined to the side of the glacier. The explanation also embraces the case of an obstacle placed in the centre of a river. "A case," writes Professor Forbes, "parallel to the last mentioned, where a fixed obstacle cleaves a descending stream, and leaves its trace in a fan-shaped tail, is well known in several glaciers, as in that at Ferpêcle, and the Glacier de Lys on the south side of Monte Rosa; particularly the last, where the veined structure follows the law just mentioned." In his Twelfth Letter healso refers to the ripples "as exactly corresponding to the position of the icy bands." In his letter to Dr. Whewell, published in the 'Occasional Papers,' page 58, he writes as follows:—"The same is remarkably shown in the case of a stream of water, for instance a mill-race. Although the movement of the water, as shown by floating bodies, is exceedingly nearly (for small velocities sensibly) parallel to the sides, yet the variation of the speed from the side to the centre of the stream occasions aripple, or molecular discontinuity, which inclines forwards from the sides to the centre of the stream at an angle with the axis depending on the ratio of the central and lateral velocity. The veined structure of the ice corresponds to the ripple of the water, a molecular discontinuity whose measure is not comparable to the actual velocity of the ice; and therefore the general movement of the glacier, as indicated by the moraines, remains sensibly parallel to the sides."THEORY EXAMINED.This theory opens up to us a series of interesting and novel considerations which I think will repay the reader's attention. If the ripples in the water and the veins in the ice be due to the same mechanical cause, when we develop clearly the origin of the former we are led directly to the explanation of the latter. I shall now endeavour to reduce the ripples to their mechanical elements.

The Messrs. Weber have described in their 'Wellenlehre' an effect of wave-motion which it is very easy to obtain. When a boat moves through perfectly smooth water, and the rower raises his oar out of the water, drops trickle from its blade, and each drop where it falls produces a system of concentric rings. The circular waves as they widen become depressed, and, if the drops succeed each other with sufficient speed, the rings cross each other at innumerable points. The effect of this is to blot out more or less completely all thecircles, and to leave behind two straight divergent ripple-lines, which are tangents to all the external rings; being in fact formed by the intersections of the latter, as a caustic in optics is formed by the intersection of luminous rays.Fig. 48, which is virtually copied from M. Weber, will render this description at once intelligible. The boat is supposed to move in the direction of the arrow, and as it does so the rings which it leaves behind widen, and produce the divergence of the two straight resultant lines of ripple.

RIPPLES DEDUCED FROM RINGS.

Fig. 48. Diagram explanatory of the formation of Ripples.

The more quickly the drops succeed each other, the more frequent will be the intersections of the rings; but as the speed of succession augments we approach the case ofa continuous veinof liquid; and if we suppose the continuity to be perfectly established, the ripples will still be produced with a smooth space between them as before. This experiment may indeed be made with a well-wetted oar, which on its first emergence from the water sends into it a continuous liquid vein. The same effect is produced when we substitute for the stream of liquid a solid rod—a common walking-stick for example. A water-fowl swimming in calm water produces two divergent lines of ripples of a similar kind.

We have here supposed the water of the lake to be at rest, and the liquid vein or the solid rod to move throughit; but precisely the same effect is produced if we suppose the rod at rest and the liquid in motion. Let a post, for example, be fixed in the middle of a flowing river; diverging from that post right and left we shall have lines of ripples exactly as if the liquid were at rest and the post moved through it with the velocity of the river. If the same post be placed close to the bank, so thatoneof its edges only shall act upon the water, diverging from that edge we shall have asingleline of ripples which will cross the river obliquely towards its centre. It is manifest that any other obstacle will produce the same effect as our hypothetical post. In the words of Professor Forbes, "the slightest prominence of any kind in the wall of such a conduit, a bit of wood or a tuft of grass, is sufficient to produce a well-marked ripple-streak from the side towards the centre."

MEASURE OF DIVERGENCE OF RIPPLES.

The foregoing considerations show that the divergence of the two lines of ripples from the central post, and of the single line in the case of the lateral post, have their mechanical element, if I may use the term, in the experiment of the Messrs. Weber. In the case of a swimming duck the connexion between the diverging lines of ripples and the propagation of rings round a disturbed point is often very prettily shown. When the creature swims with vigour the little foot with which it strikes the water often comes sufficiently near to the surface to produce an elevation,—sometimes indeed emerging from the water altogether. Round the point thus disturbed rings are immediately propagated, and the widening of those rings isthe exact measure of the divergence of the ripple lines. The rings never cross the lines;—the lines never retreat from the rings.


Back to IndexNext