Chapter 7

Carbon0·75Oxygen1·93Now this is a tolerably near approximation to the truth. The true constituents, as determined by modern chemists, beingCarbon0·75Oxygen2·00The next paper of M. Lavoisier, which appeared in the Memoirs of the Academy, for 1782 (published in 1785), shows how well he appreciated the importance of the discovery of the composition of water. It is entitled, "General Considerations on the Solution of the Metals in Acids." He shows that when metals are dissolved in acids, they are converted into oxides, and that the acid does not combine with the metal, but only with its oxide. When nitric acid is the solvent the oxidizement takes place at the expense of the acid, which is resolved into nitrous gas and oxygen. The nitrous gas makes its escape, and may be collected; but the oxygen unites with the metal and renders it an oxide. He shows this with respect to the solution of mercury in nitric acid. He collected the nitrous gas given out during the solution of the metal inthe acid: then evaporated the solution to dryness, and urged the fire till the mercury was converted into red oxide. The fire being still further urged, the red oxide was reduced, and the oxygen gas given off was collected and measured. He showed that the nitrous gas and the oxygen gas thus obtained, added together, formed just the quantity of nitric acid which had disappeared during the process. A similar experiment was made by dissolving iron in nitric acid, and then urging the fire till the iron was freed from every foreign body, and obtained in the state of black oxide.It is well known that many metals held in solution by acids may be precipitated in the metallic state, by inserting into the solution a plate of some other metal. A portion of that new metal dissolves, and takes the place of the metal originally in solution. Suppose, for example, that we have a neutral solution of copper in sulphuric acid, if we put into the solution a plate of iron, the copper is thrown down in the metallic state, while a certain portion of the iron enters into the solution, combining with the acid instead of the copper. But the copper, while in solution, was in the state of an oxide, and it is precipitated in the metallic state. The iron was in the metallic state; but it enters into the solution in the state of an oxide. It is clear from this that the oxygen, during these precipitations, shifts its place, leaving the copper, and entering into combination with the iron. If, therefore, in such a case we determine the exact quantity of copper thrown down, and the exact quantity of iron dissolved at the same time, it is clear that we shall have the relative weight of each combined with the same weight of oxygen. If, for example, 4 of copper be thrown down by the solution of 3·5 of iron; then it is clear that 3·5 of iron requires just as much oxygen as 4of copper, to turn both into the oxide that exists in the solution, which is the black oxide of each.Bergman had made a set of experiments to determine the proportional quantities of phlogiston contained in the different metals, by the relative quantity of each necessary to precipitate a given weight of another from its acid solution. It was the opinion at that time, that metals were compounds of their respective calces and phlogiston. When a metal dissolved in an acid, it was known to be in the state of calx, and therefore had parted with its phlogiston: when another metal was put into this solution it became a calx, and the dissolved metal was precipitated in the metallic state. It had therefore united with the phlogiston of the precipitating metal. It is obvious, that by determining the quantities of the two metals precipitated and dissolved, the relative proportion of phlogiston in each could be determined. Lavoisier saw that these experiments of Bergman would serve equally to determine the relative quantity of oxygen in the different oxides. Accordingly, in a paper inserted in the Memoirs of the Academy, for 1782, he enters into an elaborate examination of Bergman's experiments, with a view to determine this point. But it is unnecessary to state the deductions which he drew, because Bergman's experiments were not sufficiently accurate for the object in view. Indeed, as the mutual precipitation of the metals is a galvanic phenomenon, and as the precipitated metal is seldom quite pure, but an alloy of the precipitating and precipitated metal; and as it is very difficult to dry the more oxidizable metals, as copper and tin, without their absorbing oxygen when they are in a state of very minute division; this mode of experimenting is not precise enough for the object which Lavoisier had in view. Accordingly the table of thecomposition of the metallic oxides which Lavoisier has drawn up is so very defective, that it is not worth while to transcribe it.The same remark applies to the table of the affinities of oxygen which Lavoisier drew up and inserted in the Memoirs of the Academy, for the same year. His data were too imperfect, and his knowledge too limited, to put it in his power to draw up any such table with any approach to accuracy. I shall have occasion to resume the subject in a subsequent chapter.In the same volume of the Memoirs of the Academy, this indefatigable man inserted a paper in order to determine the quantity of oxygen which combines with iron. His method of proceeding was, to burn a given weight of iron in oxygen gas. It is well known that iron wire, under such circumstances, burns with considerable splendour, and that the oxide, by the heat, is fused into a black brittle matter, having somewhat of the metallic lustre. He burnt 145·6 grains of iron in this way, and found that, after combustion, the weight became 192 grains, and 97 French cubic inches of oxygen gas had been absorbed. From this experiment it follows, that the oxide of iron formed by burning iron in oxygen gas is a compound ofIron3·5Oxygen1·11This forms a tolerable approximation to the truth. It is now known, that the quantity of oxygen in the oxide of iron formed by the combustion of iron in oxygen gas is not quite uniform in its composition; sometimes it is a compound ofIron3½Oxygen1⅓While at other times it consists very nearly ofIron3·5Oxygen1and probably it may exist in all the intermediateproportions between these two extremes. The last of these compounds constitutes what is now known by the name ofprotoxide, orblack oxide of iron. The first is the composition of the ore of iron so abundant, which is distinguished by the name ofmagnetic iron ore.Lavoisier was aware that iron combines with more oxygen than exists in the protoxide; indeed, his analysis of peroxide of iron forms a tolerable approximation to the truth; but there is no reason for believing that he was aware that iron is capable of forming only two oxides, and that all intermediate degrees of oxidation are impossible. This was first demonstrated by Proust.I think it unnecessary to enter into any details respecting two papers of Lavoisier, that made their appearance in the Memoirs of the Academy, for 1783, as they add very little to what he had already done. The first of these describes the experiments which he made to determine the quantity of oxygen which unites with sulphur and phosphorus when they are burnt: it contains no fact which he had not stated in his former papers, unless we are to consider his remark, that the heat given out during the burning of these bodies has no sensible weight, as new.The other paper is "On Phlogiston;" it is very elaborate, but contains nothing which had not been already advanced in his preceding memoirs. Chemists were so wedded to the phlogistic theory, their prejudices were so strong, and their understandings so fortified against every thing that was likely to change their opinions, that Lavoisier found it necessary to lay the same facts before them again and again, and to place them in every point of view. In this paper he gives a statement of his own theory of combustion, which he had previously done in several preceding papers. He examines the phlogistic theory of Stahl at great length, and refutes it.In the Memoirs of the Academy, for 1784, Lavoisier published a very elaborate set of experiments on the combustion of alcohol, oil, and different combustible bodies, which gave a beginning to the analysis of vegetable substances, and served as a foundation upon which this most difficult part of chemistry might be reared. He showed that during the combustion of alcohol the oxygen of the air united to the vapour of the alcohol, which underwent decomposition, and was converted into water and carbonic acid. From these experiments he deduced as a consequence, that the constituents of alcohol are carbon, hydrogen, and oxygen, and nothing else; and he endeavoured from his experiments to determine the relative proportions of these different constituents. From these experiments he concluded, that the alcohol which he used in his experiments was a compound ofCarbon2629·5 part.Hydrogen725·5Water5861It would serve no purpose to attempt to draw any consequences from these experiments; as Lavoisier does not mention the specific gravity of the alcohol, of course we cannot say how much of the water found was merely united with the alcohol, and how much entered into its composition. The proportion between the carbon and hydrogen, constitutes an approximation to the truth, though not a very near one.Olive oil he showed to be a compound of hydrogen and carbon, and bees' wax to be a compound of the same constituents, though in a different proportion.This subject was continued, and his views further extended, in a paper inserted in the Memoirs of the Academy, for 1786, entitled, "Reflections on the Decomposition of Water by Vegetable and Animal Substances." He begins by stating that when charcoal is exposed to a strong heat, it gives out a little carbonic acid gas and a little inflammable air, and after this nothing more can be driven off, however high the temperature be to which it is exposed; but if the charcoal be left for some time in contact with the atmosphere it will again give out a little carbonic acid gas and inflammable gas when heated, and this process may be repeated till the whole charcoal disappears. This is owing to the presence of a little moisture which the charcoal imbibes from the air. The water is decomposed when the charcoal is heated and converted into carbonic acid and inflammable gas. When vegetable substances are heated in a retort, the water which they contain undergoes a similar decomposition, the carbon which forms one of their constituents combines with the oxygen and produces carbonic acid, while the hydrogen, the other constituent of the water, flies off in the state of gas combined with a certain quantity of carbon. Hence the substances obtained when vegetable or animal substances are distilled did not exist ready formed in the body operated on; but proceeded from the double decompositions which took place by the mutual action of the constituents of the water, sugar, mucus, &c., which the vegetable body contains. The oil, the acid, &c., extracted by distilling vegetable bodies did not exist in them, but are formed during the mutual action of the constituents upon each other, promoted as their action is by the heat. These views were quite new and perfectly just, and threw a new light on the nature of vegetable substances and on the products obtained by distilling them. It showed the futility of all the pretended analyses of vegetable substances, which chemists had performed by simply subjecting them to distillation, and the error of drawing any conclusions respecting the constituents of vegetable substances from the results of their distillation, except indeed with respect to their elementary constituents. Thus when by distilling a vegetable substance we obtain water, oil, acetic acid, carbonic acid, and carburetted hydrogen, we must not conclude that these principles existed in the substance, but merely that it contained carbon, hydrogen, and oxygen, in such proportions as to yield all these principles by decompositions.As nitric acid acts upon metals in a very different way from sulphuric and muriatic acids, and as it is a much better solvent of metals in general than any other, it was an object of great importance towards completing the antiphlogistic theory to obtain an accurate knowledge of its constituents. Though Lavoisier did not succeed in this, yet he made at least a certain progress, which enabled him to explain the phenomena, at that time known, with considerable clearness, and to answer all the objections to the antiphlogistic theory from the action of nitric acid on metals. His first paper on the subject was published in the Memoirs of the Academy, for 1776. He put a quantity of nitric acid and mercury into a retort with a long beak, which he plunged into the water-trough. An effervescence took place and gas passed over in abundance, and was collected in a glass jar; the mercury being dissolved the retort was still further heated, till every thing liquid passed over into the receiver, and a dry yellow salt remained. The beak of the retort was now again plunged into the water-trough, and the salt heated till all the nitric acid which it contained was decomposed, and nothing remained in the retort but red oxide of mercury. During this last process much more gas was collected. All the gas obtained during the solution of the mercury and the decomposition of the salt was nitrousgas. The red oxide of mercury was now heated to redness, oxygen gas was emitted in abundance, and the mercury was reduced to the metallic state: its weight was found the very same as at first. It is clear, therefore, that the nitrous gas and the oxygen gas were derived, not from the mercury but from the nitric acid, and that the nitric acid had been decomposed into nitrous gas and oxygen: the nitrous gas had made its escape in the form of gas, and the oxygen had remained united to the metal.From these experiments it follows clearly, that nitric acid is a compound of nitrous gas and oxygen. The nature of nitrous gas itself Lavoisier did not succeed in ascertaining. It passed with him for a simple substance; but what he did ascertain enabled him to explain the action of nitric acid on metals. When nitric acid is poured upon a metal which it is capable of dissolving, copper for example, or mercury, the oxygen of the acid unites to the metal, and converts into an oxide, while the nitrous gas, the other constituent of the acid, makes its escape in the gaseous form. The oxide combines with and is dissolved by another portion of the acid which escapes decomposition.It was discovered by Dr. Priestley, that when nitrous gas and oxygen gas are mixed together in certain proportions, they instantly unite, and are converted into nitrous acid. If this mixture be made over water, the volume of the gases is instantly diminished, because the nitrous acid formed loses its elasticity, and is absorbed by the water. When nitrous gas is mixed with air containing oxygen gas, the diminution of volume after mixture is greater the more oxygen gas is present in the air. This induced Dr. Priestley to employ nitrous gas as a test of the purity of common air. He mixed together equal volumes of the nitrous gas and air to be examined, and he judged of the purity of the air by the degree of condensation: the greater the diminution of bulk, the greater did he consider the proportion of oxygen in the air under examination to be. This method of proceeding was immediately adopted by chemists and physicians; but there was a want of uniformity in the mode of proceeding, and a considerable diversity in the results. M. Lavoisier endeavoured to improve the process, in a paper inserted in the Memoirs of the Academy, for 1782; but his method did not answer the purpose intended: it was Mr. Cavendish that first pointed out an accurate mode of testing air by means of nitrous gas, and who showed that the proportions of oxygen and azotic gas in common air are invariable.Lavoisier, in the course of his investigations, had proved that carbonic acid is a compound of carbon and oxygen; sulphuric acid, of sulphur and oxygen; phosphoric acid, of phosphorus and oxygen; and nitric acid, of nitrous gas and oxygen. Neither the carbon, the sulphur, the phosphorus, nor the nitrous gas, possessed any acid properties when uncombined; but they acquired these properties when they were united to oxygen. He observed further, that all the acids known in his time which had been decomposed were found to contain oxygen, and when they were deprived of oxygen, they lost their acid properties. These facts led him to conclude, that oxygen is an essential constituent in all acids, and that it is the principle which bestows acidity or the true acidifying principle. This was the reason why he distinguished it by the name of oxygen.5These views were fully developed by Lavoisier, in a paper inserted in the Memoirs of the Academy, for 1778,entitled, "General Considerations on the Nature of Acids, and on the Principles of which they are composed." When this paper was published, Lavoisier's views were exceedingly plausible. They were gradually adopted by chemists in general, and for a number of years may be considered to have constituted a part of the generally-received doctrines. But the discovery of the nature of chlorine, and the subsequent facts brought to light respecting iodine, bromine, and cyanogen, have demonstrated that it is inaccurate; that many powerful acids exist which contain no oxygen, and that there is no one substance to which the name of acidifying principle can with justice be given. To this subject we shall again revert, when we come to treat of the more modern discoveries. , sour, and γινομαι, which he defined theproducer of acids, theacidifying principle.]Long as the account is which we have given of the labours of Lavoisier, the subject is not yet exhausted. Two other papers of his remain to be noticed, which throw considerable light on some important functions of the living body: we allude to his experiments onrespirationandperspiration.It was known, that if an animal was confined beyond a certain limited time in a given volume of atmospherical air, it died of suffocation, in consequence of the air becoming unfit for breathing; and that if another animal was put into this air, thus rendered noxious by breathing, its life was destroyed almost in an instant. Dr. Priestley had thrown some light upon this subject by showing that air, in which an animal had breathed for some time, possessed the property of rendering lime-water turbid, and therefore contained carbonic acid gas. He considered the process of breathing as exactly analogous to the calcination of metals, or the combustion of burning bodies. Both, in his opinion acted by giving out phlogiston; which, uniting withthe air of the atmosphere, converted it into phlogisticated air. Priestley found, that if plants were made to vegetate for some time in air that had been rendered unfit for supporting animal life by respiration, it lost the property of extinguishing a candle, and animals could breathe it again without injury. He concluded from this that animals, by breathing, phlogisticated air, but that plants, by vegetating, dephlogisticated air: the former communicated phlogiston to it, the latter took phlogiston from it.After Lavoisier had satisfied himself that air is a mixture of oxygen and azote, and that oxygen alone is concerned in the processes of calcination and combustion, being absorbed and combined with the substances undergoing calcination and combustion, it was impossible for him to avoid drawing similar conclusions with respect to the breathing of animals. Accordingly, he made experiments on the subject, and the result was published in the Memoirs of the Academy, for 1777. From these experiments he drew the following conclusions:1. The only portion of atmospherical air which is useful in breathing is the oxygen. The azote is drawn into the lungs along with the oxygen, but it is thrown out again unaltered.2. The oxygen gas, on the contrary, is gradually, by breathing, converted into carbonic acid; and air becomes unfit for respiration when a certain portion of its oxygen is converted into carbonic acid gas.3. Respiration is therefore exactly analogous to calcination. When air is rendered unfit for supporting life by respiration, if the carbonic acid gas formed be withdrawn by means of lime-water, or caustic alkali, the azote remaining is precisely the same, in its nature, as what remains after air is exhausted of its oxygen by being employed for calcining metals.In this first paper Lavoisier went no further than establishing these general principles; but he afterwards made experiments to determine the exact amount of the changes which were produced in air by breathing, and endeavoured to establish an accurate theory of respiration. To this subject we shall have occasion to revert again, when we give an account of the attempts made to determine the phenomena of respiration by more modern experimenters.Lavoisier's experiments onperspirationwere made during the frenzy of the French revolution, when Robespierre had usurped the supreme power, and when it was the object of those at the head of affairs to destroy all the marks of civilization and science which remained in the country. His experiments were scarcely completed when he was thrown into prison, and though he requested a prolongation of his life for a short time, till he could have the means of drawing up a statement of their results, the request was barbarously refused. He has therefore left no account of them whatever behind him. But Seguin, who was associated with him in making these experiments, was fortunately overlooked, and escaped the dreadful times of the reign of terror: he afterwards drew up an account of the results, which has prevented them from being wholly lost to chemists and physiologists.Seguin was usually the person experimented on. A varnished silk bag, perfectly air-tight, was procured, within which he was enclosed, except a slit over against the mouth, which was left open for breathing; and the edges of the bag were accurately cemented round the mouth, by means of a mixture of turpentine and pitch. Thus every thing emitted by the body was retained in the bag, except what made its escape from the lungs by respiration. By weighing himself in a delicate balance at the commencement of the experiment, and again after he had continued for some time in the bag, the quantity of matter carried off by respiration was determined. By weighing himself without this varnished covering, and repeating the operation after the same interval of time had elapsed, as in the former experiment, he determined the loss of weight occasioned byperspirationandrespirationtogether. The loss of weight indicated by the first experiment being subtracted from that given by the second, the quantity of matter lost byperspirationthrough the pores of the skin was determined. The following facts were ascertained by these experiments:1. The maximum of matter perspired in a minute amounted to 26·25 grains troy; the minimum to nine grains; which gives 17·63 grains, at a medium, in the minute, or 52·89 ounces in twenty-four hours.2. The amount of perspiration is increased by drink, but not by solid food.3. Perspiration is at its minimum immediately after a repast; it reaches its maximum during digestion.Such is an epitome of the chemical labours of M. Lavoisier. When we consider that this prodigious number of experiments and memoirs were all performed and drawn up within the short period of twenty years, we shall be able to form some idea of the almost incredible activity of this extraordinary man: the steadiness with which he kept his own peculiar opinions in view, and the good temper which he knew how to maintain in all his publications, though his opinions were not only not supported, but actually opposed by the whole body of chemists in existence, does him infinite credit, and was undoubtedly the wisest line of conduct which he could possibly have adopted. The difficulties connected with the evolution and absorption of hydrogen, constituted the stronghold of the phlogistians. But Mr. Cavendish's discovery, that water is a compound of oxygen and hydrogen, was a death-blow to the doctrine of Stahl. Soon after this discovery was fully established, or during the year 1785, M. Berthollet, a member of the academy, and fast rising to the eminence which he afterwards acquired, declared himself a convert to the Lavoisierian theory. His example was immediately followed by M. Fourcroy, also a member of the academy, who had succeeded Macquer as professor of chemistry in the Jardin du Roi.M. Fourcroy, who was perfectly aware of the strong feeling of patriotism which, at that time, actuated almost every man of science in France, hit upon a most infallible way of giving currency to the new opinions. To the theory of Lavoisier he gave the name ofLa Chimie Française(French Chemistry). This name was not much relished by Lavoisier, as, in his opinion, it deprived him of the credit which was his due; but it certainly contributed, more than any thing else, to give the new opinions currency, at least, in France; they became at once a national concern, and those who still adhered to the old opinions, were hooted and stigmatized as enemies to the glory of their country. One of the most eminent of those who still adhered to the phlogistic theory was M. Guyton de Morveau, a nobleman of Burgundy, who had been educated as a lawyer, and who filled a conspicuous situation in the Parliament of Dijon: he had cultivated chemistry with great zeal, and was at that time the editor of the chemical part of the Encyclopédie Méthodique. In the first half-volume of the chemical part of this dictionary, which had just appeared, Morveau had supported the doctrine of phlogiston, and opposed the opinions of Lavoisier with much zeal and considerable skill:on this account, it became an object of considerable consequence to satisfy Morveau that his opinions were inaccurate, and to make him a convert to the antiphlogistic theory; for the whole matter was managed as if it had been a political intrigue, rather than a philosophical inquiry.Morveau was accordingly invited to Paris, and Lavoisier succeeded without difficulty in bringing him over to his own opinions. We are ignorant of the means which he took; no doubt friendly discussion and the repetition of the requisite experiments, would be sufficient to satisfy a man so well acquainted with the subject, and whose mode of thinking was so liberal as Morveau. Into the middle of the second half-volume of the chemical part of the Encyclopédie Méthodique he introduced a long advertisement, announcing this change in his opinions, and assigning his reasons for it.The chemical nomenclature at that time in use had originated with the medical chemists, and contained a multiplicity of unwieldy and unmeaning, and even absurd terms. It had answered the purposes of chemists tolerably well while the science was in its infancy; but the number of new substances brought into view had of late years become so great, that the old names could not be applied to them without the utmost straining: and the chemical terms in use were so little systematic that it required a considerable stretch of memory to retain them. These evils were generally acknowledged and lamented, and various attempts had been made to correct them. Bergman, for instance, had contrived a new nomenclature, confined chiefly to the salts and adapted to the Latin language. Dr. Black had done the same thing: his nomenclature possessed both elegance and neatness, and was, in several respects, superior to the terms ultimatelyadopted; but with his usual indolence and disregard of reputation, he satisfied himself merely with drawing it up in the form of a table and exhibiting it to his class. Morveau contrived a new nomenclature of the salts, and published it in 1783; and it appears to have been seen and approved of by Bergman.The old chemical phraseology as far as it had any meaning was entirely conformable to the phlogistic theory. This was so much the case that it was with difficulty that Lavoisier was able to render his opinions intelligible by means of it. Indeed it would have been out of his power to have conveyed his meaning to his readers, had he not invented and employed a certain number of new terms. Lavoisier, aware of the defects of the chemical nomenclature, and sensible of the advantage which his own doctrine would acquire when dressed up in a language exactly suited to his views, was easily prevailed upon by Morveau to join with him in forming a new nomenclature to be henceforth employed exclusively by the antiphlogistians, as they called themselves. For this purpose they associated with themselves Berthollet, and Fourcroy. We do not know what part each took in this important undertaking; but, if we are to judge from appearances, the new nomenclature was almost exclusively the work of Lavoisier and Morveau. Lavoisier undoubtedly contrived the general phrases, and the names applied to the simple substances, so far as they were new, because he had employed the greater number of them in his writings before the new nomenclature was concocted. That the mode of naming the salts originated with Morveau is obvious; for it differs but little from the nomenclature of the salts published by him four years before.The new nomenclature was published by Lavoisier and his associates in 1787, and it was ever after employed by them in all their writings. Aware of the importance of having a periodical work in which they could register and make known their opinions, they established theAnnales de Chimie, as a sort of counterpoise to theJournal de Physique, the editor of which, M. Delametherie, continued a zealous votary of phlogiston to the end of his life. This new nomenclature very soon made its way into every part of Europe, and became the common language of chemists, in spite of the prejudices entertained against it, and the opposition which it every where met with. In the year 1796, or nine years after the appearance of the new nomenclature, when I attended the chemistry-class in the College of Edinburgh, it was not only in common use among the students, but was employed by Dr. Black, the professor of chemistry, himself; and I have no doubt that he had introduced it into his lectures several years before. This extraordinary rapidity with which the new chemical language came into use, was doubtless owing to two circumstances. First, the very defective, vague, and barbarous state of the old chemical nomenclature: for although, in consequence of the prodigious progress which the science of chemistry has made since the time of Lavoisier, his nomenclature is now nearly as inadequate to express our ideas as that of Stahl was to express his; yet, at the time of its appearance, its superiority over the old nomenclature was so great, that it was immediately felt and acknowledged by all those who were acquiring the science, who are the most likely to be free from prejudices, and who, in the course of a few years, must constitute the great body of those who are interested in the science. 2. The second circumstance, to which the rapid triumph of the new nomenclature was owing, is the superiority ofLavoisier's theory over that of Stahl. The subsequent progress of the science has betrayed many weak points in Lavoisier's opinions; yet its superiority over that of Stahl was so obvious, and the mode of interrogating nature introduced by him was so good, and so well calculated to advance the science, that no unprejudiced person, who was at sufficient pains to examine both, could hesitate about preferring that of Lavoisier. It was therefore generally embraced by all the young chemists in every country; and they became, at the same time, partial to the new nomenclature, by which only that theory could be explained in an intelligible manner.When the new nomenclature was published, there were only three nations in Europe who could be considered as holding a distinguished place as cultivators of chemistry: France, Germany, and Great Britain. For Sweden had just lost her two great chemists, Bergman and Scheele, and had been obliged, in consequence, to descend from the high chemical rank which she had formerly occupied. In France the fashion, and of course almost the whole nation, were on the side of the new chemistry. Macquer, who had been a stanch phlogistian to the last, was just dead. Monnet was closing his laborious career. Baumé continued to adhere to the old opinions; but he was old, and his chemical skill, which had never beenaccurate, was totally eclipsed by the more elaborate researches of Lavoisier and his friends. Delametherie was a keen phlogistian, a man of some abilities, of remarkable honesty and integrity, and editor of the Journal de Physique, at that time a popular and widely-circulating scientific journal. But his habits, disposition, and conduct, were by no means suited to the taste of his countrymen, or conformable to the practice of his contemporaries. The consequencewas, that he was shut out of all the scientific coteries of Paris; and that his opinions, however strongly, or rather violently expressed, failed to produce the intended effect. Indeed, as his views were generally inaccurate, and expressed without any regard to the rules of good manners, they in all probability rather served to promote than to injure the cause of his opponents. Lavoisier and his friends appear to have considered the subject in this light: they never answered any of his attacks, or indeed took any notice of them. France, then, from the date of the publication of the new nomenclature, might be considered as enlisted on the side of the antiphlogistic theory.The case was very different in Germany. The national prejudices of the Germans were naturally enlisted on the side of Stahl, who was their countryman, and whose reputation would be materially injured by the refutation of his theory. The cause of phlogiston, accordingly, was taken up by several German chemists, and supported with a good deal of vigour; and a controversy was carried on for some years in Germany between the old chemists who adhered to the doctrine of Stahl, and the young chemists who had embraced the theory of Lavoisier. Gren, who was at that time the editor of a chemical journal, deservedly held in high estimation, and whose reputation as a chemist stood rather high in Germany, finding it impossible to defend the Stahlian theory as it had been originally laid down, introduced a new modification of phlogiston, and attempted to maintain it against the antiphlogistians. The death of Gren and of Wiegleb, who were the great champions of phlogiston, left the field open to the antiphlogistians, who soon took possession of all the universities and scientific journals in Germany. The most eminent chemist in Germany, or perhaps in Europe at that time, was Martin HenryKlaproth, professor of chemistry at Berlin, to whom analytical chemistry lies under the greatest obligations. In the year 1792 he proposed to the Academy of Sciences of Berlin, of which he was a member, to repeat all the requisite experiments before them, that the members of the academy might be able to determine for themselves which of the two theories deserved the preference. This proposal was acceded to. All the fundamental experiments were repeated by Klaproth with the most scrupulous attention to accuracy: the result was a full conviction, on the part of Klaproth and the academy, that the Lavoisierian theory was the true one. Thus the Berlin Academy became antiphlogistians in 1792: and as Berlin has always been the focus of chemistry in Germany, the determination of such a learned body must have had a powerful effect in accelerating the propagation of the new theory through that vast country.In Great Britain the investigation of gaseous bodies, to which the new doctrines were owing, had originated. Dr. Black had begun the inquiry—Mr. Cavendish had prosecuted it with unparalleled accuracy—and Dr. Priestley had made known a great number of new gaseous bodies, which had hitherto escaped the attention of chemists. As the British chemists had contributed more than those of any other nation to the production of the new facts on which Lavoisier's theory was founded, it was natural to expect that they would have embraced that theory more readily than the chemists of any other nation: but the matter of fact was somewhat different. Dr. Black, indeed, with his characteristic candour, speedily embraced the opinions, and even adopted the new nomenclature: but Mr. Cavendish new modelled the phlogistic theory, and published a defence of phlogiston, which it was impossible at thattime to refute. The French chemists had the good sense not to attempt to overturn it. Mr. Cavendish after this laid aside the cultivation of chemistry altogether, and never acknowledged himself a convert to the new doctrines.Dr. Priestley continued a zealous advocate for phlogiston till the very last, and published what he called a refutation of the antiphlogistic theory about the beginning of the present century: but Dr. Priestley, notwithstanding his merit as a discoverer and a man of genius, was never, strictly speaking, entitled to the name of chemist; as he was never able to make a chemical analysis. In his famous experiments, for example, on the composition of water, he was obliged to procure the assistance of Mr. Keir to determine the nature of the blue-coloured liquid which he had obtained, and which Mr. Keir showed to be nitrate of copper. Besides, Dr. Priestley, though perfectly honest and candid, was so hasty in his decisions, and so apt to form his opinions without duly considering the subject, that his chemical theories are almost all erroneous and sometimes quite absurd.Mr. Kirwan, who had acquired a high reputation, partly by hismineralogy, and partly by his experiments on the composition of the salts, undertook the task of refuting the antiphlogistic theory, and with that view published a work to which he gave the name of "An Essay on Phlogiston and the Composition of Acids." In that book he maintained an opinion which seems to have been pretty generally adopted by the most eminent chemists of the time; namely, that phlogiston is the same thing with what is at present calledhydrogen, and which, when Kirwan wrote, was called lightinflammable air. Of course Mr. Kirwan undertook to prove that every combustible substance and everymetal contains hydrogen as a constituent, and that hydrogen escapes in every case of combustion and calcination. On the other hand, when calces are reduced to the metallic state hydrogen is absorbed. The book was divided into thirteen sections. In the first the specific gravity of the gases was stated according to the best data then existing. The second section treats of the composition of acids, and the composition and decomposition of water. The third section treats of sulphuric acid; the fourth, of nitric acid; the fifth, of muriatic acid; the sixth, of aqua regia; the seventh, of phosphoric acid; the eighth, of oxalic acid; the ninth, of the calcination and reduction of metals and the formation of fixed air; the tenth, of the dissolution of metals; the eleventh, of the precipitation of metals by each other; the twelfth, of the properties of iron and steel; while the thirteenth sums up the whole argument by way of conclusion.In this work Mr. Kirwan admitted the truth of M. Lavoisier's theory, that during combustion and calcination, oxygen united with the burning and calcining body. He admitted also that water is a compound of oxygen and hydrogen. Now these admissions, which, however, it was scarcely possible for a man of candour to refuse, rendered the whole of his arguments in favour of the identity of hydrogen and phlogiston, and of the existence of hydrogen in all combustible bodies, exceedingly inconclusive. Kirwan's book was laid hold of by the French chemists, as affording them an excellent opportunity of showing the superiority of the new opinions over the old. Kirwan's view of the subject was that which had been taken by Bergman and Scheele, and indeed by every chemist of eminence who still adhered to the phlogistic system. A satisfactory refutation of it, therefore, would be a death-blow to phlogiston and would place the antiphlogistic theory upon abasis so secure that it would be henceforth impossible to shake it.Kirwan's work on phlogiston was accordingly translated into French, and published in Paris. At the end of each section was placed an examination and refutation of the argument contained in it by some one of the French chemists, who had now associated themselves in order to support the antiphlogistic theory. The introduction, together with the second, third, and eleventh sections were examined and refuted by M. Lavoisier; the fourth, the fifth, and sixth sections fell to the share of M. Berthollet; the seventh and thirteenth sections were undertaken by M. de Morveau; the eighth, ninth, and tenth, by M. De Fourcroy; while the twelfth section, on iron and steel was animadverted on by M. Monge. These refutations were conducted with so much urbanity of manner, and were at the same time so complete, that they produced all the effects expected from them. Mr. Kirwan, with a degree of candour and liberality of which, unfortunately, very few examples can be produced, renounced his old opinions, abandoned phlogiston, and adopted the antiphlogistic doctrines of his opponents. But his advanced age, and a different mode of experimenting from what he had been accustomed to, induced him to withdraw himself entirely from experimental science and to devote the evening of his life to metaphysical and logical and moral investigations.Thus, soon after the year 1790, a kind of interregnum took place in British chemistry. Almost all the old British chemists had relinquished the science, or been driven out of the field by the superior prowess of their antagonists. Dr. Austin and Dr. Pearson will, perhaps, be pointed out as exceptions. They undoubtedly contributed somewhat to the progress of the science. But they were arranged onthe side of the antiphlogistians. Dr. Crawford, who had done so much for the theory of heat, was about this time ruined in his circumstances by the bankruptcy of a house to which he had intrusted his property. This circumstance preyed upon a mind which had a natural tendency to morbid sensibility, and induced this amiable and excellent man to put an end to his existence. Dr. Higgins had acquired some celebrity as an experimenter and teacher; but his disputes with Dr. Priestley, and his laying claim to discoveries which certainly did not belong to him, had injured his reputation, and led him to desert the field of science. Dr. Black was an invalid, Mr. Cavendish had renounced the cultivation of chemistry, and Dr. Priestley had been obliged to escape from the iron hand of theological and political bigotry, by leaving the country. He did little as an experimenter after he went to America; and, perhaps, had he remained in England, his reputation would rather have diminished than increased. He was an admirable pioneer, and as such, contributed more than any one to the revolution which chemistry underwent; though he was himself utterly unable to rear a permanent structure capable, like the Newtonian theory, of withstanding all manner of attacks, and becoming only the firmer and stronger the more it is examined. Mr. Keir, of Birmingham, was a man of great eloquence, and possessed of all the chemical knowledge which characterized the votaries of phlogiston. In the year 1789 he attempted to stem the current of the new opinions by publishing a dictionary of chemistry, in which all the controversial points were to be fully discussed, and the antiphlogistic theory examined and refuted. Of this dictionary only one part appeared, constituting a very thin volume of two hundred and eight quarto pages, and treating almost entirely ofacids.Finding that the sale of this work did not answer his expectations, and probably feeling, as he proceeded, that the task of refuting the antiphlogistic opinions was much more difficult, and much more hopeless than he expected, he renounced the undertaking, and abandoned altogether the pursuit of chemistry.It will be proper in this place to introduce some account of the most eminent of those French chemists who embraced the theory of Lavoisier, and assisted him in establishing his opinions.Claude-Louis Berthollet was born at Talloire, near Annecy, in Savoy, on the 9th of December, 1748. He finished his school education at Chambéry, and afterwards studied at the College of Turin, a celebrated establishment, where many men of great scientific celebrity have been educated. Here he attached himself to medicine, and after obtaining a degree he repaired to Paris, which was destined to be the future theatre of his speculations and pursuits.In Paris he had not a single acquaintance, nor did he bring with him a single introductory letter; but understanding that M. Tronchin, at that time a distinguished medical practitioner in Paris, was a native of Geneva, he thought he might consider him as in some measure a countryman. On this slender ground he waited on M. Tronchin, and what is rather surprising, and reflects great credit on both, this acquaintance, begun in so uncommon a way, soon ripened into friendship. Tronchin interested himself for his youngprotégée, and soon got him into the situation of physician in ordinary to the Duke of Orleans, father of him who cut so conspicuous a figure in the French revolution, under the name of M. Egalité. In this situation he devoted himself to the study of chemistry, and soon made himself known by his publications on the subject.In 1781 he was elected a member of the Academy of Sciences of Paris: one of his competitors was M. Fourcroy. No doubt Berthollet owed his election to the influence of the Duke of Orleans. In the year 1784 he was again a competitor with M. de Fourcroy for the chemical chair at the Jardin du Roi, left vacant by the death of Macquer. The chair was in the gift of M. Buffon, whose vanity is said to have been piqued because the Duke of Orleans, who supported Berthollet's interest, did not pay him sufficient court. This induced him to give the chair to Fourcroy; and the choice was a fortunate one, as his uncommon vivacity and rapid elocution particularly fitted him for addressing a Parisian audience. The chemistry-class at the Jardin du Roi immediately became celebrated, and attracted immense crowds of admiring auditors.But the influence of the Duke of Orleans was sufficient to procure for Berthollet another situation which Macquer had held. This was government commissary and superintendent of the dyeing processes. It was this situation which naturally turned his attention to the phenomena of dyeing, and occasioned afterwards his book on dyeing; which at the time of its publication was excellent, and exhibited a much better theory of dyeing, and a better account of the practical part of the art than any work which had previously appeared. The arts of dyeing and calico-printing have been very much improved since the time that Berthollet's book was written; yet if we except Bancroft's work on the permanent colours, nothing very important has been published on the subject since that period. We are at present almost as much in want of a good work on dyeing as we were when Berthollet's book appeared.In the year 1785 Berthollet, at a meeting of the Academy of Sciences, informed that learned body that he had become a convert to the antiphlogistic doctrines of Lavoisier. There was one point, however, upon which he entertained a different opinion from Lavoisier, and this difference of opinion continued to the last. Berthollet did not consider oxygen as the acidifying principle. On the contrary, he was of opinion that acids existed which contained no oxygen whatever. As an example, he mentioned sulphuretted hydrogen, which possessed the properties of an acid, reddening vegetable blues, and combining with and neutralizing bases, and yet it was a compound of sulphur and hydrogen, and contained no oxygen whatever. It is now admitted that Berthollet was accurate in his opinion, and that oxygen is not of itself an acidifying principle.Berthollet continued in the uninterrupted prosecution of his studies, and had raised himself a very high reputation when the French revolution burst upon the world in all its magnificence. It is not our business here to enter into any historical details, but merely to remind the reader that all the great powers of Europe combined to attack France, assisted by a formidable army of French emigrants assembled at Coblentz. The Austrian and Prussian armies hemmed her in by land, while the British fleets surrounded her by sea, and thus shut her out from all communication with other nations. Thus France was thrown at once upon her own resources. She had been in the habit of importing her saltpetre, and her iron, and many other necessary implements of war: these supplies were suddenly withdrawn; and it was expected that France, thus deprived of all her resources, would be obliged to submit to any terms imposed upon her byher adversaries. At this time she summoned her men of science to her assistance, and the call was speedily answered. Berthollet and Monge were particularly active, and saved the French nation from destruction by their activity, intelligence, and zeal. Berthollet traversed France from one extremity to the other; pointed out the mode of extracting saltpetre from the soil, and of purifying it. Saltpetre-works were instantly established in every part of France, and gunpowder made of it in prodigious quantity, and with incredible activity. Berthollet even attempted to manufacture a new species of gunpowder still more powerful than the old, by substituting chlorate of potash for saltpetre: but it was found too formidable a substance to be made with safety.The demand for cannon, muskets, sabres, &c., was equally urgent and equally difficult to be supplied. A committee of men of science, of which Berthollet and Monge were the leading members, was established, and by them the mode of smelting iron, and of converting it into steel, was instantly communicated, and numerous manufactories of these indispensable articles rose like magic in every part of France.This was the most important period of the life of Berthollet. It was in all probability his zeal, activity, sagacity, and honesty, which saved France from being overrun by foreign troops. But perhaps the moral conduct of Berthollet was not less conspicuous than his other qualities. During the reign of terror, a short time before the 9th Thermidor, when it was the system to raise up pretended plots, to give pretexts for putting to death those that were obnoxious to Robespierre and his friends, a hasty notice was given at a sitting of the Committee of Public Safety, that a conspiracy had just been discovered to destroy the soldiers, by poisoning the brandy which was just going to be served out to them previous to an engagement. It was said that the sick in the hospitals who had tasted this brandy, all perished in consequence of it. Immediate orders were issued to arrest those previously marked for execution. A quantity of the brandy was sent to Berthollet to be examined. He was informed, at the same time, that Robespierre wanted a conspiracy to be established, and all knew that opposition to his will was certain destruction. Having finished his analysis, Berthollet drew up his results in a Report, which he accompanied with a written explanation of his views; and he there stated, in the plainest language, that nothing poisonous was mixed with the brandy, but that it had been diluted with water holding small particles of slate in suspension, an ingredient which filtration would remove. This report deranged the plans of the Committee of Public Safety. They sent for the author, to convince him of the inaccuracy of his analysis, and to persuade him to alter its results. Finding that he remained unshaken in his opinion, Robespierre exclaimed, "What, Sir! darest thou affirm that the muddy brandy is free from poison?" Berthollet immediately filtered a glass of it in his presence, and drank it off. "Thou art daring, Sir, to drink that liquor," exclaimed the ferocious president of the committee. "I dared much more," replied Berthollet, "when I signed my name to that Report." There can be no doubt that he would have paid the penalty of this undaunted honesty with his life, but that fortunately the Committee of Public Safety could not at that time dispense with his services.In the year 1792 Berthollet was named one of the commissioners of the Mint, into the processesof which he introduced considerable improvements. In 1794 he was appointed a member of the Commission of Agriculture and the Arts: and in the course of the same year he was chosen professor of chemistry at the Polytechnic School and also in the Normal School. But his turn of mind did not fit him for a public teacher. He expected too much information to be possessed by his hearers, and did not, therefore, dwell sufficiently upon the elementary details. His pupils were not able to follow his metaphysical disquisitions on subjects totally new to them; hence, instead of inspiring them with a love for chemistry, he filled them with langour and disgust.In 1795, at the organization of the Institute, which was intended to include all men of talent or celebrity in France, we find Berthollet taking a most active lead; and the records of the Institute afford abundant evidence of the perseverance and assiduity with which he laboured for its interests. Of the committees to which all original memoirs are in the first place referred, we find Berthollet, oftener than any other person, a member, and his signature to the report of each work stands generally first.In the year 1796, after the subjugation of Italy by Bonaparte, Berthollet and Monge were selected by the Directory to proceed to that country, in order to select those works of science and art with which the Louvre was to be filled and adorned. While engaged in the prosecution of that duty, they became acquainted with the victorious general. He easily saw the importance of their friendship, and therefore cultivated it with care; and was happy afterwards to possess them, along with nearly a hundred other philosophers, as his companions in his celebrated expedition to Egypt, expecting no doubt an eclat from such a halo of surroundingscience, as might favour the development of his schemes of future greatness. On this expedition, which promised so favourably for the French nation, and which was intended to inflict a mortal stab upon the commercial greatness of Great Britain, Bonaparte set out in the year 1798, accompanied by a crowd of the most eminent men of science that France could boast of. That they might co-operate more effectually in the cause of knowledge, these gentlemen formed themselves into a society, named "The Institute of Egypt," which was constituted on the same plan as the National Institute of France. Their first meeting was on the 6th Fructidor (24th of August), 1798; and after that they continued to assemble, at stated intervals. At these meetings papers were read, by the respective members, on the climate, the inhabitants, and the natural and artificial productions of the country to which they had gone. These memoirs were published in 1800, in Paris, in a single volume entitled, "Memoirs of the Institute of Egypt."The history of the Institute of Egypt, as related by Cuvier, is not a little singular, and deserves to be stated. Bonaparte, during his occasional intercourse with Berthollet in Italy, was delighted with the simplicity of his manners, joined to a force and depth of thinking which he soon perceived to characterize our chemist. When he returned to Paris, where he enjoyed some months of comparative leisure, he resolved to employ his spare time in studying chemistry under Berthollet. It was at this period that his illustrious pupil imparted to our philosopher his intended expedition to Egypt, of which no whisper was to be spread abroad till the blow was ready to fall; and he begged of him not merely to accompany the army himself, but to choose such men of talent and experience as he conceived fittedto find there an employment worthy of the country which they visited, and of that which sent them forth. To invite men to a hazardous expedition, the nature and destination of which he was not permitted to disclose, was rather a delicate task; yet Berthollet undertook it. He could simply inform them that he would himself accompany them; yet such was the universal esteem in which he was held, such was the confidence universally placed in his honesty and integrity, that all the men of science agreed at once, and without hesitation, to embark on an unknown expedition, the dangers of which he was to share along with them. Had it not been for the link which Berthollet supplied between the commander-in-chief and the men of science, it would have been impossible to have united, as was done on this occasion, the advancement of knowledge with the progress of the French arms.During the whole of this expedition, Berthollet and Monge distinguished themselves by their firm friendship, and by their mutually braving every danger to which any of the common soldiers could be exposed. Indeed, so intimate was their association that many of the army conceived Berthollet and Monge to be one individual; and it is no small proof of the intimacy of these philosophers with Bonaparte, that the soldiers had a dislike at this double personage, from a persuasion that it had been at his suggestion that they were led into a country which they detested. It happened on one occasion that a boat, in which Berthollet and some others were conveyed up the Nile, was assailed by a troop of Mamelukes, who poured their small shot into it from the banks. In the midst of this perilous voyage, M. Berthollet began very coolly to pick up stones and stuff his pockets with them. When his motive for this conduct was asked, "I am desirous," said he,"that in case of my being shot, my body may sink at once to the bottom of this river, and may escape the insults of these barbarians."In a conjuncture where a courage of a rarer kind was required, Berthollet was not found wanting. The plague broke out in the French army, and this, added to the many fatigues they had previously endured, the diseases under which they were already labouring, would, it was feared, lead to insurrection on the one hand, or totally sink the spirits of the men on the other. Acre had been besieged for many weeks in vain. Bonaparte and his army had been able to accomplish nothing against it: he was anxious to conceal from his army this disastrous intelligence. When the opinion of Berthollet was asked in council, he spoke at once the plain, though unwelcome truth. He was instantly assailed by the most violent reproaches. "In a week," said he, "my opinion will be unfortunately but too well vindicated." It was as he foretold: and when nothing but a hasty retreat could save the wretched remains of the army of Egypt, the carriage of Berthollet was seized for the convenience of some wounded officers. On this, he travelled on foot, and without the smallest discomposure, across twenty leagues of the desert.When Napoleon abandoned the army of Egypt, and traversed half the Mediterranean in a single vessel, Berthollet was his companion. After he had put himself at the head of the French government, and had acquired an extent of power, which no modern European potentate had ever before realized, he never forgot his associate. He was in the habit of placing all chemical discoveries to his account, to the frequent annoyance of our chemist; and when an unsatisfactory answer was given him upon any scientific subject, he was in the habit of saying,"Well; I shall ask this of Berthollet." But he did not limit his affection to these proofs of regard. Having been informed that Berthollet's earnest pursuits of science had led him into expenses which had considerably deranged his fortune, he sent for him, and said, in a tone of affectionate reproach, "M. Berthollet, I have always one hundred thousand crowns at the service of my friends." And, in fact, this sum was immediately presented to him.Upon his return from Egypt, Berthollet was nominated a senator by the first consul; and afterwards received the distinction of grand officer of the Legion of Honour; grand cross of the Order of Reunion; titulary of the Senatory of Montpellier; and, under the emperor, he was created a peer of France, receiving the title of Count. The advancement to these offices produced no change in the manners of Berthollet. Of this he gave a striking proof, by adopting, as his armorial bearing (at the time that others eagerly blazoned some exploit), the plain unadorned figure of his faithful and affectionate dog. He was no courtier before he received these honours, and he remained equally simple and unassuming, and not less devoted to science after they were conferred.As we advance towards the latter period of his life, we find the same ardent zeal in the cause of science which had glowed in his early youth, accompanied by the same generous warmth of heart that he ever possessed, and which displayed itself in his many intimate friendships still subsisting, though mellowed by the hand of time. At this period La Place lived at Arcueil, a small village about three miles from Paris. Between him and Berthollet there had long subsisted a warm affection, founded on mutual esteem. To be near this illustrious man Berthollet purchased a country-seatin the village: there he established a very complete laboratory, fit for conducting all kinds of experiments in every branch of natural philosophy. Here he collected round him a number of distinguished young men, who knew that in his house their ardour would at once receive fresh impulse and direction from the example of Berthollet. These youthful philosophers were organized by him into a society, to which the name of Société d'Arcueil was given. M. Berthollet was himself the president, and the other members were La Place, Biot, Gay-Lussac, Thenard, Collet-Descotils, Decandolle, Humboldt, and A. B. Berthollet. This society published three volumes of very valuable memoirs. The energy of this society was unfortunately paralyzed by an untoward event, which imbittered the latter days of this amiable man. His only son, M. A. B. Berthollet, in whom his happiness was wrapped up, was unfortunately afflicted with a lowness of spirits which rendered his life wholly insupportable to him. Retiring to a small room, he locked the door, closed up every chink and crevice which might admit the air, carried writing materials to a table, on which he placed a second-watch, and then seated himself before it. He now marked precisely the hour, and lighted a brasier of charcoal beside him. He continued to note down the series of sensations he then experienced in succession, detailing the approach and rapid progress of delirium; until, as time went on, the writing became confused and illegible, and the young victim dropped dead upon the floor.After this event the spirits of the old man never again rose. Occasionally some discovery, extending the limits of his favourite science, engrossed his interest and attention for a short time: but such intervals were rare, and shortlived. The restoration of the Bourbons, and the downfall of his friendand patron Napoleon, added to his sufferings by diminishing his income, and reducing him from a state of affluence to comparative embarrassment. But he was now old, and the end of his life was approaching. In 1822 he was attacked by a slight fever, which left behind it a number of boils: these were soon followed by a gangrenous ulcer of uncommon size. Under this he suffered for several months with surprising fortitude. He himself, as a physician, knew the extent of his danger, felt the inevitable progress of the malady, and calmly regarded the slow approach of death. At length, after a tedious period of suffering, in which his equanimity had never once been shaken, he died on the 6th of November, when he had nearly completed the seventy-fourth year of his age.His papers are exceedingly numerous, and of a very miscellaneous nature, amounting to more than eighty. The earlier were chiefly inserted into the various volumes of the Memoirs of the Academy. He furnished many papers to the Annales de Chimie and the Journal de Physique, and was also a frequent contributor to the Society of Arcueil, in the different volumes of whose transactions several memoirs of his are to be found. He was the author likewise of two separate works, comprising each two octavo volumes. These were his Elements of the Art of Dyeing, first published in 1791, in a single volume: but the new and enlarged edition of 1814 was in two volumes; and his Essay on Chemical Statics, published about the beginning of the present century. I shall notice his most important papers.His earlier memoirs on sulphurous acid, on volatile alkali, and on the decomposition of nitre, were encumbered by the phlogistic theory, which at that time he defended with great zeal, though he afterwards retracted these his first opinions upon all these subjects. Except his paper on soaps, in which he shows that they are chemical compounds of an oil (acting the part of an acid) and an alkaline base, and his proof that phosphoric acid exists ready formed in the body (a fact long before demonstrated by Gahn and Scheele), his papers published before he became an antiphlogistian are of inferior merit.In 1785 he demonstrated the nature and proportion of the constituents of ammonia, or volatile alkali. This substance had been collected in the gaseous form by the indefatigable Priestley, who had shown also that when electric sparks are made to pass for some time through a given volume of this gas, its bulk is nearly doubled. Berthollet merely repeated this experiment of Priestley, and analyzed the new gases evolved by the action of electricity. This gas he found a mixture of three volumes hydrogen and one volume azotic gas: hence it was evident that ammoniacal gas is a compound of three volumes of hydrogen and one volume of azotic gas united together, and condensed into two volumes. The same discovery was made about the same time by Dr. Austin, and published in the Philosophical Transactions. Both sets of experiments were made without any knowledge of what was done by the other: but it is admitted, on all hands, that Berthollet had the priority in point of time.It was about this time, likewise, that he published his first paper on chlorine. He observed, that when water, impregnated with chlorine, is exposed to the light of the sun, the water loses its colour, while, at the same time, a quantity of oxygen gas is given out. If we now examine the water, we find that it contains no chlorine, but merely a little muriatic acid. This fact, which is undoubted, ledhim to conclude that chlorine is decomposed by the action of solar light, and that its two elements are muriatic acid and oxygen. This led to the notion that the basis of muriatic acid is capable of combining with various doses of oxygen, and of forming various acids, one of which is chlorine: on that account it was calledoxygenized muriatic acidby the French chemists, which unwieldy appellation was afterwards shortened by Kirwan intooxymuriatic acid.Berthollet observed that when a current of chlorine gas is passed through a solution of carbonate of potash an effervescence takes place owing to the disengagement of carbonic acid gas. By-and-by crystals are deposited in fine silky scales, which possess the property of detonating with combustible bodies still more violently than saltpetre. Berthollet examined these crystals and showed that they were compounds of potash with an acid containing much more oxygen than oxymuriatic acid. He considered its basis as muriatic acid, and distinguished it by the name of hyper-oxymuriatic acid.It was not till the year 1810, that the inaccuracy of these opinions was established. Gay-Lussac and Thenard attempted in vain to extract oxygen from chlorine. They showed that not a trace of that principle could be detected. Next year Davy took up the subject and concluded from his experiments thatchlorineis a simple substance, that muriatic acid is a compound of chlorine and hydrogen, and hyper-oxymuriatic acid of chlorine and oxygen. Gay-Lussac obtained this acid in a separate state, and gave it the name ofchloric acid, by which it is now known.Scheele, in his original experiments on chlorine, had noticed the property which it has of destroying vegetable colours. Berthollet examined this property with care, and found it so remarkable that he proposed it as a substitute for exposure to the sun in bleaching. This suggestion alone would have immortalized Berthollet had he done nothing else; since its effect upon some of the most important of the manufactures of Great Britain has been scarcely inferior to that of the steam-engine itself. Mr. Watt happened to be in Paris when the idea suggested itself to Berthollet. He not only communicated it to Mr. Watt, but showed him the process in all its simplicity. It consisted in nothing else than in steeping the cloth to be bleached in water impregnated with chlorine gas. Mr. Watt, on his return to Great Britain, prepared a quantity of this liquor, and sent it to his father-in-law, Mr. Macgregor, who was a bleacher in the neighbourhood of Glasgow. He employed it successfully, and thus was the first individual who tried the new process of bleaching in Great Britain. For a number of years the bleachers in Lancashire and the neighbourhood of Glasgow were occupied in bringing the process to perfection. The disagreeable smell of the chlorine was a great annoyance. This was attempted to be got rid of by dissolving potash in the water to be impregnated with chlorine; but it was found to injure considerably the bleaching powers of the gas. The next method tried was to mix the water with quicklime, and then to pass a current of chlorine through it. The quicklime was dissolved, and the liquor thus constituted was found to answer very well. The last improvement was to combine the chlorine with dry lime. At first two atoms of lime were united to one atom of chlorine; but of late years it is a compound of one atom of lime, and one of chlorine. This chloride is simply dissolved in water, and the cloth to be bleached is steeped in it. For all these improvements, which have brought the method of bleaching by means of chlorine togreat simplicity and perfection, the bleachers are indebted to Knox, Tennant, and Mackintosh, of Glasgow; by whose indefatigable exertions the mode of manufacturing chloride of lime has been brought to a state of perfection.Berthollet's experiments on prussic acid and the prussiates deserve also to be mentioned, as having a tendency to rectify some of the ideas at that time entertained by chemists, and to advance their knowledge of one of the most difficult departments of chemical investigation. In consequence of his experiments on the nature and constituents of sulphuretted hydrogen, he had already concluded that it was an acid, and that it was destitute of oxygen: this had induced him to refuse his assent to the hypothesis of Lavoisier, thatoxygenis theacidifying principle. Scheele, in his celebrated experiments on prussic acid, had succeeded in ascertaining that its constituents were carbon and azote; but he had not been able to make a rigid analysis of that acid, and consequently to demonstrate that oxygen did not enter into it as a constituent. Berthollet took up the subject, and though his analysis was also incomplete, he satisfied himself, and rendered it exceedingly probable, that the only constituents of this acid were, carbon, azote, and hydrogen, and that oxygen did not enter into it as a constituent. This was another reason for rejecting the notion ofoxygenas an acidifying principle. Here were two acids capable of neutralizing bases, namely, sulphuretted hydrogen and prussic acid, and yet neither of them contained oxygen. He found that when prussic acid was treated with chlorine, its properties were altered; it acquired a different smell and taste, and no longer precipitated iron blue, but green. From his opinion respecting the nature of chlorine, that it was a compound of muriatic acid and oxygen, he naturally concluded that by this process he hadformed a new prussic acid by adding oxygen to the old constituents. He therefore called this new substanceoxyprussic acid. It has been proved by the more recent experiments of Gay-Lussac, that the new acid of Berthollet is a compound ofcyanogen(the prussic acid deprived of hydrogen) andchlorine: it is now calledchloro-cyanic acid, and is known to possess the characters assigned it by Berthollet: it constitutes, therefore, a new example of an acid destitute of oxygen. Berthollet was the first person who obtained prussiate of potash in regular crystals; the salt was known long before, but had been always used in a state of solution.

Carbon0·75Oxygen1·93

Now this is a tolerably near approximation to the truth. The true constituents, as determined by modern chemists, being

Carbon0·75Oxygen2·00

The next paper of M. Lavoisier, which appeared in the Memoirs of the Academy, for 1782 (published in 1785), shows how well he appreciated the importance of the discovery of the composition of water. It is entitled, "General Considerations on the Solution of the Metals in Acids." He shows that when metals are dissolved in acids, they are converted into oxides, and that the acid does not combine with the metal, but only with its oxide. When nitric acid is the solvent the oxidizement takes place at the expense of the acid, which is resolved into nitrous gas and oxygen. The nitrous gas makes its escape, and may be collected; but the oxygen unites with the metal and renders it an oxide. He shows this with respect to the solution of mercury in nitric acid. He collected the nitrous gas given out during the solution of the metal inthe acid: then evaporated the solution to dryness, and urged the fire till the mercury was converted into red oxide. The fire being still further urged, the red oxide was reduced, and the oxygen gas given off was collected and measured. He showed that the nitrous gas and the oxygen gas thus obtained, added together, formed just the quantity of nitric acid which had disappeared during the process. A similar experiment was made by dissolving iron in nitric acid, and then urging the fire till the iron was freed from every foreign body, and obtained in the state of black oxide.

It is well known that many metals held in solution by acids may be precipitated in the metallic state, by inserting into the solution a plate of some other metal. A portion of that new metal dissolves, and takes the place of the metal originally in solution. Suppose, for example, that we have a neutral solution of copper in sulphuric acid, if we put into the solution a plate of iron, the copper is thrown down in the metallic state, while a certain portion of the iron enters into the solution, combining with the acid instead of the copper. But the copper, while in solution, was in the state of an oxide, and it is precipitated in the metallic state. The iron was in the metallic state; but it enters into the solution in the state of an oxide. It is clear from this that the oxygen, during these precipitations, shifts its place, leaving the copper, and entering into combination with the iron. If, therefore, in such a case we determine the exact quantity of copper thrown down, and the exact quantity of iron dissolved at the same time, it is clear that we shall have the relative weight of each combined with the same weight of oxygen. If, for example, 4 of copper be thrown down by the solution of 3·5 of iron; then it is clear that 3·5 of iron requires just as much oxygen as 4of copper, to turn both into the oxide that exists in the solution, which is the black oxide of each.

Bergman had made a set of experiments to determine the proportional quantities of phlogiston contained in the different metals, by the relative quantity of each necessary to precipitate a given weight of another from its acid solution. It was the opinion at that time, that metals were compounds of their respective calces and phlogiston. When a metal dissolved in an acid, it was known to be in the state of calx, and therefore had parted with its phlogiston: when another metal was put into this solution it became a calx, and the dissolved metal was precipitated in the metallic state. It had therefore united with the phlogiston of the precipitating metal. It is obvious, that by determining the quantities of the two metals precipitated and dissolved, the relative proportion of phlogiston in each could be determined. Lavoisier saw that these experiments of Bergman would serve equally to determine the relative quantity of oxygen in the different oxides. Accordingly, in a paper inserted in the Memoirs of the Academy, for 1782, he enters into an elaborate examination of Bergman's experiments, with a view to determine this point. But it is unnecessary to state the deductions which he drew, because Bergman's experiments were not sufficiently accurate for the object in view. Indeed, as the mutual precipitation of the metals is a galvanic phenomenon, and as the precipitated metal is seldom quite pure, but an alloy of the precipitating and precipitated metal; and as it is very difficult to dry the more oxidizable metals, as copper and tin, without their absorbing oxygen when they are in a state of very minute division; this mode of experimenting is not precise enough for the object which Lavoisier had in view. Accordingly the table of thecomposition of the metallic oxides which Lavoisier has drawn up is so very defective, that it is not worth while to transcribe it.

The same remark applies to the table of the affinities of oxygen which Lavoisier drew up and inserted in the Memoirs of the Academy, for the same year. His data were too imperfect, and his knowledge too limited, to put it in his power to draw up any such table with any approach to accuracy. I shall have occasion to resume the subject in a subsequent chapter.

In the same volume of the Memoirs of the Academy, this indefatigable man inserted a paper in order to determine the quantity of oxygen which combines with iron. His method of proceeding was, to burn a given weight of iron in oxygen gas. It is well known that iron wire, under such circumstances, burns with considerable splendour, and that the oxide, by the heat, is fused into a black brittle matter, having somewhat of the metallic lustre. He burnt 145·6 grains of iron in this way, and found that, after combustion, the weight became 192 grains, and 97 French cubic inches of oxygen gas had been absorbed. From this experiment it follows, that the oxide of iron formed by burning iron in oxygen gas is a compound of

Iron3·5Oxygen1·11

This forms a tolerable approximation to the truth. It is now known, that the quantity of oxygen in the oxide of iron formed by the combustion of iron in oxygen gas is not quite uniform in its composition; sometimes it is a compound of

Iron3½Oxygen1⅓

While at other times it consists very nearly of

Iron3·5Oxygen1

and probably it may exist in all the intermediateproportions between these two extremes. The last of these compounds constitutes what is now known by the name ofprotoxide, orblack oxide of iron. The first is the composition of the ore of iron so abundant, which is distinguished by the name ofmagnetic iron ore.

Lavoisier was aware that iron combines with more oxygen than exists in the protoxide; indeed, his analysis of peroxide of iron forms a tolerable approximation to the truth; but there is no reason for believing that he was aware that iron is capable of forming only two oxides, and that all intermediate degrees of oxidation are impossible. This was first demonstrated by Proust.

I think it unnecessary to enter into any details respecting two papers of Lavoisier, that made their appearance in the Memoirs of the Academy, for 1783, as they add very little to what he had already done. The first of these describes the experiments which he made to determine the quantity of oxygen which unites with sulphur and phosphorus when they are burnt: it contains no fact which he had not stated in his former papers, unless we are to consider his remark, that the heat given out during the burning of these bodies has no sensible weight, as new.

The other paper is "On Phlogiston;" it is very elaborate, but contains nothing which had not been already advanced in his preceding memoirs. Chemists were so wedded to the phlogistic theory, their prejudices were so strong, and their understandings so fortified against every thing that was likely to change their opinions, that Lavoisier found it necessary to lay the same facts before them again and again, and to place them in every point of view. In this paper he gives a statement of his own theory of combustion, which he had previously done in several preceding papers. He examines the phlogistic theory of Stahl at great length, and refutes it.

In the Memoirs of the Academy, for 1784, Lavoisier published a very elaborate set of experiments on the combustion of alcohol, oil, and different combustible bodies, which gave a beginning to the analysis of vegetable substances, and served as a foundation upon which this most difficult part of chemistry might be reared. He showed that during the combustion of alcohol the oxygen of the air united to the vapour of the alcohol, which underwent decomposition, and was converted into water and carbonic acid. From these experiments he deduced as a consequence, that the constituents of alcohol are carbon, hydrogen, and oxygen, and nothing else; and he endeavoured from his experiments to determine the relative proportions of these different constituents. From these experiments he concluded, that the alcohol which he used in his experiments was a compound of

Carbon2629·5 part.Hydrogen725·5Water5861

It would serve no purpose to attempt to draw any consequences from these experiments; as Lavoisier does not mention the specific gravity of the alcohol, of course we cannot say how much of the water found was merely united with the alcohol, and how much entered into its composition. The proportion between the carbon and hydrogen, constitutes an approximation to the truth, though not a very near one.

Olive oil he showed to be a compound of hydrogen and carbon, and bees' wax to be a compound of the same constituents, though in a different proportion.

This subject was continued, and his views further extended, in a paper inserted in the Memoirs of the Academy, for 1786, entitled, "Reflections on the Decomposition of Water by Vegetable and Animal Substances." He begins by stating that when charcoal is exposed to a strong heat, it gives out a little carbonic acid gas and a little inflammable air, and after this nothing more can be driven off, however high the temperature be to which it is exposed; but if the charcoal be left for some time in contact with the atmosphere it will again give out a little carbonic acid gas and inflammable gas when heated, and this process may be repeated till the whole charcoal disappears. This is owing to the presence of a little moisture which the charcoal imbibes from the air. The water is decomposed when the charcoal is heated and converted into carbonic acid and inflammable gas. When vegetable substances are heated in a retort, the water which they contain undergoes a similar decomposition, the carbon which forms one of their constituents combines with the oxygen and produces carbonic acid, while the hydrogen, the other constituent of the water, flies off in the state of gas combined with a certain quantity of carbon. Hence the substances obtained when vegetable or animal substances are distilled did not exist ready formed in the body operated on; but proceeded from the double decompositions which took place by the mutual action of the constituents of the water, sugar, mucus, &c., which the vegetable body contains. The oil, the acid, &c., extracted by distilling vegetable bodies did not exist in them, but are formed during the mutual action of the constituents upon each other, promoted as their action is by the heat. These views were quite new and perfectly just, and threw a new light on the nature of vegetable substances and on the products obtained by distilling them. It showed the futility of all the pretended analyses of vegetable substances, which chemists had performed by simply subjecting them to distillation, and the error of drawing any conclusions respecting the constituents of vegetable substances from the results of their distillation, except indeed with respect to their elementary constituents. Thus when by distilling a vegetable substance we obtain water, oil, acetic acid, carbonic acid, and carburetted hydrogen, we must not conclude that these principles existed in the substance, but merely that it contained carbon, hydrogen, and oxygen, in such proportions as to yield all these principles by decompositions.

As nitric acid acts upon metals in a very different way from sulphuric and muriatic acids, and as it is a much better solvent of metals in general than any other, it was an object of great importance towards completing the antiphlogistic theory to obtain an accurate knowledge of its constituents. Though Lavoisier did not succeed in this, yet he made at least a certain progress, which enabled him to explain the phenomena, at that time known, with considerable clearness, and to answer all the objections to the antiphlogistic theory from the action of nitric acid on metals. His first paper on the subject was published in the Memoirs of the Academy, for 1776. He put a quantity of nitric acid and mercury into a retort with a long beak, which he plunged into the water-trough. An effervescence took place and gas passed over in abundance, and was collected in a glass jar; the mercury being dissolved the retort was still further heated, till every thing liquid passed over into the receiver, and a dry yellow salt remained. The beak of the retort was now again plunged into the water-trough, and the salt heated till all the nitric acid which it contained was decomposed, and nothing remained in the retort but red oxide of mercury. During this last process much more gas was collected. All the gas obtained during the solution of the mercury and the decomposition of the salt was nitrousgas. The red oxide of mercury was now heated to redness, oxygen gas was emitted in abundance, and the mercury was reduced to the metallic state: its weight was found the very same as at first. It is clear, therefore, that the nitrous gas and the oxygen gas were derived, not from the mercury but from the nitric acid, and that the nitric acid had been decomposed into nitrous gas and oxygen: the nitrous gas had made its escape in the form of gas, and the oxygen had remained united to the metal.

From these experiments it follows clearly, that nitric acid is a compound of nitrous gas and oxygen. The nature of nitrous gas itself Lavoisier did not succeed in ascertaining. It passed with him for a simple substance; but what he did ascertain enabled him to explain the action of nitric acid on metals. When nitric acid is poured upon a metal which it is capable of dissolving, copper for example, or mercury, the oxygen of the acid unites to the metal, and converts into an oxide, while the nitrous gas, the other constituent of the acid, makes its escape in the gaseous form. The oxide combines with and is dissolved by another portion of the acid which escapes decomposition.

It was discovered by Dr. Priestley, that when nitrous gas and oxygen gas are mixed together in certain proportions, they instantly unite, and are converted into nitrous acid. If this mixture be made over water, the volume of the gases is instantly diminished, because the nitrous acid formed loses its elasticity, and is absorbed by the water. When nitrous gas is mixed with air containing oxygen gas, the diminution of volume after mixture is greater the more oxygen gas is present in the air. This induced Dr. Priestley to employ nitrous gas as a test of the purity of common air. He mixed together equal volumes of the nitrous gas and air to be examined, and he judged of the purity of the air by the degree of condensation: the greater the diminution of bulk, the greater did he consider the proportion of oxygen in the air under examination to be. This method of proceeding was immediately adopted by chemists and physicians; but there was a want of uniformity in the mode of proceeding, and a considerable diversity in the results. M. Lavoisier endeavoured to improve the process, in a paper inserted in the Memoirs of the Academy, for 1782; but his method did not answer the purpose intended: it was Mr. Cavendish that first pointed out an accurate mode of testing air by means of nitrous gas, and who showed that the proportions of oxygen and azotic gas in common air are invariable.

Lavoisier, in the course of his investigations, had proved that carbonic acid is a compound of carbon and oxygen; sulphuric acid, of sulphur and oxygen; phosphoric acid, of phosphorus and oxygen; and nitric acid, of nitrous gas and oxygen. Neither the carbon, the sulphur, the phosphorus, nor the nitrous gas, possessed any acid properties when uncombined; but they acquired these properties when they were united to oxygen. He observed further, that all the acids known in his time which had been decomposed were found to contain oxygen, and when they were deprived of oxygen, they lost their acid properties. These facts led him to conclude, that oxygen is an essential constituent in all acids, and that it is the principle which bestows acidity or the true acidifying principle. This was the reason why he distinguished it by the name of oxygen.5These views were fully developed by Lavoisier, in a paper inserted in the Memoirs of the Academy, for 1778,entitled, "General Considerations on the Nature of Acids, and on the Principles of which they are composed." When this paper was published, Lavoisier's views were exceedingly plausible. They were gradually adopted by chemists in general, and for a number of years may be considered to have constituted a part of the generally-received doctrines. But the discovery of the nature of chlorine, and the subsequent facts brought to light respecting iodine, bromine, and cyanogen, have demonstrated that it is inaccurate; that many powerful acids exist which contain no oxygen, and that there is no one substance to which the name of acidifying principle can with justice be given. To this subject we shall again revert, when we come to treat of the more modern discoveries. , sour, and γινομαι, which he defined theproducer of acids, theacidifying principle.]

Long as the account is which we have given of the labours of Lavoisier, the subject is not yet exhausted. Two other papers of his remain to be noticed, which throw considerable light on some important functions of the living body: we allude to his experiments onrespirationandperspiration.

It was known, that if an animal was confined beyond a certain limited time in a given volume of atmospherical air, it died of suffocation, in consequence of the air becoming unfit for breathing; and that if another animal was put into this air, thus rendered noxious by breathing, its life was destroyed almost in an instant. Dr. Priestley had thrown some light upon this subject by showing that air, in which an animal had breathed for some time, possessed the property of rendering lime-water turbid, and therefore contained carbonic acid gas. He considered the process of breathing as exactly analogous to the calcination of metals, or the combustion of burning bodies. Both, in his opinion acted by giving out phlogiston; which, uniting withthe air of the atmosphere, converted it into phlogisticated air. Priestley found, that if plants were made to vegetate for some time in air that had been rendered unfit for supporting animal life by respiration, it lost the property of extinguishing a candle, and animals could breathe it again without injury. He concluded from this that animals, by breathing, phlogisticated air, but that plants, by vegetating, dephlogisticated air: the former communicated phlogiston to it, the latter took phlogiston from it.

After Lavoisier had satisfied himself that air is a mixture of oxygen and azote, and that oxygen alone is concerned in the processes of calcination and combustion, being absorbed and combined with the substances undergoing calcination and combustion, it was impossible for him to avoid drawing similar conclusions with respect to the breathing of animals. Accordingly, he made experiments on the subject, and the result was published in the Memoirs of the Academy, for 1777. From these experiments he drew the following conclusions:

1. The only portion of atmospherical air which is useful in breathing is the oxygen. The azote is drawn into the lungs along with the oxygen, but it is thrown out again unaltered.

2. The oxygen gas, on the contrary, is gradually, by breathing, converted into carbonic acid; and air becomes unfit for respiration when a certain portion of its oxygen is converted into carbonic acid gas.

3. Respiration is therefore exactly analogous to calcination. When air is rendered unfit for supporting life by respiration, if the carbonic acid gas formed be withdrawn by means of lime-water, or caustic alkali, the azote remaining is precisely the same, in its nature, as what remains after air is exhausted of its oxygen by being employed for calcining metals.

In this first paper Lavoisier went no further than establishing these general principles; but he afterwards made experiments to determine the exact amount of the changes which were produced in air by breathing, and endeavoured to establish an accurate theory of respiration. To this subject we shall have occasion to revert again, when we give an account of the attempts made to determine the phenomena of respiration by more modern experimenters.

Lavoisier's experiments onperspirationwere made during the frenzy of the French revolution, when Robespierre had usurped the supreme power, and when it was the object of those at the head of affairs to destroy all the marks of civilization and science which remained in the country. His experiments were scarcely completed when he was thrown into prison, and though he requested a prolongation of his life for a short time, till he could have the means of drawing up a statement of their results, the request was barbarously refused. He has therefore left no account of them whatever behind him. But Seguin, who was associated with him in making these experiments, was fortunately overlooked, and escaped the dreadful times of the reign of terror: he afterwards drew up an account of the results, which has prevented them from being wholly lost to chemists and physiologists.

Seguin was usually the person experimented on. A varnished silk bag, perfectly air-tight, was procured, within which he was enclosed, except a slit over against the mouth, which was left open for breathing; and the edges of the bag were accurately cemented round the mouth, by means of a mixture of turpentine and pitch. Thus every thing emitted by the body was retained in the bag, except what made its escape from the lungs by respiration. By weighing himself in a delicate balance at the commencement of the experiment, and again after he had continued for some time in the bag, the quantity of matter carried off by respiration was determined. By weighing himself without this varnished covering, and repeating the operation after the same interval of time had elapsed, as in the former experiment, he determined the loss of weight occasioned byperspirationandrespirationtogether. The loss of weight indicated by the first experiment being subtracted from that given by the second, the quantity of matter lost byperspirationthrough the pores of the skin was determined. The following facts were ascertained by these experiments:

1. The maximum of matter perspired in a minute amounted to 26·25 grains troy; the minimum to nine grains; which gives 17·63 grains, at a medium, in the minute, or 52·89 ounces in twenty-four hours.

2. The amount of perspiration is increased by drink, but not by solid food.

3. Perspiration is at its minimum immediately after a repast; it reaches its maximum during digestion.

Such is an epitome of the chemical labours of M. Lavoisier. When we consider that this prodigious number of experiments and memoirs were all performed and drawn up within the short period of twenty years, we shall be able to form some idea of the almost incredible activity of this extraordinary man: the steadiness with which he kept his own peculiar opinions in view, and the good temper which he knew how to maintain in all his publications, though his opinions were not only not supported, but actually opposed by the whole body of chemists in existence, does him infinite credit, and was undoubtedly the wisest line of conduct which he could possibly have adopted. The difficulties connected with the evolution and absorption of hydrogen, constituted the stronghold of the phlogistians. But Mr. Cavendish's discovery, that water is a compound of oxygen and hydrogen, was a death-blow to the doctrine of Stahl. Soon after this discovery was fully established, or during the year 1785, M. Berthollet, a member of the academy, and fast rising to the eminence which he afterwards acquired, declared himself a convert to the Lavoisierian theory. His example was immediately followed by M. Fourcroy, also a member of the academy, who had succeeded Macquer as professor of chemistry in the Jardin du Roi.

M. Fourcroy, who was perfectly aware of the strong feeling of patriotism which, at that time, actuated almost every man of science in France, hit upon a most infallible way of giving currency to the new opinions. To the theory of Lavoisier he gave the name ofLa Chimie Française(French Chemistry). This name was not much relished by Lavoisier, as, in his opinion, it deprived him of the credit which was his due; but it certainly contributed, more than any thing else, to give the new opinions currency, at least, in France; they became at once a national concern, and those who still adhered to the old opinions, were hooted and stigmatized as enemies to the glory of their country. One of the most eminent of those who still adhered to the phlogistic theory was M. Guyton de Morveau, a nobleman of Burgundy, who had been educated as a lawyer, and who filled a conspicuous situation in the Parliament of Dijon: he had cultivated chemistry with great zeal, and was at that time the editor of the chemical part of the Encyclopédie Méthodique. In the first half-volume of the chemical part of this dictionary, which had just appeared, Morveau had supported the doctrine of phlogiston, and opposed the opinions of Lavoisier with much zeal and considerable skill:on this account, it became an object of considerable consequence to satisfy Morveau that his opinions were inaccurate, and to make him a convert to the antiphlogistic theory; for the whole matter was managed as if it had been a political intrigue, rather than a philosophical inquiry.

Morveau was accordingly invited to Paris, and Lavoisier succeeded without difficulty in bringing him over to his own opinions. We are ignorant of the means which he took; no doubt friendly discussion and the repetition of the requisite experiments, would be sufficient to satisfy a man so well acquainted with the subject, and whose mode of thinking was so liberal as Morveau. Into the middle of the second half-volume of the chemical part of the Encyclopédie Méthodique he introduced a long advertisement, announcing this change in his opinions, and assigning his reasons for it.

The chemical nomenclature at that time in use had originated with the medical chemists, and contained a multiplicity of unwieldy and unmeaning, and even absurd terms. It had answered the purposes of chemists tolerably well while the science was in its infancy; but the number of new substances brought into view had of late years become so great, that the old names could not be applied to them without the utmost straining: and the chemical terms in use were so little systematic that it required a considerable stretch of memory to retain them. These evils were generally acknowledged and lamented, and various attempts had been made to correct them. Bergman, for instance, had contrived a new nomenclature, confined chiefly to the salts and adapted to the Latin language. Dr. Black had done the same thing: his nomenclature possessed both elegance and neatness, and was, in several respects, superior to the terms ultimatelyadopted; but with his usual indolence and disregard of reputation, he satisfied himself merely with drawing it up in the form of a table and exhibiting it to his class. Morveau contrived a new nomenclature of the salts, and published it in 1783; and it appears to have been seen and approved of by Bergman.

The old chemical phraseology as far as it had any meaning was entirely conformable to the phlogistic theory. This was so much the case that it was with difficulty that Lavoisier was able to render his opinions intelligible by means of it. Indeed it would have been out of his power to have conveyed his meaning to his readers, had he not invented and employed a certain number of new terms. Lavoisier, aware of the defects of the chemical nomenclature, and sensible of the advantage which his own doctrine would acquire when dressed up in a language exactly suited to his views, was easily prevailed upon by Morveau to join with him in forming a new nomenclature to be henceforth employed exclusively by the antiphlogistians, as they called themselves. For this purpose they associated with themselves Berthollet, and Fourcroy. We do not know what part each took in this important undertaking; but, if we are to judge from appearances, the new nomenclature was almost exclusively the work of Lavoisier and Morveau. Lavoisier undoubtedly contrived the general phrases, and the names applied to the simple substances, so far as they were new, because he had employed the greater number of them in his writings before the new nomenclature was concocted. That the mode of naming the salts originated with Morveau is obvious; for it differs but little from the nomenclature of the salts published by him four years before.

The new nomenclature was published by Lavoisier and his associates in 1787, and it was ever after employed by them in all their writings. Aware of the importance of having a periodical work in which they could register and make known their opinions, they established theAnnales de Chimie, as a sort of counterpoise to theJournal de Physique, the editor of which, M. Delametherie, continued a zealous votary of phlogiston to the end of his life. This new nomenclature very soon made its way into every part of Europe, and became the common language of chemists, in spite of the prejudices entertained against it, and the opposition which it every where met with. In the year 1796, or nine years after the appearance of the new nomenclature, when I attended the chemistry-class in the College of Edinburgh, it was not only in common use among the students, but was employed by Dr. Black, the professor of chemistry, himself; and I have no doubt that he had introduced it into his lectures several years before. This extraordinary rapidity with which the new chemical language came into use, was doubtless owing to two circumstances. First, the very defective, vague, and barbarous state of the old chemical nomenclature: for although, in consequence of the prodigious progress which the science of chemistry has made since the time of Lavoisier, his nomenclature is now nearly as inadequate to express our ideas as that of Stahl was to express his; yet, at the time of its appearance, its superiority over the old nomenclature was so great, that it was immediately felt and acknowledged by all those who were acquiring the science, who are the most likely to be free from prejudices, and who, in the course of a few years, must constitute the great body of those who are interested in the science. 2. The second circumstance, to which the rapid triumph of the new nomenclature was owing, is the superiority ofLavoisier's theory over that of Stahl. The subsequent progress of the science has betrayed many weak points in Lavoisier's opinions; yet its superiority over that of Stahl was so obvious, and the mode of interrogating nature introduced by him was so good, and so well calculated to advance the science, that no unprejudiced person, who was at sufficient pains to examine both, could hesitate about preferring that of Lavoisier. It was therefore generally embraced by all the young chemists in every country; and they became, at the same time, partial to the new nomenclature, by which only that theory could be explained in an intelligible manner.

When the new nomenclature was published, there were only three nations in Europe who could be considered as holding a distinguished place as cultivators of chemistry: France, Germany, and Great Britain. For Sweden had just lost her two great chemists, Bergman and Scheele, and had been obliged, in consequence, to descend from the high chemical rank which she had formerly occupied. In France the fashion, and of course almost the whole nation, were on the side of the new chemistry. Macquer, who had been a stanch phlogistian to the last, was just dead. Monnet was closing his laborious career. Baumé continued to adhere to the old opinions; but he was old, and his chemical skill, which had never beenaccurate, was totally eclipsed by the more elaborate researches of Lavoisier and his friends. Delametherie was a keen phlogistian, a man of some abilities, of remarkable honesty and integrity, and editor of the Journal de Physique, at that time a popular and widely-circulating scientific journal. But his habits, disposition, and conduct, were by no means suited to the taste of his countrymen, or conformable to the practice of his contemporaries. The consequencewas, that he was shut out of all the scientific coteries of Paris; and that his opinions, however strongly, or rather violently expressed, failed to produce the intended effect. Indeed, as his views were generally inaccurate, and expressed without any regard to the rules of good manners, they in all probability rather served to promote than to injure the cause of his opponents. Lavoisier and his friends appear to have considered the subject in this light: they never answered any of his attacks, or indeed took any notice of them. France, then, from the date of the publication of the new nomenclature, might be considered as enlisted on the side of the antiphlogistic theory.

The case was very different in Germany. The national prejudices of the Germans were naturally enlisted on the side of Stahl, who was their countryman, and whose reputation would be materially injured by the refutation of his theory. The cause of phlogiston, accordingly, was taken up by several German chemists, and supported with a good deal of vigour; and a controversy was carried on for some years in Germany between the old chemists who adhered to the doctrine of Stahl, and the young chemists who had embraced the theory of Lavoisier. Gren, who was at that time the editor of a chemical journal, deservedly held in high estimation, and whose reputation as a chemist stood rather high in Germany, finding it impossible to defend the Stahlian theory as it had been originally laid down, introduced a new modification of phlogiston, and attempted to maintain it against the antiphlogistians. The death of Gren and of Wiegleb, who were the great champions of phlogiston, left the field open to the antiphlogistians, who soon took possession of all the universities and scientific journals in Germany. The most eminent chemist in Germany, or perhaps in Europe at that time, was Martin HenryKlaproth, professor of chemistry at Berlin, to whom analytical chemistry lies under the greatest obligations. In the year 1792 he proposed to the Academy of Sciences of Berlin, of which he was a member, to repeat all the requisite experiments before them, that the members of the academy might be able to determine for themselves which of the two theories deserved the preference. This proposal was acceded to. All the fundamental experiments were repeated by Klaproth with the most scrupulous attention to accuracy: the result was a full conviction, on the part of Klaproth and the academy, that the Lavoisierian theory was the true one. Thus the Berlin Academy became antiphlogistians in 1792: and as Berlin has always been the focus of chemistry in Germany, the determination of such a learned body must have had a powerful effect in accelerating the propagation of the new theory through that vast country.

In Great Britain the investigation of gaseous bodies, to which the new doctrines were owing, had originated. Dr. Black had begun the inquiry—Mr. Cavendish had prosecuted it with unparalleled accuracy—and Dr. Priestley had made known a great number of new gaseous bodies, which had hitherto escaped the attention of chemists. As the British chemists had contributed more than those of any other nation to the production of the new facts on which Lavoisier's theory was founded, it was natural to expect that they would have embraced that theory more readily than the chemists of any other nation: but the matter of fact was somewhat different. Dr. Black, indeed, with his characteristic candour, speedily embraced the opinions, and even adopted the new nomenclature: but Mr. Cavendish new modelled the phlogistic theory, and published a defence of phlogiston, which it was impossible at thattime to refute. The French chemists had the good sense not to attempt to overturn it. Mr. Cavendish after this laid aside the cultivation of chemistry altogether, and never acknowledged himself a convert to the new doctrines.

Dr. Priestley continued a zealous advocate for phlogiston till the very last, and published what he called a refutation of the antiphlogistic theory about the beginning of the present century: but Dr. Priestley, notwithstanding his merit as a discoverer and a man of genius, was never, strictly speaking, entitled to the name of chemist; as he was never able to make a chemical analysis. In his famous experiments, for example, on the composition of water, he was obliged to procure the assistance of Mr. Keir to determine the nature of the blue-coloured liquid which he had obtained, and which Mr. Keir showed to be nitrate of copper. Besides, Dr. Priestley, though perfectly honest and candid, was so hasty in his decisions, and so apt to form his opinions without duly considering the subject, that his chemical theories are almost all erroneous and sometimes quite absurd.

Mr. Kirwan, who had acquired a high reputation, partly by hismineralogy, and partly by his experiments on the composition of the salts, undertook the task of refuting the antiphlogistic theory, and with that view published a work to which he gave the name of "An Essay on Phlogiston and the Composition of Acids." In that book he maintained an opinion which seems to have been pretty generally adopted by the most eminent chemists of the time; namely, that phlogiston is the same thing with what is at present calledhydrogen, and which, when Kirwan wrote, was called lightinflammable air. Of course Mr. Kirwan undertook to prove that every combustible substance and everymetal contains hydrogen as a constituent, and that hydrogen escapes in every case of combustion and calcination. On the other hand, when calces are reduced to the metallic state hydrogen is absorbed. The book was divided into thirteen sections. In the first the specific gravity of the gases was stated according to the best data then existing. The second section treats of the composition of acids, and the composition and decomposition of water. The third section treats of sulphuric acid; the fourth, of nitric acid; the fifth, of muriatic acid; the sixth, of aqua regia; the seventh, of phosphoric acid; the eighth, of oxalic acid; the ninth, of the calcination and reduction of metals and the formation of fixed air; the tenth, of the dissolution of metals; the eleventh, of the precipitation of metals by each other; the twelfth, of the properties of iron and steel; while the thirteenth sums up the whole argument by way of conclusion.

In this work Mr. Kirwan admitted the truth of M. Lavoisier's theory, that during combustion and calcination, oxygen united with the burning and calcining body. He admitted also that water is a compound of oxygen and hydrogen. Now these admissions, which, however, it was scarcely possible for a man of candour to refuse, rendered the whole of his arguments in favour of the identity of hydrogen and phlogiston, and of the existence of hydrogen in all combustible bodies, exceedingly inconclusive. Kirwan's book was laid hold of by the French chemists, as affording them an excellent opportunity of showing the superiority of the new opinions over the old. Kirwan's view of the subject was that which had been taken by Bergman and Scheele, and indeed by every chemist of eminence who still adhered to the phlogistic system. A satisfactory refutation of it, therefore, would be a death-blow to phlogiston and would place the antiphlogistic theory upon abasis so secure that it would be henceforth impossible to shake it.

Kirwan's work on phlogiston was accordingly translated into French, and published in Paris. At the end of each section was placed an examination and refutation of the argument contained in it by some one of the French chemists, who had now associated themselves in order to support the antiphlogistic theory. The introduction, together with the second, third, and eleventh sections were examined and refuted by M. Lavoisier; the fourth, the fifth, and sixth sections fell to the share of M. Berthollet; the seventh and thirteenth sections were undertaken by M. de Morveau; the eighth, ninth, and tenth, by M. De Fourcroy; while the twelfth section, on iron and steel was animadverted on by M. Monge. These refutations were conducted with so much urbanity of manner, and were at the same time so complete, that they produced all the effects expected from them. Mr. Kirwan, with a degree of candour and liberality of which, unfortunately, very few examples can be produced, renounced his old opinions, abandoned phlogiston, and adopted the antiphlogistic doctrines of his opponents. But his advanced age, and a different mode of experimenting from what he had been accustomed to, induced him to withdraw himself entirely from experimental science and to devote the evening of his life to metaphysical and logical and moral investigations.

Thus, soon after the year 1790, a kind of interregnum took place in British chemistry. Almost all the old British chemists had relinquished the science, or been driven out of the field by the superior prowess of their antagonists. Dr. Austin and Dr. Pearson will, perhaps, be pointed out as exceptions. They undoubtedly contributed somewhat to the progress of the science. But they were arranged onthe side of the antiphlogistians. Dr. Crawford, who had done so much for the theory of heat, was about this time ruined in his circumstances by the bankruptcy of a house to which he had intrusted his property. This circumstance preyed upon a mind which had a natural tendency to morbid sensibility, and induced this amiable and excellent man to put an end to his existence. Dr. Higgins had acquired some celebrity as an experimenter and teacher; but his disputes with Dr. Priestley, and his laying claim to discoveries which certainly did not belong to him, had injured his reputation, and led him to desert the field of science. Dr. Black was an invalid, Mr. Cavendish had renounced the cultivation of chemistry, and Dr. Priestley had been obliged to escape from the iron hand of theological and political bigotry, by leaving the country. He did little as an experimenter after he went to America; and, perhaps, had he remained in England, his reputation would rather have diminished than increased. He was an admirable pioneer, and as such, contributed more than any one to the revolution which chemistry underwent; though he was himself utterly unable to rear a permanent structure capable, like the Newtonian theory, of withstanding all manner of attacks, and becoming only the firmer and stronger the more it is examined. Mr. Keir, of Birmingham, was a man of great eloquence, and possessed of all the chemical knowledge which characterized the votaries of phlogiston. In the year 1789 he attempted to stem the current of the new opinions by publishing a dictionary of chemistry, in which all the controversial points were to be fully discussed, and the antiphlogistic theory examined and refuted. Of this dictionary only one part appeared, constituting a very thin volume of two hundred and eight quarto pages, and treating almost entirely ofacids.Finding that the sale of this work did not answer his expectations, and probably feeling, as he proceeded, that the task of refuting the antiphlogistic opinions was much more difficult, and much more hopeless than he expected, he renounced the undertaking, and abandoned altogether the pursuit of chemistry.

It will be proper in this place to introduce some account of the most eminent of those French chemists who embraced the theory of Lavoisier, and assisted him in establishing his opinions.

Claude-Louis Berthollet was born at Talloire, near Annecy, in Savoy, on the 9th of December, 1748. He finished his school education at Chambéry, and afterwards studied at the College of Turin, a celebrated establishment, where many men of great scientific celebrity have been educated. Here he attached himself to medicine, and after obtaining a degree he repaired to Paris, which was destined to be the future theatre of his speculations and pursuits.

In Paris he had not a single acquaintance, nor did he bring with him a single introductory letter; but understanding that M. Tronchin, at that time a distinguished medical practitioner in Paris, was a native of Geneva, he thought he might consider him as in some measure a countryman. On this slender ground he waited on M. Tronchin, and what is rather surprising, and reflects great credit on both, this acquaintance, begun in so uncommon a way, soon ripened into friendship. Tronchin interested himself for his youngprotégée, and soon got him into the situation of physician in ordinary to the Duke of Orleans, father of him who cut so conspicuous a figure in the French revolution, under the name of M. Egalité. In this situation he devoted himself to the study of chemistry, and soon made himself known by his publications on the subject.

In 1781 he was elected a member of the Academy of Sciences of Paris: one of his competitors was M. Fourcroy. No doubt Berthollet owed his election to the influence of the Duke of Orleans. In the year 1784 he was again a competitor with M. de Fourcroy for the chemical chair at the Jardin du Roi, left vacant by the death of Macquer. The chair was in the gift of M. Buffon, whose vanity is said to have been piqued because the Duke of Orleans, who supported Berthollet's interest, did not pay him sufficient court. This induced him to give the chair to Fourcroy; and the choice was a fortunate one, as his uncommon vivacity and rapid elocution particularly fitted him for addressing a Parisian audience. The chemistry-class at the Jardin du Roi immediately became celebrated, and attracted immense crowds of admiring auditors.

But the influence of the Duke of Orleans was sufficient to procure for Berthollet another situation which Macquer had held. This was government commissary and superintendent of the dyeing processes. It was this situation which naturally turned his attention to the phenomena of dyeing, and occasioned afterwards his book on dyeing; which at the time of its publication was excellent, and exhibited a much better theory of dyeing, and a better account of the practical part of the art than any work which had previously appeared. The arts of dyeing and calico-printing have been very much improved since the time that Berthollet's book was written; yet if we except Bancroft's work on the permanent colours, nothing very important has been published on the subject since that period. We are at present almost as much in want of a good work on dyeing as we were when Berthollet's book appeared.

In the year 1785 Berthollet, at a meeting of the Academy of Sciences, informed that learned body that he had become a convert to the antiphlogistic doctrines of Lavoisier. There was one point, however, upon which he entertained a different opinion from Lavoisier, and this difference of opinion continued to the last. Berthollet did not consider oxygen as the acidifying principle. On the contrary, he was of opinion that acids existed which contained no oxygen whatever. As an example, he mentioned sulphuretted hydrogen, which possessed the properties of an acid, reddening vegetable blues, and combining with and neutralizing bases, and yet it was a compound of sulphur and hydrogen, and contained no oxygen whatever. It is now admitted that Berthollet was accurate in his opinion, and that oxygen is not of itself an acidifying principle.

Berthollet continued in the uninterrupted prosecution of his studies, and had raised himself a very high reputation when the French revolution burst upon the world in all its magnificence. It is not our business here to enter into any historical details, but merely to remind the reader that all the great powers of Europe combined to attack France, assisted by a formidable army of French emigrants assembled at Coblentz. The Austrian and Prussian armies hemmed her in by land, while the British fleets surrounded her by sea, and thus shut her out from all communication with other nations. Thus France was thrown at once upon her own resources. She had been in the habit of importing her saltpetre, and her iron, and many other necessary implements of war: these supplies were suddenly withdrawn; and it was expected that France, thus deprived of all her resources, would be obliged to submit to any terms imposed upon her byher adversaries. At this time she summoned her men of science to her assistance, and the call was speedily answered. Berthollet and Monge were particularly active, and saved the French nation from destruction by their activity, intelligence, and zeal. Berthollet traversed France from one extremity to the other; pointed out the mode of extracting saltpetre from the soil, and of purifying it. Saltpetre-works were instantly established in every part of France, and gunpowder made of it in prodigious quantity, and with incredible activity. Berthollet even attempted to manufacture a new species of gunpowder still more powerful than the old, by substituting chlorate of potash for saltpetre: but it was found too formidable a substance to be made with safety.

The demand for cannon, muskets, sabres, &c., was equally urgent and equally difficult to be supplied. A committee of men of science, of which Berthollet and Monge were the leading members, was established, and by them the mode of smelting iron, and of converting it into steel, was instantly communicated, and numerous manufactories of these indispensable articles rose like magic in every part of France.

This was the most important period of the life of Berthollet. It was in all probability his zeal, activity, sagacity, and honesty, which saved France from being overrun by foreign troops. But perhaps the moral conduct of Berthollet was not less conspicuous than his other qualities. During the reign of terror, a short time before the 9th Thermidor, when it was the system to raise up pretended plots, to give pretexts for putting to death those that were obnoxious to Robespierre and his friends, a hasty notice was given at a sitting of the Committee of Public Safety, that a conspiracy had just been discovered to destroy the soldiers, by poisoning the brandy which was just going to be served out to them previous to an engagement. It was said that the sick in the hospitals who had tasted this brandy, all perished in consequence of it. Immediate orders were issued to arrest those previously marked for execution. A quantity of the brandy was sent to Berthollet to be examined. He was informed, at the same time, that Robespierre wanted a conspiracy to be established, and all knew that opposition to his will was certain destruction. Having finished his analysis, Berthollet drew up his results in a Report, which he accompanied with a written explanation of his views; and he there stated, in the plainest language, that nothing poisonous was mixed with the brandy, but that it had been diluted with water holding small particles of slate in suspension, an ingredient which filtration would remove. This report deranged the plans of the Committee of Public Safety. They sent for the author, to convince him of the inaccuracy of his analysis, and to persuade him to alter its results. Finding that he remained unshaken in his opinion, Robespierre exclaimed, "What, Sir! darest thou affirm that the muddy brandy is free from poison?" Berthollet immediately filtered a glass of it in his presence, and drank it off. "Thou art daring, Sir, to drink that liquor," exclaimed the ferocious president of the committee. "I dared much more," replied Berthollet, "when I signed my name to that Report." There can be no doubt that he would have paid the penalty of this undaunted honesty with his life, but that fortunately the Committee of Public Safety could not at that time dispense with his services.

In the year 1792 Berthollet was named one of the commissioners of the Mint, into the processesof which he introduced considerable improvements. In 1794 he was appointed a member of the Commission of Agriculture and the Arts: and in the course of the same year he was chosen professor of chemistry at the Polytechnic School and also in the Normal School. But his turn of mind did not fit him for a public teacher. He expected too much information to be possessed by his hearers, and did not, therefore, dwell sufficiently upon the elementary details. His pupils were not able to follow his metaphysical disquisitions on subjects totally new to them; hence, instead of inspiring them with a love for chemistry, he filled them with langour and disgust.

In 1795, at the organization of the Institute, which was intended to include all men of talent or celebrity in France, we find Berthollet taking a most active lead; and the records of the Institute afford abundant evidence of the perseverance and assiduity with which he laboured for its interests. Of the committees to which all original memoirs are in the first place referred, we find Berthollet, oftener than any other person, a member, and his signature to the report of each work stands generally first.

In the year 1796, after the subjugation of Italy by Bonaparte, Berthollet and Monge were selected by the Directory to proceed to that country, in order to select those works of science and art with which the Louvre was to be filled and adorned. While engaged in the prosecution of that duty, they became acquainted with the victorious general. He easily saw the importance of their friendship, and therefore cultivated it with care; and was happy afterwards to possess them, along with nearly a hundred other philosophers, as his companions in his celebrated expedition to Egypt, expecting no doubt an eclat from such a halo of surroundingscience, as might favour the development of his schemes of future greatness. On this expedition, which promised so favourably for the French nation, and which was intended to inflict a mortal stab upon the commercial greatness of Great Britain, Bonaparte set out in the year 1798, accompanied by a crowd of the most eminent men of science that France could boast of. That they might co-operate more effectually in the cause of knowledge, these gentlemen formed themselves into a society, named "The Institute of Egypt," which was constituted on the same plan as the National Institute of France. Their first meeting was on the 6th Fructidor (24th of August), 1798; and after that they continued to assemble, at stated intervals. At these meetings papers were read, by the respective members, on the climate, the inhabitants, and the natural and artificial productions of the country to which they had gone. These memoirs were published in 1800, in Paris, in a single volume entitled, "Memoirs of the Institute of Egypt."

The history of the Institute of Egypt, as related by Cuvier, is not a little singular, and deserves to be stated. Bonaparte, during his occasional intercourse with Berthollet in Italy, was delighted with the simplicity of his manners, joined to a force and depth of thinking which he soon perceived to characterize our chemist. When he returned to Paris, where he enjoyed some months of comparative leisure, he resolved to employ his spare time in studying chemistry under Berthollet. It was at this period that his illustrious pupil imparted to our philosopher his intended expedition to Egypt, of which no whisper was to be spread abroad till the blow was ready to fall; and he begged of him not merely to accompany the army himself, but to choose such men of talent and experience as he conceived fittedto find there an employment worthy of the country which they visited, and of that which sent them forth. To invite men to a hazardous expedition, the nature and destination of which he was not permitted to disclose, was rather a delicate task; yet Berthollet undertook it. He could simply inform them that he would himself accompany them; yet such was the universal esteem in which he was held, such was the confidence universally placed in his honesty and integrity, that all the men of science agreed at once, and without hesitation, to embark on an unknown expedition, the dangers of which he was to share along with them. Had it not been for the link which Berthollet supplied between the commander-in-chief and the men of science, it would have been impossible to have united, as was done on this occasion, the advancement of knowledge with the progress of the French arms.

During the whole of this expedition, Berthollet and Monge distinguished themselves by their firm friendship, and by their mutually braving every danger to which any of the common soldiers could be exposed. Indeed, so intimate was their association that many of the army conceived Berthollet and Monge to be one individual; and it is no small proof of the intimacy of these philosophers with Bonaparte, that the soldiers had a dislike at this double personage, from a persuasion that it had been at his suggestion that they were led into a country which they detested. It happened on one occasion that a boat, in which Berthollet and some others were conveyed up the Nile, was assailed by a troop of Mamelukes, who poured their small shot into it from the banks. In the midst of this perilous voyage, M. Berthollet began very coolly to pick up stones and stuff his pockets with them. When his motive for this conduct was asked, "I am desirous," said he,"that in case of my being shot, my body may sink at once to the bottom of this river, and may escape the insults of these barbarians."

In a conjuncture where a courage of a rarer kind was required, Berthollet was not found wanting. The plague broke out in the French army, and this, added to the many fatigues they had previously endured, the diseases under which they were already labouring, would, it was feared, lead to insurrection on the one hand, or totally sink the spirits of the men on the other. Acre had been besieged for many weeks in vain. Bonaparte and his army had been able to accomplish nothing against it: he was anxious to conceal from his army this disastrous intelligence. When the opinion of Berthollet was asked in council, he spoke at once the plain, though unwelcome truth. He was instantly assailed by the most violent reproaches. "In a week," said he, "my opinion will be unfortunately but too well vindicated." It was as he foretold: and when nothing but a hasty retreat could save the wretched remains of the army of Egypt, the carriage of Berthollet was seized for the convenience of some wounded officers. On this, he travelled on foot, and without the smallest discomposure, across twenty leagues of the desert.

When Napoleon abandoned the army of Egypt, and traversed half the Mediterranean in a single vessel, Berthollet was his companion. After he had put himself at the head of the French government, and had acquired an extent of power, which no modern European potentate had ever before realized, he never forgot his associate. He was in the habit of placing all chemical discoveries to his account, to the frequent annoyance of our chemist; and when an unsatisfactory answer was given him upon any scientific subject, he was in the habit of saying,"Well; I shall ask this of Berthollet." But he did not limit his affection to these proofs of regard. Having been informed that Berthollet's earnest pursuits of science had led him into expenses which had considerably deranged his fortune, he sent for him, and said, in a tone of affectionate reproach, "M. Berthollet, I have always one hundred thousand crowns at the service of my friends." And, in fact, this sum was immediately presented to him.

Upon his return from Egypt, Berthollet was nominated a senator by the first consul; and afterwards received the distinction of grand officer of the Legion of Honour; grand cross of the Order of Reunion; titulary of the Senatory of Montpellier; and, under the emperor, he was created a peer of France, receiving the title of Count. The advancement to these offices produced no change in the manners of Berthollet. Of this he gave a striking proof, by adopting, as his armorial bearing (at the time that others eagerly blazoned some exploit), the plain unadorned figure of his faithful and affectionate dog. He was no courtier before he received these honours, and he remained equally simple and unassuming, and not less devoted to science after they were conferred.

As we advance towards the latter period of his life, we find the same ardent zeal in the cause of science which had glowed in his early youth, accompanied by the same generous warmth of heart that he ever possessed, and which displayed itself in his many intimate friendships still subsisting, though mellowed by the hand of time. At this period La Place lived at Arcueil, a small village about three miles from Paris. Between him and Berthollet there had long subsisted a warm affection, founded on mutual esteem. To be near this illustrious man Berthollet purchased a country-seatin the village: there he established a very complete laboratory, fit for conducting all kinds of experiments in every branch of natural philosophy. Here he collected round him a number of distinguished young men, who knew that in his house their ardour would at once receive fresh impulse and direction from the example of Berthollet. These youthful philosophers were organized by him into a society, to which the name of Société d'Arcueil was given. M. Berthollet was himself the president, and the other members were La Place, Biot, Gay-Lussac, Thenard, Collet-Descotils, Decandolle, Humboldt, and A. B. Berthollet. This society published three volumes of very valuable memoirs. The energy of this society was unfortunately paralyzed by an untoward event, which imbittered the latter days of this amiable man. His only son, M. A. B. Berthollet, in whom his happiness was wrapped up, was unfortunately afflicted with a lowness of spirits which rendered his life wholly insupportable to him. Retiring to a small room, he locked the door, closed up every chink and crevice which might admit the air, carried writing materials to a table, on which he placed a second-watch, and then seated himself before it. He now marked precisely the hour, and lighted a brasier of charcoal beside him. He continued to note down the series of sensations he then experienced in succession, detailing the approach and rapid progress of delirium; until, as time went on, the writing became confused and illegible, and the young victim dropped dead upon the floor.

After this event the spirits of the old man never again rose. Occasionally some discovery, extending the limits of his favourite science, engrossed his interest and attention for a short time: but such intervals were rare, and shortlived. The restoration of the Bourbons, and the downfall of his friendand patron Napoleon, added to his sufferings by diminishing his income, and reducing him from a state of affluence to comparative embarrassment. But he was now old, and the end of his life was approaching. In 1822 he was attacked by a slight fever, which left behind it a number of boils: these were soon followed by a gangrenous ulcer of uncommon size. Under this he suffered for several months with surprising fortitude. He himself, as a physician, knew the extent of his danger, felt the inevitable progress of the malady, and calmly regarded the slow approach of death. At length, after a tedious period of suffering, in which his equanimity had never once been shaken, he died on the 6th of November, when he had nearly completed the seventy-fourth year of his age.

His papers are exceedingly numerous, and of a very miscellaneous nature, amounting to more than eighty. The earlier were chiefly inserted into the various volumes of the Memoirs of the Academy. He furnished many papers to the Annales de Chimie and the Journal de Physique, and was also a frequent contributor to the Society of Arcueil, in the different volumes of whose transactions several memoirs of his are to be found. He was the author likewise of two separate works, comprising each two octavo volumes. These were his Elements of the Art of Dyeing, first published in 1791, in a single volume: but the new and enlarged edition of 1814 was in two volumes; and his Essay on Chemical Statics, published about the beginning of the present century. I shall notice his most important papers.

His earlier memoirs on sulphurous acid, on volatile alkali, and on the decomposition of nitre, were encumbered by the phlogistic theory, which at that time he defended with great zeal, though he afterwards retracted these his first opinions upon all these subjects. Except his paper on soaps, in which he shows that they are chemical compounds of an oil (acting the part of an acid) and an alkaline base, and his proof that phosphoric acid exists ready formed in the body (a fact long before demonstrated by Gahn and Scheele), his papers published before he became an antiphlogistian are of inferior merit.

In 1785 he demonstrated the nature and proportion of the constituents of ammonia, or volatile alkali. This substance had been collected in the gaseous form by the indefatigable Priestley, who had shown also that when electric sparks are made to pass for some time through a given volume of this gas, its bulk is nearly doubled. Berthollet merely repeated this experiment of Priestley, and analyzed the new gases evolved by the action of electricity. This gas he found a mixture of three volumes hydrogen and one volume azotic gas: hence it was evident that ammoniacal gas is a compound of three volumes of hydrogen and one volume of azotic gas united together, and condensed into two volumes. The same discovery was made about the same time by Dr. Austin, and published in the Philosophical Transactions. Both sets of experiments were made without any knowledge of what was done by the other: but it is admitted, on all hands, that Berthollet had the priority in point of time.

It was about this time, likewise, that he published his first paper on chlorine. He observed, that when water, impregnated with chlorine, is exposed to the light of the sun, the water loses its colour, while, at the same time, a quantity of oxygen gas is given out. If we now examine the water, we find that it contains no chlorine, but merely a little muriatic acid. This fact, which is undoubted, ledhim to conclude that chlorine is decomposed by the action of solar light, and that its two elements are muriatic acid and oxygen. This led to the notion that the basis of muriatic acid is capable of combining with various doses of oxygen, and of forming various acids, one of which is chlorine: on that account it was calledoxygenized muriatic acidby the French chemists, which unwieldy appellation was afterwards shortened by Kirwan intooxymuriatic acid.

Berthollet observed that when a current of chlorine gas is passed through a solution of carbonate of potash an effervescence takes place owing to the disengagement of carbonic acid gas. By-and-by crystals are deposited in fine silky scales, which possess the property of detonating with combustible bodies still more violently than saltpetre. Berthollet examined these crystals and showed that they were compounds of potash with an acid containing much more oxygen than oxymuriatic acid. He considered its basis as muriatic acid, and distinguished it by the name of hyper-oxymuriatic acid.

It was not till the year 1810, that the inaccuracy of these opinions was established. Gay-Lussac and Thenard attempted in vain to extract oxygen from chlorine. They showed that not a trace of that principle could be detected. Next year Davy took up the subject and concluded from his experiments thatchlorineis a simple substance, that muriatic acid is a compound of chlorine and hydrogen, and hyper-oxymuriatic acid of chlorine and oxygen. Gay-Lussac obtained this acid in a separate state, and gave it the name ofchloric acid, by which it is now known.

Scheele, in his original experiments on chlorine, had noticed the property which it has of destroying vegetable colours. Berthollet examined this property with care, and found it so remarkable that he proposed it as a substitute for exposure to the sun in bleaching. This suggestion alone would have immortalized Berthollet had he done nothing else; since its effect upon some of the most important of the manufactures of Great Britain has been scarcely inferior to that of the steam-engine itself. Mr. Watt happened to be in Paris when the idea suggested itself to Berthollet. He not only communicated it to Mr. Watt, but showed him the process in all its simplicity. It consisted in nothing else than in steeping the cloth to be bleached in water impregnated with chlorine gas. Mr. Watt, on his return to Great Britain, prepared a quantity of this liquor, and sent it to his father-in-law, Mr. Macgregor, who was a bleacher in the neighbourhood of Glasgow. He employed it successfully, and thus was the first individual who tried the new process of bleaching in Great Britain. For a number of years the bleachers in Lancashire and the neighbourhood of Glasgow were occupied in bringing the process to perfection. The disagreeable smell of the chlorine was a great annoyance. This was attempted to be got rid of by dissolving potash in the water to be impregnated with chlorine; but it was found to injure considerably the bleaching powers of the gas. The next method tried was to mix the water with quicklime, and then to pass a current of chlorine through it. The quicklime was dissolved, and the liquor thus constituted was found to answer very well. The last improvement was to combine the chlorine with dry lime. At first two atoms of lime were united to one atom of chlorine; but of late years it is a compound of one atom of lime, and one of chlorine. This chloride is simply dissolved in water, and the cloth to be bleached is steeped in it. For all these improvements, which have brought the method of bleaching by means of chlorine togreat simplicity and perfection, the bleachers are indebted to Knox, Tennant, and Mackintosh, of Glasgow; by whose indefatigable exertions the mode of manufacturing chloride of lime has been brought to a state of perfection.

Berthollet's experiments on prussic acid and the prussiates deserve also to be mentioned, as having a tendency to rectify some of the ideas at that time entertained by chemists, and to advance their knowledge of one of the most difficult departments of chemical investigation. In consequence of his experiments on the nature and constituents of sulphuretted hydrogen, he had already concluded that it was an acid, and that it was destitute of oxygen: this had induced him to refuse his assent to the hypothesis of Lavoisier, thatoxygenis theacidifying principle. Scheele, in his celebrated experiments on prussic acid, had succeeded in ascertaining that its constituents were carbon and azote; but he had not been able to make a rigid analysis of that acid, and consequently to demonstrate that oxygen did not enter into it as a constituent. Berthollet took up the subject, and though his analysis was also incomplete, he satisfied himself, and rendered it exceedingly probable, that the only constituents of this acid were, carbon, azote, and hydrogen, and that oxygen did not enter into it as a constituent. This was another reason for rejecting the notion ofoxygenas an acidifying principle. Here were two acids capable of neutralizing bases, namely, sulphuretted hydrogen and prussic acid, and yet neither of them contained oxygen. He found that when prussic acid was treated with chlorine, its properties were altered; it acquired a different smell and taste, and no longer precipitated iron blue, but green. From his opinion respecting the nature of chlorine, that it was a compound of muriatic acid and oxygen, he naturally concluded that by this process he hadformed a new prussic acid by adding oxygen to the old constituents. He therefore called this new substanceoxyprussic acid. It has been proved by the more recent experiments of Gay-Lussac, that the new acid of Berthollet is a compound ofcyanogen(the prussic acid deprived of hydrogen) andchlorine: it is now calledchloro-cyanic acid, and is known to possess the characters assigned it by Berthollet: it constitutes, therefore, a new example of an acid destitute of oxygen. Berthollet was the first person who obtained prussiate of potash in regular crystals; the salt was known long before, but had been always used in a state of solution.


Back to IndexNext