Fig. 29.Fig. 29.SCHOOL SINK AFTER SEVERAL MONTHS' USE.(J. Sullivan.)
SCHOOL SINK AFTER SEVERAL MONTHS' USE.
(J. Sullivan.)
Yard Hopper Closets.—Where the water-closet accommodations cannot, for some reason, be put within the house, yard hopper closets are commonly employed. These closets are simply long, iron-enameled hoppers,trapped, and connected with a drain pipe discharging into the house drain. These closets are flushed from cisterns, but, in such case, the cisterns must be protected from freezing; this is accomplished in somehouses by putting the yard hopper near the house and placing the cistern within the house; however, this can hardly be done where several hoppers must be employed. In most cases, yard hoppers are flushed byautomatic rod valves, so constructed as to flush the bowl of the hopper whenever the seat is pressed upon. These valves, as a rule, frequently get out of order and leak, and care must be taken to construct the vault under the hopper so that it be perfectly water-tight. An improved form of yard hopper has been suggested by Inspector J. Sullivan, of the New York Health Department, and used in a number of places with complete satisfaction. The improvement consists in the doors and walls of the privy apartment being of double thickness, lined with builders' lining on the inside, and the water service-pipes and cistern being protected by felt or mineral wool packing.
Fig. 30.Fig. 30.J. SULLIVAN'S IMPROVED YARD HOPPER CLOSET.
J. SULLIVAN'S IMPROVED YARD HOPPER CLOSET.
Fig. 31.Fig. 31.A MODERN WATER-CLOSET.(J. L. Mott Iron Works.)
A MODERN WATER-CLOSET.
(J. L. Mott Iron Works.)
Yard and Area Drains.—The draining of the surface of the yard or other areas is done by tile or iron pipes connecting with the sewer or house drain in the cellar. The "bell" or the "lip" traps are to be condemned and should not be used for yard drains. The gully and trap should be made of one piece; the trap should be of the siphon type and should be deep enough in the ground to prevent the freezing of seal in winter.
FOOTNOTES:[18]Waterproof paint or tiling should be used for this purpose.—Editor.[19]Tiling, linoleum, concrete, etc., as opposed to wood or carpets.—Editor.
[18]Waterproof paint or tiling should be used for this purpose.—Editor.
[18]Waterproof paint or tiling should be used for this purpose.—Editor.
[19]Tiling, linoleum, concrete, etc., as opposed to wood or carpets.—Editor.
[19]Tiling, linoleum, concrete, etc., as opposed to wood or carpets.—Editor.
Defects in Plumbing
The materials used in house plumbing are many and various, the parts are very numerous, the joints and connections are frequent, the position and location of pipes, etc., are often inaccessible and hidden, and the whole system quite complicated. Moreover, no part of the house construction is subjected to so many strains and uses, as well as abuses, as the plumbing of the house. Hence, in no part of house construction can there be as much bad work and "scamping" done as in the plumbing; and no part of the house is liable to have so many defects in construction, maintenance, and condition as the plumbing. At the same time, the plumbing of a house is of very great importance and influence on the health of the tenants, for defective materials, bad workmanship, and improper condition of the plumbing of a house may endanger the lives of its inhabitants by causing various diseases.
Defects in Plumbing.—The defects usually found in plumbing are so many that they cannot all be enumerated here. Among the principal and most common defects, however, are the following:
Materials.—Light-weight iron pipes; these crack easily and cannot stand the strain of calking. Sand-holes made during casting; these cannot always be detected, especially when the pipes are tar-coated. Thin lead pipe; not heavy enough to withstand the bending and drawing it is subjected to.
Location and Position.—Pipes may be located within the walls and built in, in which case they are inaccessible, and may be defective without anyone being able to discover the defects. Pipes may be laid with a wrong or an insufficient fall, thus leaving them unflushed, or retarding the proper velocity of the flow in the pipes. Pipes may be put underground and have no support underneath, when some parts or lengths may sink, get out of joint, and the sewage run into the ground instead of through the pipes. The pipes may be so located as to require sharp bends and curves, which will retard the flow in them.
Joints.—Joints in pipes may be defective, leaking, and not gas-tight because of imperfect calking, insufficient lead having been used; or, no oakum having been used and the lead running into the lumen of the pipe; or, not sufficient care and time being taken for the work. Joints may be defective because of iron ferrules being used instead of brass ferrules; through improperly wiped joints; through bad workmanship, bad material, or ignorance of the plumber. Plumbers often use T branches instead of Y branches; sharp bends instead of bends of forty-five degrees or more;slip joints instead of lead-calked ones; also, they often connect a pipe of larger diameter with a pipe of small diameter, etc.
Traps.—The traps may be bad in principle and in construction; they may be badly situated or connected, or they may be easily unsealed, frequently obstructed, inaccessible, foul, etc.
Ventilation.—The house drain may have no fresh-air inlet, or the fresh-air inlet may be obstructed; the vent pipes may be absent, or obstructed; the vertical pipes may not be extended.
Condition.—Pipes may have holes, may be badly repaired, bent, out of shape, or have holes patched up with cement or putty; pipes may be corroded, gnawed by rats, or they may be obstructed, etc.
The above are only a few of the many defects that may be found in the plumbing of a house. It is, therefore, of paramount importance to have the house plumbing regularly, frequently, and thoroughly examined and inspected, as well as put to the various tests, so as to discover the defects and remedy them.
Plumbing Tests.—The following are a few minor points for testing plumbing:
(1) To test a trap with a view to finding out whether its seal is lost or not, knock on the trap with a piece of metal; if the trap is empty, a hollow sound will be given out; if full, the sound will be dull. This is not reliable in case the trap is full or half-full with slime, etc. Another test for the same purpose is asfollows: hold a light near the outlet of the fixture; if the light is drawn in, it is a sign that the trap is empty.
(2) Defects in leaded joints can be detected if white lead has been used, as it will be discolored in case sewer gas escape from the joints.
(3) The connection of a waste pipe of a bath tub with the trap of the water-closet can sometimes be discovered by suddenly emptying the bath tub and watching the contents of the water-closet trap; the latter will be agitated if the waste pipe is discharged into the trap or on the inlet side of trap of the water-closet.
(4) The presence of sewer gas in a room can be detected by the following chemical method: saturate a piece of unglazed paper with a solution of acetate of lead in rain or boiled water, in the proportion of one to eight; allow the paper to dry, and hang up in the room where the escape of sewer gas is suspected; if sewer gas is present, the paper will be completely blackened.
The main tests for plumbing are: (1) theHydraulicor water-pressure test; (2) theSmoke, or sight test, and (3) theScent, or peppermint, etc., test.
TheWater-pressure Testis used to test the vertical and horizontal pipes in new plumbing before the fixtures have been connected. It is applied as follows: the end of the house drain is plugged up with a proper air-tight plug, of which there are a number on the market. The pipes are then filled with water to acertain level, which is carefully noted. The water is allowed to stand in the pipes for half an hour, at the expiration of which time, if the joints show no sign of leakage, and are not sweating, and if the level of the water in the pipes has not fallen, the pipes are water-tight. This is a very reliable test, and is made obligatory for testing all new plumbing work.
The Smoke Testis also a very good test. It is applied as follows: by means of bellows, or some exploding, smoke-producing rocket, smoke is forced into the system of pipes, the ends plugged up, and the escape of the smoke watched for, as wherever there are defects in the pipes the smoke will appear. A number of special appliances for this test are manufactured, all of them more or less ingenious.
The Scent Testis made by putting into the pipes a certain quantity of some pungent chemical, like peppermint oil, etc., the odor of which will escape from the defects in the pipes, if there are any. Oil of peppermint is commonly used in this country for the test. The following is the way this test is applied: all the openings of the pipes on the roof, except one, are closed up tightly with paper, rags, etc. Into the one open pipe is poured from two to four ounces of peppermint oil, followed by a pail of hot water, and then the pipe into which the oil has been put is also plugged up. This is done, preferably, by an assistant. The inspector then proceeds to slowly follow the course of the various pipes, and will detect the smell of the oil whereverit may escape from any defects in the pipes. If the test is thoroughly and carefully done, if care is taken that no fixture in the house is used and the traps of same not disturbed during the test, if the openings of the pipes on the roofs are plugged up tightly, if the main house trap is not unsealed (otherwise the oil will escape into the sewer), and if the handling of the oil has been done by an assistant, so that none adheres to the inspector—if all these conditions are carried out, the peppermint test is a most valuable test for the detection of any and all defects in plumbing. Another precaution to be taken is with regard to the rain leader. If the rain leader is not trapped, or if its trap is empty, the peppermint oil may escape from the pipes into the rain leader. Care must be taken, therefore, that the trap at the base of the rain leader be sealed; or, if no trap is existing, to close up the connection of the rain leader with the house drain; or, if this be impossible, to plug up the opening of the leader near the roof.
Instead of putting the oil into the opening of a pipe on the roof, it may be put through a fixture on the top floor of the house, although this is not so satisfactory.
Various appliances have been manufactured to make this test more easy and accurate. Of the English appliances, the Banner patent drain grenade, and Kemp's drain tester are worthy of mention. The former consists "of a thin glass vial charged with pungent and volatile chemicals. One of the grenades, when dropped down any suitable pipe, such as the soil pipe, breaks, or the grenade may be inserted through a trap into the drain, where it is exploded." (Taylor.) Kemp's drain tester consists of a glass tube containing a chemical with a strong odor; the tube is fitted with a glass cover, held in place by a string and a paper band. When the tester is thrown into the pipes and hot water poured after it, the paper band breaks, the spring opens the cover, and the contents of the tube fall into the drain.
Recently Dr. W. G. Hudson, an inspector in the Department of Health of New York, has invented a very ingenious "peppermint cartridge" for testing plumbing. The invention is, however, not yet manufactured, and is not on the market.
Infection and Disinfection
Disinfection is the destruction of the infective power of infectious material; or, in other words, disinfection is the destruction of the agents of infection.
An infectious material is one contaminated with germs of infection.
The germs of infection are organic microörganisms, vegetable and animal—protozoa and bacteria.
The germs of infection once being lodged within the body cause certain reactions producing specific pathological changes and a variety of groups of symptoms which we know by the specific names of infectious diseases, e. g., typhoid, typhus, etc.
Among the infectious diseases known to be due to specific germs are the following: typhoid, typhus, relapsing fevers, cholera, diphtheria, croup, tuberculosis, pneumonia, malaria, yellow fever, erysipelas,septicæmia, anthrax,tetanus, gonorrhea, etc.; and among the infectious diseases the germs of which have not as yet been discovered are the following: scarlet fever, measles, smallpox, syphilis, varicella, etc.
The part of the body and the organs in which thegerms first find their entrance, or which they specifically attack, vary with each disease; thus, the mucous membranes, skin, internal organs, secretions, and excretions are, severally, either portals of infection or the places where the infection shows itself the most.
The agents carrying the germs of infection from one person to the other may be the infected persons themselves, or anything which has come in contact with their bodies and its secretions and excretions; thus, the air, room, furniture, vessels, clothing, food and drink, also insects and vermin, may all be carriers of infection.
Sterilizationis the absolute destruction ofallorganic life, whether infectious or not; it is thereforemorethan disinfection, which destroys the germs of infection alone.
ADisinfectantis an agent which destroys germs of infection.
AGermicideis the same; an agent destroying germs.
AnInsecticideis an agent capable of destroying insects; it is not necessarily a disinfectant, nor is a disinfectant necessarily an insecticide.
AnAntisepticis a substance which inhibits and stops the growth of the bacteria of putrefaction and decomposition. A disinfectant is therefore an antiseptic, but an antiseptic may not be a disinfectant.
ADeodorantis a substance which neutralizes or destroys the unpleasant odors arising from matter undergoing putrefaction. A deodorant is not necessarily a disinfectant, nor is every disinfectant a deodorant.
The ideal disinfectant is one which, while capable of destroying the germs of disease, does not injure the bodies and material upon which the germs may be found; it must also be penetrating, harmless in handling, inexpensive, and reliable. The ideal disinfectant has not as yet been discovered.
For successful scientific disinfection it is necessary to know: (1) the nature of the specific germs of the disease; (2) the methods and agents of its spread and infection; (3) the places where the germs are most likely to be found; (4) the action of each disinfectant upon the germs; and (5) the best methods of applying the disinfectant to the materials infected with germs of disease.
Disinfection is not a routine, uniform, unscientific process; a disinfector must be conversant with the basic principles of disinfection, must make a thorough study of the scientific part of the subject, and moreover must be thoroughly imbued with the importance of his work, upon which the checking of the further spread of disease depends.
The physical disinfectants are sunlight, desiccation, and heat.
Sunlightis a good disinfectant provided the infected material or germs are directly exposed to the rays of the sun. Bacteria are killed within a short time, but spores need a long time, and some of them resist the action of the sun for an indefinite period. The disadvantages of sunlight as a disinfectant are its superficial action, its variability and uncertainty, and its slow action upon most germs of infection. Sunlight is a good adjunct to other methods of disinfection; it is most valuable in tuberculosis, and should be used wherever possible in conjunction with other physical or chemical methods of disinfection.[20]
Desiccationis a good means of disinfection, but can be applied only to very few objects; all bacteria need moisture for their existence and multiplication, hence absolute dryness acts as a good germicide. Meat and fish, certain cereals, and also fruit, when dried, become at the same time disinfected.
Heatis the best, most valuable, all-pervading, most available, and cheapest disinfectant. The various ways in which heat may be used for disinfection are burning, dry heat, boiling, and steam.
Burningis of course the best disinfectant, but it not only destroys the germs in the infected materials, but the materials themselves; its application is therefore limited to articles of little or no value, and to rags, rubbish, and refuse.
Dry Heat.—All life is destroyed when exposed toa dry heat of 150° C. for one hour, although most of the bacteria of infection are killed at a lower temperature and in shorter time. Dry heat is a good disinfectant for objects that can stand the heat without injury, but most objects, and especially textile fabrics, are injured by it.
Boiling.—Perhaps the best and most valuable disinfectant in existence is boiling, because it is always at command, is applicable to most materials and objects, is an absolutely safe sterilizer and disinfectant, and needs very little if any preparation and apparatus for its use. One half hour of boiling will destroy all life; and most bacteria can be killed at even a lower temperature. Subjection to a temperature of only 70° C. for half an hour suffices to kill the germs of cholera, tuberculosis, diphtheria, plague, etc. Boiling is especially applicable to textile fabrics and small objects, and can readily be done in the house where the infection exists, thus obviating the necessity of conveying the infected objects elsewhere, and perhaps for some distance, to be disinfected.
Steam.—Of all the physical disinfectants steam is the most valuable because it is very penetrating, reliable, and rapid; it kills all bacteria at once and all spores in a few minutes, and besides is applicable to a great number and many kinds of materials and objects. Steam is especially valuable for the disinfection of clothing, bedding, carpets, textile fabrics, mattresses, etc. Steam can be used in a small way, as well as invery large plants. The well-known Arnold sterilizers, used for the sterilization of milk, etc., afford an example of the use of steam in a small apparatus; while municipal authorities usually construct very large steam disinfecting plants. A steam disinfector is made of steel or of wrought iron, is usually cylindrical in shape, and is covered with felt, asbestos, etc. The disinfector has doors on one or both ends, and is fitted inside with rails upon which a specially constructed car can be slid in through one door and out through the other. The car is divided into several compartments, in which the infected articles are placed; when thus loaded it is run into the disinfector. The steam disinfectors may be fitted with thermometers, vacuum formers, steam jackets, etc.
Physical disinfectants, however valuable and efficient, cannot be employed in many places and for many materials infected with disease germs, and therefore chemicals have been sought to be used wherever physical disinfectants could not for one or more reasons be employed. Chemicals are used as disinfectants either in gaseous form or in solutions; the gaseous kinds are of especial value on account of their penetrating qualities, and are employed for the disinfection of rooms, holds of ships, etc. There are practically but two chemicals which are used in gaseousdisinfection, and these are sulphur dioxide and formaldehyde.
Sulphur Dioxide.—Sulphur dioxide (SO2) is a good surface disinfectant, and is very destructive to all animal life; it is one of the best insecticides we have, but its germicidal qualities are rather weak; it does not kill spores, and it penetrates only superficially. The main disadvantages of sulphur dioxide as a disinfectant are: (1) that it weakens textile fabrics; (2) blackens and bleaches all vegetable coloring matter; (3) tarnishes metal; and (4) is very injurious and dangerous to those handling it.
There are several methods of employing sulphur in the disinfection of rooms and objects, e. g., the pot, candle, liquid, and furnace methods.
In the pot methods crude sulphur, preferably ground, is used; it is placed in an iron pot and ignited by the aid of alcohol, and in the burning evolves the sulphur dioxide gas. About five pounds of sulphur are to be used for every 1,000 cubic feet of space. As moisture plays a very important part in developing the disinfecting properties of sulphur dioxide, the anhydrous gas being inactive as a disinfectant, it is advisable to place the pot in a large pan filled with water, so that the evaporated water may render the gas active. For the purpose of destroying all insects in a room an exposure of about two hours to the gas are necessary, while for the destruction of bacteria an exposure of at least fifteen to sixteen hours is required.
In the application of disinfection with sulphur dioxide, as with any other gas, it must not be forgotten that gases very readily escape through the many apertures, cracks, and openings in the room and through the slits near doors and windows; and in order to confine the gas in the room it is absolutely necessary to hermetically close all such apertures, cracks, etc., before generating the gaseous disinfectant. The closing of the openings, etc., is done by the pasting over these strips of gummed paper, an important procedure which must not be overlooked, and which must be carried out in a conscientious manner.
When sulphur is used in candle form the expense is considerably increased without any additional efficiency. When a solution of sulphurous acid is employed, exposure of the liquid to the air suffices to disengage the sulphur dioxide necessary for disinfection. The quantity of the solution needed is double that of the crude drug, i. e., ten pounds for every 1,000 cubic feet of room space.
Formaldehyde.—At present the tendency is to employ formaldehyde gas instead of the sulphur so popular some time ago. The advantages of formaldehyde over sulphur are: (1) its nonpoisonous nature; (2) it is a very good germicide; (3) it has no injurious effect upon fabrics and objects; (4) it does not change colors; and (5) it can be used for the disinfection of rooms with the richest hangings, bric-a-brac, etc., without danger to these. Formaldehyde is evolved eitherfrom paraform or from the liquid formalin; formerly it was also obtained by the action of wood-alcohol vapor upon red-hot platinum.
Formaldehyde gas has not very great penetrating power; it is not an insecticide, but kills bacteria in a very short time, and spores in an hour or two.
Paraform (polymerized formaldehyde; trioxymethylene) is sold in pastilles or in powder form, and when heated reverts again to formaldehyde; it must not burn, for no gas is evolved when the heating reaches the stage of burning. The lamps used for disinfection with paraform are very simple in construction, but as the evolution of the gas is very uncertain, this method is used only for small places, and it demands two ounces of paraform for every 1,000 cubic feet of space, with an exposure of twelve hours. Formaldehyde is also used in the form of the liquid formalin either by spraying and sprinkling the objects to be disinfected with the liquid, and then placing them in a tightly covered box, so that they are disinfected by the evolution of the gas, or by wetting sheets with a formalin solution and letting them hang in the room to be disinfected.
The method most frequently employed is to generate the formaldehyde in generators, retorts, and in the so-called autoclaves, and then to force it through apertures into the room.
Of the other gaseous disinfectants used, hydrocyanic acid and chlorine may be mentioned, although theyare very rarely used because of their irritating and poisonous character.
Hydrocyanic Acidis frequently used as an insecticide in ships, mills, and greenhouses, but its germicidal power is weak.
Chlorineis a good germicide, but is very irritating, poisonous, and dangerous to handle; it is evolved by the decomposition of chlorinated lime with sulphuric acid. Chlorine gas is very injurious to objects, materials, and colors, and its use is therefore very limited.
Solution of chemicals, in order to be effective, must be used generously, in concentrated form, for a prolonged time, and, if possible, warm or hot. The strength of the solution must depend upon the work to be performed and the materials used. The method of applying the solution differs. It may consist in immersing and soaking the infected object in the solution; or the solution may be applied as a wash to surfaces, or used in the form of sprays, atomizers, etc. The most important solutions of chemicals and the ones most frequently employed are those of carbolic acid and bichloride of mercury.
Carbolic Acid.—In the strength of 1:15,000 carbolic acid prevents decomposition; a strength of 1:1,000 is needed for the destruction of bacteria, and a three per cent to five per cent solution for the destruction of spores. Carbolic acid is used, as a rule, in two per cent to five per cent solutions, and is a very good disinfectant for washing floors, walls, ceilings, woodwork, small objects, etc. The cresols, creolin, lysol, and other solutions of the cresols are more germicidal than carbolic acid, and are sometimes used for the same purposes.
Bichloride of Mercury(corrosive sublimate) is a potent poison and a powerful germicide; in solutions of 1:15,000 it stops decomposition; in solutions of 1:2,000 it kills bacteria in two hours; and in a strength of 1:500 it acts very quickly as a germicide for all bacteria, and even for spores. Corrosive sublimate dissolves in sixteen parts of cold and three parts of boiling water, but for disinfecting purposes it should be colored so that it may not be inadvertently used for other purposes, as the normal solutions are colorless and may accidentally be used internally. The action of the bichloride is increased by heat.
Formalinis a forty per cent solution of formaldehyde gas, and its uses and methods of employment have already been considered.
Potassium Permanganateis a good germicide, and weak solutions of it are sufficient to kill some bacteria, but the objections against its use are that solutions of potassium permanganate become inert and decompose on coming in contact with any organic matter. Furthermore, the chemical would be too expensive for disinfecting purposes.
Ferrous Sulphate(copperas) was formerly very extensively used for disinfecting purposes, but is not so used at present, owing to the fact that it has been learned that the germicidal power of this material is very slight, and that its value depends mostly upon its deodorizing power, for which reason it is used on excreta in privy vaults, etc.
Lime.—When carbonate of lime is calcined the product is common lime, which, upon being mixed with water, produces slaked lime; when to the latter considerable water is added, the product is milk of lime, and also whitewash. Whitewash is often used to disinfect walls and ceilings of cellars as well as of rooms; milk of lime is used to disinfect excreta in privy vaults, school sinks, etc. Whenever lime is used for disinfecting excreta it should be used generously, and be thoroughly mixed with the material to be disinfected.
Practical disinfection is not a routine, uniform, and thoughtless process, but demands the detailed, conscientious application of scientific data gained by research and laboratory experiments. Disinfection to be thorough and successful cannot be applied to all objects, material, and diseases in like manner, but must be adjusted to the needs of every case, and must be performed conscientiously. Placing a sulphur candle in a room, spilling a quart of carbolic acid or a coupleof pounds of chlorinated lime upon the floors or objects, may be regarded as disinfection by laymen, but in municipal disinfection the disinfector must be thoroughly versed in the science of disinfection and be prepared to apply its dictates to practice.
Rooms.—In the disinfection of rooms the disinfectant used varies with the part of the room as well as with the character of the room. When a gaseous disinfectant is to be used sulphur dioxide or formaldehyde is employed, with the tendency lately to replace the former by the latter. Wherever there are delicate furnishings, tapestries, etc., sulphur cannot be used on account of its destructive character; when sulphur is employed it is, as a rule, in the poorer class of tenement houses where there is very little of value to be injured by the gas, and where the sulphur is of additional value as an insecticide. Whenever gaseous disinfectants are used the principal work of the disinfector is in the closing up of the cracks, apertures, holes, and all openings from the room to the outer air, as otherwise the gaseous disinfectant will escape. The closing up of the open spaces is accomplished usually by means of gummed-paper strips, which are obtainable in rolls and need only to be moistened and applied to the cracks, etc. Openings into chimneys, ventilators, transoms, and the like must not be overlooked by the disinfector. After the openings have already been closed up the disinfectant is applied and the disinfector quickly leaves the room, being careful to close the doorbehind him and to paste gummed paper over the door cracks. The room must be left closed for at least twelve, or better, for twenty-four hours, when it should be opened and well aired.
Walls and Ceilingsof rooms should be disinfected by scrubbing with a solution of corrosive sublimate or carbolic acid; and in cases of tuberculosis and wherever there is fear of infection adhering to the walls and ceilings, all paper, kalsomine, or paint should be scraped off and new paper, kalsomine, or paint applied.
Metal Furnitureshould first be scrubbed and washed with hot soapsuds, and then a solution of formalin, carbolic acid, or bichloride applied to the surfaces and cracks.
Wooden Bedsteadsshould be washed with a disinfecting solution and subjected to a gaseous disinfectant in order that all cracks and openings be penetrated and all insects be destroyed.
Bedding, Mattresses, Pillows, Quilts, etc., should be packed in clean sheets moistened with a five per cent solution of formalin, and then carted away to be thoroughly disinfected by steam in a special apparatus.
Sheets, Small Linen and Cotton Objects, Tablecloths, etc., should be soaked in a carbolic-acid solution and then boiled.
Rubbish, Rags, and Objects of Little Valuefound in an infected room are best burned.
Glassware and Chinawareshould either be boiled or subjected to dry heat.
Carpetsshould first be subjected to a gaseous disinfectant, and then be wrapped in sheets wetted with formalin solution and sent to be steamed. Spots and stains in carpets should be thoroughly washed before being steamed, as the latter fixes the stains.
Woolen Goods and Woolare injured by being steamed, and hence may be best disinfected by formalin solutions or by formaldehyde gas.
Booksare very difficult to disinfect, especially such books as were handled by the patient, on account of the difficulty of getting the disinfectant to act on every page of the book. The only way to disinfect books is to hang them up so that the leaves are all open, and then to subject them to the action of formaldehyde gas for twelve hours. Another method sometimes employed is to sprinkle a five per cent solution of formalin on every other page of the book; but this is rather a slow process.[21]
Stablesneed careful and thorough disinfection. All manure, hay, feed, etc., should be collected, soaked in oil, and burned. The walls, ceilings, and floors should then be washed with a strong disinfecting solution applied with a hose; all cracks are to be carefully cleaned and washed. The solution to be used is preferably lysol, creolin, or carbolic acid. After thisthe whole premises should be fumigated with sulphur or formaldehyde, and then the stable left open for a week to be aired and dried, after which all surfaces should be freshly and thickly kalsomined.
Foodcannot be very well disinfected unless it can be subjected to boiling. When this is impossible it should be burned.
Cadaversof infected persons ought to be cremated, but as this is not always practicable, the next best way is to properly wash the surface of the body with a formalin or other disinfecting solution, and then to have the body embalmed, thus disinfecting it internally and externally.
Disinfectors, coming often as they do in contact with infected materials and persons, should know how to disinfect their ownpersons and clothing. So far as clothing is concerned the rule should be that those handling infected materials have a special uniform[22]which is cleaned and disinfected after the day's work is done. The hands should receive careful attention, as otherwise the disinfector may carry infection to his home. The best method of disinfecting the hands is to thoroughly wash and scrub them for five minutes with green soap, brush, and water, then immerse first for one minute in alcohol, and then in a hot 1:1,000 bichloride solution. The nails should be carefully scrubbed and cleaned.
FOOTNOTES:[20]Blankets, carpets, and rugs should be frequently hung out on the line in the bright sunlight.—Editor.[21]Unless books are valuable it is best to burn them. Paper will hold germs for several weeks. Recent experiments show that certain pathogenic bacteria, including the bacilli of diphtheria, will live for twenty-eight days on paper money.—Editor.[22]Duck, linen, or any washable material will do.—Editor.
[20]Blankets, carpets, and rugs should be frequently hung out on the line in the bright sunlight.—Editor.
[20]Blankets, carpets, and rugs should be frequently hung out on the line in the bright sunlight.—Editor.
[21]Unless books are valuable it is best to burn them. Paper will hold germs for several weeks. Recent experiments show that certain pathogenic bacteria, including the bacilli of diphtheria, will live for twenty-eight days on paper money.—Editor.
[21]Unless books are valuable it is best to burn them. Paper will hold germs for several weeks. Recent experiments show that certain pathogenic bacteria, including the bacilli of diphtheria, will live for twenty-eight days on paper money.—Editor.
[22]Duck, linen, or any washable material will do.—Editor.
[22]Duck, linen, or any washable material will do.—Editor.
Cost of Conveyed Heating Systems[23]
In our variable climate, with its sudden and extreme changes in temperature, the matter of heating and ventilation demands the serious attention of all houseowners and housebuilders.
The most common method of heating the modern dwelling is by a hot-air furnace in the cellar, with sheet-metal ducts for conveying the heated air to the various rooms. The advantages of a furnace are cheapness of installation and, in moderate weather, a plentiful supply of warm but very dry air. The disadvantages are the cost of fuel consumed, the liability of the furnace to give off gas under certain conditions, and the inability to heat certain rooms with some combinations of temperature and wind. The cost of installing a furnace and its proper ducts in a ten-room house is from $250 to $350; such a furnace will consume fifteen to twenty tons of anthracite coal in a season in the latitude of New York City. The hot-air system works better with compact square houses than with long, "rangy" structures. For ahouse fully exposed to the northwest blasts, one of the other systems should be considered.
Perhaps the next most popular arrangement is a sectional cast-iron hot-water heater, with a system of piping to and from radiators in the rooms to be heated. Hot-water heating has many advantages, some of which are the warmth of the radiators almost as soon as the fire is started and after the fire is out; the moderation of the heat; the freedom from sudden changes in amount of heat radiated; the absence of noise in operation, and the low cost in fuel consumed. Some of the disadvantages are the high cost of installation and the lack of easy or ready control (as the hot water cools slowly, and shutting the radiator valves often puts the whole system out of adjustment). A hot-water heating plant for a ten-room house will cost $400 to $600, according to the type of boiler; the corresponding fuel consumption will be twelve to sixteen tons of coal per season.
The third system in common use is by steam through radiators or coils of pipe connected to a cast-iron sectional boiler, or a steel tubular boiler set in brickwork. This system is in use in practically all large buildings; and its advantages are the moderate cost of installation (as the single-pipe system is very efficient and the pressure to be provided against in connections and fittings is slight); the ease of control (since any good equipment will furnish steam in twenty minutes from the time the fire isstarted, and fresh coal thrown upon the fire with a closing of dampers will stop the steam supply in five minutes—or any radiator may be turned on or off in an instant); the ability to heat the entire house in any weather, or any single room or suite of rooms only; and, lastly, the moderate fuel consumption.
The disadvantages of steam heat are no heat, or next to none, without the production of steam, involving some noise in operation, and danger of explosion. Steam equipment in a ten-room house will cost $300 to $550, the lower price being for a sectional boiler and the higher for a steel boiler set in brickwork. The fuel consumed will be from ten to fifteen tons per season.
Both hot-water and steam systems require supplementary means of ventilation. Placing the radiators in exposed places, as beneath windows, in the main hall near the front door, in northwest corners and near outside walls, will insure some circulation of air; and, if one or two open fire places be provided on each floor, there will be, in most cases, sufficient ventilation without the use of special ducts.
FOOTNOTES:[23]SeeChapter IIIfor full discussion.—Editor.
[23]SeeChapter IIIfor full discussion.—Editor.
[23]SeeChapter IIIfor full discussion.—Editor.
TRANSCRIBER'S NOTE.1) Figure numbers (which aren't contiguous) have been preserved.2) Part III, Chapter V. Thetableshowing thickness of vitrified pipes reads:4 inches diameter1/2inch thick6 " "1/16" "8 " "3/4" "12 " "1 " "The thickness figure for the 6 inch pipe has been left as originally printed, but probably is incorrect (logically it should be somewhere between 1/2 inch and 3/4 inch thick).3) A larger version offigure 1can be viewed by clicking on the figure image.
1) Figure numbers (which aren't contiguous) have been preserved.
2) Part III, Chapter V. Thetableshowing thickness of vitrified pipes reads:
The thickness figure for the 6 inch pipe has been left as originally printed, but probably is incorrect (logically it should be somewhere between 1/2 inch and 3/4 inch thick).
3) A larger version offigure 1can be viewed by clicking on the figure image.