Theeggsof bees are of a lengthened oval shape, with a slight curvature, and of a blueish white colour: they are composed of a thin membrane, filled with a whitish liquor, and being besmeared, at the time of laying, with a glutinous substance, they adhere to the bases of the cells, where they stand upright, and remain unchanged in figure or situation for four days; they are then hatched, the bottom of each cell presenting to view a small white worm or maggot, with several ventral rings. On its growing, so as to touch the opposite angle of the cell, it coils itself up in the shape of a semicircle, and floats in a whitish transparent fluid, by which it is probably nourished and enlarged in its dimensions, till the two extremities touch one another and form a ring. In this state it obtains indifferently the name ofworm,larva,maggotorgrub, and is fed with farina or bee-bread, to receive thewelcome morsels of which, it eagerly opens its two lateral pincers. It is the opinion of Reaumur and others that farina does not constitute the sole food of the bee-larvæ, but that it consists of a mixture of farina with a certain proportion of honey and water, partly digested in the stomachs of thenursing[B]bees, the relative proportions of honey and farina varying according to the age of the young. It is insipid whilst they are very young, and becomes sweeter and more acescent the nearer they approach maturity.
[B]For an account of these see Part II. “Nature and Origin of Bees-wax.”
[B]For an account of these see Part II. “Nature and Origin of Bees-wax.”
Schirach imagined that the semen of the male was the food of the larvæ: Bonnet entertained the same opinion, founded upon his observation that the drones, in going across the combs, pass by those cells that contain no maggots, but stop at those which do, giving a knock with the tail at them three times. Upon this Mr. Hunter observes thatthreeis a famous number! and we know very well that the development is complete in hives that do not contain a single drone.
The larva having derived support in the manner above described, for four, five or six days, according to the season[C], continues to increase during that period, till it occupies the wholebreadth and nearly the length of the cell. The nursing-bees now seal up the cell, with a lightbrowncover, externally more or lessconvex, (the cap of a drone-cell is more convex than that of a worker,) and thus differing from that of a honey-cell, which ispalerand somewhatconcave. It is no sooner perfectly inclosed than it begins to labour, alternately extending and shortening its body, whilst it lines the cell by spinning round itself, after the manner of the silk-worm, a whitish silky film orcocoon, by which it is encased, as it were, in a pod or pellicle. “The silken thread employed in forming this covering, proceeds from the middle part of the under lip, and is in fact composed of two threads gummed together as they issue from the two adjoining orifices of the spinner[D].” When it has undergone this change, it has usually borne the name ofnymphorpupa.
[C]Schirach asserts, that in cool weather the development takes place two days later than in warm.
[C]Schirach asserts, that in cool weather the development takes place two days later than in warm.
[D]Kirby and Spence.
[D]Kirby and Spence.
It may appear somewhat extraordinary that a creature which takes its food so voraciously prior to its assuming the pupa state, should live so long without food, after that assumption: but a little consideration will perhaps abate our wonder; for when the insect has attained the state of pupa, it has arrived at its full growth, and probably the nutriment, taken so greedily, is to serve as a store for developing the perfect insect.
The bee, when in its pupa state, has been denominated, but improperly,chrysalisandaurelia; for these, as the words import, are of a golden yellow colour and they are crustaceous; whilst the bee-nymphs appear of a pale, dull colour, and readily yield to the touch. The golden splendour, to which the above names owe their origin, is peculiar to a certain species only of the papilio or butterfly tribe. The higher class of entomologists, following the example of Linnæus, apply the term pupa to this state of the embryo bee, a term which signifies that the insect is enveloped in swaddling clothes like an infant, a very apt comparison. Kirby and Spence have remarked that it exhibits no unapt representation of an Egyptian mummy. Huber’s translator says that naturalists of the present day incline to use the name of larva, in all cases where the worm is not seen under its final aspect.
Theworking bee-nymphspins its cocoon in thirty-six hours. After passing a certain period in this state of preparation for a new existence, it gradually undergoes so great a change, as not to wear a vestige of its previous form, but becomes armed with a firmer mail, and with scales of a dark brown hue, fringed with light hairs. On its belly six rings become distinguishable, which by slipping one over another, enable the bee to shorten its body whenever it has occasion to do so; its breastbecomes entirely covered with gray feather-like hairs, which as the insect advances in age assume a reddish hue.
When it has reached the twenty-first day of its existence, counting from the moment the egg is laid, it quits the exuviæ of the pupa state, comes forth a perfect winged insect, and is termed animago. The cocoon or pellicle is left behind and forms a closely attached and exact lining to the cell in which it was spun: by this means the breeding-cells become smaller, and their partitions stronger, the oftener they change their tenants; and when they have become so much diminished in size, by this succession of pellicles or linings, as not to admit of the perfect development of full-sized bees, they are converted into receptacles for honey.
Such are the respective stages of the working bee; those of the royal bee are as follow. She passes three days in the egg and is five a worm; the workers then close her cell[E], and she immediately begins spinning the cocoon, which occupies her twenty-four hours. On the tenth and eleventh days, as if exhausted by her labour, she remains incomplete repose, and even sixteen hours of the twelfth. Then she passes four days and one-third as a nymph. It is on the sixteenth day therefore that the perfect state of queen is attained.
[E]Instead of being nearly horizontal like the other brood-cells, those of the queens are perpendicular and considerably larger; in form they are oblong spheroids, tapering gradually downwards; their mouths being always at the bottom.VidePart II. “Architecture of Bees.”
[E]Instead of being nearly horizontal like the other brood-cells, those of the queens are perpendicular and considerably larger; in form they are oblong spheroids, tapering gradually downwards; their mouths being always at the bottom.VidePart II. “Architecture of Bees.”
The male passes three days in the egg, six and a half as a worm, and metamorphoses into a fly on the twenty-fourth or twenty-fifth day, after the egg is laid. The great epoch of laying the eggs of males may be accelerated or retarded by the state of the atmosphere promoting or impeding the collections of the bees. Thedevelopmentofeachspecies likewise proceeds more slowly when the colonies are weak or the air cool, and when the weather is very cold it is entirely suspended. Mr. Hunter has observed that the eggs, maggots and nymphs, all require a heat above 70° of Fahrenheit for their evolution. The influence of temperature in developing embryo insects is very strongly illustrated in the case of thePapilio Machaon. According to Messrs. Kirby and Spence, “if the caterpillar of thePapilio Machaonbecomes a pupa in July, the butterfly will appear in thirteen days; if it do not become a pupa till September, the butterfly will not make its appearance until the following June.” And this is the case, say they, with a vast number of other insects. Reaumur proved the influence of temperature, by effecting the regular changes in a hot-house, during the month of January. He alsoproved it conversely, by having recourse to an ice-house in summer, which enabled him to retard the development for a whole year.
“The larvæ of bees, though without feet, are not always without motion. They advance from their first station at the bottom of the cell, in a spiral direction: this movement, for the first three days, is so slow as to be scarcely perceptible; but after that it is more easily discerned. The animal now makes two entire revolutions, in about an hour and three quarters; and when the period of its metamorphosis arrives, it is scarcely more than two lines from the mouth of the cell. Its attitude, which is always the same, is a strong curve. This occasions the inhabitant of a horizontal cell to be always perpendicular to the horizon, and that of a vertical one to be parallel with it[F].”
[F]Kirby and Spence.
[F]Kirby and Spence.
The young bees break their envelope with their teeth, and, assisted at first by the working-bees, proceed to cleanse themselves from the moisture and exuviæ with which they were surrounded: this operation being completed, they begin to exercise their intended functions, and in a few minutes are gathering provision in the fields, loading “in life’s first hour the hollow’d thigh.” M. Maraldi assures us that he has “seen bees loaded with two large balls of wax, returning to the hive,the same day they became bees.” “We have seen her,“ says Wildman, ”the same day issue from the cell, and return from the fields loaded with wax, like the rest.“ The error of Maraldi and Wildman in using the term wax instead of pollen, does not at all affect the accuracy of their observations. As soon as the young insect has been licked clean and regaled with a little honey by its companions, the latter clean out the cell, preparatory to its being re-occupied by a new tenant or with honey.
With respect to the cocoons spun by the different larvæ, both workers and drones spincomplete cocoons, or inclose themselves on every side: royal larvæ construct onlyimperfect cocoons, open behind, and enveloping only the head, thorax, and first ring of the abdomen; and Huber concludes, without any hesitation, that the final cause of their forming only incomplete cocoons is that they may thus be exposed to the mortal sting of the first hatched queen, whose instinct leads her instantly to seek the destruction of those who would soon become her rivals. If the royal larvæ spun complete cocoons, the stings of the queens regnant might be so entangled in their silken meshes, as to be with difficulty disengaged from them. “Such,” says Huber, “is theinstinctive enmity of young queens to each other, that I have seen one of them, immediately on its emergencefrom the cell, rush to those of its sisters, and tear to pieces even the imperfect larvæ.”
A curious circumstance occurs with respect to the hatching of the queen-bee. When the pupa or nymph is about to change into the perfect insect, the bees render the cover of the cell thinner, by gnawing away part of the wax; and with so much nicety do they perform this operation that the cover at last becomes pellucid, owing to its extreme thinness, thus facilitating the exit of the fly. After the transformation is complete, the young queens would, in common course, immediately emerge from their cells, as workers and drones do; but the former always keep the royal infants prisoners for some days, supplying them in the mean time with honey for food, a small hole being made in the door of each cell, through which the confined bee extends its proboscis to receive it. Theroyal prisonerscontinually utter a kind of song, the modulations of which are said to vary.VideChapterXV. Huber heard a young princess in her cell emit a very distinct sound or clacking, consisting of several monotonous notes in rapid succession, and he supposes the working bees to ascertain, by the loudness of these tones, the ripeness of their queens. Huber has suggested that the cause of this temporary imprisonment may possibly be to enablethe young queens to fly away at the instant they are liberated.
The queen is a good deal harassed by the other bees, on her liberation. This has been attributed to their wishing to impel her to go off with a swarm as soon as possible, but this notion is probably erroneous; it certainly is so if Huber be correct, in saying that the swarms are always accompanied by the older queens. The queen has the power of instantly putting a stop to their worrying, by uttering a peculiar noise, which has been called thevoice of sovereignty. Bonner however declares that he never could observe in the queen anything like an exercise of sovereignty. But Huber’s statement was not founded upon a solitary instance; he heard the sound on various occasions, and witnessed the striking effect which it always produced. On one occasion, a queen having escaped the vigilance of her guards and sprung from the cell, was, on her approach to the royal embryos, pulled, bitten and chased by the other bees. But standing with her thorax against a comb and crossing her wings upon her back, keeping them in motion, but not unfolding them, she emitted a particular sound, when the bees became, as it were, paralysed and remained motionless. Taking advantage of this dread, she rushed to the royal cells; but the sound having ceased asshe prepared to ascend, the guardians of the cells instantly took courage and fairly drove her away. This voice of sovereignty, as it has been called, resembles that which is made by young queens before they are liberated from their cells; it is a very distinct kind of clicking, composed of many notes in the same key, which follow each other rapidly. The sound accompanied by the attitude just described, always produces a paralysing effect upon the bees.
Bees, when deprived of their queen, have the power of selecting one or more grubs of workers, and converting them into queens. To effect this, each of the promoted grubs has a royal cell or cradle formed for it, by having three contiguous common cells thrown into one; two of the three grubs that occupy those cells are sacrificed, and the remaining one is liberally fed with royal jelly. Thisroyal jellyis a pungent food prepared by the working bees, exclusively for the purpose of feeding such of the larvæ as are destined to become candidates for the honours of royalty, whether it be their lot to assume them or not. It is more stimulating than the food of ordinary bees, has not the same mawkish taste, and is evidently acescent. The royal larvæ are supplied with it rather profusely, and there is always some of it left in the cell, after their transformation. Schirach, who was secretary to the Apiarian Society in UpperLusatia and vicar of Little Bautzen, may be regarded as the discoverer, or rather as the promulgator of this fact; and his experiments, which were also frequently repeated by other members of the Lusatian Society, have been amply confirmed by those of Huber and Bonner. Mr. Keys was a violent sceptic upon this subject (See his communications to the Bath Society); so likewise was Mr. Hunter (VidePhilosophical Transactions). But notwithstanding the criticisms and ridicule of the former, and the sarcastic strictures of the latter, the sex of workers is now established beyond all doubt. The fact is said to have been known long before Schirach wrote: M. Vogel and Signor Monticelli, a Neapolitan professor, have both asserted this; the former states it to have been known upwards of fifty years, the latter a much longer period; he says that the Greeks and Turks in the Ionian Islands are well acquainted with it, and that in the little Sicilian island of Favignana, the art ofproducing queenshas been known from very remote antiquity; he even thinks that it was no secret to the Greeks and Romans, though, as Messrs. Kirby and Spence observe, had the practice been common, it would surely have been noticed by Aristotle or Pliny. The result of Schirach’s experiments was that all workers were originally females, but that their organs of generation were obliterated, merely because the germs ofthem were not developed; their being fed and treated in a particular manner, in their infancy or worm state, being necessary, in his opinion, to effect that development. Subsequent experiments conducted under the auspices of Huber, have shown, however, that the organs are not entirely obliterated.
Huber has been regarded as a man of a very vivid imagination; and as his eye-sight was defective, he was obliged to rely very much upon the reports of Francis Burnens, his assistant; on both which accounts other apiarian writers have thrown some distrust upon his statements. Huish may be reckoned among the number; he has also made some observations upon Schirach’s theory, and treated it with much petulance and ridicule. In answer to him and all other cavillers, I shall detail an experiment made by Mr. Dunbar, in his mirror hive. In July, when the hive had become filled with comb and bees, and well stored with honey; and when the queen was very fertile, laying a hundred eggs a-day, Mr. D. opened the hive and took her majesty away. The bees laboured for eighteen hours before they appeared to miss her; but no sooner was the loss discovered than all was agitation and tumult; and they rushed in crowds to the door, as if swarming. On the following morning he observed that they had founded five queen cells, in the usual way under such circumstances;and in the course of the same afternoon, four more were founded, in a part of the comb where there were only eggs a day or two old. On the fourteenth day from the old queen’s removal, a young queen emerged and proceeded towards the other royal cells, evidently with a murderous intent. She was immediately pulled away by the workers, with violence, and this conduct on their part was repeated as often as the queen renewed her destructive purpose. At every repulse she appeared sulky, and criedpeep peep, one of the unhatched queens responding, but in a somewhat hoarser tone. (This circumstance affords an explanation of the two different sounds which are heard, prior to the issuing of second swarms.) On the afternoon of the same day, a second queen was hatched; she immediately buried herself in a cluster of bees. Next morning Mr. D. observed a hot pursuit of the younger queen by the elder, but being called away, on his return half an hour afterwards, the former was dying on the floor, no doubt the victim of the other. Huber has stated that these artificial queens are mute; but the circumstance noticed by Mr. Dunbar of the two queens, just referred to, having answered each other, disproves that statement. Contrary also to the experience of Huber, Mr. D. found that the cells of artificial queens were surrounded by a guard. I have just adverted to the protectionwhich they afforded to the royal cells, when assailed by the first hatched queen.
Thatthe working bees are femalesis clear from the circumstance of their being known occasionally to lay eggs. This fact was first noticed by Riem, and was afterwards confirmed by the experiments of Huber, whose assistant, on one occasion seized a fertile worker in the very act of laying. It is a remarkable fact that thesefertile workersnever lay any butdrones’eggs. This uninterrupted laying of drones’ eggs was noticed by the Lusatian observers, as well as by the naturalist of the Palatinate. Bonnet, on referring to this fact, supposes there must have been small queens mixed with the workers upon which the experiments were made, whose office it was to lay male eggs inallhives; for neither he nor the before-named observers imagined that the workers were ever fertile, though from the oft repeated experiments, just alluded to, they must have regarded them as females. Probably the fertility of these workers is occasioned by some royal jelly being casually dropped into their cells, when grubs, as they uniformly issue from cells adjoining those inhabited by grubs, that have been raised from the plebeian to the royal rank; of course therefore they are never found in any hives but those which have had the misfortune to lose their queen. Fertile workers appear smaller in the belly and more slender in the bodythan sterile workers, and this is the only external difference between them.
If any further proof were required to establish the opinion that working bees are females, the question has been set at rest for ever, bythe dissections of Miss Jurine, daughter of the distinguished naturalist of Geneva: what had eluded the scalpel and the microscope of that penetrating and indefatigable naturalist Swammerdam, was reserved for the still finer hand and more dexterous dissection of a lady. Miss Jurine, by adopting a particular method of preparing the object to be examined, brought into view the rudiments of the ovaria of the common working bee: her examinations were several times repeated, and always with success: in form, situation and structure, they were found to be perfectly analogous to those of the queen-bee, excepting that no ova could be distinguished in them. M. Cuvier, however, thinks that he has observed minute chaplets in common bees, resembling those in the oviducts of queens; an additional confirmation, if any were wanted, of the opinion that workers are females whose organization is not developed. Miss Jurine undertook the delicate task to which I have just referred, at the request of M. Huber, who speaks of her as a young lady who had devoted her time and the liberal gifts of nature to similar studies, and says that she already rivalled Lyonnet and Merian; butadds, “we had soon to deplore her loss.” The research was first made to ascertain whether black bees, which, when they appear in a hive, are much persecuted, were exposed to this persecution in consequence of their sex exciting the jealousy of the queen. The success of the investigation induced this accomplished young lady to extend her dissection to the common workers, which was crowned with a result equally gratifying. Parallel instances have been observed with regard to the humble-bee, the wasp and the ant, amongst which, those that have usually been called neuters are found to be females, and when fertile, they, like the fertile workers in a bee-hive, produce males universally.
Having now traced these insects through their regular stages of egg, larva, nymph, until they become perfect bees, and having noticed the facts which show the working bees to be females, I shall advert to the more intricate and mysterious business ofImpregnation. This is a subject which was long involved in obscurity, and which indeed is still clouded by some uncertainty. Schirach and Bonner stoutly denied the necessity of sexual intercourse between the queen and the drones, considering the former as a mother and yet a virgin, and Swammerdam was of the same opinion; he ascribes impregnation to a vivifying seminal aura, which is exhaled from the drones and penetratesthe body of the queen. This opinion arose from his observing a very strong odour to be exhaled, at certain times, from the drones; “Hanc sententiam ratam habuit, quia organa apum propagini servientia, sexus utriusque, ritè dissecta, inter se ita disparia videbantur, ut congressus ne fieri quidem ullo pacto posset.” His opinion with respect to the vivifying influence of the seminal aura also accounted satisfactorily, to his own mind, for there being such a prodigious number of drones, as, in proportion to their number, would of course be the intensity of their peculiar odour. Reaumur very successfully combated this fanciful doctrine, and Huber has confuted it by direct experiment. Reaumur inclined to the opinion that there was a sexual intercourse, though his experiments left that question undecided. Arthur Dobbs, Esq. has given it as his opinion that the queen’s eggs were impregnated by coition with the drones, and that a renewal of the intercourse was unnecessary. He however thought that she had intercourse with several, instead of with one only, in order that there might be a sufficient deposition of sperm to impregnate all her eggs. About the beginning of the last century, Maraldi broached another hypothesis; he imagined that the eggs were fecundated by the drones, after the queen had deposited them in the cells, similarly to what takes place in the fecundationof fish-spawn. In 1777 that ingenious naturalist Mr. Debraw, who was apothecary to Addenbroke’s Hospital at Cambridge, also adopted this opinion; and even so late as the year 1817 Huish has supported the same doctrine, and I believe does so at the present time. Debraw thought he had discovered the prolific fluid of the drones, in the brood-cells, which fertilizing the eggs caused them to produce larvæ. Huber repeated the experiments of Debraw, and at first gave him credit for the reality of the discovery; but further and more minute observation convinced him that it was illusory, and that what he, as well as Debraw had taken for seminal fluid, was nothing more than light reflected from the bottoms of the cells, when illuminated by the sun’s rays. Moreover, it did not escape the acute mind of Huber, that eggs were laid and larvæ hatched, when there were no drones in existence, viz. between the months of September and April. The two hypotheses just mentioned, accounted satisfactorily, to their supporters, for the prodigious disproportion in the number of the sexes. But Huber made the experiment of confining the queen and rigidly excluding every male from a hive; nay more, he carefully examined every comb, and satisfied himself that there was neither male nymph nor worm present; and lest it should be supposed that the fertilizing fluid might be imported from otherhives, he totally confined the bees, on two occasions, and still the eggs were prolific; which proves clearly that their fertility must have depended upon the previous impregnation of the queen. The analogy of wasps is indeed admitted, by Huish, to discountenance the opinion which he entertains in common with Maraldi and Debraw. The queen wasp alone, survives the winter, and deposits her first eggs in the ensuing spring in combs of her own construction. Here then impregnation must have taken place in the preceding autumn, whilst the eggs were in the ovaria. It was the opinion of Hattorf, Schirach, and probably also of Bonner, that the queen-bee impregnated herself; but this opinion is too extravagant to require serious refutation: it arose probably, from their making experiments upon queens taken indiscriminately from the hives, and which had previously been impregnated. This no doubt misled Debraw, who, without knowing it, had chosen for experiment some queens that had had commerce with the males. The experiments of Huber were made upon virgin-queens, with whose history he was acquainted from the moment of their leaving their cells. In the course of his experiments he found that the queens were never impregnated, so long as they remained in the interior of the hive; but thatimpregnation always takes place in the open air, at a time when theheat has induced the drones to issue from the hive; on which occasions, the queen soars high in the air, love being the motive for the only distant journey she ever takes. “The rencontre and copulation of the queen with the drone take place exterior to the hive,” says Lombard, “and whilst they are on the wing.” They are similarly constituted with the whole family of flies. A corresponding circumstance may also be noted with respect to the queen-ant; and Bonnet, in hisContemplations de la Nature, has observed thatsheis always impregnated whilst she is on the wing. The dragon-flies copulate as they fly through the air, in which state they have the appearance of a double animal.
"When noon-tide Sirius glares on high,Young Love ascends the glowing sky,From vein to vein swift shoots prolific fire,And thrills each insect fibre with desire.Thence, Nature, to fulfil thy prime decree,Wheels round, in wanton rings, the courtier bee;Now shyly distant, now with bolden’d air.He woos and wins the all-complying fair:Through fields of ether, veil’d in vap’ry gloom,They seek, with amorous haste, the nuptial room;As erst th’ immortal pair, on Ida’s height,Wreath’d round their noon of joy, ambrosial night.”Evans.
"When noon-tide Sirius glares on high,Young Love ascends the glowing sky,From vein to vein swift shoots prolific fire,And thrills each insect fibre with desire.Thence, Nature, to fulfil thy prime decree,Wheels round, in wanton rings, the courtier bee;Now shyly distant, now with bolden’d air.He woos and wins the all-complying fair:Through fields of ether, veil’d in vap’ry gloom,They seek, with amorous haste, the nuptial room;As erst th’ immortal pair, on Ida’s height,Wreath’d round their noon of joy, ambrosial night.”
Evans.
The males and the fertile females, among ants, are winged insects; the former, as in the case of drone bees, perish a short time after their amours;and the females, having alighted upon a spot suitable for the formation of a colony, cut off their own wings, as being no longer of any use to them. (Linnæus had observed that the females lost their wings a certain period after impregnation.) A domino Hunter didici, se bombinatrices sub oculos in coitu junctos, ut apud muscas mos est, vidisse. “Aculeus,” inquit, “articulo temporis ejicitur, et inter gemina insecta, dorso feminæ imponitur. Hoc situ aliquandiù manent.” In the hornet it is the same.
If the queen-bee be confined, though amid a seraglio of males, she continues barren. Prior to her flight, (which is preceded by the flight of the drones,) she reconnoitres the exterior of the hive, apparently for the purpose of recognition, and sometimes, after flying a few feet from it, returns to it again: finally she rises aloft in the air, describing in her flight horizontal circles of considerable diameter, till she is out of sight. She returns from her aërial excursion in about half an hour, with the most evident marks of fecundation. Excursions are sometimes made for a shorter period, but then she exhibits no sign of having been impregnated. It is curious that Bonner should have remarked those aërial excursions, without suspecting their object. “I have often,” says he, “seen the young queens taking an airing upon the second or third day of their age.” Yet Huish says,“It is an acknowledged tact that the queen-bee never leaves the hive, on any account whatsoever.” Perhaps Huish’s observations were made upon first swarms; and these, according to Huber, are uniformly conducted by old queens. Swammerdam also made the same observation as tofirst swarms being always led off by old queens. Old queens have not the same occasion to quit the hives that young ones have,—viz. to have intercourse with the drones; for, according to Huber, one impregnation is sufficient to fertilize all the eggs that are laid for two years afterwards, at least. Hethinksit is sufficient to fertilize all that she lays during her whole life. This may appear, to some, an incredible period; and Huish inquires, admitting that a single act of coition be sufficient to fecundate all the eggs existing in the ovaria at the time, how those are fecundated which did not exist there? But when we consider that in the common spider, according to Audebert, the fertilizing effect continues formany years; and that the fecundation of the eggs of the female aphides or green lice, by the males of one generation, will continue for a year, passing, during that period, throughnineorten successive generationsof females, the causes for doubt will, I think, be greatly diminished: at any rate we are not at liberty to reject the evidence of facts, because we cannot understand theirmodus operandi. With respectto the aphis, Bonnet says the influence of the male continues throughfivegenerations, but Lyonnet carried his experiments to a more extended period; and according to Messrs. Kirby and Spence, who give it “upon the authority of Mr. Wolnough of Hollesley (late of Boyton) in Suffolk, an intelligent agriculturist, and a most acute and accurate observer of nature, there may betwentygenerations in a year.” Reaumur has proved that infivegenerations one aphis may be the progenitor of 5,904,900,000 descendants. It may be objected to me here, that the aphis is a viviparous insect, and that the experiments which prove what I have referred to, do not therefore bear upon the question. It has been ascertained, however, that they are strictly oviparous at the close of the year (one species is at all times so), at other times ovo-viviparous; and in either case the penetrating influence of the male sperm is surely still more remarkable where there has been no immediate commerce with the male, than in the direct case of the oviparous bee! It has been observed, however, that the further the female aphides are removed from the first mother, or that which had known the male, the less prolific do they become. In order to put my readers in possession of Dr. Fleming’s opinion upon this subject, I will quote what he has said in his Philosophy of Zoology. “Impregnation, in insects, appears to take placewhile the eggs pass a reservoir containing the sperm, situated near the termination of the oviduct in the vulva. In dissecting the female parts, in the silk-moth, says Mr. Hunter, I discovered a bag, lying on what may be called the vagina or common oviduct, whose mouth or opening was external, but it had a canal of communication betwixt it and the common oviduct. In dissecting these parts, before copulation, I found this bag empty; and when I dissected them afterwards, I found it full. (Phil. Trans. 1792. p. 186.) By the most decisive experiments, such as covering the ova of the unimpregnated moth, after exclusion, with the liquor taken from this bag, in those which had had sexual intercourse, and rendering them fertile, he demonstrated that this bag was a reservoir for the spermatic fluid, to impregnate the eggs, as they were ready for exclusion, and that coition and impregnation were not simultaneous.” Linnæus thought that there was a sexual intercourse between the queens and the drones, and he even suspected that it proved fatal to the latter. His opinion, on both these points, seems to be confirmed by the experiments of Huber; who ascertained by repeated observations on newly impregnated queens, “Fuci organum, post congressum, in corpore feminæ hæsisse, unde exitus fatalis expectandus est; ita autem accidere re verâ non liquet.” “Apum regina et mater,” says Mr.Kirby, “in sublime fertur maritum infelicem petens, qui voluptatem brevem vitâ emat.” Reaumur thought sexual union necessary to impregnation, and tried many experiments to ascertain the fact; such as confining a queen under a glass in company with drones: and these experiments were repeated by Huber. Both these naturalists witnessed the solicitations and advances of the queens towards the drones, “nihilominùs, coeuntia tempore quovis conspicere non possent.” Reaumurfanciedhe saw it; there is, however, very great reason to believe that he was mistaken: the queens so exposed all proved barren. Swammerdam asserted that clipping the wings of queens rendered them sterile, a fact which militates very much against his own theory of impregnation being produced by a seminal aura, but strongly confirms the theory of Huber; as in all probability the mutilating experiments of Swammerdam were made upon virgin queens, which thereby lost the power of quitting the hives. Huber found that clipping the wings ofimpregnatedqueens produced no effect upon them; it neither diminished the respectful attentions of the workers, nor interfered with their laying of eggs. Why impregnation can only take place in the open air and when the insects are on the wing, at present remains a mystery.
The young virgin-queens, generally, set out in quest of the males, the day after they are settledin their new abode, which is usually the fifth day of their existence as queens, two or three days being passed in captivity, one in the native hive after their liberation, and the fifth in the new dwelling. The ancients seem to have been very solicitous to establish for the bees a character of inviolable chastity: Pliny observes, “Apium enim coitus visus nunquam.” And Virgil endeavours to support the same opinion:
“But of all customs which the bees can boast,’Tis this that claims our admiration most;That none will Hymen’s softer joys approve,Nor waste their spirits in luxurious love:But all a long virginity maintain.And bring forth young without a mother’s pain.”
“But of all customs which the bees can boast,’Tis this that claims our admiration most;That none will Hymen’s softer joys approve,Nor waste their spirits in luxurious love:But all a long virginity maintain.And bring forth young without a mother’s pain.”
It was the opinion of most ancient philosophers that bees derived their origin from the putrid carcases of animals.VideChap. II. Some also have supposed them to proceed from the parts of fructification in flowers. Virgil, borrowing as usual from Aristotle, among the rest:
“Well might the Bard, on fancy’s frolic wing,Bid, from fresh flowers, enascent myriads spring,Raise genial ferment in the slaughter’d steer.And people thence his insect-teeming year;A fabled race, whom no soft passions move.The smile of duty nor the glance of love.”Evans.
“Well might the Bard, on fancy’s frolic wing,Bid, from fresh flowers, enascent myriads spring,Raise genial ferment in the slaughter’d steer.And people thence his insect-teeming year;A fabled race, whom no soft passions move.The smile of duty nor the glance of love.”
Evans.
“To vindicate, in some measure, the character of the insect queen, Mr. Wildman boldly daredto stem the torrent, and revive the long forgotten idea suggested by Mr. Butler in hisFeminine Monarchy, that queens produce queens only, and that the common bees are the mothers of common bees.” But all these fanciful notions must yield to the clear and decisive experiments of Huber, who has satisfactorily shown thatthe queen is the general mother of all; he has also resolved the causes of former mistaken opinions. Many apiarians have found a difficulty in admitting the theory of Huber, in consequence of the very great disproportion in the number of the sexes, there being only one female to several hundred males, and one impregnation being, in his opinion, all that is required to fertilize myriads of eggs. The number of drones may be considered as in accordance, in some degree, with the general profusion of nature: we find her abounding with supernumeraries in a great variety of instances, in the blossoms of trees and flowers, as well as in the relative number of one sex to the other among animals. Huber conceives that it was necessary there should be a great number of drones, that the queen might be sure of finding one, in her excursion through the expanse of the atmosphere, and run no risk of sterility.
Inpage 26I have stated the opinion of Mr. Dobbs, that a queen has intercourse with several drones; and what I have also stated upon the authorityof Mr. Hunter, inpage 34, with respect to the silk-moth and other insects, gives countenance to that opinion: nor do I see its inconsistency with the discovery made by Huber. Though there is reason to believe that the act proves fatal to one devoted drone, yet those that are so fortunate as to obtain the first favours of her majesty, may escape uninjured. If the conjecture which I have thus hazarded be correct, it will appear less surprising that so many drones should be brought into existence.
The queen begins to lay her eggs as soon as a few portions of comb are completely formed. By the time that combs five or six inches square are constructed, eggs, honey and bee-bread will be found in them. Huber states thatthe laying usually commences forty-six hours after the intercourse with the male; and that during the eleven succeeding months, the eggs of workers only are laid; after which a considerable and uninterrupted laying of drones’ eggs commences. This period may be retarded by the temperature of the atmosphere. Huber relates an instance where, the weather having become suddenly cold, after an impregnation which took place on the 31st of October, that queen did not lay till the March following. The effects of retardation will be noticed presently.Twenty days after the queen has begun to lay the eggs of drones, “the working bees,”says Huber,“construct theroyal cells,in which the queens, without discontinuing the laying of male eggs, deposit, at the interval of one, two or three days, those eggs from which the queens are successively to spring.” This laying of the eggs of drones, which is called the great laying, usually happens in May. There seems to be a secret relation between the production of these eggs, and the construction of royal cells: the laying commonly lasts thirty days, and regularly on the 20th or 21st day, as has been already observed, royal cells are founded.When the larvæ, hatched from the eggs laid by the queen in the royal cells, are ready to be transformed to nymphs, this queen leaves the hive, conducting a swarm along with her.A swarm is always led off by a single queen; and Huber remarks that it was necessary for instinct to impel the old queen to lead forth the first swarm; for, being the strongest, she would never fail to overthrow the younger competitors for the throne, near which “the jealous Semiramis of the hive will bear no rival.” The queen, having finished her laying of male eggs and of royal eggs, prior to her quitting the old hive, is ready to commence, in the new one, with the laying of workers’ eggs, workers being first needed, in order to secure the continuance and prosperity of the newly founded commonwealth. The bees that remain in the old hive take particular care of the royal cells, and preventthe young queens, successively hatched, from leaving them, except at an interval of several days from each departure. But I have already adverted to their mode of proceeding on these occasions.Videpage 17.The law of primogenitureis always strictly observed towards these royal insects, the first-born or princess-royal being always selected to go off with the second swarm, or to reign over the parent stock, as the case may be; and so on with respect to the third and fourth, or whatever number may issue. It is remarkable that a queen seldom, if ever, leads forth a swarm, except there be sunshine and calm air. Such a ferment occasionally rages in the hives, as soon as the young queens are hatched, that Huber has often observed the thermometer placed in the hive, rise suddenly from about 92° to above 104° Fahrenheit. This suffocating heat he considers as one of the means employed by nature for urging the bees to go off in swarms.In warm weather one strong hive has been known to send off four swarms in 18 days.VideChap. XIII.
According to Huber,the queen ordinarily lays about 12,000 eggs in two months, one impregnation serving, as has been before stated, for the whole complement of eggs, of every description, which she lays during two years at least. It is not to be supposed that she lays at the rate of 12,000 eggs every two months, but she does so at theprincipal laying in April and May: there is also another great laying in August. Early in November the laying usually ceases. Reaumur states the number of eggs laid by a queen in two months at double the amount of Huber’s calculation; viz. 200 a day, on an average. This variation may have arisen from variety of climate, season, or other circumstances.A moderate swarm has been calculated to consist of from 12,000 to 20,000, which is about a two months’ laying. Schirach says thata single queen will lay from 70,000 to 100,000 eggs in a season. This sounds like a great number; but it is greatly exceeded by some other insects. The female of the white ant extrudes not less than 60 eggs in a minute, which gives 3600 in an hour, 86,400 in a day, 2,419,200 in a lunar month, and the enormous number of 211,449,600 in a year. Though she does not lay all the year probably, yet, setting the period as low as possible, her eggs will exceed the number produced by any other known animal in creation.
If theimpregnationof a queen be by any meansretardedbeyond the 20th or 21st day of her life, a very extraordinary consequence ensues. Instead of first laying the eggs of workers, and those of drones, at the usual period afterwards, she begins from the 45th hour to lay the latter, and lays no other kind during her whole life. It should seemas if the rudiments of the workers’ eggs withered in the oviducts, but without obstructing the passage of the drones’ eggs. The only known fact analogous to this is the state of certain vegetable seeds, which lose the faculty of germination from age, whatever care may have been taken to preserve them. This retardation seems to have a singular effect upon the whole animal œconomy of the queen. “The bodies of those queens,” says Huber, “whose impregnation has been retarded, are shorter than common; the extremities remain slender, whilst the first two rings, next the thorax, are uncommonly swollen.” In consequence of the shortening of their bodies, their eggs are frequently laid on the sides of the cells, owing probably to their not being able to reach the bottom; the difficulty is also increased by the two swollen rings. In these cases of retarded impregnation and exclusive laying of drones’ eggs, the prosperity of the hive soon terminates; generally before the end of the queen’s laying. The workers receiving no addition to their number, but on the contrary, finding themselves overwhelmed with drones, sacrifice their queen and abandon the hive. These retarded queens seem to have their instincts impaired; for they deposit their eggs indiscriminately in the cells, whether originally intended for drones or for workers,—a circumstance which materiallyaffects the size of the drones that are reared in them. There are not wanting instances of royal cells being occupied by them, and of the workers being thereby so completely deceived as to pay the tenants, in all respects, the honours of royalty. This circumstance appears the more extraordinary, since it has been ascertained that when eggs have been thus inappropriately deposited, by fertile workers, they are uniformly destroyed a few days afterwards, though for a short time they receive due attention.
The workers have been supposed by some apiarians to transport the eggs from place to place;—if ever such were the case, this would seem to be an occasion calling for the practice: on the contrary, instead of removing the eggs from the sides to the bottoms of the cells, for the sake of better accommodation, this object is accomplished by their lengthening the cells, and advancing them two lines beyond the surface of the combs. This proceeding affords pretty good evidence thatthe transportation of eggsforms no part of the workers’ occupation. It is still further proved by their eating any workers’ eggs, that a queen may, at any time, be forced to deposit in drones’ cells, or drop at random in other parts of the hive; a circumstance which escaped the notice of former naturalists, and misled them in their opinion respectingtransportation. A somewhat similar circumstance was noticed by Mr. Dunbar in his mirror hive. (For an account of this hive seeChap. X.) Mr. Dunbar observed that whenever the queen dropped her eggs carelessly, they were eagerly devoured by the workers. Now if transportation formed a part of their employment, they would in these cases, instead of eating the eggs, have deposited them in their appropriate cells. It seems very evident therefore that the proper disposition of the eggs is left entirely to the instinct of the queens. The workers having been seen to run away with the eggs, in order to devour them, in all probability gave birth to the mistaken notion that they were removing them to their right cells. Among humble-bees, there is a disposition, among the workers, to eat the eggs, which extends even to those that are laid in proper cells, where the queens often have to contend for their preservation.
After the season of swarming, viz. towards the end of July, as is well known, a generalmassacre of the dronestakes place. The business of fecundation being now completed, they are regarded as useless consumers of the fruits of others labour, “fruges consumere nati;” love is at once converted into furious hate, and a general proscription takes place. The unfortunate victims evidentlyperceive their danger; for they are never, at this time, seen resting in one place, but darting in or out of the hive, with the utmost precipitation, as if in fear of being seized. Their destruction has been generally supposed to be effected by the workers harassing them till they quit the hive: this was the opinion of Mr. Hunter, who says the workers pinch them to and fro, without stinging them, and he considers their death as a natural rather than an untimely one. In this Bonnet seems to agree with Mr. Hunter. But Huber has observed thattheir destruction is effected by the stings of the workers:he ascertained this by placing his hives upon a glass table, as will be stated under the anatomy of the bee, article “Sting.” Reaumur seems to have been aware of this, for he has remarked that “notwithstanding the superiority which the drones seem to have from their bulk, they cannot hold out against the workers, who are armed with a poniard which conveys poison into the wounds it makes.” The moment this formidable weapon has entered their bodies, they expand their wings and expire. This sacrifice is not the consequence of a blind indiscriminating instinct, forif a hive be deprived of its queen, no massacre takes place, though the hottest persecution rage in all the surrounding hives. This fact was observed by Bonner, who supposed the drones to bepreserved for the sake of the additional heat which they would generate in the hive during winter; but according to Huber’s theory, they are preserved for the purpose of impregnating a new queen. The lives of the drones are also spared in hives which possess fertile workers only, but no proper queen, and likewise in hives governed by a queen whose impregnation has been retarded; but under any other circumstances the drones all disappear before winter. Not only all that have undergone their full transformations, but every embryo, in whatever period of its existence, shares the same fate. The workers drag them forth from the cells, and after sucking the fluid from their bodies, cast them out of the hive. In all these respects the hive-bees resemble wasps, but with this difference; among the latter, not only are the males and the male larvæ destroyed, but all the workers and their larvæ, (and the very combs themselves,) are involved in one indiscriminate ruin, none remaining alive during the winter but the queens, which lie dormant in various holes and corners till the ensuing spring,—of course without food, for they store none. The importance of destroying these mother wasps in the spring will be noticed in another place.
Morier in his second journey through Persia (page 100) has recorded a fact, which, though itdid not come under his own immediate observation, was related to him by a person on whose authority he could place full reliance, and which is directly the reverse of what I have stated respecting bees. It is, that among the locusts, when the female has done laying, she is surrounded and killed by the males.
THE APIARY.
Thefirst object of consideration, in the establishment of an apiary, is situation.
The aspect has, in general, been regarded as of prime importance, but I think there are other points of still greater importance.
An apiary would not be well situated near a great river, nor in the neighbourhood of the sea, as windy weather might whirl the bees into the water and destroy them.
It was the opinion of the ancients that bees, in windy weather, carried weights, to prevent them from being whiffled about, in their progress through the air: Virgil has observed that