SECTION IITEXT-BOOK OF PRINTING FROM THE STONE

If the stones are of thickness correctly proportioned to their area, the danger of cracking under the press is fairly remote; still, it does happen occasionally that a stone incurs damage through clumsiness of workmen. It can occur also through careless warming, or through sharp frost. In such cases even a strong stone will crack, especially if the workmen apply undue pressure.

Besides, the necessary stones are not to be found in all places, so that the cost of transportation prevents the establishment of lithographic shops in many regions.

All these objections are overcome by the invention of stone-paper. The material advantages of it are as follows: (1) The cost is much smaller than that of a stone of equal size. (2) The weight is inconsiderable; a plate of letter-sheet size weighs scarcely four ounces. (3) Hundreds of such plates piled on each other require scarcely as much space as a single stone, and can, therefore, be stored or shipped easily. (4) They resist the most powerful press better than do stone, copper, and even iron plates. Their inner elasticity supports the most extreme pressure without alteration if only they are handled properly. (5) The application of fatty inks, and also engraving with the steel graver is easier. Indeed, because of the great toughness of the stone-paper, the engraving process approaches copper engraving more closely. (6) Inking and printing are easier, and demand no such powerful pressure, because the artificial stone receives and impartscolor more readily, than does the natural stone. (7) Finally, they are so excellent for all methods of printing that it is possible to reproduce the original plates at will merely by transferring a fresh imprint to another plate. And this can be done with such accuracy that none of these plates can be distinguished from the original, so that the stone-paper surely must become of enormous importance for stereotyping in the book-printing trade.

These advantages, and others to be described on suitable occasion, elevate this invention unquestionably to the highest importance in the art of chemical printing, despite all that may have been said recently by a certain writer whose lack of knowledge forbade correct judgment. The matter already has attained a degree of perfection that makes every further improvement unnecessary, nay, almost impossible.

My many employments, mostly caused by the publication of this text-book, thus far have prevented the erection of my own manufactory for making these artificial stone-plates or stone-paper. I hope to do it soon, and then everybody can convince himself of the truth of my assertions, if he will use the material according to my instructions.

This invention will facilitate the introduction of lithography in all places, because one can make the stones himself. However, lithography has expanded very considerably in its present form, and has been brought into use in the foremost cities of Europe. For instance, it was introduced into France and England, first by Herr Andre, in latter days by the Count von Lasterie in Paris and Herr Ackermann in London, being utilized for many kinds of printed work. In Berlin, Herr Major von Reiche has erected a great institution. In Petersburg the art has existed for some years, and is being especially well cultivated now by Freiherr von Schilling. The art has entered even Philadelphia, and, more extraordinarily, Astrakan, and, so far as I can learn, has been welcomed heartily.

I desire that soon it shall be spread over the whole world, bringing much good to humanity through many excellent productions, and that it may work toward man's greater culture, but never be misused for evil purposes. This grant the Almighty! Then may the hour be blessed in which I invented it!

CONTENTS

INTRODUCTION

EXPLANATION OF THE PRINCIPLES AND THE PECULIARITIES OF STONE-PRINTING AND OF CHEMICAL-PRINTING IN GENERAL

PART I

General objects and principles governing—

(1) the stone.(2) the ink, crayon, etching surface and color.(3) the acids and other preparing materials.(4) the necessary tools.(5) the paper.(6) the presses.

(1) the stone.

(2) the ink, crayon, etching surface and color.

(3) the acids and other preparing materials.

(4) the necessary tools.

(5) the paper.

(6) the presses.

PART II

Enumeration and description of the various processes and particular objects in manipulating them, such as:—

Relief Process—to which belong—

(1) Pen and brush designs.

(2) Crayon drawing, simple and with several plates.

(3) Transfer and Tracing.

(4) Woodcut style.

(5) Two kinds of Touche drawing, one of which is similar to the Scraped style, while the other is done in the usual way with the brush.

(6) Spatter-Work

(7) Touche drawing.

(8) Color printing with several plates.

(9) Gold and silver print.

Intaglio Process—

(1) Carved or engraved.(2) Etched.(3) Drawn with prepared ink; with spattered aquatint.(4) Aquatint in copper engraved style, and with etching ground.(5) Aquatint through crayon ground.(6) Intaglio crayon through tracing.(7) Touche drawing with etching color and citric acid.

(1) Carved or engraved.

(2) Etched.

(3) Drawn with prepared ink; with spattered aquatint.

(4) Aquatint in copper engraved style, and with etching ground.

(5) Aquatint through crayon ground.

(6) Intaglio crayon through tracing.

(7) Touche drawing with etching color and citric acid.

Mixed Method: Relief and Intaglio united—

(1) Pen drawing combined with engraving.(2) Intaglio drawing with relief tint.(3) Intaglio and relief with several plates.(4) Transformation of relief into intaglio, and vice versa.

(1) Pen drawing combined with engraving.

(2) Intaglio drawing with relief tint.

(3) Intaglio and relief with several plates.

(4) Transformation of relief into intaglio, and vice versa.

APPENDIX

(1) Printing simultaneously with water colors and oil colors.(2) Simultaneous chemical and mechanical printing.(3) Application of the stone for cotton-printing through wiping—a unique printing method.(4) Color print through wiping.(5) Oil painting print through transfers.(6) Stone-paper.(7) Applying the chemical printing process to metal plates, etc.

(1) Printing simultaneously with water colors and oil colors.

(2) Simultaneous chemical and mechanical printing.

(3) Application of the stone for cotton-printing through wiping—a unique printing method.

(4) Color print through wiping.

(5) Oil painting print through transfers.

(6) Stone-paper.

(7) Applying the chemical printing process to metal plates, etc.

Printing from stone is a branch of a new process, different in fundamental principle from all others, namely, the chemical process.

Heretofore there have been two leading printing processes for manifolding writings and drawings, one working with characters in relief, the other with sunken characters.

Of the first kind is the ordinary book-printing, in which the characters are made of metal or wood in such form that only those lines and points are elevated that are to take color, everything else being depressed. The wooden forms for cotton-printing are made thus also.

Of the second kind are all copper and zinc plates, and the cotton-print process with copper plates or cylinders. In this method the lines and points to be printed are depressed, being either engraved, etched, or stamped.

As is well known, the first method of printing is as follows: The letters, which are all at the same elevation and, therefore, furnish a plane surface, are inked with a leather ball, stuffed with horsehair. As the ball is so firm and elastic that it can touch only the elevated parts, these alone can take the color, which adheres because of its sticky nature. The same is true of the carved wood used in cotton-printing, with only the difference that, instead of rubbing with a leather ball, the wooden plate itself is laid on a cushion covered with the color, and then, being placed face down on the cloth, is hammered gently to produce the imprint.

In copper and zinc printing the method is reversed. In order to force the color into the depressed parts, which alone are to be printed, the entire plate is coated with color, and then the elevated surface is cleansed again carefully. The cleaning rag cannot reach the depressed grooves, so that more or less color adheres to these according to their various depths.Under the powerful press, which forces the paper into all the engraved parts, this color transfers itself and thus gives the desired impression.

It is evident that both methods rest on purely mechanical principles: book-printing being based on the fact that the color adheres only on those places that it can reach, and copper-plate printing depending on the fact that the color remains only in those places from which it cannot be removed by cleansing.

It is different with the chemical print. This does not depend on either elevation or depression of the design. It depends on the fact that the design is coated with a preparation of such nature that afterward the printing color, which is made from a related substance, adheres because of its chemical similarity; and furthermore, because all parts of the plate that are to remain white, have been so treated that they repel the color. These two purely chemical objects are attained fully with the new process. Daily experience proves that all fatty bodies, such as oil, butter, tallow, fish oils, etc., and all such as easily dissolve in oil, like wax, resin, etc., refuse to unite with any watery substance without the aid of some third body that will bring about such union. The chief solvent for this purpose is alkali, which, under proper manipulation, always produces a sort of soap that then is soluble in water. Sometimes, to be sure, an apparent union can be produced by violent shaking or mixing, without the use of the alkali, but at the first opportunity the fatty substances separate themselves again from the watery ones.

It is on this fact that the entire method of the new process is based. It is termed chemical printing with perfect propriety, as the reason why a fatty color, say, linseed oil varnish, will adhere only on the designed parts of the plate and is repelled by the rest of the surface, is due to the chemical properties of the materials.

It might be maintained that in the other forms of printing, color adheres from the same reason. This is true, to be sure; for it is a general law that water and oil will adhere to all bodies that are dry. But it is not the case with these fluids mutually; and in this fact lies the unique difference between the older and the new processes. A dry plate would takecolor over its entire surface. If, however, it is dampened, it will take oil color only on those places that are in a condition opposite to dampness. Therefore, the repelling of the color from those parts that are to remain white is the novelty.

It must not be imagined, however, that to print chemically it suffices to dampen certain parts of the plate and to coat others with fatty substance. With most of the materials available for printing, mere water does not suffice to produce a sufficiently repelling obstacle between the plate and the color.

With flinty and clayey bodies,—for example, glass, porcelain, slate, etc.,—one can manage with mere water; but then the slight adherence of the fatty color to the plate produces an opposite difficulty, by preventing any large number of impressions. Still, by using very firm and readily drying fatty substances, such as linseed oil varnish dried with litharge of silver it is possible, in case of need, to succeed fairly well.

But with such bodies as attract the color powerfully, such as all metals, wood, limestone, artificial stone-paper, etc., it is necessary so to treat all the parts of the plate that are to remain white that they attain an especial resistance to color, and thus change their natures, so to speak.

That this is possible under certain circumstances and with the proper means, with all bodies belonging to this class, I have proved by many experiments, and I shall describe the methods in this book.

Thus the new process is not to be used only on limestone, but is applicable to metal, etc.; and stone-printing or lithography is to be considered only as a branch of general chemical printing. However, as this book is to teach mainly lithography, I will occupy myself chiefly with it.

Among the bodies available for chemical printing, limestone maintains an eminent place. Not only has it an especial property of uniting with fats,—sucking them in and holding them,—but it has, also, the same propensity for taking all fluids that repel fats. Indeed, its surface unites so thoroughly with many of the latter that it forms a chemical union with them, becoming practically impenetrable for oil colors and remaining constant thereafter in repelling them so that they cannot adhere perfectly.Therefore when a plate thus prepared is dry and covered entirely with oil color, it still remains an easy matter to wash it completely, using merely water for the purpose.

This good property, combined with the low cost and the ease of obtaining the stone in Bavaria; then the advantage that it is easily polished and prepared; the further advantage that a stone of medium thickness can be ground as often as a hundred times and utilized for new work—all these properties combined made me willing to overlook a few faults, such as their weight, great volume, frequent unevenness of quality, and lastly the occasional danger of cracking. Thus I came to use these stones as the principal means for making my countless experiments, whose happy result has been to elevate stone-printing to an art by itself.

Having stated the process and the character of this form of printing, it remains only to say a few words about its value.

With every new invention there arises the question if it is useful, and if so, in how far, for science, arts, and industry. Therefore all who have no sufficient knowledge of lithography, will ask justly: What is its value? What advantages does it give that are not to be found in any other forms of printing?

To answer this, let me say the following merely in advance till later descriptions of the various processes will convince in themselves.

It is the nature of earthly being and of human imperfection that rarely is anything found that combines in itself everything to be wished for and required. So it may be said of stone-printing that it makes neither book-printing nor copper-plate printing entirely superfluous. It is possible that in the future, by perfecting the presses, lithography may equal book-printing in point of speed, as it does not now; but the convenience of the latter, enabling the printer, by merely setting cast characters side by side, to do with speed, accuracy, and symmetry what the writer can hardly do with all his skill and industry, gives book-printing its own eminent value. When, however, we come to many things produced hitherto by book-printing, such as statistical tables, letters, circulars, letters of exchange, bills of lading, visiting-cards and addresses, andother similar work, we find that these can be produced more conveniently, more readily, more cheaply, and faster and handsomer with lithography.

As to copper-printing: in the future, as lithography extends, there probably will remain an advantage with the copper in the case of only two styles, the engraving done with the engraving needle, and the etching, the latter being worked up with the graver and the cold needle. In this respect, however, the skill of the artist must be taken into account, for a good man can produce better work on stone, even in those two styles, than a less skillful man can produce on copper. We can declare the same of the stipple style in copper, when done in the style of Herr Bartolozzi, or even like the very foremost of the copper engravers in this style, Herr John of Vienna.

All other methods (and even these three if done with less care or skill on copper) must yield place to a good design on stone; especially if one takes into account the ease of execution, the lesser need for skill, the greater speed of printing, and the almost countless impressions that are possible.

For instance, printing music from the stone has a decided advantage over zinc plates, both because of smaller cost and greater beauty. It is easier to produce all kinds of script on stone, both with fatty inks and with the engraving needle. Therefore lithography serves excellently for charts and similar work, which can be done at least three times faster on stone than on copper.

If copper-printing is to reach a high degree of perfection, the printing itself must be done by very excellent workmen. Indeed, some persons allege that the very best German copper-plate printers do not yet equal the Parisians. Printing from stone is not so difficult, and only a few particular methods demand especial care or unusual knowledge. Because of the greater ease of inking, the speed of stone-printing may be assumed to be at least five times as great, often ten times, and especially so when large plates are to be printed. Besides, it is much easier to make corrections on stone than on copper and zinc.

From all this it appears that lithography makes it much easier to write and design and then to print swiftly and produce any desired number of impressions, of all those works that heretofore could be produced only on copper or zinc, providing they do not demand the very greatest degree of delicacy, strength, and sharpness obtainable with copper; in a word, so long as it is not vital to attain the utmost possible artistic beauty. Further, most of these works done on stone, by only average artists and printers, usually are more beautiful than if they had been done by the same men in copper or zinc.

This property alone gives lithography a preëminent value, the more so as no great expense is incurred in establishing a plant. But in addition to this, there are several art methods peculiar to it, which cannot be imitated by book-printing or copper-print, and which make it possible for almost every writer or artist to manifold his works without any especial skill.

I will mention now only the crayon process, which enables every artist or painter to make several thousand impressions of his original drawings; also the transfer method, by means of which all that is written or drawn with fatty ink on ordinary paper can be transferred to the stone, giving countless faithful impressions. This latter process is particularly useful for government bureaus, and is being used already with great profit.

All this I believe that I can claim for lithography with fullest confidence, and I hope that everybody who becomes sufficiently conversant with it will share my belief. Thus, besides the properties of the art, we have stated its uses, and I proceed to the real instructions, through which I hope to make good artists and printers on stone.

The stone that has been used exclusively hitherto in Munich for printing is a stratified limestone, found in the territory from Dietfurt to Pappenheim, and along the Danube down to Kellheim; hence the name Kellheimer plates, presumably because in past times the stone was quarried there first, or else found in its best quality. Now the Kellheimer quarry is exhausted, and the trade in the stones has transferred itself to Solenhofen, a village in the judicial district of Mannheim, three hours distant from Neuberg-on-the-Danube. All the inhabitants of Solenhofen are quarrymen, and the entire surrounding country seems to have a surplus of the stone, so that even with the greatest demand no scarcity is to be feared for centuries.

When the upper layer of earth is removed to the depth of six to ten feet in Solenhofen, the stones are found in strata lying horizontally on each other. First come strata of brittle stone, which often are composed of hundreds of plates as thin as paper. With proper care, each plate can be loosened and lifted whole. These layers are useless, being too brittle, and yet being too firm and not white enough to permit their possible use as chalk.

The Solenhofen stone consists chemically mostly of lime earth and carbonate. It is almost wholly soluble in nitric and other acids, the carbonate being liberated in gaseous form and disappearing. Since the various kinds of marble have almost the same component parts, one might supposethat marble should be available for lithography. But the many dark, uneven colors of marble and chiefly the many cracks and veins make considerable difficulty. However, I have found many evenly colored greenish, gray, bluish, and brownish Bavarian and Tyrolean marbles very useful for some methods, especially because of their superior hardness. Still, the Solenhofen stone will retain the advantage because of its light color and its greater cheapness.

The white Parian or Carrara marble is still lighter in color, to be sure, and really is rather useful for pen and crayon work. But though in part it is harder, on the whole it is much more porous and not so finely grained as the Solenhofen stone, and therefore not at all available for the intaglio method.

Since lithography began to arouse general interest, there have been attempts to find a stone similar to the Solenhofen, and there has been some fair success in France, Italy, England, and lately in the Kingdom of Prussia. With the enormous masses of limestone which cover the surface of the earth, it is not unlikely that this stone will be found in many places, either in layers of plates one, two, or more inches thick, or in great blocks which can be cut into plates.

In the Solenhofen stones one layer is not as good as another, and even in the same layer there may be a decided difference. Therefore, if one would produce perfectly beautiful work, it is necessary to obtain selected and perfect stones. This should be stipulated beforehand with the quarrymen, who now know pretty well how the best stones should be constituted.

A good stone must have the following properties:—

(1)The proper thickness.Thickness must be proportionate to the size. Smaller plates will resist the pressure of printing even if they are not so thick as the larger ones must be. But it is best to buy no stone less than one and one half or more than three and one half inches thick, because the thinner ones will not bear frequent grinding and the thicker ones are too heavy and inconvenient, besides taking up too much room. The best thickness of a stone is two to two and one half inches.

(2)Good mass.There are soft and hard stones. Sometimes the same stone is hard above and soft underneath, or the reverse. Often, also, a stone may consist of several thin and unequal layers. In the latter case, if the union is good and the layers are not easily separated, it will make no difference, so long as the stone is good in other respects. On the whole, however, it may be assumed that the harder stones are the best for all methods, so long as their mass is entirely uniform and they are not marred, as is the case with many, with white dots and patches. Then, to be sure, they are not worth much for any process, and at best can be used only for pen designs or for such of the intaglio processes where the lines need no particular sharpness. Such stones, generally gray, very hard, with softer, somewhat lighter patches or specks, are very hard to grind evenly because the softer parts are most powerfully attacked by the grinding material and become depressed. This produces the following defects:—

(a) In pen work, the pen will catch often, whenever it comes to such a place. This, however, is not so important: but

(b) In the crayon method there will be defects and lights in the shadings on the softer places, which are very hard to correct.

(c) In the etched or engraved methods, the needle will sink in much deeper when it passes over such softer spots, making a deeper and broader line which injures the clearness of the drawing. In etching, also, the softer places are more affected by the acid; and it is better, therefore, to use a soft stone whose entire surface is uniform, than to have a stone that is hard but uneven.

A very soft stone cracks easily in the press, unless it consists of several layers, the lower of which are hard. But it is easier to engrave, and as a rule gives blacker impressions, because it sucks more color in, and holds it because of its greater porosity. Printing, however, is somewhat more difficult, because these stones take dirt readily; nor is it possible to get so many impressions. They are not useful for crayon work because the finest shadings are too easily etched away; and pen work is difficult on them, because the steel pen easily cuts into the stone, fills its point with fine dust, and thus gives no ink flow. This softest stone in Solenhofengenerally looks yellow, or is marbled with red and white or has many yellow veins.

Even those stones whose uniformity, thickness, and hardness make them best for all methods, often have defects, such as so-called glass spots or tiny, sometimes invisible holes, broad veins and cracks. All these must be avoided when selecting stone. Very small deep veins, which often are fine as hairs, yellowish and grayish spots, impressions of fossil plants and fishes, etc., are not harmful. It is rare to find a stone as large as a sheet of note-paper that is entirely free from these little defects.

(3) The form of the stones also is to be considered, and must be selected according to need. To be sure, a small design can be drawn on a large stone; but apart from the inconvenience, the construction of the press demands that the stone be not much larger than the drawing. However, at the end where the impression begins and stops, there must be at least an inch margin to give sufficient room for the roller to take hold, as will be explained more particularly later.

When one has to print small things like visiting-cards, etc., it will not be profitable to use large stones, especially if they are to be saved for future use. Small stones of the size of an octavo sheet are better. Therefore it will be wise to have stones cut to various sizes in the beginning. It would be well also that one of the printers, or the polisher, strive to attain skill in cutting stones to size. Sometimes polishing discloses defects in a stone, making it useless for a design of any size. But it is possible to cut it up into many small ones that are perfect. Sometimes a stone cracks under the press or breaks through accident. Skill in cutting will enable one to make small and good stones out of the pieces.

It is essential for good work in the press that the stones be cut very true. The stones that are used for flooring in churches, etc., usually are cut so that the upper face is larger than the lower. This is done to make them set better in the mortar and to enable the stone-cutters to fit them closely together on the top. But this must not be done with stones for printing, because such stones could not be tightened properly in the press and would lift during the printing. Printing-stones must be cutabsolutely true vertically. Indeed, in work where several plates are to be used to make one complete impression, and where steel guide-points in the frame are used instead of laying the paper on the plate, it is beneficial to cut the stones conically, so that the base is one fourth inch greater than the top. The plate can be tightened better and is less likely to be moved from its place during the impressions.

Despite their hardness the stones are brittle, and a single light but sudden blow with any hard body, such as a steel tool, may cause a crack in the thickest stone. It is necessary to exercise great care to avoid all shocks.

This property of the stone is used in Solenhofen to cut the stones according to desire. A small hammer of hard steel, weighing scarcely two ounces, is used. Its end is somewhat like a stone-chisel, but not nearly so sharp. With this hammer, which is set on a thin handle two or three feet long, the workman strikes light but very swift blows along the line of desired cleavage, each tap being about an inch from the preceding one. The stone is so laid that its greater part is free, resting on nothing. This light operation is sufficient to cleave the largest stones.

The cleavage is not always uniform and true. Therefore the stone usually is finished with a sharp stone-chisel. It is possible also to divide a stone as desired by supporting it at both ends so that there is nothing under the part to be split, and then cutting along the line with a chisel of hardened steel, not too sharp, which is tapped lightly with a light hammer. The varying sound tells at once when the stone cracks, and then a few light taps with the hammer on the other side suffice to separate it. Before one attains the necessary skill, however, he will smash many a stone. Therefore it is not advisable to try this on a stone that has a design on it, for a single incorrect or over-heavy blow often will split the stone in the wrong direction. Blows that are too light, on the other hand, often make it almost impossible in the end to cause a cleavage along the desired lines.

The stone plates that come from Solenhofen, even if polished according to stipulations, rarely are available for printing, but must be specially polished by one who understands the work thoroughly.

The first requisite for this is a straightedge of iron or brass, as true as possible. This ruler must be laid on the stone in various directions, and the lithographer must note all parts where there is space between the straightedge and the stone. The greater the space, the greater the unevenness of the stone; and those that show especial unevenness should be set aside from those that have little.

When this has been done, the very uneven stones must be ground with a coarse sandstone and plenty of water applied to the elevated places till the straightedge can be applied in all directions without showing any material interstices. Then these ground stones may be placed with the others that were fairly even in the beginning.

Now we take one of these stones, and lay it on a strong, firm table, the best being one to be described later. Finely grained sand is sprinkled over its surface. In the absence of sand, a substitute can be made by powdering a common sandstone of the kind used for coarse grindstones. A spoonful of water is poured over this. A little soap may be mixed with the sand. It facilitates the grinding and makes the sand take hold of the stone better. Now another stone is laid on the first one, and is moved back and forth continually in all directions. The sand and water must be renewed often. Thus both stones, the upper and lower, will be ground simultaneously, and very evenly and true, if the work is done right.

One must take care never to draw the upper stone far beyond the lower one, because that would throw the centre of gravity of the upper plate too near its ends, as a result of which the upper plate would become concave and the lower plate convex. To avoid this defect, the upper plate should be moved around only in small circles. It is good also to change the plates around frequently, so that the upper shall be the lower. Anothergood plan is not to use two stones of equal size, but to take for the upper stone one only half as large as the lower. It is necessary also that the straightedge be applied frequently. The stone must always be cleansed thoroughly before this test.

Once one has the proper experience, it is possible to tell by mere touch if the plates have been sufficiently ground. So long as they still have uneven spots, a certain resistance is noticeable, so strongly sometimes that it is impossible to move the upper plate further without lifting it and sprinkling new sand. Sometimes this friction is so great that manual strength does not suffice to separate the stones, especially if they happen to dry. If tools are used to separate them, it happens often that pieces are torn from the stones, because they adhere so mightily. In this case a very simple and convenient remedy is the best. An ordinary table-knife is inserted gently and then tapped very lightly, when the stones will separate at once.

Whenever sand is applied, water must be applied also, but not too much, as in that case it would only wash away the sand. Here, too, practice must teach the exact proportions.

From the stone-cutter's work, as well as from the primary grinding with sandstone, the plates will have visible furrows and scratches made by the coarser grains of sand. Under the polishing all these disappear bit by bit, and there appears a fine grain, consisting entirely of fine dots; and this is the finer in proportion as the sand is crushed by the process of polishing and also according as less fresh sand has been used.

When the marks of the sand have vanished completely, it is fairly certain that the stones are polished sufficiently. To make sure, the straightedge can be applied again. It must not be imagined, however, that it is necessary or possible to polish a plate so perfectly that there will be absolutely no spaces between any part of its surface and the straightedge. A perfect and mathematically level plane surface is hardly likely ever to be produced. If the stone is almost level, and the unevennesses do not exceed the thickness of letter-paper, it is quite sufficient.

Although this sort of polishing, with two plates at once, is not usedin all lithographies, some preferring to polish with small pieces of sandstone, I give it here as the best, because it demands little skill and is quicker, so that one can grind off four stones in the time required for one under other methods.

In this matter of smoothness of the stone it is impossible to be too careful. The beauty of the imprint depends upon it. Errors in the polishing cause great trouble afterward. Therefore the manager of a lithography must pay close attention to this work. In the Lithographic Institute in Berlin the rule has been adopted that no engraver shall accept a plate that he has not found thoroughly good, under penalty of reimbursing the printers for all extra trouble and work.

This first polishing, however, is only the general preparation of the stone. Afterward they must be polished and prepared especially for each particular method, as will be explained in the proper place.

When the plates have been polished, they are cleansed with water and sorted for their various uses. Now it is easier to see just what quality the stones have, their defects, and consequently, what work they are best for. Those not uniform are best for coarse pen work. Those of uneven coloring, but hard and thick mass, can be used for the finer pen drawings, for etching and engraving, or for transfer work. For crayon work the clearest and most evenly colored stones of extreme hardness are to be selected.

They can be stored anywhere that is not too damp and not too much exposed to winter cold. Dry cold does not hurt them; but if they are wet through and through and then freeze, they will crack. In constant dampness, too, saltpetre and other salts enter them and they crumble. In clean water they do not undergo any changes.

I will describe the storage of etched and designed stones later.

If the stones are to be used after being stored in any damp place, theyshould be kept for several days in a temperate and dry place till they have dried thoroughly, as otherwise they are not easy to work in any style. This is not necessary if their place of storage has been perfectly dry.

The first and most necessary material in a stone printery is the so-called chemical ink, which would better be named fatty or alkaline ink, since it is a mixture of fatty and resinous materials with alkali. It is used partly to write or draw directly on the stone, partly to cover the stone as with an etching surface, and partly to transfer to the stone from paper.

The purpose of this ink is, first, to cause a mass of oily, fatty substances to soak into the pores of the stone and also make certain portions of its surface fatty; and secondly, to resist acids according to requirement in such degree that the stone shall remain fat where needed, that thus the design, applied with this ink, shall be left untouched by acid.

I have remarked before that countless different mixtures can be made, most of which fulfill the purpose. But there enters the consideration that it must be an ink easy to use, that handsome work may be done by the artists with perfect ease.

Various mixtures answer this purpose very well, and I have found sometimes that men could work better with mixtures made by themselves than they could with those that I used for my own work. Perhaps this was a matter of imagination, or the real reason lay in the pen-cutting, it being well known that one man can use a pen that is absolutely worthless for another.

I myself have tested the values of some mixtures so thoroughly that Ican declare almost positively that it will not be easy to find better ones for any purposes. I will describe these fully.

First of all, stone-ink is divided into two great classes. One is thicker, being used for drawing on stone. The other is more fluid, being used for transfers.

The following mixtures of the first kind are the best:—

This ink does not really serve for writing or drawing on the stone, but is used mostly for coating those places that are to be protected from the etching fluid. If this ink is needed in a thickened form, the wax should be heated in an iron pan till it burns and the combustion should continue till one half of it is consumed. The longer it burns, the harder will be the remnant.

The wax and gum are melted in equal proportions, the undissolved portion is discarded and of the mixture twelve parts is used as above.

There is no important difference between the inks in the seven last formulas. Those that contain shellac remain fluid a little longer but are harder to prepare. It is not necessary to be painfully minute about the proportions of the various materials, providing the proportions of soap and lampblack be correct. The soap is about one fifth and the lampblack about one twentieth part of the whole. If too much soap is used, the ink will dissolve more readily, but the solution will become slimy more quickly. Too much lampblack would make the ink run.

In making any of the inks mentioned, first divide the required quantity of soap into two equal parts. Put one part into an iron pan with the other substances, and heat till the mass begins to burn. Let it burn till almost one half is consumed. Then cover the pan with an iron lid, or place it very carefully into a basin of water to extinguish and cool the mixture.

One part of the soap is mixed in at once, that the combustion may make it mix well with the other substances. But it loses some of its strength and sates itself with carbonic acid, so that it is not quite so powerful as before to attack the fats. Therefore a second part is added after the combustion. Then the complete mixture is heated again, but only to a degree sufficient to melt the soap.

Now take up a bit of the mass with a clean knife and see if it is easily soluble in river or rain water. If the soap was good (something not always the case), the quantity named in the formulas always suffices. If it does not contain enough alkali, little pieces of soap must be added till the mass is soluble. Then the lampblack is added while the mass is being stirred without cessation.

The lampblack must be of the finest sort, and should be roasted and burned in a closed vessel until it ceases to give off any yellow smoke.

When everything has been stirred till the mass is nearly cold, it is kneaded into any desired shape, sticks being the best, and so saved for use.

The following remarks are to be noted especially:—

(1) The soap is to be the ordinary soap made from ox fat and lye. In the formulas its weight is calculated in fresh form, which, of course, includes considerable water. If the soap is very dry, less must be used.

Venetian or vegetable oil soap is not so good because the ink easily becomes slimy afterward when dissolved in water. It does not resist acids so well, either. If, however, the other kind is not to be had, or to be had only in poor quality, the Venetian soap will do. It will be necessary merely to make frequent fresh solutions in water of the ink.

(2) Lampblack is not the only substance available for giving color to the ink. Vermilion, red chalk, indigo, blue lake of logwood, and several other colors can be used, so long as they do not consist of acids or other salts, and thus have properties that could alter the nature of the soap. The finer kinds of ordinary lampblack can be used without burning, but then a part of the soap always is rendered inactive, because the lampblack usually contains a considerable quantity of inflammable wood acidwhich unites with the alkali, neutralizes it, and thus destroys its effectiveness against fats. Therefore, if it is not roasted beforehand, it may be necessary to mix more soap with the ink after it is made, and this does not completely remedy the trouble. Lampblack can be purified by rubbing down with strong lye and then boiling in sufficient water till no trace of alkali remains, if roasting and burning be undesirable for any reason.

Better even than this purified lampblack is one that one makes for himself from ox or other animal fat, from wax, or better still, from a mixture of ox fat and resin. The fat is melted and poured into an earthen lamp similar to those used for city lighting, with a cotton wick. The lamp is lit and placed under a plate of iron or brass, so that the smoke must settle on it. The plate must be close to the flame. The soot is scraped off from time to time and dropped into a glass, which is kept covered. This process continues, the lamp being refilled till one has the desired quantity. This soot is very fine and bland, and so good that one can do more with an ounce of it than with three ounces of the ordinary kind. The ink made from it is extraordinarily fine and good.

It is to be noted in conclusion that the more soot is used, the blacker will be the ink, but the coarser will be the work, because the ink will have the tendency to spread. The less soot is used, the finer will be the work; but it is not easy then to see what one is doing or to judge if the design is strong enough. The quantities given in the formulas appear to me to be the best, especially if the self-manufactured soot is used.

(3) To dissolve the ink, rain water or pure soft river water is best. The rain water must not be very old or stale, otherwise the solution will get slimy.

(4) The severe combustion is not vital for making the ink, but helps very much in making it easy to use.

(5) When shellac is part of the mixture, it is vital to burn the mass well, as only thus will shellac dissolve properly.

Shellac, which is made in China and East India from an insect belonging to the bee family, will melt under moderate heat, but will not dissolve in any animal fat or oil unless it has previously lost its inherent acid,which occurs only under combustion. If shellac is melted with oil or fat, it covers the bottom of the vessel in the beginning. With heat increased till it causes combustion, it begins to swell, rises to the surface, and at last covers the surface in the form of a spongy mass. If the heat still increases, it begins to dissolve into foam. Then it is time to remove the mass from the fire and to cover it with a tight lid, that the flame may be extinguished.

If shellac has been once melted and has hardened, it dissolves only slowly even under severe combustion. It is better, therefore, to bring the other substances to combustion first, and then to mix the shellac in small portions, which will dissolve much more readily because they will be attacked by the great heat in the moment of melting and will not have time to swell first and get hard.

As soon as the mass has cooled a little, the second part of soap is added, and the whole heated, without burning, merely enough to melt the soap.

(6) None of these mixtures can be kept well any length of time in fluid form, that is, dissolved in water, because it becomes slimy after a very few days, sometimes sooner. It can be liquefied again by mixing with water, but not without affecting its durability. Therefore the ink must be stored dry, in which form it lasts for years without change. When required, a small quantity, about the size of two peas, is rubbed down in a very clean small earthen or porcelain vessel, such as a saucer. Those mixtures that contain tallow rub the easiest. The others, containing harder substances, require more pressure. The ink should be spread evenly over the bottom of the vessel. Then a coffee-spoonful of rain or other soft water is poured in, and the mixture is rubbed with the finger till the solution is perfect. Then it is put into a small, very clean pot of glass or porcelain and is ready for use.

(7) A great deal depends on the proper quantity of water. A good ink must be completely dissolved, with no solid particles left. It should be about as fluid as a good, fat milk or vegetable oil. If it is too thick, it makes the work difficult. If it is too thin, it will not withstand the etchingfluid. A few experiments will teach the proper proportions. Even a good ink will make poor lines if it is laid on too thinly and not firmly enough. This, however, is due to the artist's lack of skill or to defective pens, of which I will treat hereafter.

With this quantity of ink it is possible to work for a whole day. Thus each day fresh ink can be mixed; and it is to be noted that the vessels must be cleansed scrupulously that no trace of the previous day's ink be left in them. The ink will dry during the work, and as soon as this begins to interfere with its use, one or two drops of water will thin it again sufficiently.

This is about all that need be said about the chemical fatty or alkaline stone-ink in general. Particular remarks will be found in the description of its use for particular methods.

Besides the inks described, it is well to make the following and keep it in stock for uses whose great value will be explained later.


Back to IndexNext