FOOTNOTES:

FOOTNOTES:[9]Antibarbarus Philosophicus. Francofurti, 1674.[10]Speculationum liber. Venetiis, 1585.[11]De l'Infinito Universo. Dial. 3. La Cena de le Cenere, 1584.[12]Riccoboni, Commentarii de Gymnasio Patavino, 1598.[13]Nelli.[14]Nelli.[15]Venturi. Memorie e Lettere di Gal. Galilei. Modena, 1821.[16]Prodromo all' Arte Maestra. Brescia, 1670.

[9]Antibarbarus Philosophicus. Francofurti, 1674.

[9]Antibarbarus Philosophicus. Francofurti, 1674.

[10]Speculationum liber. Venetiis, 1585.

[10]Speculationum liber. Venetiis, 1585.

[11]De l'Infinito Universo. Dial. 3. La Cena de le Cenere, 1584.

[11]De l'Infinito Universo. Dial. 3. La Cena de le Cenere, 1584.

[12]Riccoboni, Commentarii de Gymnasio Patavino, 1598.

[12]Riccoboni, Commentarii de Gymnasio Patavino, 1598.

[13]Nelli.

[13]Nelli.

[14]Nelli.

[14]Nelli.

[15]Venturi. Memorie e Lettere di Gal. Galilei. Modena, 1821.

[15]Venturi. Memorie e Lettere di Gal. Galilei. Modena, 1821.

[16]Prodromo all' Arte Maestra. Brescia, 1670.

[16]Prodromo all' Arte Maestra. Brescia, 1670.

Astronomy before Copernicus—Fracastoro—Bacon—Kepler—Galileo's Treatise on the Sphere.

Astronomy before Copernicus—Fracastoro—Bacon—Kepler—Galileo's Treatise on the Sphere.

Thisperiod of Galileo's lectureship at Padua derives interest from its including the first notice which we find of his having embraced the doctrines of the Copernican astronomy. Most of our readers are aware of the principles of the theory of the celestial motions which Copernicus restored; but the number of those who possess much knowledge of the cumbrous and unwieldy system which it superseded is perhaps more limited. The present is not a fit opportunity to enter into many details respecting it; these will find their proper place in the History of Astronomy: but a brief sketch of its leading principles is necessary to render what follows intelligible.

The earth was supposed to be immoveably fixed in the centre of the universe, and immediately surrounding it the atmospheres of air and fire, beyond which the sun, moon, and planets, were thought to be carried round the earth, fixed each to a separate orb or heaven of solid but transparent matter. The order of distance in which they were supposed to be placed with regard to the central earth was as follows: The Moon, Mercury, Venus, The Sun, Mars, Jupiter, and Saturn. It became a question in the ages immediately preceding Copernicus, whether the Sun was not nearer the Earth than Mercury, or at least than Venus; and this question was one on which the astronomical theorists were then chiefly divided.

We possess at this time a curious record of a former belief in this arrangement of the Sun and planets, in the order in which the days of the week have been named from them. According to the dreams of Astrology, each planet was supposed to exert its influence in succession, reckoning from the most distant down to the nearest, over each hour of the twenty-four. The planet which was supposed to predominate over the first hour, gave its name to that day.[17]The general reader will trace this curious fact more easily with the French or Latin names than with the English, which have been translated into the titles of the corresponding Saxon deities. Placing the Sun and planets in the following order, and beginning, for instance, with Monday, or the Moon's day; Saturn ruled the second hour of that day, Jupiter the third, and so round till we come again and again to the Moon on the 8th, 15th, and 22d hours; Saturn ruled the 23d,Jupiter the 24th, so that the next day would be the day of Mars, or, as the Saxons translated it, Tuisco's day, or Tuesday. In the same manner the following days would belong respectively to Mercury or Woden, Jupiter or Thor, Venus or Frea, Saturn or Seater, the Sun, and again the Moon. In this manner the whole week will be found to complete the cycle of the seven planets.

Cycle of the seven planets.

The other stars were supposed to be fixed in an outer orb, beyond which were two crystalline spheres, (as they were called,) and on the outside of all, theprimum mobileorfirst moveable, which sphere was supposed to revolve round the earth in twenty-four hours, and by its friction, or rather, as most of the philosophers of that day chose to term it, by the sort of heavenly influence which it exercised on the interior orbs, to carry them round with a similar motion. Hence the diversity of day and night. But beside this principal and general motion, each orb was supposed to have one of its own, which was intended to account for the apparent changes of position of the planets with respect to the fixed stars and to each other. This supposition, however, proving insufficient to account for all the irregularities of motion observed, two hypotheses were introduced.—First, that to each planet belonged several concentric spheres or heavens, casing each other like the coats of an onion, and, secondly, that the centres of these solid spheres, with which the planet revolved, were placed in the circumference of a secondary revolving sphere, the centre of which secondary sphere was situated at the earth. They thus acquired the names of Eccentrics or Epicycles, the latter word signifying a circle upon a circle. The whole art of astronomers was then directed towards inventing and combining different eccentric and epicyclical motions, so as to represent with tolerable fidelity the ever varying phenomena of the heavens. Aristotle had lent his powerful assistance in this, as in other branches of natural philosophy, in enabling the false system to prevail against and obliterate the knowledge of the true, which, as we gather from his own writings, was maintained by some philosophers before his time. Of these ancient opinions, only a few traces now remain, principally preserved in the works of those who were adverse to them. Archimedes says expressly that Aristarchus of Samos, who lived about 300 B. C., taught the immobility of the sun and stars, and that the earth is carried round the central sun.[18]Aristotle's words are: "Most of those who assert that the whole concave is finite, say that the earth is situated in the middle point of the universe: those who are called Pythagoreans, who live in Italy, are of a contrary opinion. For they say that fire is in the centre, and that the earth, which, according to them, is one of the stars, occasions the change of day and night by its own motion, with which it is carried about the centre." It might be doubtful, upon this passage alone, whether the Pythagorean theory embraced more than the diurnal motion of the earth, but a little farther, we find the following passage: "Some, as we have said, make the earth to be one of the stars: others say that it is placed in the centre of the Universe, and revolves on a central axis."[19]Fromwhich, in conjunction with the former extract, it very plainly appears that the Pythagoreans maintained both the diurnal and annual motions of the earth.

Some idea of the supererogatory labour entailed upon astronomers by the adoption of the system which places the earth in the centre, may be formed in a popular manner by observing, in passing through a thickly planted wood, in how complicated a manner the relative positions of the trees appear at each step to be continually changing, and by considering the difficulty with which the laws of their apparent motions could be traced, if we were to attempt to refer these changes to a real motion of the trees instead of the traveller. The apparent complexity in the heavens is still greater than in the case suggested; because, in addition to the earth's motions, with which all the stars appear to be impressed, each of the planets has also a real motion of its own, which of course greatly contributes to perplex and complicate the general appearances. Accordingly the heavens rapidly became, under this system,

"With centric and eccentric scribbled o'er,Cycle and epicycle, orb in orb;"[20]

"With centric and eccentric scribbled o'er,Cycle and epicycle, orb in orb;"[20]

"With centric and eccentric scribbled o'er,Cycle and epicycle, orb in orb;"[20]

"With centric and eccentric scribbled o'er,

Cycle and epicycle, orb in orb;"[20]

crossing and penetrating each other in every direction. Maestlin has given a concise enumeration of the principal orbs which belonged to this theory. After warning the readers that "they are not mere fictions which have nothing to correspond with them out of the imagination, but that they exist really, and bodily in the heavens,"[21]he describes seven principal spheres belonging to each planet, which he classes as Eccentrics, Epicycles, and Concentrepicycles, and explains their use in accounting for the planet's revolutions, motions of the apogee, and nodes, &c. &c. In what manner this multitude of solid and crystalline orbs were secured from injuring or interfering with each other was not very closely inquired into.

The reader will cease to expect any very intelligible explanation of this and numberless other difficulties which belong to this unwieldy machinery when he is introduced to the reasoning by which it was upheld. Gerolamo Fracastoro, who lived in the sixteenth century, writes in the following terms, in his work entitled Homocentrica, (certainly one of the best productions of the day,) in which he endeavours to simplify the necessary apparatus, and to explain all the phenomena (as the title of his book implies) by concentric spheres round the earth. "There are some, not only of the ancients but also among the moderns, who believe that the stars move freely without any such agency; but it is difficult to conceive in what manner they have imbued themselves with this notion,since not only reason, but the very senses, inform us that all the stars are carried round fastened to solid spheres." What ideas Fracastoro entertained of the evidence of the "senses" it is not now easy to guess, but he goes on to give a specimen of the "reasoning" which appeared to him so incontrovertible. "The planets are observed to move one while forwards, then backwards, now to the right, now to the left, quicker and slower by turns; which variety is consistent with a compound structure like that of an animal, which possesses in itself various springs and principles of action, but is totally at variance with our notion of a simple and undecaying substance like the heavens and heavenly bodies. For that which is simple, is altogether single, and singleness is of one only nature, and one nature can be the cause of only one effect; and therefore it is altogether impossible that the stars of themselves should move with such variety of motion. And besides, if the stars move by themselves, they either move in an empty space, or in a fluid medium like the air. But there cannot be such a thing as empty space, and if there were such a medium, the motion of the star would occasion condensation and rarefaction in different parts of it, which is the property of corruptible bodies and where they exist some violent motion is going on; but the heavens are incorruptible and are not susceptible of violent motion, and hence, and from many other similar reasons, any one who is not obstinate may satisfy himself that the stars cannot have any independent motion."

Some persons may perhaps think that arguments of this force are unnecessarily dragged from the obscurity to which they are now for the most part happily consigned; but it is essential, in order to set Galileo's character and merits in their true light, to show how low at thistime philosophy had fallen. For we shall form a very inadequate notion of his powers and deserts if we do not contemplate him in the midst of men who, though of undoubted talent and ingenuity, could so far bewilder themselves as to mistake such a string of unmeaning phrases for argument: we must reflect on the difficulty every one experiences in delivering himself from the erroneous impressions of infancy, which will remain stamped upon the imagination in spite of all the efforts of matured reason to erase them, and consider every step of Galileo's course as a triumph over difficulties of a like nature. We ought to be fully penetrated with this feeling before we sit down to the perusal of his works, every line of which will then increase our admiration of the penetrating acuteness of his invention and unswerving accuracy of his judgment. In almost every page we discover an allusion to some new experiment, or the germ of some new theory; and amid all this wonderful fertility it is rarely indeed that we find the exuberance of his imagination seducing him from the rigid path of philosophical induction. This is the more remarkable as he was surrounded by friends and contemporaries of a different temperament and much less cautious disposition. A disadvantageous contrast is occasionally furnished even by the sagacious Bacon, who could so far deviate from the sound principles of inductive philosophy, as to write, for instance, in the following strain, bordering upon the worst manner of the Aristotelians:—"Motion in a circle has no limit, and seems to emanate from the appetite of the body, which moves only for the sake of moving, and that it may follow itself and seek its own embraces, and put in action and enjoy its own nature, and exercise its peculiar operation: on the contrary, motion in a straight line seems transitory, and to move towards a limit of cessation or rest, and that it may reach some point, and then put off its motion."[22]Bacon rejected all the machinery of theprimum mobileand the solid spheres, the eccentrics and the epicycles, and carried his dislike of these doctrines so far as to assert that nothing short of their gross absurdity could have driven theorists to the extravagant supposition of the motion of the earth, which, said he, "we know to be most false."[23]Instances of extravagant suppositions and premature generalizations are to be found in almost every page of his other great contemporary, Kepler.

It is with pain that we observe Delambre taking every opportunity, in his admirable History of Astronomy, to undervalue and sneer at Galileo, seemingly for the sake of elevating the character of Kepler, who appears his principal favourite, but whose merit as a philosopher cannot safely be brought into competition with that of his illustrious contemporary. Delambre is especially dissatisfied with Galileo, for taking no notice, in his "System of the World," of the celebrated laws of the planetary motions which Kepler discovered, and which are now inseparably connected with his name. The analysis of Newton and his successors has now identified those apparently mysterious laws with the general phenomena of motion, and has thus entitled them to an attention of which, before that time, they were scarcely worthy; at any rate not more than is at present the empirical law which includes the distances of all the planets from the sun (roughly taken) in one algebraical formula. The observations of Kepler's day were scarcely accurate enough to prove that the relations which he discovered between the distances of the planets from the sun and the periods of their revolutions around him were necessarily to be received as demonstrated truths; and Galileo surely acted most prudently and philosophically in holding himself altogether aloof from Kepler's fanciful devices and numeral concinnities, although, with all the extravagance, they possessed much of the genius of the Platonic reveries, and although it did happen that Galileo, by systematically avoiding them, failed to recognise some important truths. Galileo probably was thinking of those very laws, when he said of Kepler, "He possesses a bold and free genius, perhaps too much so; but his mode of philosophizing is widely different from mine." We shall have further occasion in the sequel to recognise the justice of this remark.

In the treatise on the Sphere which bears Galileo's name, and which, if he be indeed the author of it, was composed during the early part of his residence atPadua, he also adopts the Ptolemaic system, placing the earth immoveable in the centre, and adducing against its motion the usual arguments, which in his subsequent writings he ridicules and refutes. Some doubts have been expressed of its authenticity; but, however this may be, we have it under Galileo's own hand that he taught the Ptolemaic system, in compliance with popular prejudices, for some time after he had privately become a convert to the contrary opinions. In a letter, apparently the first which he wrote to Kepler, dated from Padua, 1597, he says, acknowledging the receipt of Kepler's Mysterium Cosmographicum, "I have as yet read nothing beyond the preface of your book, from which however I catch a glimpse of your meaning, and feel great joy on meeting with so powerful an associate in the pursuit of truth, and consequently such a friend to truth itself, for it is deplorable that there should be so few who care about truth, and who do not persist in their perverse mode of philosophizing; but as this is not the fit time for lamenting the melancholy condition of our times, but for congratulating you on your elegant discoveries in confirmation of the truth, I shall only add a promise to peruse your book dispassionately, and with a conviction that I shall find in it much to admire.This I shall do the more willingly because many years ago I became a convert to the opinions of Copernicus,[24]and by that theory have succeeded in fully explaining many phenomena, which on the contrary hypothesis are altogether inexplicable. I have arranged many arguments and confutations of the opposite opinions,which however I have not yet dared to publish, fearing the fate of our master Copernicus, who, although he has earned immortal fame among a few, yet by an infinite number (for so only can the number of fools be measured) is exploded and derided. If there were many such as you, I would venture to publish my speculations; but, since that is not so, I shall take time to consider of it." This interesting letter was the beginning of the friendship of these two great men, which lasted uninterruptedly till1632, the date of Kepler's death. That extraordinary genius never omitted an opportunity of testifying his admiration of Galileo, although there were not wanting persons envious of their good understanding, who exerted themselves to provoke coolness and quarrel between them. Thus Brutius writes to Kepler in 1602:[25]"Galileo tells me he has written to you, and has got your book, which however he denied to Magini, and I abused him for praising you with too many qualifications. I know it to be a fact that, both in his lectures, and elsewhere, he is publishing your inventions as his own; but I have taken care, and shall continue to do so, that all this shall redound not to his credit but to yours." The only notice which Kepler took of these repeated insinuations, which appear to have been utterly groundless, was, by renewed expressions of respect and admiration, to testify the value he set upon his friend and fellow-labourer in philosophy.

FOOTNOTES:[17]Dion Cassius, lib. 37.[18]The pretended translation by Roberval of an Arabic version of Aristarchus, "De Systemate Mundi," in which the Copernican system is fully developed, is spurious. Menage asserts this in his observations on Diogen. Laert. lib. 8, sec. 85, tom. ii., p. 389. (Ed. Amst. 1692.) The commentary contains many authorities well worth consulting. Delambre, Histoire de l'Astronomie, infers it from its not containing some opinions which Archimedes tells us were held by Aristarchus. A more direct proof may be gathered from the following blunder of the supposed translator. Astronomers had been long aware that the earth in different parts of her orbit is at different distances from the sun. Roberval wished to claim for Aristarchus the credit of having known this, and introduced into his book, not only the mention of the fact, but an explanation of its cause. Accordingly he makes Aristarchus give a reason "why the sun's apogee (or place of greatest distance from the earth) must always be at the north summer solstice." In fact, it was there, or nearly so, in Roberval's time, and he knew not but that it had always been there. It is however moveable, and, when Aristarchus lived, was nearly half way between the solstices and equinoxes. He therefore would hardly have given a reason for the necessity of a phenomenon of which, if he observed anything on the subject, he must have observed the contrary. The change in the obliquity of the earth's axis to the ecliptic was known in the time of Roberval, and he accordingly has introduced the proper value which it had in Aristarchus's time.[19]De Cœlo. lib. 2.[20]Paradise Lost, b. viii. v. 83.[21]Itaque tam circulos primi motus quam orbes secundorum mobilium reverâ in cœlesti corpore esse concludimus, &c. Non ergo sunt mera figmenta, quibus extra mentem nihil correspondeat. M. Maestlini, De Astronomiæ Hypothesibus disputatio. Heidelbergæ, 1582.[22]Opuscula Philosophica, Thema Cœli.[23]"Nobis constat falsissimum esse." De Aug. Scient. lib. iii. c. 3, 1623.[24]Id autum eò libentius faciam, quod in Copernici sententiam multis abhinc annis venerim.—Kepl. Epistolæ.[25]Kepleri Epistolæ.

[17]Dion Cassius, lib. 37.

[17]Dion Cassius, lib. 37.

[18]The pretended translation by Roberval of an Arabic version of Aristarchus, "De Systemate Mundi," in which the Copernican system is fully developed, is spurious. Menage asserts this in his observations on Diogen. Laert. lib. 8, sec. 85, tom. ii., p. 389. (Ed. Amst. 1692.) The commentary contains many authorities well worth consulting. Delambre, Histoire de l'Astronomie, infers it from its not containing some opinions which Archimedes tells us were held by Aristarchus. A more direct proof may be gathered from the following blunder of the supposed translator. Astronomers had been long aware that the earth in different parts of her orbit is at different distances from the sun. Roberval wished to claim for Aristarchus the credit of having known this, and introduced into his book, not only the mention of the fact, but an explanation of its cause. Accordingly he makes Aristarchus give a reason "why the sun's apogee (or place of greatest distance from the earth) must always be at the north summer solstice." In fact, it was there, or nearly so, in Roberval's time, and he knew not but that it had always been there. It is however moveable, and, when Aristarchus lived, was nearly half way between the solstices and equinoxes. He therefore would hardly have given a reason for the necessity of a phenomenon of which, if he observed anything on the subject, he must have observed the contrary. The change in the obliquity of the earth's axis to the ecliptic was known in the time of Roberval, and he accordingly has introduced the proper value which it had in Aristarchus's time.

[18]The pretended translation by Roberval of an Arabic version of Aristarchus, "De Systemate Mundi," in which the Copernican system is fully developed, is spurious. Menage asserts this in his observations on Diogen. Laert. lib. 8, sec. 85, tom. ii., p. 389. (Ed. Amst. 1692.) The commentary contains many authorities well worth consulting. Delambre, Histoire de l'Astronomie, infers it from its not containing some opinions which Archimedes tells us were held by Aristarchus. A more direct proof may be gathered from the following blunder of the supposed translator. Astronomers had been long aware that the earth in different parts of her orbit is at different distances from the sun. Roberval wished to claim for Aristarchus the credit of having known this, and introduced into his book, not only the mention of the fact, but an explanation of its cause. Accordingly he makes Aristarchus give a reason "why the sun's apogee (or place of greatest distance from the earth) must always be at the north summer solstice." In fact, it was there, or nearly so, in Roberval's time, and he knew not but that it had always been there. It is however moveable, and, when Aristarchus lived, was nearly half way between the solstices and equinoxes. He therefore would hardly have given a reason for the necessity of a phenomenon of which, if he observed anything on the subject, he must have observed the contrary. The change in the obliquity of the earth's axis to the ecliptic was known in the time of Roberval, and he accordingly has introduced the proper value which it had in Aristarchus's time.

[19]De Cœlo. lib. 2.

[19]De Cœlo. lib. 2.

[20]Paradise Lost, b. viii. v. 83.

[20]Paradise Lost, b. viii. v. 83.

[21]Itaque tam circulos primi motus quam orbes secundorum mobilium reverâ in cœlesti corpore esse concludimus, &c. Non ergo sunt mera figmenta, quibus extra mentem nihil correspondeat. M. Maestlini, De Astronomiæ Hypothesibus disputatio. Heidelbergæ, 1582.

[21]Itaque tam circulos primi motus quam orbes secundorum mobilium reverâ in cœlesti corpore esse concludimus, &c. Non ergo sunt mera figmenta, quibus extra mentem nihil correspondeat. M. Maestlini, De Astronomiæ Hypothesibus disputatio. Heidelbergæ, 1582.

[22]Opuscula Philosophica, Thema Cœli.

[22]Opuscula Philosophica, Thema Cœli.

[23]"Nobis constat falsissimum esse." De Aug. Scient. lib. iii. c. 3, 1623.

[23]"Nobis constat falsissimum esse." De Aug. Scient. lib. iii. c. 3, 1623.

[24]Id autum eò libentius faciam, quod in Copernici sententiam multis abhinc annis venerim.—Kepl. Epistolæ.

[24]Id autum eò libentius faciam, quod in Copernici sententiam multis abhinc annis venerim.—Kepl. Epistolæ.

[25]Kepleri Epistolæ.

[25]Kepleri Epistolæ.

Galileo re-elected Professor at Padua—New star—Compass of proportion—Capra—Gilbert—Proposals to return to Pisa—Lost writings—Cavalieri.

Galileo re-elected Professor at Padua—New star—Compass of proportion—Capra—Gilbert—Proposals to return to Pisa—Lost writings—Cavalieri.

Galileo'sreputation was now rapidly increasing: his lectures were attended by many persons of the highest rank; among whom were the Archduke Ferdinand, afterwards Emperor of Germany, the Landgrave of Hesse, and the Princes of Alsace and Mantua. On the expiration of the first period for which he had been elected professor, he was rechosen for a similar period, with a salary increased to 320 florins. The immediate occasion of this augmentation is said by Fabroni,[26]to have arisen out of the malice of an ill wisher of Galileo, who, hoping to do him disservice, apprized the senate that he was not married to Marina Gamba, then living with him, and the mother of his son Vincenzo. Whether or not the senate might consider themselves entitled to inquire into the morality of his private life, it was probably from a wish to mark their sense of the informer's impertinence, that they returned the brief answer, that "if he had a family to provide for, he stood the more in need of an increased stipend."

During Galileo's residence at Padua, and, according to Viviani's intimation, towards the thirtieth year of his age, that is to say in 1594, he experiencedthe first attack of a disease which pressed heavily on him for the rest of his life. He enjoyed, when a young man, a healthy and vigorous constitution, but chancing to sleep one afternoon near an open window, through which was blowing a current of air cooled artificially by the fall of water, the consequences were most disastrous to him. He contracted a sort of chronic complaint, which showed itself in acute pains in his limbs, chest, and back, accompanied with frequent hæmorrhages and loss of sleep and appetite; and this painful disorder thenceforward never left him entirely, but recurred intermittingly, with greater or less violence, as long as he lived. Others of the party did not even escape so well, but died shortly after committing this imprudence.

In 1604, the attention of astronomers was called to the contemplation of a new star, which appeared suddenly with great splendour in the constellation Serpentarius, or Ophiuchus, as it is now more commonly called. Maestlin, who was one of the earliest to notice it, relates his observations in the following words: "How wonderful is this new star! I am certain that I did not see it before the 29th of September, nor indeed, on account of several cloudy nights, had I a good view till the 6th of October. Now that it is on the other side of the sun, instead of surpassing Jupiter as it did, and almost rivalling Venus, it scarcely matches the Cor Leonis, and hardly surpasses Saturn. It continues however to shine with the same bright and strongly sparkling light, and changes its colours almost with every moment; first tawny, then yellow, presently purple and red, and, when it has risen above the vapours, most frequently white." This was by no means an unprecedented phenomenon; and the curious reader may find in Riccioli[27]a catalogue of the principal new stars which have at different times appeared. There is a tradition of a similar occurrence as early as the times of the Greek astronomer Hipparchus, who is said to have been stimulated by it to the formation of his catalogue of the stars; and only thirty-two years before, in 1572, the same remarkable phenomenon in the constellation Cassiopeia was mainly instrumental in detaching the celebrated Tycho Brahe from the chemical studies, which till then divided his attention with astronomy. Tycho's star disappeared at the end of two years; and at that time Galileo was a child. On the present occasion, he set himself earnestly to consider the new phenomenon, and embodied the results of his observations in three lectures, which have been unfortunately lost. Only the exordium of the first has been preserved: in this he reproaches his auditors with their general insensibility to the magnificent wonders of creation daily exposed to their view, in no respect less admirable than the new prodigy, to hear an explanation of which they had hurried in crowds to his lecture room. He showed, from the absence of parallax, that the new star could not be, as the vulgar hypothesis represented, a mere meteor engendered in our atmosphere and nearer the earth than the moon, but must be situated among the most remote heavenly bodies. This was inconceivable to the Aristotelians, whose notions of a perfect, simple, and unchangeable sky were quite at variance with the introduction of any such new body; and we may perhaps consider these lectures as the first public declaration of Galileo's hostility to the old Ptolemaic and Aristotelian astronomy.

In 1606 he was reappointed to the lectureship, and his salary a second time increased, being raised to 520 florins. His public lectures were at this period so much thronged that the ordinary place of meeting was found insufficient to contain his auditors, and he was on several occasions obliged to adjourn to the open air,—even from the school of medicine, which was calculated to contain one thousand persons.

About this time he was considerably annoyed by a young Milanese, of the name of Balthasar Capra, who pirated an instrument which Galileo had invented some years before, and had called the geometrical and military compass. The original offender was a German named Simon Mayer, whom we shall meet with afterwards arrogating to himself the merit of one of Galileo's astronomical discoveries; but on this occasion, as soon as he found Galileo disposed to resent the injury done to him, he hastily quitted Italy, leaving his friend Capra to bear alone the shame of the exposure which followed. The instrument is of simple construction, consisting merely of two straight rulers, connected by a joint; so that they can be set to any required angle. This simple and useful instrument, now called the Sector, is to be found in almost everycase of mathematical instruments. Instead of the trigonometrical and logarithmic lines which are now generally engraved upon it, Galileo's compass merely contained, on one side, three pairs of lines, divided in simple, duplicate, and triplicate proportion, with a fourth pair on which were registered the specific gravities of several of the most common metals. These were used for multiplications, divisions, and the extraction of roots; for finding the dimensions of equally heavy balls of different materials, &c. On the other side were lines contrived for assisting to describe any required polygon on a given line; for finding polygons of one kind equal in area to those of another; and a multitude of other similar operations useful to the practical engineer.

Unless the instrument, which is now called Gunter's scale, be much altered from what it originally was, it is difficult to understand on what grounds Salusbury charges Gunter with plagiarism from Galileo's Compass.He declares that he has closely compared the two, and can find no difference between them.[28]There has also been some confusion, by several writers, between this instrument and what is now commonly called the Proportional Compass. The latter consists of two slips of metal pointed at each end, and connected by a pin which, sliding in a groove through both, can be shifted to different positions. Its use is to find proportional lines; for it is obvious that the openings measured by each pair of legs will be in the same proportion in which the slips are divided by the centre. The divisions usually marked on it are calculated for finding the submultiples of straight lines, and the chords of submultiple arcs. Montucla has mentioned this mistake of one instrument for the other, and charges Voltaire with the more inexcusable error of confounding Galileo's with the Mariner's Compass. He refers to a treatise by Hulsius for his authority in attributing the Proportional Compass toBurgi, a Swissastronomer of some celebrity. Horcher also has been styled the inventor; but he did no more than describe its form and application. In the frontispiece of his book is an engraving of this compass exactly similar to those which are now used.[29]To the description which Galileo published of his compass, he added a short treatise on the method of measuring heights and distances with the quadrant and plumb line. The treatise, which is printed by itself at the end of the first volume of the Padua edition of Galileo's works, contains nothing more than the demonstrations belonging to the same operations. They are quite elementary, and contain little or nothing that was new even at that time.

Such an instrument as Galileo's Compass was of much more importance before the grand discovery of logarithms than it can now be considered: however it acquires an additional interest from the value which he himself set on it. In 1607, Capra, at the instigation of Mayer, published as his own invention what he calls the proportional hoop, which is a mere copy of Galileo's instrument. This produced from Galileo a long essay, entitled "A Defence of Galileo against the Calumnies and Impostures of Balthasar Capra." His principal complaint seems to have been of the misrepresentations which Capra had published of his lectures on the new star already mentioned, but he takes occasion, after pointing out the blunders and falsehoods which Capra had committed on that occasion, to add a complete proof of his piracy of the geometrical compass. He showed, from the authenticated depositions of workmen, and of those for whom the instruments had been fabricated, that he had devised them as early as the year 1597, and had explained their construction and use both to Balthasar himself and to his father Aurelio Capra, who was then residing in Padua. He gives, in the same essay, the minutes of a public meeting between himself and Capra, in which he proved, to the satisfaction of the university, that wherever Capra had endeavoured to introduce into his book propositions which were not to be met with in Galileo's, he had fallen into the greatest absurdities, and betrayed the most complete ignorance of his subject. The consequence of this public exposure, and of the report of the famous Fra Paolo Sarpi, to whom the matter had been referred, was a formal prohibition by the university of Capra's publication, and all copies of the book then on hand were seized, and probably destroyed, though Galileo has preserved it from oblivion by incorporating it in his own publication.

Nearly at the same time, 1607, or immediately after, he first turned his attention towards the loadstone, on which ourcountryman Gilbert had already published his researches, conducted in the true spirit of the inductive method. Very little that is original is to be found in Galileo's works on this subject, except some allusions to his method of arming magnets, in which, as in most of his practical and mechanical operations, he appears to have been singularly successful. Sir Kenelm Digby[30]asserts, that the magnets armed by Galileo would support twice as great a weight as one of Gilbert's of the same size. Galileo was well acquainted, as appears from his frequent allusions in different parts of his works, with what Gilbert had done, of whom he says, "I extremely praise, admire, and envy this author;—I think him, moreover, worthy of the greatest praise for the many new and true observations that he has made to the disgrace of so many vain and fabling authors, who write, not from their own knowledge only, but repeat every thing they hear from the foolish vulgar, without attempting to satisfy themselves of the same by experience, perhaps that they may not diminish the size of their books."

Galileo's reputation being now greatly increased, proposals were made to him, in 1609, to return to his original situation at Pisa. He had been in the habit of passing over to Florence during the academic vacation, for the purpose of giving mathematical instruction to the younger members of Ferdinand's family; and Cosmo, who had now succeeded his father as duke of Tuscany, regretted that so masterly a genius had been allowed to leave the university which he naturally should have graced. A few extracts from Galileo's answers to these overtures will serve to show the nature of his situation at Padua, and the manner in which his time was there occupied. "I will not hesitate to say, having now laboured during twenty years, and those the best of my life, in dealing out, as one may say, in detail, at the request of any body, the little talent which God has granted to my assiduity in my profession, that my wish certainly would be to have sufficient rest and leisure to enable me, before my life comes to its close, to conclude three great works which I have in hand, and to publish them; which might perhaps bring some credit to me, and to those who had favoured me in this undertaking, and possibly may be of greater and more frequent service to students than in the rest of my life I could personally afford them. Greater leisure than I have here I doubt if I could meet with elsewhere, so long as I am compelled to support my family from my public and private lectures, (nor would I willingly lecture in any other city than this, for several reasons which would be long to mention) nevertheless not even the liberty I have here is sufficient, where I am obliged to spend many, and often the best hours of the day at the request of this and that man.—My public salary here is 520 florins, which I am almost certain will be advanced to as many crowns upon my re-election, and these I can greatly increase by receiving pupils, and from private lectures, to any extent that I please. My public duty does not confine me during more than 60 half hours in the year, and even that not so strictly but that I may, on occasion of any business, contrive to get some vacant days; the rest of my time is absolutely at my own disposal; but because my private lectures and domestic pupils are a great hindrance and interruption of my studies, I wish to live entirely exempt from the former, and in great measure from the latter: for if I am to return to my native country, I should wish the first object of his Serene Highness to be, that leisure and opportunity should be given me to complete my works without employing myself in lecturing.—And, in short, I should wish to gain my bread from my writings, which I would always dedicate to my Serene Master.—The works which I have to finish are principally—two books on the system or structure of the Universe, an immense work, full of philosophy, astronomy, and geometry; three books on Local Motion, a science entirely new, no one, either ancient or modern, having discovered any of the very many admirable accidents which I demonstrate in natural and violent motions, so that I may with very great reason call it a new science, and invented by me from its very first principles; three books of Mechanics, two on the demonstration of principles and one of problems; and although others have treated this same matter, yet all that has been hitherto written, neither in quantity, nor otherwise, is the quarter of what I am writing on it. I have also different treatises on natural subjects; On sound and speech; On light and colours; On the tide; On the composition of continuous quantity; On themotions of animals;—And others besides. I have also an idea of writing some books relating to the military art, giving not only a model of a soldier, but teaching with very exact rules every thing which it is his duty to know that depends upon mathematics; as the knowledge of castrametation, drawing up battalions, fortifications, assaults, planning, surveying, the knowledge of artillery, the use of instruments, &c. I also wish to reprint the 'Use of my Geometrical Compass,' which is dedicated to his highness, and which is no longer to be met with; for this instrument has experienced such favour from the public, that in fact no other instruments of this kind are now made, and I know that up to this time several thousands of mine have been made.—I say nothing as to the amount of my salary, feeling convinced that as I am to live upon it, the graciousness of his highness would not deprive me of any of those comforts, which, however, I feel the want of less than many others; and therefore I say nothing more on the subject. Finally, on the title and profession of my service, I should wish that to the name of Mathematician, his highness would add that of Philosopher, as I profess to have studied a greater number of years in philosophy than months in pure mathematics; and how I have profited by it, and if I can or ought to deserve this title, I may let their highnesses see as often as it shall please them to give me an opportunity of discussing such subjects in their presence with those who are most esteemed in this knowledge." It may perhaps be seen in the expressions of this letter, that Galileo was not inclined to undervalue his own merits, but the peculiar nature of the correspondence should be taken into account, which might justify his indulging a little more than usual in self-praise, and it would have been perhaps almost impossible for him to have remained entirely blind to his vast superiority over his contemporaries.

Many of the treatises which Galileo here mentions, as well as another on dialling, have been irrecoverably lost, through the superstitious weakness of some of his relations, who after his death suffered the family confessor to examine his papers, and to destroy whatever seemed to him objectionable; a portion which, according to the notions then prevalent, was like to comprise the most valuable part of the papers submitted to this expurgation. It is also supposed that many were burnt by his infatuated grandson Cosimo, who conceived he was thus offering a proper and pious sacrifice before devoting himself to the life of a missionary. A Treatise on Fortification, by Galileo, was found in 1793, and is contained among the documents published by Venturi. Galileo does not profess in it to give much original matter, but to lay before his readers a compendium of the most approved principles then already known. It has been supposed that Gustavus Adolphus of Sweden attended Galileo's lectures on this subject, whilst in Italy; but the fact is not satisfactorily ascertained. Galileo himself mentions a Prince Gustavus of Sweden to whom he gave instruction in mathematics, but the dates cannot well be made to agree. The question deserves notice only from its having been made the subject of controversy.

The loss of Galileo's Essay on Continuous Quantity is particularly to be regretted, as it would be highly interesting to see how far he succeeded in methodizing his thoughts on this important topic. It is to his pupil Cavalieri (who refused to publish his book so long as he hoped to see Galileo's printed) that we owe "The Method of Indivisibles," which is universally recognized as one of the first germs of the powerful methods of modern analysis. Throughout Galileo's works we find many indications of his having thought much on the subject, but his remarks are vague, and bear little, if at all, on the application of the method. To this the chief part of Cavalieri's book is devoted, though he was not so entirely regardless of the principles on which his method of measuring spaces is founded, as he is sometimes represented. This method consisted in considering lines as made up of an infinite number of points, surfaces in like manner as composed of lines, and solids of surfaces; but there is an observation at the beginning of the 7th book, which shews clearly that Cavalieri had taken a much more profound view of the subject than is implied in this superficial exposition, and had approached very closely to the apparently more exact theories of his successors. Anticipating the objections to his hypothesis, he argues, that "there is no necessity to suppose the continuous quantities made up of these indivisible parts,but only that they will observe the same ratios as those parts do." It ought not to be omitted, that Kepler also had given an impulse toCavalieri in his "New method ofGauging," which is the earliest work with which we are acquainted, where principles of this sort are employed.[31]

FOOTNOTES:[26]Vitæ Italorum Illustrium.[27]Almagestum Novum, vol. i.[28]Math. Coll. vol. ii.[29]Constructio Circini Proportionum. Moguntiæ, 1605.[30]Treatise of the Nature of Bodies. London, 1665.[31]Nova Stereometria Doliorum—Lincii, 1615.

[26]Vitæ Italorum Illustrium.

[26]Vitæ Italorum Illustrium.

[27]Almagestum Novum, vol. i.

[27]Almagestum Novum, vol. i.

[28]Math. Coll. vol. ii.

[28]Math. Coll. vol. ii.

[29]Constructio Circini Proportionum. Moguntiæ, 1605.

[29]Constructio Circini Proportionum. Moguntiæ, 1605.

[30]Treatise of the Nature of Bodies. London, 1665.

[30]Treatise of the Nature of Bodies. London, 1665.

[31]Nova Stereometria Doliorum—Lincii, 1615.

[31]Nova Stereometria Doliorum—Lincii, 1615.

Invention of the telescope—Fracastoro—Porta—Reflecting telescope—Roger Bacon—Digges—De Dominis—Jansen—Lipperhey—Galileo constructs telescopes—Microscopes—Re-elected Professor at Padua for life.

Invention of the telescope—Fracastoro—Porta—Reflecting telescope—Roger Bacon—Digges—De Dominis—Jansen—Lipperhey—Galileo constructs telescopes—Microscopes—Re-elected Professor at Padua for life.

Theyear 1609 was signalized by Galileo's discovery of the telescope, which, in the minds of many, is the principal, if not the sole invention associated with his name. It cannot be denied that his fame, as the founder of the school of experimental philosophy, has been in an unmerited degree cast into the shade by the splendour of his astronomical discoveries; yet Lagrange[32]surely errs in the opposite extreme, when he almost denies that these form any real or solid part of the glory of this great man; and Montucla[33]omits an important ingredient in his merit, when he (in other respects very justly) remarks, that it required far less genius to point a telescope towards the heavens than to trace the unheeded, because daily recurring, phenomena of motion up to its simple and primary laws. We are to remember that in the days of Galileo a telescope could scarcely be pointed to the heavens with impunity, and that a courageous mind was required to contradict, and a strong one to bear down, a party, who, when invited to look on any object in the heavens which Aristotle had never suspected, immediately refused all credit to those senses, to which, on other occasions, they so confidently appealed. It surely is a real and solid part of Galileo's glory that he consumed his life in laborious and indefatigable observations, and that he persevered in announcing his discoveries undisgusted by the invectives, and undismayed by the persecutions, to which they subjected him. Plagiarist! liar! impostor! heretic! were among the expressions of malignant hatred lavished upon him, and although he also was not without some violent and foul-mouthed partisans, yet it must be told to his credit that he himself seldom condescended to notice these torrents of abuse, otherwise than by good-humoured retorts, and by prosecuting his observations with renewed assiduity and zeal.

The use of single lenses in aid of the sight had been long known. Spectacles were in common use at the beginning of the fourteenth century, and there are several hints, more or less obscure, in many early writers, of the effects which might be expected from a combination of glasses; but it does not appear with certainty that any of these authors had attempted to reduce their ideas to practice. After the discovery of the telescope, almost every country endeavoured to find in the writings of its early philosophers traces of the knowledge of such an instrument, but in general with success veryinadequateto the zeal of their national prepossessions. There are two authors especially to whom the attention of Kepler and others was turned, immediately upon the promulgation of the discovery, as containing the germ of it in their works. These are Baptista Porta, and Gerolamo Fracastoro. We have already had occasion to quote the Homocentrica of Fracastoro, who died in 1553; the following expressions, though they seem to refer to actual experiment, yet fall short of the meaning with which it has been attempted to invest them. After explaining and commenting on some phenomena of refraction through different media, to which he was led by the necessity of reconciling his theory with the variable magnitudes of the planets, he goes on to say—"For which reason, those things which are seen at the bottom of water, appear greater than those which are at the top; and if any one look through two eyeglasses,one placed upon the other, he will see every thing much larger and nearer."[34]It should seem that this passage (as Delambre has already remarked) rather refers to the close application of one glass upon another, and it may fairly be doubted whether anything analogous to the composition of the telescope was in the writer's thoughts. Baptista Porta writes on the same subject more fully;—"Concave lenses show distant objects most clearly, convex those which are nearer, whence they may be used to assist the sight. With a concave glass distant objects will be seen, small, but distinct; with a convex one those near at hand, larger, but confused;if youknow rightly how to combine one of each sort, you will see both far and near objects larger and clearer."[35]These words show, if Porta really was then unacquainted with the telescope, how close it is possible to pass by an invention without lighting on it, for of precisely such a combination of a convex and concave lens, fitted to the ends of an organ pipe by way of tube, did the whole of Galileo's telescope consist. If Porta had stopped here he might more securely have enjoyed the reputation of the invention, but he then professes to describe the construction of his instrument, which has no relation whatever to his previous remarks. "I shall now endeavour to show in what manner we may contrive to recognize our friends at the distance of several miles, and how those of weak sight may read the most minute letters from a distance. It is an invention of great utility, and grounded on optical principles, nor is it at all difficult of execution; but it must be so divulged as not to be understood by the vulgar, and yet be clear to the sharpsighted." The description which follows seems far enough removed from the apprehended danger of being too clear, and indeed every writer who has hitherto quoted it has merely given the passage in its original Latin, apparently despairing of an intelligible translation. With some alterations in the punctuation, which appear necessary to bring it into any grammatical construction,[36]it may be supposed to bear something like the following meaning:—"Let a view be contrived in the centre of a mirror, where it is most effective. All the solar rays are exceedingly dispersed, and do not in the least come together (in the true centre); but there is a concourse of all the rays in the central part of the said mirror, half way towards the other centre, where the cross diameters meet. This view is contrived in the following manner. A concave cylindrical mirror placed directly in front, but with its axis inclined, must be adapted to that focus: and let obtuse angled or right angled triangles be cut out with two cross lines on each side drawn from the centre, and a glass (specillum) will be completed fit for the purposes we mentioned." If it were not for the word "specillum," which, in the passage immediately preceding this, Porta[37]contrasts with "speculum," and which he afterwards explains to mean a glass lens, it would be very clear that the foregoing passage (supposing it to have any meaning) must be referred to a reflecting telescope, and it is a little singular that while this obscure passage has attracted universal attention, no one, so far as we are aware, has taken any notice of the following unequivocal description of the principal part of Newton's construction of the same instrument. It is in the 5th chapter of the 17th book, where Porta explains by what device exceedingly minute letters may be read without difficulty. "Place a concave mirror so that the back of it may lie against your breast; opposite to it, and within the burning point, place the writing; put a plane mirror behind it, that may be under your eyes. Then the images of the letters which are in the concave mirror, and which the concave has magnified, will be reflected in the plane mirror, so that you may read without difficulty."

We have not been able to meet with the Italian translation of Porta's Natural Magic, which was published in 1611, under his own superintendence; but the English translator of 1658 would probably have known if any intelligible interpretation were there given of the mysterious passage above quoted, and his translation is so devoid of meaning as strongly to militate against this idea. Porta, indeed, claimed the invention as his own, and is believed to have hastened his death, (which happened in 1615, he being then 80 years old,) by the fatigue of composing a Treatise on the Telescope, in which he had promised to exhaust the subject. We do not know whether this is the same work which was published after his death by Stelliola,[38]but which contains no allusion to Porta's claim, and possibly Stelliola may have thought it most for his friend's reputation to suppress it. Schott[39]says, a friend of his hadseen Porta's book in manuscript, and that it did at that time contain the assertion of Porta's title to the invention. After all it is not improbable that he may have derived his notions of magnifying distant objects from our celebrated countryman Roger Bacon, who died about the year 1300. He has been supposed, not without good grounds, to have been one of the first who recognised the use of single lenses in producing distinct vision, and he has some expressions with respect to their combination which promise effects analogous to those held out by Porta. In "The Admirable Force of Art and Nature," he says, "Physical figurations are far more strange, for in such manner may we frame perspects and looking-glasses that one thing shall appear to be many, as one man shall seeme a whole armie; and divers sunnes and moones, yea, as many as we please, shall appeare at one time, &c. And so may the perspects be framed, that things most farre off may seeme most nigh unto us, and clean contrarie, soe that we may reade very small letters an incredible distance from us, and behold things how little soever they be, and make stars to appeare wheresoever we will, &c. And, besides all these, we may so frame perspects that any man entering into a house he shall indeed see gold, and silver, and precious stones, and what else he will, but when he maketh haste to the place he shall find just nothing." It seems plain, that the author is here speaking solely of mirrors, and we must not too hastily draw the conclusion, because in the first and last of these assertions he is, to a certain extent, borne out by facts, that he therefore was in possession of a method of accomplishing the middle problem also. In the previous chapter, he gives a long list of notable things, (much in the style of the Marquis of Worcester's Century of Inventions) which if we can really persuade ourselves that he was capable of accomplishing, we must allow the present age to be still immeasurably inferior to him in science.

Thomas Digges, in the preface to his Pantometria, (published in 1591) declares, "My father, by his continuall painfull practises, assisted with demonstrations mathematicall, was able, and sundry times hath by proportionall glasses, duely situate in convenient angles, not only discouered things farre off, read letters, numbered peeces of money, with the verye coyne and superscription thereof, cast by some of his freends of purpose, upon downes in open fields; but also, seuen miles off, declared what hath beene doone at that instant in priuate places. He hath also sundrie times, by the sunne beames, fired powder and dischargde ordnance halfe a mile and more distante; which things I am the boulder to report, for that there are yet living diverse (of these his dooings) occulati testes, (eye witnesses) and many other matters farre more strange and rare, which I omit as impertinent to this place."

We find another pretender to the honour of the discovery of the telescope in the celebrated Antonio de Dominis, Archbishop of Spalatro, famous in the annals of optics for being one of the first to explain the theory of the rainbow. Montucla, following P. Boscovich, has scarcely done justice to De Dominis, whom he treats as a mere pretender and ignorant person. The indisposition of Boscovich towards him is sufficiently accounted for by the circumstance of his being a Catholic prelate who had embraced the cause of Protestantism. His nominal reconciliation with the Church of Rome would probably not have saved him from the stake, had not a natural death released him when imprisoned on that account at Rome. Judgment was pronounced upon him notwithstanding, and his body and books were publicly burnt in the Campo de Fiori, in 1624. His treatise, De Radiis, (which is very rarely to be met with) was published by Bartolo after the acknowledged invention of the telescope by Galileo; but Bartolo tells us, in the preface, that the manuscript was communicated to him from a collection of papers written 20 years before, on his inquiring the Archbishop's opinion with respect to the newly discovered instrument, and that he got leave to publish it, "with the addition of one or two chapters." The treatise contains a complete description of a telescope, which, however, is professed merely to be an improvement on spectacles, and if the author's intention had been to interpolate an afterwritten account, in order to secure to himself the undeserved honour of the invention, it seems improbable that he would have suffered an acknowledgment of additions, previous to publication, to be inserted in the preface. Besides, the whole tone of the work is that of a candid and truth-seeking philosopher, very far indeed removed from being, as Montuclacalls him, conspicuous for ignorance even among the ignorant men of his age. He gives a drawing of a convex and concave lens, and traces the passage of the rays through them; to which he subjoins, that he has not satisfied himself with any determination of the precise distance to which the glasses should be separated, according to their convexity and concavity, but recommends the proper distance to be found by actual experiment, and tells us, that the effect of the instrument will be to prevent the confusion arising from the interference of the direct and refracted rays, and to magnify the object by increasing the visible angle under which it is viewed. These, among the many claimants, are certainly the authors who approached the most nearly to the discovery: and the reader may judge, from the passages cited, whether the knowledge of the telescope can with probability be referred to a period earlier than the commencement of the 17th century. At all events, we can find no earlier trace of its being applied to any practical use; theknowledge, if it existed, remained speculative and barren.

In 1609, Galileo, then being on a visit to a friend at Venice, heard a rumour of the recent invention, by a Dutch spectacle-maker, of an instrument which was said to represent distant objects nearer than they usually appeared. According to his own account, this general rumour, which was confirmed to him by letters from Paris, was all that he learned on the subject; and returning to Padua, he immediately applied himself to consider the means by which such an effect could be produced. Fuccarius, in an abusive letter which he wrote on the subject, asserts that one of the Dutch telescopes had been at that time actually brought to Venice, and that he (Fuccarius) had seen it; which, even if true, is perfectly consistent with Galileo's statement; and in fact the question, whether or not Galileo saw the original instrument, becomes important only from his expressly asserting the contrary, and professing to give the train of reasoning by which he discovered its principle; so that any insinuation that he had actually seen the Dutch glass, becomes a direct impeachment of his veracity. It is certain, from the following extract of a letter from Lorenzo Pignoria to Paolo Gualdo, that one at least of the Dutch glasses had been sent to Italy. It is dated Padua, 31st August, 1609.[40]"We have no news, except the return of His Serene Highness, and the re-election of the lecturers, among whom Sign. Galileo has contrived to get 1000 florins for life; and it is said to be on account of an eyeglass,like the one which was sent from Flanders to Cardinal Borghese. We have seen some here, and truly they succeed well."

It is allowed by every one that the Dutchman, or rather Zealander, made his discovery by mere accident, which greatly derogates from any honour attached to it; but even this diminished degree of credit has been fiercely disputed. According to one account, which appears consistent and probable, it had been made for sometime before its importance was in the slightest degree understood or appreciated, but was set up in the optician's shop as a curious philosophical toy, showing a large and inverted image of a weathercock, towards which it was directed. The Marquis Spinola, chancing to see it, was struck with the phenomenon, purchased the instrument, and presented it either to the Archduke Albert of Austria, or to Prince Maurice of Nassau, whose name appears in every version of the story, and who first entertained the idea of employing it in military reconnoissances.

Zacharias Jansen, and Henry Lipperhey, two spectacle-makers, living close to each other, near the church of Middleburg, have both had strenuous supporters of their title to the invention. A third pretender appeared afterwards in the person of James Metius of Alkmaer, who is mentioned by Huyghens and Des Cartes, but his claims rest upon no authority whatever comparable to that which supports the other two. About half a century afterwards, Borelli was at the pains to collect and publish a number of letters and depositions which he procured, as well on one side as on the other.[41]It seems that the truth lies between them, and that one, probably Jansen, was the inventor of themicroscope, which application of the principle was unquestionably of an earlier date, perhaps as far back as 1590. Jansen gave one of his microscopes to the Archduke, who gave it to Cornelius Drebbel, a salaried mathematician at the court of our James the first, where William Borelli (not the author abovementioned) saw it many years afterwards, when ambassador from the United Provinces to England, and got from Drebbel this account of the quarter whence it came. Lipperhey afterwards, in 1609, accidentally hit upon thetelescope, and on the fame of this discovery it would not be difficult for Jansen, already in possession of an instrument so much resembling it, to perceive the slight difference between them, and to construct a telescope independently of Lipperhey, so that each, with some show of reason, might claim the priority of the invention. A notion of this kind reconciles the testimony of many conflicting witnesses on the subject, some of whom do not seem to distinguish very accurately whether the telescope or microscope is the instrument to which their evidence refers. Borelli arrives at the conclusion, that Jansen was the inventor; but not satisfied with this, he endeavours, with a glaring partiality which makes his former determination suspicious, to secure for him and his son the more solid reputation of having anticipated Galileo in the useful employment of the invention. He has however inserted in his collections a letter from John the son of Zacharias, in which John, omitting all mention of his father, speaks of his own observation of the satellites of Jupiter, evidently seeking to insinuate that they were earlier than Galileo's; and in this sense the letter has since been quoted,[42]although it appears from John's own deposition, preserved in the same collection, that at the time of their discovery he could not have been more than six years old. An oversight of this sort throws doubt on the whole of the pretended observations, and indeed the letter has much the air of being the production of a person imperfectly informed on the subject on which he writes, and probably was compiled to suit Borelli's purposes, which were to make Galileo's share in the invention appear as small as possible.

Galileo himself gives a very intelligible account of the process of reasoning, by which he detected the secret.—"I argued in the following manner. The contrivance consists either of one glass or of more—one is not sufficient, since it must be either convex, concave, or plane; the last does not produce any sensible alteration in objects, the concave diminishes them: it is true that the convex magnifies, but it renders them confused and indistinct; consequently, one glass is insufficient to produce the desired effect. Proceeding to consider two glasses, and bearing in mind that the plane glass causes no change, I determined that the instrument could not consist of the combination of a plane glass with either of the other two. I therefore applied myself to make experiments on combinations of the two other kinds, and thus obtained that of which I was in search." It has been urged against Galileo that, if he really invented the telescope on theoretical principles, the same theory ought at once to have conducted him to a more perfect instrument than that which he at first constructed;[43]but it is plain, from this statement, that he does not profess to have theorized beyond the determination of the species of glass which he should employ in his experiments, and the rest of his operations he avows to have been purely empirical. Besides, we must take into account the difficulty of grinding the glasses, particularly when fit tools were yet to be made, and something must be attributed to Galileo's eagerness to bring his results to the test of actual experiment, without waiting for that improvement which a longer delay might and did suggest. Galileo's language bears a resemblance to the first passage which we quoted from Baptista Porta, sufficiently close to make it not improbable that he might be assisted in his inquiries by some recollection of it, and the same passage seems, in like manner, to have recurred to the mind of Kepler, as soon as he heard of the invention. Galileo's telescope consisted of a plano-convex and plano-concave lens, the latter nearest the eye, distant from each other by the difference of their focal lengths, being, in principle, exactly the same with the modern opera-glass. He seems to have thought that the Dutch glass was the same, but this could not be the case, if the above quoted particular of theinvertedweathercock, which belongs to most traditions of the story, be correct; because it is the peculiarity of this kind of telescope not to invert objects, and we should be thus furnished with a demonstrative proof of the falsehood of Fuccarius's insinuation: in that case the Dutch glass must have been similar to what was afterwards called the astronomical telescope, consisting of twoconvex glasses distant from each other by the sum of their focal lengths. This supposition is not controverted by the fact, that this sort of telescope was never employed by astronomers till long afterwards; for the fame of Galileo's observations, and the superior excellence of the instruments constructed under his superintendence, induced every one in the first instance to imitate his constructions as closely as possible. The astronomical telescope was however eventually found to possess superior advantages over that which Galileo imagined, and it is on this latter principle that all modern refracting telescopes are constructed; the inversion being counteracted in those which are intended for terrestrial observations, by the introduction of a second pair of similar glasses, which restore the inverted image to its original position. For further details on the improvements which have been subsequently introduced, and on the reflecting telescope, which was not brought into use till the latter part of the century, the reader is referred to the Treatise onOptical Instruments.

Galileo, about the same time, constructed microscopes on the same principle, for we find that, in 1612, he presented one to Sigismund, King of Poland; but his attention being principally devoted to the employment and perfection of his telescope, the microscope remained a long time imperfect in his hands: twelve years later, in 1624, he wrote to P. Federigo Cesi, that he had delayed to send the microscope, the use of which he there describes, because he had only just brought it to perfection, having experienced some difficulty in working the glasses. Schott tells an amusing story, in his "Magic of Nature," of a Bavarian philosopher, who, travelling in the Tyrol with one of the newly invented microscopes about him, was taken ill on the road and died. The authorities of the village took possession of his baggage, and were proceeding to perform the last duties to his body, when, on examining the little glass instrument in his pocket, which chanced to contain a flea, they were struck with the greatest astonishment and terror, and the poor Bavarian, condemned by acclamation as a sorcerer who was in the habit of using a portable familiar, was declared unworthy of Christian burial. Fortunately for his character, some bold sceptic ventured to open the instrument, and discovered the true nature of the imprisoned fiend.

As soon as Galileo's first telescope was completed, he returned with it to Venice, and the extraordinary sensation which it excited tends also strongly to refute Fuccarius's assertion that the Dutch glass was already known there. During more than a month Galileo's whole time was employed in exhibiting his instrument to the principal inhabitants of Venice, who thronged to his house to satisfy themselves of the truth of the wonderful stories in circulation; and at the end of that time the Doge, Leonardo Donati, caused it to be intimated to him that such a present would not be deemed unacceptable by the senate. Galileo took the hint, and his complaisance was rewarded by a mandate confirming him for life in his professorship at Padua, at the same time doubling his yearly salary, which was thus made to amount to 1000 florins.

It was long before the phrenzy of public curiosity abated. Sirturi describes a ludicrous violence which was done to himself, when, with the first telescope which he had succeeded in making, he went up into the tower of St. Mark, at Venice, in the vain hope of being there entirely unmolested. Unluckily he was seen by some idlers in the street: a crowd soon collected round him, who insisted on taking possession of his instrument, and, handing it one to the other, detained him there for several hours till their curiosity was satiated, when he was allowed to return home. Hearing them also inquire eagerly at what inn he lodged, he thought it better to quit Venice early the next morning, and prosecute his observations in a less inquisitive neighbourhood.[44]Instruments of an inferior description were soon manufactured, and vended every where as philosophical playthings, much in the way in which, in our own time, the kaleidoscope spread over Europe as fast as travellers could carry them. But the fabrication of a better sort was long confined, almost solely, to Galileo and those whom he immediately instructed; and so late as the year 1637, we find Gaertner, or as he chose to call himself, Hortensius, assuring Galileo that none could be met with in Holland sufficiently good to show Jupiter's disc well defined; and in 1634 Gassendi begs for a telescope from Galileo, informinghim that he was unable to procure a good one either in Venice, Paris, or Amsterdam.


Back to IndexNext