"Smaismrmilme poeta leumi bvne nugttaviras."
"Smaismrmilme poeta leumi bvne nugttaviras."
Kepler, in the true spirit of his riddling philosophy, endeavoured to decypher the meaning, and fancied he had succeeded when he formed a barbarous Latin verse,
"Salve umbistineum geminatum Martia proles,"
"Salve umbistineum geminatum Martia proles,"
conceiving that the discovery, whatever it might be, related to the planet Mars, to which Kepler's attention had before been particularly directed. The reader, however, need not weary himself in seeking a translation of this solution, for at the request of the Emperor Rodolph, Galileo speedily sent to him the real reading—
Altissimum planetam tergeminum observavi;
Altissimum planetam tergeminum observavi;
that is, "I have observed that the most distant planet is triple," or, as he further explains the matter, "I have with great admiration observed that Saturn is not a single star, but three together, which as it were touch each other; they have no relative motion, and are constituted in this form oOo the middle being somewhat larger than the lateral ones. If we examine them with an eye-glass which magnifies the surface less than 1000 times, the three stars do not appear very distinctly, but Saturn has an oblong appearance, like the appearance of an olive, thusSaturn's appearance. Now I have discovered a court for Jupiter, and two servants for this old man, who aid hissteps and never quit his side." Galileo was, however, no match in this style of writing for Kepler, who disapproved his friend's metaphor, and, in his usual fanciful and amusing strain,—"I will not," said he, "make an old man of Saturn, nor slaves of his attendant globes, but rather let this tricorporate form be Geryon, so shall Galileo be Hercules, and the telescope his club; armed with which, he has conquered that distant planet, and dragged him from the remotest depths of nature, and exposed him to the view of all." Galileo's glass was not of sufficient power to shew him the real constitution of this extraordinary planet; it was reserved for Huyghens, about the year 1656, to declare to the world that these supposed attendant stars are in fact part of a ring which surrounds, and yet is completely distinct from the body of Saturn;[59]and the still more accurate observations of Herschel have ascertained that it consists of two concentric rings revolving round the planet, and separated from each other by a space which our most powerful telescopes scarcely enable us to measure.
Galileo's second statement concluded with the remark, that "in the other planets nothing new was to be observed;" but a month had scarcely elapsed, before he communicated to the world another enigma,
Hæc immatura à me jam frustra leguntur oy,
Hæc immatura à me jam frustra leguntur oy,
which, as he said, contained the announcement of a new phenomenon, in the highest degree important to the truth of the Copernican system. The interpretation of this is,
Cynthiæ figuras æmulatur mater amorum,
Cynthiæ figuras æmulatur mater amorum,
that is to say,—Venus rivals the appearances of the moon—for Venus being now arrived at that part of her orbit in which she is placed between the earth and the sun, and consequently, with only a part of her enlightened surface turned towards the earth, the telescope shewed her in a crescent form, like the moon in a similar position, and tracing her through the whole of her orbit round the sun, or at least so long as she was not invisible from his overpowering light, Galileo had the satisfaction of seeing the enlightened portion in each position assume the form appropriate to that hypothesis. It was with reason, therefore, that he laid stress on the importance of this observation, which also established another doctrine scarcely less obnoxious to the Anti-Copernicans, namely, that a new point of resemblance was here found between the earth and one of the principal planets; and as the reflection from the earth upon the moon had shewn it to be luminous like the planets when subjected to the rays of the sun, so this change of apparent figure demonstrated that one of the planets not near the earth, and therefore probably all, were in their own nature not luminous, and only reflected the sun's light which fell upon them; an inference, of which the probability was still farther increased a few years later by the observation of the transit of Mercury over the sun's disc.
It is curious that only twenty-five years before this discovery of the phases (or appearances) of Venus, a commentator of Aristotle, under the name of Lucillus Philalthæus, had advanced the doctrine that all the planets except the moon are luminous of themselves, and in proof of his assertion had urged, "that if the other planets and fixed stars received their light from the sun, they would, as they approached and receded from him, or as he approached and receded from them, assume the same phases as the moon, which, he adds, we have never yet observed."—He further remarks, "that Mercury and Venus would, in the supposed case of their being nearer the earth than the sun, eclipse it occasionally, just as eclipses are occasioned by the moon." Perhaps it is still more remarkable, that these very passages, in which the reasoning is so correct, though the facts are too hastily taken for granted, (the common error of that school,) are quoted by Benedetti, expressly to shew the ignorance and presumption of the author. Copernicus, whose want of instruments had prevented him from observing the horned appearance of Venus when between the earth and sun, had perceived how formidable an obstacle the non-appearance of this phenomenon presented to his system; he endeavoured, though unsatisfactorily, to account for it by supposing that the rays of the sun passed freely through the body of the planet, and Galileo takes occasion to praise him for not being deterred fromadopting the system, which, on the whole, appeared to agree best with the phenomena, by meeting with some which it did not enable him to explain. Milton, whose poem is filled with allusions to Galileo and his astronomy, has not suffered this beautiful phenomenon to pass unnoticed. After describing the creation of the Sun, he adds:—
Hither, as to their fountain, other starsRepairing, in their golden urns draw light,And hence the morning planet gilds her horns.[60]
Hither, as to their fountain, other starsRepairing, in their golden urns draw light,And hence the morning planet gilds her horns.[60]
Hither, as to their fountain, other starsRepairing, in their golden urns draw light,And hence the morning planet gilds her horns.[60]
Hither, as to their fountain, other stars
Repairing, in their golden urns draw light,
And hence the morning planet gilds her horns.[60]
Galileo also assured himself, at the same time, that the fixed stars did not receive their light from the sun. This he ascertained by comparing the vividness of their light, in all positions, with the feebleness of that of the distant planets, and by observing the different degrees of brightness with which all the planets shone at different distances from the sun. The more remote planets did not, of course, afford equal facilities with Venus for so decisive an observation; but Galileo thought he observed, that when Mars was in quadratures, (or in the quarters, the middle points of his path on either side,) his figure varied slightly from a perfect circle. Galileo concludes the letter, in which he announces these last observations to his pupil Castelli, with the following expressions, shewing how justly he estimated the opposition they encountered:—"You almost make me laugh by saying that these clear observations are sufficient to convince the most obstinate: it seems you have yet to learn that long ago the observations were enough to convince those who are capable of reasoning, and those who wish to learn the truth; but that to convince the obstinate, and those who care for nothing beyond the vain applause of the stupid and senseless vulgar, not even the testimony of the stars would suffice, were they to descend on earth to speak for themselves. Let us then endeavour to procure some knowledge for ourselves, and rest contented with this sole satisfaction; but of advancing in popular opinion, or gaining the assent of the book-philosophers, let us abandon both the hope and the desire."
FOOTNOTES:[56]Adone di Marini, Venetiis, 1623, Cant. x.[57]Speculat. Lib Venetiis, 1585, Epistolæ.[58]This opinion, with respect to the milky way, had been held by some of the ancient astronomers.SeeManilius. Lib. i. v. 753."Anne magis densâ stellarum turba coronâ"Contexit flammas, et crasso lumine candet,"Et fulgore nitet collato clarior orbis."[59]Huyghens announced his discovery in this form:a a a a a a a c c c c c d e e e e e g h i i i i i i i l l l l m m n n n n n n n n n o o o o p p q r r s t t t t t u u u u u, which he afterwards recomposed into the sentence.Annulo cingitur,tenui,plano,nusquam cohærente,ad eclipticam inclinato. De Saturni Lunâ. Hagæ, 1656.[60]B. vii. v. 364. Other passages may be examined in B. i. 286; iii. 565-590, 722-733; iv. 589; v. 261, 414; vii. 577; viii. 1-178.
[56]Adone di Marini, Venetiis, 1623, Cant. x.
[56]Adone di Marini, Venetiis, 1623, Cant. x.
[57]Speculat. Lib Venetiis, 1585, Epistolæ.
[57]Speculat. Lib Venetiis, 1585, Epistolæ.
[58]This opinion, with respect to the milky way, had been held by some of the ancient astronomers.SeeManilius. Lib. i. v. 753."Anne magis densâ stellarum turba coronâ"Contexit flammas, et crasso lumine candet,"Et fulgore nitet collato clarior orbis."
[58]This opinion, with respect to the milky way, had been held by some of the ancient astronomers.SeeManilius. Lib. i. v. 753.
[59]Huyghens announced his discovery in this form:a a a a a a a c c c c c d e e e e e g h i i i i i i i l l l l m m n n n n n n n n n o o o o p p q r r s t t t t t u u u u u, which he afterwards recomposed into the sentence.Annulo cingitur,tenui,plano,nusquam cohærente,ad eclipticam inclinato. De Saturni Lunâ. Hagæ, 1656.
[59]Huyghens announced his discovery in this form:a a a a a a a c c c c c d e e e e e g h i i i i i i i l l l l m m n n n n n n n n n o o o o p p q r r s t t t t t u u u u u, which he afterwards recomposed into the sentence.Annulo cingitur,tenui,plano,nusquam cohærente,ad eclipticam inclinato. De Saturni Lunâ. Hagæ, 1656.
[60]B. vii. v. 364. Other passages may be examined in B. i. 286; iii. 565-590, 722-733; iv. 589; v. 261, 414; vii. 577; viii. 1-178.
[60]B. vii. v. 364. Other passages may be examined in B. i. 286; iii. 565-590, 722-733; iv. 589; v. 261, 414; vii. 577; viii. 1-178.
Account of the Academia Lincea—Del Cimento—Royal Society.
Account of the Academia Lincea—Del Cimento—Royal Society.
Galileo'sresignation of the mathematical professorship at Padua occasioned much dissatisfaction to all those who were connected with that university. Perhaps not fully appreciating his desire of returning to his native country, and the importance to him and to the scientific world in general, of the complete leisure which Cosmo secured to him at Florence, (for by the terms of his diploma he was not even required to reside at Pisa, nor to give any lectures, except on extraordinary occasions, to sovereign princes and other strangers of distinction,) the Venetians remembered only that they had offered him an honourable asylum when almost driven from Pisa; that they had increased his salary to four times the sum which any previous professor had enjoyed; and, finally, by an almost unprecedented decree, that they had but just secured him in his post during the remainder of his life. Many took such offence as to refuse to have any further communication with him; and Sagredo, a constant friend of Galileo, wrote him word that he had been threatened with a similar desertion unless he should concur in the same peremptory resolution, which threats, however, Sagredo, at the same time, intimates his intention of braving.
Early in the year 1611, Galileo made his first appearance in Rome, where he was received with marks of distinguished consideration, and where all ranks were eager to share the pleasure of contemplating the new discoveries. "Whether we consider cardinal, prince, or prelate, he found an honourable reception from them all, and had their palaces as open and free to him as the houses of his private friends."[61]Among other distinctions he was solicited to become a member of the newly-formed philosophical society, the once celebratedAcademia Lincea, to which he readily assented. The founder of this society was Federigo Cesi, the Marchese di Monticelli, a young Roman nobleman, the devotion of whose time and fortune to the interests of science has not been by any means rewarded with a reputation commensurate with his deserts. If the energy of his mind had been less worthily employed than in fostering the cause of science and truth, and in extending the advantages of his birth and fortune to as many as were willing to co-operate with him, the name of Federigo Cesi might have appeared more prominently on the page of history. Cesi had scarcely completedhis 18th year, when, in 1603, he formed the plan of a philosophical society, which in the first instance consisted only of himself and three of his most intimate friends, Hecke, a Flemish physician, Stelluti, and Anastasio de Filiis. Cesi's father, the Duca d'Acquasparta, who was of an arbitrary and extravagant temper, considered such pursuits and associates as derogatory to his son's rank; he endeavoured to thwart the design by the most violent and unjustifiable proceedings, in consequence of which, Cesi in the beginning of 1605 privately quitted Rome, Hecke was obliged to leave Italy altogether from fear of the Inquisition, which was excited against him, and the academy was for a time virtually dissolved. The details of these transactions are foreign to the present narrative: it will be enough to mention that, in 1609, Cesi, who had never altogether abandoned his scheme, found the opposition decaying which he at first experienced, and with better success he renewed the plan which he had sketched six years before. A few extracts from the Regulations will serve to shew the spirit in which this distinguished society was conceived:—
"The Lyncean Society desires for its academicians, philosophers eager for real knowledge, who will give themselves to the study of nature, and especially to mathematics; at the same time it will not neglect the ornaments of elegant literature and philology, which like a graceful garment adorn the whole body of science.—In the pious love of wisdom, and to the praise of the most good and most high God, let the Lynceans give their minds, first to observation and reflection, and afterwards to writing and publishing.—It is not within the Lyncean plan to find leisure for recitations and declamatory assemblies; the meetings will neither be frequent nor full, and chiefly for transacting the necessary business of the society: but those who wish to enjoy such exercises will in no respect be hindered, provided they attend them as accessory studies, decently and quietly, and without making promises and professions of how much they are about to do. For there is ample philosophical employment for every one by himself, particularly if pains are taken in travelling and in the observation of natural phenomena, and in the book of nature which every one has at home, that is to say, the heavens and the earth; and enough may be learned from the habits of constant correspondence with each other, and alternate offices of counsel and assistance.—Let the first fruits of wisdom be love; and so let the Lynceans love each other as if united by the strictest ties, nor suffer any interruption of this sincere bond of love and faith, emanating from the source of virtue and philosophy.—Let them add to their names the title of Lyncean, which has been advisedly chosen as a warning and constant stimulus, especially when they write on any literary subject, also in their private letters to their associates, and in general when any work comes from them wisely and well performed.—The Lynceans will pass over in silence all political controversies and quarrels of every kind, and wordy disputes, especially gratuitous ones, which give occasion to deceit, unfriendliness, and hatred; like men who desire peace, and seek to preserve their studies free from molestation, and to avoid every sort of disturbance. And if any one by command of his superiors, or from some other necessity, is reduced to handle such matters, since they are foreign to physical and mathematical science, and consequently alien to the object of the Academy, let them be printed without the Lyncean name."[62]
The society which was eventually organized formed but a very trifling part of the comprehensive scheme which Cesi originally proposed to himself; it had been his wish to establish a scientific Order which should have corresponding lodges in the principal towns of Europe, and in other parts of the globe, each consisting of not more than five nor less than three members, besides an unlimited number of Academicians not restricted to any particular residence or regulations. The mortifications and difficulties to which he was subjected from his father's unprincipled behaviour, render it most extraordinary and admirable that he should have ventured to undertake even so much as he actually carried into execution. He promised to furnish to the members of his society such assistance as they might require in the prosecution of their respective researches, and also to defray the chargesof publishing such of their works as should be thought worthy of appearing with the common sanction. Such liberal offers were not likely to meet with an unfavourable reception: they were thankfully accepted by many well qualified to carry his design into execution, and Cesi was soon enabled formally to open his academy, the distinctive title of which he borrowed from the Lynx, with reference to the piercing sight which that animal has been supposed to possess. This quality seemed to him an appropriate emblem of those which he desired to find in his academicians, for the purpose of investigating the secrets of nature; and although, at the present day, the name may appear to border on the grotesque, it was conceived in the spirit of the age, and the fantastic names of the numberless societies which were rapidly formed in various parts of Italy far exceed whatever degree of quaintness may be thought to belong to the Lyncean name. The Inflamed—the Transformed—the Uneasy—the Humorists—the Fantastic—the Intricate—the Indolent—the Senseless—the Undeceived—the Valiant—the Ætherial Societies are selected from a vast number of similar institutions, the names of which, now almost their sole remains, are collected by the industry of Morhof and Tiraboschi.[63]The Humorists are named by Morhof as the only Italian philosophical society anterior to the Lynceans; their founder was Paolo Mancino, and the distinctive symbol which they adopted was rain dropping from a cloud, with the mottoRedit agmine dulci;—their title is derived from the same metaphor. The object of their union appears to have been similar to that of the Lynceans, but they at no time attained to the celebrity to which Cesi's society rose from the moment of its incorporation. Cesi took the presidency for his life, and the celebrated Baptista Porta was appointed vice president at Naples. Stelluti acted as the legal representative of the society, with the title of procuratore. Of the other two original members Anastasio de Filiis was dead, and although Hecke returned to Italy in 1614, and rejoined the Academy, yet he was soon afterwards struck off the list in consequence of his lapsing into insanity. Among the academicians we find the names of Galileo, Fabio Colonna, Lucas Valerio, Guiducci, Welser, Giovanni Fabro, Terrentio, Virginio Cesarini, Ciampoli, Molitor, Cardinal Barberino, (nephew of Pope Urban VIII.) Stelliola, Salviati, &c.
The principal monument still remaining of the zeal and industry to which Cesi incited his academicians is the Phytobasanos, a compendium of the natural history of Mexico, which must be considered a surprising performance for the times in which it appeared. It was written by a Spaniard named Hernandez; and Reccho, who often has the credit of the whole work, made great additions to it. During fifty years the manuscript had been neglected, when Cesi discovered it, and employed Terrentio, Fabro, and Colonna, all Lynceans, to publish it enriched with their notes and emendations. Cesi himself published several treatises, two of which are extant; hisTabulæ Phytosophicæ, and a Dissertation on Bees entitledApiarium, the only known copy of which last is in the library of the Vatican. His great work,Theatrum Naturæ, was never printed; a circumstance which tends to shew that he did not assemble the society round him for the purpose of ministering to his own vanity, but postponed the publication of his own productions to the labours of his coadjutors. This, and many other valuable works belonging to the academy existed in manuscript till lately in the Albani Library at Rome. Cesi collected, not a large, but an useful library for the use of the academy, (which was afterwards augmented on the premature death of Cesarini by the donation of his books); he filled a botanical garden with the rarer specimens of plants, and arranged a museum of natural curiosities; his palace at Rome was constantly open to the academicians; his purse and his influence were employed with equal liberality in their service.
Cesi's death, in 1632, put a sudden stop to the prosperity of the society, a consequence which may be attributed to the munificence with which he had from the first sustained it: no one could be found to fill his place in the princely manner to which the academicians were accustomed, and the society, after lingering some years under the nominal patronage of Urban VIII., gradually decayed, till, by the death of its principal members, and dispersion of the rest, it became entirely extinct.[64]Bianchi,whose sketch of the academy was almost the only one till the appearance of Odescalchi's history, made an attempt to revive it in the succeeding century, but without any permanent effect. A society under the same name has been formed since 1784, and is still flourishing in Rome. Before leaving the subject it may be mentioned, that one of the earliest notices that Bacon's works were known in Italy is to be found in a letter to Cesi, dated 1625; in which Pozzo, who had gone to Paris with Cardinal Barberino, mentions having seen them there with great admiration, and suggests that Bacon would be a fit person to be proposed as a member of their society. After Galileo's death, three of his principal followers, Viviani, Torricelli, and Aggiunti formed the plan of establishing a similar philosophical society, and though Aggiunti and Torricelli died before the scheme could be realized, Viviani pressed it forward, and, under the auspices of Ferdinand II., formed a society, which, in 1657, merged in the famousAcademia del Cimento, or Experimental Academy. This latter held its occasional meetings at the palace of Ferdinand's brother, Leopold de' Medici: it was composed chiefly, if not entirely, of Galileo's pupils and friends. During the few years that this society lasted, one of the principal objects of which was declared to be the repetition and developement of Galileo's experiments, it kept up a correspondence with the principal philosophers in every part of Europe, but when Leopold was, in 1666, created a cardinal, it appears to have been dissolved, scarcely ten years after its institution.[65]This digression may be excused in favour of so interesting an establishment as the Academia Lincea, which preceded by half a century the formation of the Royal Society of London, and Académie Françoise of Paris.
These latter two are mentioned together, probably for the first time, by Salusbury. The passage is curious in an historical point of view, and worth extracting:—"In imitation of these societies, Paris and London have erected theirs ofLes Beaux Esprits, and of theVirtuosi: the one by the countenance of the most eminent Cardinal Richelieu, the other by the royal encouragement of his sacred Majesty that now is. TheBeaux Espritshave published sundry volumes of their moral and physiological conferences, with the laws and history of their fellowship; and I hope the like in due time from our Royal Society; that so such as envie their fame and felicity, and such as suspect their ability and candor, may be silenced and disappointed in their detractions and expectations."[66]
FOOTNOTES:[61]Salusbury, Math. Coll.[62]Perhaps it was to deprecate the hostility of the Jesuits that, at the close of these Regulations, the Lynceans are directed to address their prayers, among other Saints, especially to Ignatius Loyola, as to one who greatly favoured the interests of learning. Odescalchi, Memorie dell'Acad. de' Lincei, Roma. 1806.[63]Polyhistor Literarius, &c.—Storia della Letterat. Ital. The still existing society of Chaff, more generally known by its Italian title, Della Crusca, belongs to the same period.[64]F. Colonnæ Phytobasanus Jano Planco Auctore. Florent, 1744.[65]Nelli Saggio di Storia Literaria Fiorentina, Lucca, 1759.[66]Salusbury's Math. Coll. vol. ii. London, 1664.
[61]Salusbury, Math. Coll.
[61]Salusbury, Math. Coll.
[62]Perhaps it was to deprecate the hostility of the Jesuits that, at the close of these Regulations, the Lynceans are directed to address their prayers, among other Saints, especially to Ignatius Loyola, as to one who greatly favoured the interests of learning. Odescalchi, Memorie dell'Acad. de' Lincei, Roma. 1806.
[62]Perhaps it was to deprecate the hostility of the Jesuits that, at the close of these Regulations, the Lynceans are directed to address their prayers, among other Saints, especially to Ignatius Loyola, as to one who greatly favoured the interests of learning. Odescalchi, Memorie dell'Acad. de' Lincei, Roma. 1806.
[63]Polyhistor Literarius, &c.—Storia della Letterat. Ital. The still existing society of Chaff, more generally known by its Italian title, Della Crusca, belongs to the same period.
[63]Polyhistor Literarius, &c.—Storia della Letterat. Ital. The still existing society of Chaff, more generally known by its Italian title, Della Crusca, belongs to the same period.
[64]F. Colonnæ Phytobasanus Jano Planco Auctore. Florent, 1744.
[64]F. Colonnæ Phytobasanus Jano Planco Auctore. Florent, 1744.
[65]Nelli Saggio di Storia Literaria Fiorentina, Lucca, 1759.
[65]Nelli Saggio di Storia Literaria Fiorentina, Lucca, 1759.
[66]Salusbury's Math. Coll. vol. ii. London, 1664.
[66]Salusbury's Math. Coll. vol. ii. London, 1664.
Spots on the Sun—Essay on Floating Bodies—Scheiner—Change in Saturn.
Spots on the Sun—Essay on Floating Bodies—Scheiner—Change in Saturn.
Galileodid not indulge the curiosity of his Roman friends by exhibiting only the wonders already mentioned, which now began to lose the gloss of novelty, but disclosed a new discovery, which appeared still more extraordinary, and, to the opposite faction, more hateful than anything of which he had yet spoken. This was the discovery, which he first made in the month of March, 1611, of dark spots on the body of the sun. A curious fact, and one which well serves to illustrate Galileo's superiority in seeing things simply as they are, is, that these spots had been observed and recorded centuries before he existed, but, for want of careful observation, their true nature had been constantly misapprehended. One of the most celebrated occasions was in the year 807 of our era, in which a dark spot is mentioned as visible on the face of the sun during seven or eight days. It was then supposed to be Mercury.[67]Kepler, whose astronomical knowledge would not suffer him to overlook that it was impossible that Mercury could remain so long in conjunction with the sun, preferred to solve the difficulty by supposing that, in Aimoin's original account, the expression was notocto dies(eight days), butoctoties—a barbarous word, which he supposed to have been written forocties(eight times); and that the other accounts (in which the number of days mentioned is different) copying loosely from the first, had both mistaken the word, and misquoted the time which they thought they found mentioned there. It is impossible to look on this explanation as satisfactory, but Kepler, who at that time did not dream of spots on the sun, was perfectly contented with it. In 1609, he himself observed upon the sun a black spot, which he in like manner mistook for Mercury, and unluckily the day, being cloudy, didnot allow him to contemplate it sufficiently long to discover his error, which the slowness of its apparent motion would soon have pointed out.[68]He hastened to publish his supposed observation, but no sooner was Galileo's discovery of the solar spots announced, than he, with that candour which as much as his flighty disposition certainly characterized him at all times, retracted his former opinion, and owned his belief that he had been mistaken. In fact it is known from the more accurate theory which we now possess of Mercury's motions, that it did not pass over the sun's face at the time when Kepler thought he perceived it there.
Galileo's observations were in their consequences to him particularly unfortunate, as in the course of the controversy in which they engaged him, he first became personally embroiled with the powerful party, whose prevailing influence was one of the chief causes of his subsequent misfortunes. Before we enter upon that discussion, it will be proper to mention another famous treatise which Galileo produced soon after his return from Rome to Florence, in 1612. This is, his Discourse on Floating Bodies, which restored Archimedes' theory of hydrostatics, and has, of course, met with the opposition which few of Galileo's works failed to encounter. In the commencement, he thought it necessary to apologize for writing on a subject so different from that which chiefly occupied the public attention, and declared that he had been too closely occupied in calculating the periods of the revolutions of Jupiter's satellites to permit him to publish anything earlier. These periods he had succeeded in determining during the preceding year, whilst at Rome, and he now announced them to complete their circuits, the first in about 1 day, 18½ hours; the second in 3 days, 13 hours, 20 minutes; the third in 7 days, 4 hours; and the outermost in 16 days, 18 hours. All these numbers he gave merely as approximately true, and promised to continue his observations, for the purpose of correcting the results. He then adds an announcement of his recent discovery of the solar spots, "which, as they change their situation, offer a strong argument, either that the sun revolves on itself, or that, perhaps, other stars, like Venus and Mercury, revolve about it, invisible at all other times, on account of the small distance to which they are removed from him." To this he afterwards subjoined, that, by continued observation, he had satisfied himself that these solar spots were in actual contact with the surface of the sun, where they are continually appearing and disappearing; that their figures were very irregular, some being very dark, and others not so black; that one would often divide into three or four, and, at other times, two, three, or more would unite into one; besides which, that they had all a common and regular motion, with which they revolved round with the sun, which turned upon its axis in about the time of a lunar month.
Having by these prefatory observations assuaged the public thirst for astronomical novelties, he ventures to introduce the principal subject of the treatise above mentioned. The question of floating bridges had been discussed at one of the scientific parties, assembled at the house of Galileo's friend Salviati, and the general opinion of the company appearing to be that the floating or sinking of a body depended principally upon its shape, Galileo undertook to convince them of their error. If he had not preferred more direct arguments, he might merely have told them that in this instance they were opposed to their favourite Aristotle, whose words are very unequivocal on the point in dispute. "Form is not the cause why a body moves downwards rather than upwards, but it does affect the swiftness with which it moves;"[69]which is exactly the distinction which those who called themselves Aristotelians were unable to perceive, and to which the opinions of Aristotle himself were not always true. Galileo states the discussion to have immediately arisen from the assertion of some one in the company, that condensation is the effect of cold, and ice was mentioned as an instance. On this, Galileo observed, that ice is rather water rarefied than condensed, the proof of which is, that ice always floats upon water.[70]It was replied, that the reason of this phenomenon was, not the superior lightness of the ice, but its incapacity, owing to its flat shape, to penetrate and overcome the resistance of the water. Galileo denied this, and asserted that ice of any shape would float upon water, and that, if aflat piece of ice were forcibly taken to the bottom, it would of itself rise again to the surface. Upon this assertion it appears that the conversation became so clamorous, that Galileo thought it pertinent to commence his Essay with the following observation on the advantage of delivering scientific opinions in writing, "because in conversational arguments, either one or other party, or perhaps both, are apt to get overwarm, and to speak overloud, and either do not suffer each other to be heard, or else, transported with the obstinacy of not yielding, wander far away from the original proposition, and confound both themselves and their auditors with the novelty and variety of their assertions." After this gentle rebuke he proceeds with his argument, in which he takes occasion to state the famous hydrostatical paradox, of which the earliest notice is to be found in Stevin's works, a contemporary Flemish engineer, and refers it to a principle on which we shall enlarge in another chapter. He then explains the true theory of buoyancy, and refutes the false reasoning on which the contrary opinions were founded, with a variety of experiments.
The whole value and interest of experimental processes generally depends on a variety of minute circumstances, the detail of which would be particularly unsuited to a sketch like the present one. For those who are desirous of becoming more familiar with Galileo's mode of conducting an argument, it is fortunate that such a series of experiments exists as that contained in this essay; experiments which, from their simplicity, admit of being for the most part concisely enumerated, and at the same time possess so much intrinsic beauty and characteristic power of forcing conviction. They also present an admirable specimen of the talent for which Galileo was so deservedly famous, of inventing ingenious arguments in favour of his adversaries' absurd opinions before he condescended to crush them, shewing that nothing but his love of truth stood in the way of his being a more subtle sophist than any amongst them. In addition to these reasons for giving these experiments somewhat in detail, is the fact that all explanation of one of the principal phenomena to which they allude is omitted in many more modern treatises on Hydrostatics; and in some it is referred precisely to the false doctrines here confuted.
The marrow of the dispute is included in Galileo's assertion, that "The diversity of figure given to any solid cannot be in any way the cause of its absolutely sinking or floating; so that if a solid, when formed for example into a spherical figure, sinks or floats in the water, the same body will sink or float in the same water, when put into any other form. The breadth of the figure may indeed retard its velocity, as well of ascent as descent, and more and more according as the said figure is reduced to a greater breadth and thinness; but that it may be reduced to such a form as absolutely to put an end to its motion in the same fluid, I hold to be impossible. In this I have met with great contradictors who, producing some experiments, and in particular a thin board of ebony, and a ball of the same wood, and shewing that the ball in water sinks to the bottom,[71]and that the board if put lightly on the surface floats, have held and confirmed themselves in their opinion with the authority of Aristotle, that the cause of that rest is the breadth of the figure, unable by its small weight to pierce and penetrate the resistance of the water's thickness, which is readily overcome by the other spherical figure."—For the purpose of these experiments, Galileo recommends a substance such as wax, which may be easily moulded into any shape, and with which, by the addition of a few filings of lead, a substance may be readily made of any required specific gravity. He then declares that if a ball of wax of the size of an orange, or bigger, be made in this manner heavy enough to sink to the bottom, but so lightly that if we take from it only one grain of lead it returns to the top; and if the same wax be afterwards moulded into a broad and thin cake, or into any other figure, regular or irregular, the addition of the same grain of lead will always make it sink, and it will again rise when we remove the lead from it.—"But methinks I hear some of the adversaries raise a doubt upon my produced experiment: and, first, they offer to my consideration that the figure, as a figure simply, and disjunct from the matter, works no effect, but requires to be conjoined with the matter; and, moreover, not with every matter, but with those only wherewith it may be able to execute the desired operation. Just as we see by experiencethat an acute and sharp angle is more apt to cut than an obtuse; yet always provided that both one and the other are joined with a matter fit to cut, as for instance, steel. Therefore a knife with a fine and sharp edge cuts bread or wood with much ease, which it will not do if the edge be blunt and thick; but if, instead of steel, any one will take wax and mould it into a knife, undoubtedly he will never learn the effects of sharp and blunt edges, because neither of them will cut; the wax being unable, by reason of its flexibility, to overcome the hardness of the wood and bread. And therefore, applying the like discourse to our argument, they say that the difference of figure will shew different effects with regard to floating and sinking, but not conjoined with any kind of matter, but only with those matters which by their weight are able to overcome the viscosity of the water (like the ebony which they have selected); and he that will select cork or other light wood to form solids of different figures, would in vain seek to find out what operation figure has in sinking or floating, because all would swim, and that not through any property of this or that figure, but through the debility of the matter.
"When I begin to examine one by one all the particulars here produced, I allow not only that figures, simply as such, do not operate in natural things, but also that they are never separated from the corporeal substance, nor have I ever alleged them to be stript of sensible matter: and also I freely admit, that in our endeavours to examine the diversity of accidents which depend upon the variety of figures, it is necessary to apply them to matters which obstruct not the various operations of those various figures. I admit and grant that I should do very ill if I were to try the influence of a sharp edge with a knife of wax, applying it to cut an oak, because no sharpness in wax is able to cut that very hard wood. But yet, such an experiment of this knife would not be beside the purpose to cut curded milk, or other very yielding matter; nay, in such matters, the wax is more convenient than steel for finding the difference depending on the acuteness of the angles, because milk is cut indifferently with a razor, or a blunt knife. We must therefore have regard not only to the hardness, solidity, or weight of the bodies which, under different figures, are to divide some matters asunder; but also, on the other hand, to the resistance of the matter to be penetrated. And, since I have chosen a matter which does penetrate the resistance of the water, and in all figures descends to the bottom, my antagonists can charge me with no defect; nor (to revert to their illustration) have I attempted to test the efficacy of acuteness by cutting with matters unable to cut. I subjoin withal, that all caution, distinction, and election of matter would be superfluous and unnecessary, if the body to be cut should not at all resist the cutting: if the knife were to be used in cutting a mist, or smoke, one of paper would serve the purpose as well as one of Damascus steel; and I assert that this is the case with water, and that there is not any solid of such lightness or of such a figure, that being put on the water it will not divide and penetrate its thickness; and if you will examine more carefully your thin boards of wood, you will see that they have part of their thickness under water; and, moreover, you will see that the shavings of ebony, stone, or metal, when they float, have not only thus broken the continuity of the water, but are with all their thickness under the surface of it; and that more and more, according as the floating substance is heavier, so that a thin floating plate of lead will be lower than the surface of the surrounding water by at least twelve times the thickness of the plate, and gold will dive below the level of the water almost twenty times the thickness of the plate, as I shall shew presently."
In order to illustrate more clearly the non-resistance of water to penetration, Galileo then directs a cone to be made of wood or wax, and asserts that when it floats, either with its base or point in the water, the solid content of the part immersed will be the same, although the point is, by its shape, better adapted to overcome the resistance of the water to division, if that were the cause of the buoyancy. Or the experiment may be varied by tempering the wax with filings of lead, till it sinks in the water, when it will be found that in any figure the same cork must be added to it to raise it to the surface.—"This silences not my antagonists; but they say that all the discourse hitherto made by me imports little to them, and that it serves their turn, that they have demonstrated in one instance, and in such manner and figure as pleases them best, namely, in a board and a ball of ebony,that one, when put into the water, sinks to the bottom, and that the other stays to swim at the top; and the matter being the same, and the two bodies differing in nothing but in figure, they affirm that with all perspicuity they have demonstrated and sensibly manifested what they undertook. Nevertheless I believe, and think I can prove that this very experiment proves nothing against my theory. And first it is false that the ball sinks, and the board not; for the board will sink too, if you do to both the figures as the words of our question require; that is, if you put them bothinthe water; for to be in the water implies to be placed in the water, and by Aristotle's own definition of place, to be placed imports to be environed by the surface of the ambient body; but when my antagonists shew the floating board of ebony, they put it not into the water, but upon the water; where, being detained by a certain impediment (of which more anon) it is surrounded, partly with water, partly with air, which is contrary to our agreement, for that was that the bodies should be in the water, and not part in the water, part in the air. I will not omit another reason, founded also upon experience, and, if I deceive not myself, conclusive against the notion that figure, and the resistance of the water to penetration have anything to do with the buoyancy of bodies. Choose a piece of wood or other matter, as for instance walnut-wood, of which a ball rises from the bottom of the water to the surface more slowly than a ball of ebony of the same size sinks, so that clearly the ball of ebony divides the water more readily in sinking than does the walnut in rising. Then take a board of walnut-tree equal to and like the floating ebony one of my antagonists; and if it be true that this latter floats by reason of the figure being unable to penetrate the water, the other of walnut-tree, without all question, if thrust to the bottom ought to stay there, as having the same impeding figure, and being less apt to overcome the said resistance of the water. But if we find by experience that not only the thin board, but every other figure of the same walnut-tree will return to float, as unquestionably we shall, then I must desire my opponents to forbear to attribute the floating of the ebony to the figure of the board, since the resistance of the water is the same in rising as in sinking, and the force of ascension of the walnut-tree is less than the ebony's force for going to the bottom.
"Now, let us return to the thin plate of gold or silver, or the thin board of ebony, and let us lay it lightly upon the water, so that it may stay there without sinking, and carefully observe the effect. It will appear clearly that the plates are a considerable matter lower than the surface of the water which rises up, and makes a kind of rampart round them on every side, in the manner shewn in the annexed figure, in which BDLF represents the surface of the water, and AEIO the surface of the plate. But if it have already penetrated and overcome the continuity of the water, and is of its own nature heavier than the water, why does it not continue to sink, but stop and suspend itself in that little dimple that its weight has made in the water? My answer is, because in sinking till its surface is below the water which rises up in a bank round it, it draws after and carries along with it the air above it, so that that which in this case descends and is placed in the water, is not only the board of ebony or plate of iron, but a compound of ebony and air, from which composition results a solid no longer specifically heavier than the water, as was the ebony or gold alone. But, Gentlemen, we want the same matter; you are to alter nothing but the shape, and therefore have the goodness to remove this air, which may be done simply by washing the upper surface of the board, for the water having once got between the board and air will run together, and the ebony will go to the bottom; and if it does not, you have won the day. But methinks I hear some of my antagonists cunningly opposing this, and telling me that they will not on any account allow their board to be wetted, because the weight of the water so added, by making it heavier than it was before, draws it to the bottom, and that the addition of new weight is contrary to our agreement, which was that the matter should be the same."