Chapter 7

DEAR SIR,Theoilyou noticed yesterday turns out to be liquid chlorine.Yours faithfully,M. Faraday.

DEAR SIR,

Theoilyou noticed yesterday turns out to be liquid chlorine.

Yours faithfully,M. Faraday.

It is well known that, before the year 1810, the solid substance obtained by exposing chlorine, as usually procured, to a low temperature, was considered as the gas itself reduced into that form: Sir Humphry Davy, however, corrected this error, and first showed it to be a hydrate, the pure gas not being condensable even at a temperature of-40° Fahrenheit.

Mr. Faraday had taken advantage of the cold season to procure crystals of this hydrate, and wasproceeding in its analysis,[81]when Sir Humphry Davy suggested to him the expediency of observing what would happen if it were heated in a close vessel; but this suggestion was made in consequence of the inspection of results already obtained by Mr. Faraday, and which must have led him to the experiment in question, had he never communicated with Sir Humphry Davy upon the subject. This avowal is honestly due to Mr. Faraday.

On exposing the hydrate, in a tube hermetically sealed, to a temperature of 100°, the substance fused, the tube became filled with a bright yellow atmosphere, and, on examination, was found to contain two fluid substances: the one, about three-fourths of the whole, was of a faint yellow colour, having very much the appearance of water; the remaining fourth was a heavy, bright yellow fluid, lying at the bottom of the former, without any apparent tendency to mix with it.

By operating on the hydrate in a bent tube hermetically sealed, Mr. Faraday found it easy, after decomposing it by a heat of 100°, to distil the yellow fluid to one end of the tube, and thus to separate it from the remaining portion. If the tube were now cut in the middle, the parts flew asunder, as if with an explosion, the whole of the yellow portion disappeared, and there was a powerful atmosphere of chlorine produced; the pale portion, on the contrary, remained, and when examined, proved to be a weak solution of chlorine in water, with a little muriatic acid, probably from the impurityof the hydrate used. When that end of the tube in which the yellow fluid lay was broken under a jar of water, there was an immediate production of chlorine gas.

After several conjectures as to the nature of the changes thus produced, Mr. Faraday arrived at its true explanation; viz. that the chlorine had been entirely separated from the water by the heat, and condensed into a dry fluid by the mere pressure of its own abundant vapour. He subsequently confirmed these views by condensing chlorine in a long tube, by mechanical pressure, applied by means of a condensing syringe, and which farther enabled him to ascertain that the degree of pressure necessary for this effect was about that of four atmospheres.

To Mr. Faraday's paper upon this subject, published in the Philosophical Transactions for the year 1823, Sir Humphry Davy thought proper to add a "Note on the condensation of muriatic acid gas into the liquid form."

The circumstances under which this was effected are briefly these. On the morning (Thursday, March 6th,) after Mr. Faraday had condensed chlorine, Sir Humphry Davy had no sooner witnessed the result, than he called for a strong glass tube, and, having placed in it a quantity of muriate of ammonia and sulphuric acid, and then sealed the end, he caused them to act upon each other, and thus condensed the muriatic acid, which was evolved, into a liquid. The condensation of carbonic acid gas, nitrous oxide gas, and several others, were in succession treated with similar success; but, as I regard the discovery as strictly belonging to Mr.Faraday, I shall confine myself to the relation of those experiments and deductions which, with equal justice, I must assign to Sir Humphry Davy.

He observes, "that the generation of elastic substances in close vessels, either with or without heat, offers much more powerful means of approximating their molecules than those dependent upon the application of cold, whether natural or artificial: for, as gases diminish only about 1/450 in volume for every—degree of Fahrenheit's scale, beginning at ordinary temperatures, a very slight condensation only can be produced by the most powerful freezing mixtures, not half as much as would result from the application of a strong flame to one part of a glass tube, the other part being of ordinary temperature: and when attempts are made to condense gases into liquids by sudden mechanical compression, the heat, instantly generated, presents a formidable obstacle to the success of the experiment; whereas, in the compression resulting from their slow generation in close vessels, if the process be conducted with common precautions, there is no source of difficulty or danger; and it may be easily assisted by artificial cold in cases when gases approach near to that point of compression and temperature at which they become vapours."

On the 17th of April 1823, he communicated to the Royal Society a paper "On the application of Liquids formed by the condensation of Gases as mechanical agents."

He states that doubts may, for various philosophical reasons, exist as to the economical results to be obtained by employing the steam of waterunder great pressures, and at very elevated temperatures; but that no doubts can arise with respect to the use of such liquids as require for their existence even a compression equal to that of the weight of thirty or forty atmospheres; and where common temperatures, or slight elevations of them, are sufficient to produce an immense elastic force; and when the principal question to be discussed is, whether the effect of mechanical motion is to be most easily produced by an increase or diminution of heat by artificial means.

With the assistance of Mr. Faraday, he made several experiments on the differences between the increase of elastic force in gases under high and low pressures, by similar increments of temperature. In an experiment made with carbonic acid, its force was found to be nearly equal to that of air compressed to one-twentieth at 12° Fah. and of air compressed to one-thirty-sixth at 32 degrees, making an increase equal to the weight of thirteen atmospheres by an increase of twenty of temperature!

In applying, however, the condensed gases as mechanical agents, Davy admits that there will be some difficulty; "the materials of the apparatus must be as strong and as perfectly joined as those used by Mr. Perkins in his high-pressure steam-engine: but the small differences of temperature to produce an elastic force equal to the pressure of many atmospheres, will render the risk of explosion extremely small;" and he adds, "that if future experiments should realize the views here developed, the mere difference of temperature between sunshine and shade, and air and water, orthe effects of evaporation from a moist surface, will be sufficient to produce results, which have hitherto been obtained only by a great expenditure of fuel."

If this be true, who can say that future generations shall not perform their voyages ingas-vessels, across the Atlantic Ocean, with no other fuel than that which a common taper may supply? I fear, however, that in this scientific reverie, Davy merely looked at the difference of the sensible temperatures, and entirely neglected, in his calculation, the quantity of heat rendered latent during the change of the liquid into the gaseous state; and which, perhaps, is far more considerable in the application of these fluids than in that of water; but even in this latter case, the great expenditure of heat in working the steam-engine, is in the portion rendered latent, and which cannot, by any contrivance, be brought again into operation, after it has performed its duty. That a philosopher who had, during the whole progress of his researches, directed such unremitting attention to the subject of Heat, should have wholly overlooked an objection arising out of one of its most familiar phenomena, is scarcely less extraordinary than his having, on another occasion,[82]advanced to a conclusion indirect opposition to the very principle of Electricity, which his own discoveries had established.

Davy succeeded in liquefying gases by a method which, at first view, appears very paradoxical—by the application of heat!The method consists in placing them in one leg of a bent sealed tube, confined by mercury, and applying heat to ether, or alcohol, or water, in the other end. In this manner, by the pressure of the vapour of ether, he liquefied prussic gas and sulphurous acid gas; which gases, on being reproduced, occasioned cold.

There can be little doubt, he thinks, that these general facts of the condensation of the gases willhave many practical applications. They offer, for instance, easy methods of impregnating liquids with carbonic acid and other gases, without mechanical pressure. They afford means of producing great diminutions of temperature, by the rapidity with which large quantities of liquids may be rendered aëriform; and as compression occasions similar effects to cold, in preventing the formation of elastic substances, there is great reason to believe that it may be successfully employed for the preservation of animal and vegetable substances for the purposes of food.

Davy might also have added, that the same general views will explain natural and other phenomena not previously understood. They certainly afford a plausible explanation of the nature ofblowersin coal-mines; and they may lead to more satisfactory views on other subjects of geology. They assign a limit to the expansive force of gas under increasing pressure, and account for effects connected with theblastingof rocks, which would otherwise appear anomalous.[83]

It may be stated, greatly to the honour of Davy, that there never occurred any question of scientific interest or difficulty in which he did not cheerfully offer his advice and assistance. Few Presidents of the Royal Society have ever exerted their influence and talents with so much unaffected zeal for the promotion of scientific objects, and for the welfare of scientific men. In the year 1821, the Great Hafod copper-works, in the neighbourhood of Swansea, were indicted for a nuisance, in consequence of the alleged destructive effects of the fumes which arose during the smelting of the ores. When we learn that the amount of wages paid by the proprietors of the works in this district exceeds 50,000l., per annum; that twelve thousand persons, at least, derive their support from the smelting establishments; that a sum of not less than 200,000l.sterling is annually circulated in Glamorganshire and the adjoining county, in consequence of their existence; that they pay to the collieries no less than from 100,000l.to 110,000l.per annum for coal; that one hundred and fifty vessels are employed in the conveyance of ore, and, supposing each upon an average to be manned by five seamen, that they give occupation to seven hundred and fifty mariners, a more serious calamity can scarcely be imagined than the stoppage of such works: we may therefore readily believe, that Davy entered most ardently into the consideration of some plan by which the fumes might be prevented, and the alleged nuisance abated.

Through the kind attention of my friend Mr. Vivian, I am enabled to insert the following letters.

TO JOHN HENRY VIVIAN, ESQ.London, Jan. 9, 1822.MY DEAR SIR,As you expressed a wish that I should commit to writing those opinions which I mentioned in conversation, when I had the pleasure of visiting you at Marino, after inspecting your furnaces and witnessing your experiments on the smoke arising from them, I lose no time in complying with your desire.It is evident that the copper ore cannot be properly calcined without a copious admission of air into the furnaces, which must cause the sulphurous acid gas formed in the calcination to be mixed with very large quantities of other elastic fluids, which presents great mechanical, as well as chemical difficulties to its condensation or decomposition.To persons acquainted with chemistry, a number of modes of effecting these objects are known. Of condensation, for instance, by water, by the formation of sulphuric acid, by alkaline lixivia, by alkaline earths, &c. Of decomposition, by hydrogen, by charcoal, by hydro-carbonous substances, and by metals; but to most of these methods there are serious and insurmountable objections, depending upon the diluted state of the acid gas, and the expenses required.To form sulphuric acid, or to decompose by charcoal or hydrogen, or to condense by alkaline lixivia, or by alkaline earths, from the nature of the works, and of the operations for which they were intended, I conceive impracticable except at an expense thatcould not be borne; and the only processes which remain to be discussed are those by hydro-carbonous substances, and by the action of water.There can be no doubt that the gas may be decomposed by the action of heated hydro-carbonous gases from the distillation of coal; but for this purpose there must be a new construction of the furnaces, and more than double, probably triple, the quantity of fuel would be required, supposing even the Swansea coal to contain the common average of bitumen; and this method must be infinitely more expensive, and liable to many more objections, than the one you have so ingeniously employed—absorption by water.As water costs nothing, and as a supply is entirely in your power, the application of it offers comparatively few difficulties; and it has the great advantage of freeing the smoke from fluoric and arsenious compounds, which would not be perfectly effected by any other method.The experiments of MM. Phillips and Faraday prove, that your shower baths have already entirely destroyed all the fluoric and arsenious fumes of the smoke, and by acertainquantity of water, the smoke may undoubtedly be entirely freed from sulphurous acid gas.This,your ownplan, is the one that I strongly recommend to you to proceed with, and, if necessary, to extend.Perhaps you may find an additional shower bath near the colder part of the flue useful. I have no idea that steam passed into the hot part of the flue can be of the least service; but if passed out withthe smoke through the stack, it may tend to convert such residual portion of sulphurous acid gas, exposed to fresh air, into sulphuric acid. Could you not likewise try a stream ofcoldwater passing along the bottom of the horizontal flue?[84]I do not think the advantages of your improvements can be fairly appreciated, till the effects of your smoke are determined by actual experiments and fair trials.Yours, &c.H. Davy.

TO JOHN HENRY VIVIAN, ESQ.

London, Jan. 9, 1822.

MY DEAR SIR,

As you expressed a wish that I should commit to writing those opinions which I mentioned in conversation, when I had the pleasure of visiting you at Marino, after inspecting your furnaces and witnessing your experiments on the smoke arising from them, I lose no time in complying with your desire.

It is evident that the copper ore cannot be properly calcined without a copious admission of air into the furnaces, which must cause the sulphurous acid gas formed in the calcination to be mixed with very large quantities of other elastic fluids, which presents great mechanical, as well as chemical difficulties to its condensation or decomposition.

To persons acquainted with chemistry, a number of modes of effecting these objects are known. Of condensation, for instance, by water, by the formation of sulphuric acid, by alkaline lixivia, by alkaline earths, &c. Of decomposition, by hydrogen, by charcoal, by hydro-carbonous substances, and by metals; but to most of these methods there are serious and insurmountable objections, depending upon the diluted state of the acid gas, and the expenses required.

To form sulphuric acid, or to decompose by charcoal or hydrogen, or to condense by alkaline lixivia, or by alkaline earths, from the nature of the works, and of the operations for which they were intended, I conceive impracticable except at an expense thatcould not be borne; and the only processes which remain to be discussed are those by hydro-carbonous substances, and by the action of water.

There can be no doubt that the gas may be decomposed by the action of heated hydro-carbonous gases from the distillation of coal; but for this purpose there must be a new construction of the furnaces, and more than double, probably triple, the quantity of fuel would be required, supposing even the Swansea coal to contain the common average of bitumen; and this method must be infinitely more expensive, and liable to many more objections, than the one you have so ingeniously employed—absorption by water.

As water costs nothing, and as a supply is entirely in your power, the application of it offers comparatively few difficulties; and it has the great advantage of freeing the smoke from fluoric and arsenious compounds, which would not be perfectly effected by any other method.

The experiments of MM. Phillips and Faraday prove, that your shower baths have already entirely destroyed all the fluoric and arsenious fumes of the smoke, and by acertainquantity of water, the smoke may undoubtedly be entirely freed from sulphurous acid gas.

This,your ownplan, is the one that I strongly recommend to you to proceed with, and, if necessary, to extend.

Perhaps you may find an additional shower bath near the colder part of the flue useful. I have no idea that steam passed into the hot part of the flue can be of the least service; but if passed out withthe smoke through the stack, it may tend to convert such residual portion of sulphurous acid gas, exposed to fresh air, into sulphuric acid. Could you not likewise try a stream ofcoldwater passing along the bottom of the horizontal flue?[84]

I do not think the advantages of your improvements can be fairly appreciated, till the effects of your smoke are determined by actual experiments and fair trials.

Yours, &c.H. Davy.

TO THE SAME.London, May 12, 1823.MY DEAR SIR,I return you my thanks for the copies you were so good as to send me of your work on the modes you have adopted for rendering copper smoke innoxious, &c. I have read it with very great pleasure, and I am sure there can be but one feeling, and that of strong admiration, at the exertions you have made, and the resources you have displayed, in subduing the principal evils of one of our most important national manufactures. I trust you will have no more trouble on this subject, and that it will only occur to you in an agreeable form, with the high approbation as well as grateful feelings of your neighbours; and that your example will be followed.A Committee of the Royal Society has been formed for investigating the causes of the decay of copper sheeting in the Navy, as I mentioned to you. The Navy Board has sent us a number of specimensof copper in different stages of decay. We have our first meeting to examine them on Thursday, and I shall have much pleasure in communicating to you our results. I wish I could do it in person.I am going into Hampshire on Sunday next to fish near Fordingbridge for a week, and to try the Avon and its tributary streams.I was going to give you an account of some experiments which Mr. Faraday has made by my directions in generating gases in close vessels as liquids, but I find I have not time. I have already found an application of this discovery, which I hope will supersedesteam, as a difference of a few degrees of temperature gives the elastic force of many atmospheres.Hoping to see you soon, I am, with best respects to Mrs. Vivian, and love to the charming little Bessy,My dear Sir, yours sincerely obliged,H. Davy.

TO THE SAME.

London, May 12, 1823.

MY DEAR SIR,

I return you my thanks for the copies you were so good as to send me of your work on the modes you have adopted for rendering copper smoke innoxious, &c. I have read it with very great pleasure, and I am sure there can be but one feeling, and that of strong admiration, at the exertions you have made, and the resources you have displayed, in subduing the principal evils of one of our most important national manufactures. I trust you will have no more trouble on this subject, and that it will only occur to you in an agreeable form, with the high approbation as well as grateful feelings of your neighbours; and that your example will be followed.

A Committee of the Royal Society has been formed for investigating the causes of the decay of copper sheeting in the Navy, as I mentioned to you. The Navy Board has sent us a number of specimensof copper in different stages of decay. We have our first meeting to examine them on Thursday, and I shall have much pleasure in communicating to you our results. I wish I could do it in person.

I am going into Hampshire on Sunday next to fish near Fordingbridge for a week, and to try the Avon and its tributary streams.

I was going to give you an account of some experiments which Mr. Faraday has made by my directions in generating gases in close vessels as liquids, but I find I have not time. I have already found an application of this discovery, which I hope will supersedesteam, as a difference of a few degrees of temperature gives the elastic force of many atmospheres.

Hoping to see you soon, I am, with best respects to Mrs. Vivian, and love to the charming little Bessy,

My dear Sir, yours sincerely obliged,H. Davy.

I proceed now to relate the history of an elaborate experimental enquiry, instituted for the purpose of ascertaining the chemical nature and causes of the well-known corrosive action of sea-water upon metallic copper; in order, if possible, to obviate that serious evil in naval economy—the rapid decay of the copper sheathing on the bottoms of our ships. An investigation which Sir Humphry Davy commenced in the year 1823, and prosecuted with his characteristic zeal and happy talent during a considerable period; when, at length, paradoxicalas it may appear, the truth of his theory was completely established by the failure of his remedy!

From the several original documents which have been placed at my disposal, and from the valuable communications and kind assistance of my friend Mr. Knowles, I trust I shall be enabled to offer to the scientific reader a more complete and circumstantial history of this admirable enquiry than has been hitherto presented to the public.

The results he produced are equally interesting and important, whether we contemplate them biographically, as indicative of the peculiar genius by which they were obtained; or, scientifically, in their connexion with the electro-chemical theory, to the farther developement and illustration of which they have so powerfully contributed; or, economically, as the probable means by which the hand of Time may be averted, an increased durability imparted to rapidly perishable works of art, and monuments of human genius transmitted to posterity, in all their freshness, through a long succession of ages.

It is probable that, in the earliest period of naval architecture, some expedient[85]was practised, in order to protect ships' bottoms from the ravages of marine worms.[86]The use of metallic sheathing, however,is of ancient date. The galley supposed to have belonged to the Emperor Trajan was sheathed with sheets of lead, which were fastened with copper nails.[87]The same metal was also used in the earlier periods of our naval history;[88]and it is worthy of remark, that the circumstances which led to its disuse, were the rapid corrosion of therother irons, (from the formation of a Voltaic circle,) and the accumulation of sea-weed.

In the year 1761, copper plates were first used as sheathing on the Alarm frigate, of thirty-two guns;[89]a second underwent this operation in 1765, a third in 1770, four in 1776, nine in 1777; and, in the course of the three following years, the whole Britishnavy was coppered: an event which may be considered as forming an important era in the naval annals of the country.

The expense attending the use of copper for this purpose, in consequence of its corrosion and decay by salt-water, has always been felt as a serious objection to its use, and various suggestions have from time to time occurred, and numerous experiments been made, in the hope of obviating the evil,[90]but without any great degree of success.

The solution of the metal, however, has been found to vary in degree at different anchorages: at Sheerness, for instance, its rapidity is very great, in consequence of the copper being subjected to the alternate action of the sea, which flows in there from the British Channel, and to the flux of water down the two great rivers, the Thames and Medway, loaded, as they necessarily must be, with the products of animal and vegetable decomposition.

In order, if possible, to obtain a remedy for this evil, the naval departments of the Government requested, in the latter part of the year 1823, the advice of the President and Council of the Royal Society, as to the best mode of manufacturing copper sheets, or of preserving them, while in use, against the corrosive effects of oxidation.

Sir H. Davy charged himself with this enquiry;the results of which he communicated to the Royal Society, in three elaborate memoirs. The first was read on the 22nd of January 1824; the second, on the 17th of June, in the same year; and the third, and concluding paper, on the 9th of June 1825.

A very general belief prevailed, that sea-water had little or no action onpurecopper, and that the rapid decay of that metal on certain ships was owing to its impurity. On submitting, however, various specimens of copper to the action of the sea-water, Sir H. Davy came to a conclusion, in direct opposition to such an opinion;[91]and Mr. Knowles informed me, in a late conversation upon the subject, that the attempts to purify the metal, since the Government has manufactured its own copper sheathing, has been the cause of its more rapid decay. It will however presently appear, that the relative durability of the metallic sheets must also be influenced by circumstances wholly independentof their quality, some of which are very probably, even in our present advanced state of chemical knowledge, not thoroughly understood.

Sir H. Davy, on entering upon the examination of this subject, very justly considered, that to ascertain the exact nature of the chemical changes which take place in sea-water, by the agency of copper, ought to be the first step in the enquiry; for, unless the cause were thoroughly understood, how could the evil be remedied?

On keeping a polished piece of copper in contact with sea-water, the following were the effects which successively presented themselves. In the course of two or three hours, the surface of the metal exhibited a yellow tarnish, and the water in which it was immersed contracted a cloudiness, the hue of which was at first white, but gradually became green. In less than a day, a bluish-green precipitate appeared, and constantly continued to accumulate in the bottom of the vessel; at the same time, the surface of the copper corroded, appearing red in the water, and grass-green where it was in contact with air. Upon this grass-green matter carbonate of soda formed; and these changes continued until the water became much less saline. The green precipitate he ascertained to consist of an insoluble compound of copper, (which he thinks may be considered as ahydrated sub-muriate,) and hydrate of magnesia.[92]

According to his own views of the nature of chlorine, he immediately perceived that neither soda normagnesia could appear in sea-water by the action of a metal, unless in consequence of an absorption or transfer of oxygen, which in this case must either be derived from the atmosphere, or from the decomposition of water: his experiments determined that the former was the source which supplied it. By reasoning upon these phenomena, and applying for their explanation his electro-chemical theory, which had shown that chemical attractions may be exalted, modified, or destroyed, by changes in the electrical states of bodies, he was led to the discovery of a remedy for the corrosion of copper, by the very principle which enabled him, sixteen years before, to decompose the fixed alkalies.

When he considered that copper is but weakly positive in the electro-chemical scale, and that it can only act upon sea-water when in a positive state, it immediately occurred to him that, if it could be rendered slightly negative, the corroding action of sea-water upon it would be null. But how was this to be effected? At first, he thought of using a Voltaic battery; but this could hardly be applicable in practice. He next thought of the contact of zinc, tin, or iron; but he was prevented for some time from trying this, by the recollection that the copper in the Voltaic battery, as well as the zinc, was dissolved by the action of dilute nitric acid; and by the fear, that too large a mass of oxidable metal would be required to produce decisive results. After reflecting, however, on the slow and weak action of sea-water on copper, and the small difference which must exist between their electrical powers; and knowing that a very feeble chemicalaction would be destroyed by a very feeble electrical force, he was encouraged to proceed; and the results were highly satisfactory and conclusive. A piece of zinc, not larger than a pea, or the point of a small iron nail, was found fully adequate to preserve forty or fifty square inches of copper,—and this, wherever it was placed, whether at the top, bottom, or in the middle of the sheet of copper, and whether the copper was straight or bent, or made into coils. And where the connexion between the different pieces of copper was completed by wires, or thin filaments of the fortieth or fiftieth of an inch in diameter, the effect was the same; every side, every surface, every particle of the copper, remained bright; whilst the iron, or the zinc, was slowly corroded.

A piece of thick sheet copper, containing on both sides about sixty square inches, was cut in such a manner as to form seven divisions, connected only by the smallest filaments that could be left, and a mass of zinc, of the fifth of an inch in diameter, was soldered to the upper division. The whole was plunged under sea-water; the copper remained perfectly polished. The same experiment was repeated with iron, and after the lapse of a month, the copper was in both instances found as bright as when it was first introduced; whilst similar pieces of copper, undefended, underwent in the same water very considerable corrosion, and produced a large quantity of green deposit in the bottom of the vessel.

Numerous other experiments were performed, and with results equally conclusive of the truth of the theory which had suggested them.

There was however one point which still remainedfor enquiry. As the ocean may be considered in its relation to the quantity of copper in a ship, as an infinitely extended conductor, it became necessary to ascertain whether that circumstance would influence the results. For this purpose, he placed two very fine copper wires, one undefended, the other defended by a particle of zinc, in a very large vessel of sea-water, which water might be considered to bear the same relation to so minute a portion of metal, as the sea to the metallic sheathing of a ship. The result was perfectly satisfactory. The defended copper underwent no change; the undefended tarnished, and deposited a green powder.[93]

Davy having thus satisfied his own mind as to the truth of his views, communicated to Government, in January 1824, the important fact of his having discovered a remedy for the evil of whichthey had complained; and that the corrosion of the copper sheathing of his Majesty's ships might be prevented by rendering the copper electro-positive, by means of the contact of tin, zinc, lead, iron, or any other easily oxidable metal; and that he was prepared to carry his plan into effect.

A proposition from a philosopher of such known science, and upon a subject of such great importance to the navigation and commerce of the country, immediately obtained all the attention it deserved; and an order was made that the plan of protection should, under the superintendence of Sir H. Davy, be forthwith tried upon the bottom of a sailing cutter.

To give to his discovery farther publicity, Sir Humphry requested that three models of ships might be exhibited in the spacious hall of the Navy Office in Somerset House; the copper of one of which he proposed should be protected by bands of zinc, that of another by plates of wrought iron soldered on the sheathing, while the third should have its copper exposed without any protection whatever.

These models were floated in sea-water for several months; and the experiment fully confirmed the results he had previously obtained in his laboratory. The models were from time to time examined by persons of the highest scientific character, as well as by others of great naval celebrity; and so alluring was the theory, and so conclusive the experiments, that, instead of waiting the result of the slow but more certain ordeal to which the plan had been submitted, it was immediately put into extensive practice, both in the Government service and on the bottoms of ships belonging to private individuals.

To those the least acquainted with the principles of Voltaic action, it was only necessary to state the proposition, in order to command their assent to its truth. The utility of the plan therefore was never questioned, but the claims of Davy to the originality of the invention were doomed to meet with immediate opposition.[94]

The correctness of the principle having been established, it became, in the next place, necessary to determine the most eligible metal to be used for protection; the proportion which it must bear to the surface of the copper-sheathing below the waterline; the form least likely to offer resistance to the sea, and to impede the sailing of the vessel; and lastly, its most convenient position on the ship's bottom. To ascertain these several points, Lord Melville and the Lords of the Admiralty desired the Commissioners of the Navy Board, and of the Dock-yards, to afford Sir Humphry every assistance and facility for prosecuting the necessary experiments; and he accordingly made many very extensivetrials, not only on copper sheets which were immersed in the sea, but also on the bottoms of a considerable number of boats which had been coppered for that purpose, and exposed to the flow of the tide in Portsmouth harbour; upon which occasions he varied the nature as well as the proportions of the protecting metal. The results were communicated to the Royal Society, and they constituted the materials for his second memoir on the subject.

"When the metallic protector was from 1/20 to 1/110 parts of its surface, there was no corrosion nor decay of the copper; with smaller quantities, such as from 1/200 to 1/400, the copper underwent a loss of weight, which was greater in proportion as the protector was smaller; and, as a proof of the universality of the principle, it was found that even 1/1000 part of cast iron saved a certain proportion of the copper.

"The sheeting of boats and ships, protected by the contact of zinc, or cast and malleable iron in different proportions, compared with those of similar boats and sides of ships unprotected, exhibited bright surfaces; whilst the unprotected copper underwent rapid corrosion, becoming first red, then green, and losing a part of its substance in scales. Fortunately, in the course of these experiments, it was proved that cast iron, the substance which is cheapest and most easily procured, is likewise most fitted for the protection of the copper. It lasts longer than malleable iron, or zinc; and the plumbaginous substance which is left by the action of sea-water upon it, retains the original form of the iron, and does not impede the electrical action of the remaining metal."

In the earlier stage of the investigation, it hadbeen suggested by Mr. Knowles, and several other persons, that by rendering the copper innoxious, it was probable sea-weeds might adhere to the sheets; but this objection he answered by stating, that negative electricity could not be supposed favourable to animal and vegetable life; and as it occasioned the deposition of magnesia, a substance exceedingly noxious to land vegetables, upon the copper surface, he entertained no difficulty upon that subject: in this, however, he was fatally mistaken. He found, after a trial of several weeks, that the metallic surface became coated with carbonate of lime and magnesia, and that, under such circumstances, weeds adhered to the coatings, and marine insects collected upon them; but at the same time he observed, that when the proportion of cast iron, or zinc, was below 1/150, the electrical power of the copper being less negative, no such deposition occurred; and that although the surface had undergone a slight degree of solution, it remained perfectly clean: a fact which he considered of great importance, as it pointed out thelimits of protection; and makes the application of avery smallquantity of the oxidable metal more advantageous, in fact, than that of a larger one.

During the course of these experiments, many singular facts occurred to him, which tended to confirm his views of electro-chemical action. Amongst the various details which remained for his investigation, the relations between the surface of the protector, and that of the copper sheathing, under the different circumstances of temperature, saltness of the sea, and rapidity of the ship's motion, presented themselves as objects of great importance; and anopportunity occurred which enabled him to pursue them by actual observation and experiment.

In the month of June 1824, a steam-vessel, H.M. ship the Comet, was, at the express request of the King of Denmark, ordered to proceed to Heligoland, for the purpose of fixing with precision, by means of numerous chronometers, the longitude of that island, in order to connect the Danish with the British survey; and the Board of Longitude having recommended that the voyage should be extended as far as the Naze of Norway, for the purpose of ascertaining also the longitude of that important point, Sir H. Davy thought that this vessel would afford him the means of performing his desired experiments upon protected and unprotected copper sheets, when under the influence of rapid motion; and upon application to the Board of Admiralty, he obtained the entire disposal of the vessel after the required observations had been completed, as long as the season would allow her going to sea; and, that every facility might be afforded him, a skilful carpenter was put on board, to prepare whatever might be necessary for the prosecution of the enquiry.

For the following account of his adventures upon this occasion I am indebted to Dr. Tiarks, who, in his character of astronomical observer, superintended the expedition.

In the first instance, Davy directed to be constructed a number of oblong, rectangular, thin plates of copper, the surface of which should exceed that of a square foot: in the centre of these plates was fastened a slip of copper, by means of which otherpieces of copper, which had small plates of iron of various dimensions attached to them, were fixed to the plate, by merely sliding them into the groove thus prepared for their reception. The plates were all carefully weighed previously to the experiment, and the pieces of iron were considered as representing the various proportions of iron and copper surfaces within whose limits Sir H. Davy had been led, by former experiments, to expect that the best proportion would be found. These plates were afterwards slipped into wooden frames, and nailed to the ship's side, over a piece of thick canvass, for the purpose of intercepting every possible communication between them and the copper sheathing.

It was proposed that, after each trip, these plates should be accurately weighed, in order to ascertain the loss which they severally might sustain from the corrosive action of the sea, while thus protected by different proportions of iron surface; and, to ensure every possible accuracy, he carried with him the excellent balance, constructed by Ramsden, which is in possession of the Royal Society.

Sir H. Davy, accompanied by Lord Clifton, embarked at Greenwich on the 30th of June, and the vessel arrived at Heligoland on the 2nd of July. Here, as they remained not more than one day, the plates were not examined, although the Master expressed strong doubts as to their safety. The vessel then proceeded, by order of Sir Humphry, to Norway, a country which he was, for several reasons, very desirous of visiting, especially for the sake of determining a doubtful point in ornithology, upon which he subsequently corresponded with Professor Rheinhard, of Copenhagen.

The difference of longitude, also, between that country and Greenwich, not having been accurately ascertained, offered perhaps an additional reason for thus deviating from a course which, it must be confessed, was at variance with the original plan of the expedition.

After a severe gale of wind on the 4th of July, the vessel arrived, on the day following, at Rleve, near Mandal, and afterwards proceeded to this latter place, at which Davy remained for several days, during which interval the vessel made a tour to the Naze, and took in coal.

On the arrival of the vessel in the port, the plates were immediately examined; but, to the great disappointment of Sir Humphry, it was discovered that every one of the protectors had been washed away, and that most of the plates had sustained considerable injury.

With the country around Mandal he was much pleased; for, although it is far from being fertile, the scenery is rendered exceedingly striking and beautiful by the numerous lakes which wash the feet of high and sometimes perpendicular mountains, at that time clothed with the rich verdure of their summer herbage.

Sir Humphry made several excursions into the interior of the country, and derived much amusement from angling in the lakes; and had it not been from his own inspection of the roads, and the information which he collected respecting them, together with an indisposition of his fellow-traveller, Lord Clifton, he would have made an extensive land journey through the country; but, under the existing circumstances, he determined to return toEngland through Denmark and Germany. He therefore at once resolved to take the steam-boat with him as far as Sweden, where the excellent roads would enable him, without inconvenience, to reach Gottenburg, and thence to continue his route through Denmark to Germany. The vessel proceeded accordingly to Christiansand, the chief town of a country of the same name.

Having been provided with some spare plates and protectors, he fixed them to the ship's side at Mandal, as he was informed that the voyage could be entirely performed within the rocks, with which the whole coast of Norway is so plentifully studded; but a short traverse through an open part of the sea, not far from Mandal, again defeated his object. The protectors were washed away, and no result was obtained.

At Christiansand he remained a few days, in order to try some new plates, which were constructed there under his own inspection. Upon this occasion he made an excursion to the falls of the Torjedahl, distant about six miles from the town. The river abounds with salmon, which were easily caught in their descent from the falls, by an apparatus contrived for that purpose. Sir Humphry amused himself by teaching the inhabitants the operation ofcrimping, and he declared the flavour of the fish to be superior to any salmon he had ever tasted.

It was at Christiansand that he became acquainted with the Norwegian race of ponies, so well adapted for mountainous countries; and which, at his recommendation, were afterwards introduced into England by Mr. Knight, of Downton Castle.

From Christiansand the vessel proceeded on her route eastward to Arendal, where she arrived on the 12th, after a passage of only a few hours. The route lay entirely within the rocks,—and so narrow were the passages, that the vessel could frequently not pass the rocks on either side without touching them.

At Arendal, which is the chief place of a remarkable mining district, Sir Humphry was well received by the Messrs. Dedehamys, two brothers, and the leading merchants of the place, with whom he made several excursions to the neighbouring mines. He was also invited by them to meet at their beautiful country seats the most respectable inhabitants of the town.

In the house of Mr. Dedehamy, Davy was introduced into Norwegian society, and, for the first time, had an opportunity of witnessing the customs and manners of the country.

A short time before dinner, the guests were summoned to partake of pickled fish, anchovies, and smoked salmon, with rum, brandy, and wine, which were placed on small tables in the drawing-room in which the company assembled. This custom of taking salt provisions, together with spirits, just before dinner, is very general in the North, and is considered as the best means of preparing the stomach, and of provoking an appetite for the approaching meal.

The very numerous party, which, with the exception of the hostess and her daughter, consisted entirely of men, were then ushered into two large rooms, one not being sufficiently spacious to accommodatethem, and each person took his seat promiscuously. At the beginning of the dinner, large basins filled with sugar were carried round by the host's daughter, followed by a servant, from which each gentleman took a large handful. Sir Humphry, surprised at so singular a ceremony, enquired its meaning; when the host very good-humouredly answered, that in Norway they thought, if the wine was good it could not be spoiled by sugar,—and if bad, that it would be improved by it. Davy immediately followed the example of the company, and helped himself to the sugar.

Amongst the party present were several members of the Diet (Storthing), which had recently refused the applications of the King for various grants of money. This subject excited much animated conversation, and the majority of the persons present expressed their approbation at so bold and independent a measure. This called forth a political toast relating to the situation of their country; when the whole company, elated with wine and conversation, simultaneously burst forth into the national chorus of Norway, which had been composed as a prize poem during the short struggle against the union of that country with Sweden, and which was much admired by the Norwegians, and on all occasions sung by them with the utmost enthusiasm of feeling; but, notwithstanding the liberal politics of the party, they drank Sir Humphry's toast—"The King of Norway and Sweden"—with much apparent loyalty.

A succession of toasts followed, the last of which recommended "The British Constitution as amodel for all the world." With this sentiment the festivities concluded—a momentary silence ensued; the custom of the country assigned to a stranger the honourable office of returning to the host and hostess the thanks of the company for their hospitable reception; all eyes were anxiously fixed upon the English philosopher; and as soon as he was made acquainted with the duty he was expected to perform, he rose from his seat, and in allusion to the sentiment so recently drunk in compliment to himself, he proposed as a concluding toast, "Norwegian hospitality a model for all the world."

From Arendal the vessel proceeded to Laurvig, where she stopped only a few hours; but Sir Humphry seized this opportunity to go on shore to view the country, and he afterwards weighed the copper plates which had been attached to the ship in Christiansand, as the vessel was now to cross that deep bay, at the bottom of which is situated Christiana, the capital of the kingdom. The few plates were found to be in good order; and the results, which however must be allowed to have been very incomplete, confirmed, as far as they went, the conclusions to which he had been led by former experiments, viz. that 1/200 of iron surface was the proportion best calculated to defend the copper, without so overprotecting it as to favour the adhesion of marine productions; while they moreover proved that there is a mechanical as well as a chemical wear of the copper, which, in the most exposed part of the ship, and in the most rapid course, bears a relation to it of nearly 2 to 4.55.

The country increased in fertility towards the eastern parts of it; but it possessed much less beauty than the neighbourhood of Mandal.

As soon as Davy perceived that the vessel had to pass near the mouth of the Glommen, the largest river of Norway, he directed that she should enter it. Steam-boats appeared to have been entirely unknown in that part of the country. The inhabitants of the town of Frederickstadt were alarmed by the belief that the vessel was on fire, and they ran down to the beach in multitudes. As the vessel proceeded up the river, the people every where left their work, looked on awhile in silent amazement, and then shouted with delight.

The vessel anchored a mile below the great fall of the Glommen, calledSarpen, and which Davy visited on the following day (July 15). Three Kings of Denmark have visited this fall, and a name commemorates the spot whence they viewed this grand scene of nature. The fall is not one perpendicular descent, but consists of three sheets of water closely succeeding each other; and, by means of a barometer, he ascertained the entire altitude to be little more than a hundred feet. In comparing the character of this waterfall with those of the others he had visited, he observes, that size is merely comparative; and that he prefers the Velino at Terni, on account of the harmony that exists in all its parts. It displays all the force and power of the element, in its rapid and precipitous descent; and you feel that even man would be nothing in its waves, and would be dashed to pieces by its force. The whole scene is embraced at once by the eye, and the effect isalmost as sublime as that of the Glommen, where the river is at least one hundred times as large; for the Glommen falls, as it were, from a whole valley upon a mountain of granite; and unless where you see the giant pines of Norway, fifty or sixty feet in height, carried down by it and swimming in its whirlpools like straws, you have no idea of its magnitude and power. Considering these waterfalls in all their relations, he is disposed to think, that while that of Velino is the most perfect and beautiful, the fall of the Glommen is the most awful.

On both sides of this fall are extensive saw-mills, with machinery of very imperfect construction. Davy spent some time with the proprietors of these mills, who were acquainted with the English language, and showed him every attention in their power. As an angler, he spoke with regret of the immense quantity of sawdust which floated in the water, and formed almost hills along the banks, and which, he observed, must be poisonous to the fish, by sometimes choking their gills, and interfering with their respiration.

From the Glommen the steam-vessel passed through the Svinesund to Strömstadt, the first town in Sweden beyond the frontier of Norway, from which Charles XII. essayed to besiege the neighbouring fortress of Frederickstadt in Norway. From Strömstadt, Davy set out on the 17th of July, and reached Gottenburg by land in two days, where he remained for a short time, in consequence of a slight indisposition. On his journey, he had a conversation with Oscar, the Crown Prince of Denmark, who, under the direction of Berzelius, haddiligently devoted himself to the study of chemistry. He conversed with our philosopher upon various subjects connected with that science; and Davy, on his return to England, declared that he had never met with a more enlightened person.

The Crown Prince expressed great surprise, as indeed did every body in Sweden, on hearing that it was not Davy's intention to visit Professor Berzelius at Stockholm; and his astonishment was still farther increased, when he was informed by himself, that he came to Norway and Sweden with no other view than to enjoy the diversion of hunting and fishing! He however did by accident afterwards meet Berzelius, but his interview was but of short duration.

From Gottenburg he hastened to Copenhagen, where he renewed his acquaintance with Prince Christian of Denmark, cousin of the King, and heir presumptive of the crown; in whose company he had some years before observed an eruption of Mount Vesuvius. He also visited Professor Oersted, and earnestly requested that he might see the apparatus by which that philosopher had made those electro-magnetic experiments which had rendered his name so celebrated throughout Europe.

He next proceeded to Neuburg and Altona, where he intended to re-embark for England in the steam-vessel which had, during the interval of his continental tour, made a voyage to England, and was again on her way to the Elbe. At the suggestion, however, of Professor Schumacher, the astronomical professor at Copenhagen, but residing at Altona, in whose society he passed a great portion of his time,he accompanied that gentleman to Bremen, in order to make the acquaintance of the venerable Dr. Olbers, who, since his retirement from an extensive medical practice, had entirely devoted his time to the pursuit of his favourite science astronomy; as well as to be introduced to Professor Gauss, of Gottingen, who happened to be at that time carrying on his geodetical operations for the admeasurement of the kingdom of Hanover.

Davy expressed a great desire to see the telescope with which Dr. Olbers had discovered the two planets, Pallas and Vesta, and which to his great surprise turned out to be a very ordinary instrument. His personal intercourse with these two celebrated philosophers appeared to afford him the highest satisfaction; and he spent two days most agreeably in their society.

In his "Salmonia," he gives us some account of his adventures as an angler during this short excursion to Norway and Sweden. "All the Norwegian rivers," says he, "that I tried (and they were in the southern parts) contained salmon. I fished in the Glommen, one of the largest rivers in Europe; in the Mandals, which appeared to me the best fitted for taking salmon; and in the Arendal; but, though I saw salmon rise in these rivers, I never took a fish larger than a sea-trout; of these I always caught many—and even in thefiords, or small inland salt-water bays; but, I think, never any one more than a pound in weight. It is true that I was in Norway in the beginning of July, in exceedingly bright weather, and when there was no night; for even at twelve o'clock the sky was so bright, that I read thesmallest print in the columns of a newspaper. I was in Sweden later—in August: I fished in the magnificent Gotha, below that grand fall, Trollhetta, which to see is worth a voyage from England; but I never raised there any fish worth taking. I caught, in this noble stream, a little trout about as long as my hand; and the only fish I got to eat at Trollhetta was bream."

He again embarked, on the 14th of August, on board the Comet steam-vessel, which had ascended the Weser as high as her draught of water would allow, and reached England, after a very boisterous passage, on the 17th of the same month; indeed, the vessel left the mouth of the Weser with a contrary wind, and the pilot was unwilling to put to sea, but Davy insisted on proceeding without delay. During the whole passage he suffered extremely from sea-sickness, and in a letter written to Professor Schumacher, shortly after landing, he remarks that "the sea is a glorious dominion, but a wretched habitation."

On the 9th of June 1825, Sir Humphry read before the Royal Society his third and most elaborate paper upon Copper sheathing, entitled "Farther Researches on the Preservation of Metals by Electro-chemical Means."

In this memoir, he states it to be his belief, that there is nothing in the poisonous nature of the copper to prevent the adhesion of weeds and testaceous animals; for he observes, that they will readily adhere to the poisonous salts of lead which commonly form upon the metal protecting the fore-part of thekeel; and even upon copper, provided it be in such a state of chemical combination as to be insoluble. It is then, in his opinion, thesolutionof the metal—thewearof its surface, by keeping it smooth, which prevents the adhesion of foreign matter. Whenever the copper is unequally worn, deposits will, without doubt, rest in the rough parts, or depressions in the metal, and afford a soil or bed in which sea-weeds can fix their roots, and to which zoophytes and shell-fish can adhere; but there is another cause of foulness on the protected sheathing, arising from the deposit of earthy matter upon the copper, in consequence of its electro-negative condition.

In relation to this subject, Davy has offered some observations upon the effects produced by partial formations of rust, which appear to me to be exceedingly interesting and important.

When copper has been applied to the bottom of a ship for a certain time, he says, a green coating, or rust, consisting of oxide, sub-muriate, and carbonate of copper, forms upon it; not equally throughout, but partially, and which, it is evident, must produce asecondary, partial, and unequal action, since those substances are negative with respect to metallic copper, and will consequently, by producing with it a Voltaic circuit, occasion a more rapid corrosion of those parts still exposed to sea-water: from this cause, sheets are often found perforated with holes in one part, after having been used for five or six years; while in other parts they are comparatively sound.[95]In like manner, the heads of the mixedmetal nails, consisting of copper alloyed by a small quantity of tin, which are in common use in the Navy, give rise to oxides that are negative with respect to the copper, so that the latter is often worn into deep and irregular cavities in their vicinity.

A series of very interesting experiments, fully detailed in this memoir, which were instituted for the purpose of ascertaining the extent of the diminution of electrical action in instances of imperfect or irregular conducting surfaces, led him to the general conclusion, that a very small quantity of the imperfect or fluid conductor was sufficient to transmit the electrical power, or to complete the chain. This induced him to try whether copper, if nailed upon wood, and protected merely by zinc or iron on itsundersurface, or on that next the wood, might not be defended from corrosion: a question of great practical moment with regard to the arrangement of protectors. For this purpose, he covered a piece of wood with small sheets of copper, a nail of zinc of about 1/100 part of the surface having been previously driven into the wood: the copper surface remained perfectly bright in sea-water for many weeks; and when the result was examined, it was found that the zinc had only suffered partial corrosion; that the wood was moist, and that, on the interior of the copper there was a considerable portion of revived zinc, so that the negative electricity, by its operation,provided materials for its future and constant excitement. In several trials of the same kind, iron was used with similar results; and in all these experiments there appeared to be this peculiarity in the appearance of the copper, that unless the protecting metal below was in a large mass, there were no depositions of calcareous or magnesian earths upon the metal; it was clean and bright, but never coated. The copper in these experiments was nailed sometimes upon paper, sometimes upon the mere wood, and sometimes upon linen; and the communication was partially interrupted between the external and internal surfaces by cement; but even one side or junction of a sheet seemed to allow sufficient communication between the moisture on the under surface and the sea-water without, to produce the electrical effect of preservation. This last experiment of Davy is of greater importance than may at first appear, in showing what a small proportion of conducting fluid will complete a circuit, and in thus explaining phenomena, as I shall presently show, which might not otherwise be suspected to have an electrical origin.

These results upon perfect and imperfect conductors led him to another enquiry, important as it relates to the practical application of the principle, namely, as to the extent and nature of the contact or relation between the copper and the preserving metal. He was unable to produce any protecting action of zinc or iron upon copper through the thinnest stratum of air, or the finest leaf of mica, or of dry paper; but the action of the metals did not seem to be much impaired by the ordinary coatingof oxide or rust; nor was it destroyed when the finest bibulous, orsilver-paper, as it is commonly called, was between them, being moistened with sea-water. He made an experiment with different folds of this paper. Pieces of copper were covered with one, two, three, four, five, and six folds; and over them were placed pieces of zinc, which were fastened closely to them by thread; each piece of copper, thus protected, was exposed in a vessel of sea-water, so that the folds of paper were all moist.

It was found in the case in which a single leaf of paper was between the zinc and the copper, there was no corrosion of the copper; in the case in which there were two leaves, there was a very slight effect; with three, the corrosion was distinct; and it increased, till with six folds the protecting power appeared to be lost; and in the case of the single leaf, the result differed only from that produced by immediate contact, in there not being any deposition of earthy matter. Other experiments likewise proved that there was no absolute contact of the metals through the moist paper; for, although a thin plate of mica, as before stated, entirely destroyed the protecting effect of zinc, yet when a hole was made in it, so as to admit a very thin layer of moisture between the zinc and copper, the corrosion of the latter, though not prevented, was considerably diminished.

The experimental part of this paper concludes with an account of various trials to determine the electro-chemical powers of metals in menstrua out of the contact, or to a certain extent removed from the contact of air; in order, if possible, to diminish therapid waste of the protecting metals. In the progress of these experiments he exhibits, in a most beautiful manner, the singular effect of different proportions of a fixed alkali, when mixed with sea-water, in rendering the iron, in its Voltaic connection with copper, more or less negative.

He terminates the paper with some observations of a practical nature, relative to the best modes of rendering iron applicable to the purposes of protection; but, as these have been already embodied in the investigation, it is not necessary to notice them farther in this place.

That I may give to the history of this subject all the perspicuity which it can derive from the connexion of its several parts, I shall now, in defiance of chronological order, proceed to consider his last Bakerian Lecture, "On the Relations of Electrical Changes," which was read before the Royal Society, on the 8th of June 1826. In which, after referring to his former papers on the chemical agencies of electricity, and the general laws of decomposition which were developed in them, he enters into some historical details respecting the origin and progress of electro-chemical science; being induced so to do, from a knowledge of the very erroneous statements which had been published upon the subject abroad, and repeated in this country. At the conclusion of this lecture, in reverting to the subject of Voltaic protection, he says: "A great variety of experiments, made in different parts of the world, have proved the full efficacy of the electro-chemical means of preserving metals, particularly the copper sheathing of ships; but a hope I had once indulged, that thepeculiar electrical state would prevent the adhesion of weeds or insects, has not been realized; protected ships have often indeed returned, after long voyages, perfectly bright,[96]and cleaner than unprotected ships; yet this is not always the case; and though thewholeof the copper may be preserved from chemical solution in steam-vessels (from the rapidity of their motion) by these means,—yet they must be adopted in common ships only so as to preserve a portion,—so applied, as to suffer a certain solution of the copper;[97]and an absolute remedy for adhesions is to be sought for by other more refined means of protection, and which appear to be indicated by these researches.

"The nails used in ships are an alloy of copper and tin, which I find to be slightly negative with respect to copper, and it is on these nails that the first adhesions uniformly take place: a slightly positive and slightly decomposable alloy would probablyprevent this effect, and I have made some experiments favourable to the idea."

He next proceeds to state some circumstances, in addition to those he had formerly noticed, by which the electrical relations of copper are altered. "I found," says he, "copper hardened by hammering,negativeto rolled copper;—copper (to use the technical language of manufacturers) bothover-poledandunder-poled,[98]containing, in one case, probablya little charcoal, and in the other a little oxide,negativeto pure copper. A specimen of brittle copper, put into my hands by Mr. Vivian, but in which no impurity could be detected, was negative with respect to soft copper. In general, very minute quantities of the oxidable metals render the alloy positive, unless it becomes harder, in which case it is generally negative."

These are important facts, and should dispose those who may preside over judicial enquiries, to pause before they infer the inferiority of copper sheeting from the rapidity of its decay.[99]—I havenow concluded a review of those admirable researches which led Sir Humphry Davy to suggest and mature a plan for arresting the corrosion of the copper sheathing of vessels by Voltaic action. Mr.Babbage has said that he was authorised in stating, that "this was regarded by Laplace as the greatest of Davy's discoveries." I do not think, however, that it should be considered in the light of a separate performance: we do injustice to the philosopher by regarding it as an independent and isolated discovery; for it was the result of a long series of enquiries, which commenced by establishing the laws of electro-chemistry,—which led him to the decomposition of the alkalies and earths,—suggested to his unwearied genius a succession of novel researches, in a new field of enquiry,—and concluded, as we have seen, in producing the most striking results by means of the greatest simplicity. Not once during the progress of this enquiry had he any occasion to retrace his steps for the purpose of correction: justly has he observed in his last Bakerian Lecture, that, notwithstanding the various novel views which have been brought forward in this and other countries, and the great activity and extension of science, it is peculiarly satisfactory to find that he has nothing to alter in the fundamental theory laid down in his original communication; and which, after the lapse of twenty years, has continued, as it was in the beginning, the guide and foundation of all his researches.

The President and Council of the Royal Society appear to have been swayed by this consideration, when they adjudged to him "A Royal Medal,[100]forhis Bakerian Lecture on the relations of electrical changes, considered as the last link, in order of time, of the splendid chain of discoveries in chemical electricity, which have been continued for so many years of his valuable life."

Thus had Davy now received from the Royal Society all the honours they were capable of conferring upon him. In the year 1805, they adjudged to him the medal on Sir Godfrey Copley's donation for his various communications published in the Philosophical Transactions; in 1817, they awarded him the Rumford medals for his papers on combustion and flame; and in 1827, upon the grounds just stated, the President and Council expressed their unabated admiration by conferring upon him the only medal which remained for his acceptance—that which had been recently founded by their patron, his late Majesty.

Having thus disposed of the speculative part of his admirable enquiry, it will be interesting to pause in our narrative, in order to take a philosophical review of the progress of Voltaic discovery, in its relations to this particular object. It is a subject well calculated to afford a valuable lesson to the experimentalist, and at the same time to furnish illustrations, more striking even than that of the safety-lamp, of the necessity of that complicated species of machinery, without which the human mind is frequently unable to grapple with the simplicities of truth. It is true, that the fact of a galvanic effectbeing excited by the contact of two dissimilar metals was noticed in the earliest stages of the enquiry, but it is equally evident that the phenomena which attended it, and the laws by which it was directed, required for their discovery and elucidation the assistance of the Voltaic battery. In reference to Davy, it may be here repeated, that the power of obtaining simple results, through complicated means, was one of the most distinguishing features of his genius.

It has been stated, that the Alarm frigate, the first coppered ship in our Navy, displayed very striking evidence of the effect of Voltaic action, in the rapid corrosion of its iron.[101]As early as 1783, after copper sheathing had become general, the Government issued orders that all the bolts under the line of fluitation should, in future, be of copper; but at that period, it was not possible that any idea could be entertained as to the true nature of the operation by which the iron was thus rapidly corroded, for it was only in the year 1797 that Dr. Ash noticed, for the first time, a phenomenon which was subsequently referred to the action of a simple Voltaic circuit.

It is a very curious circumstance in the history ofthis subject, that, for many years after the Voltaic influence had been recognised as the agent in metallic corrosion, so far from the existence of the accompanying phenomenon of preservation being suspected, it was even supposed that the metals mutually corroded each other. At so late a date as 1813, we find Davy himself, in the letter addressed to M. Alavair, published in these memoirs,[102]dwelling upon the necessity of avoiding metallic contact, in order to preventcorrosion, without throwing out the most distant hint as to the simultaneous production of a converse effect.

The first distinct notice of a metal being preserved from oxidation by the contact of a dissimilar metal, is at once referred to a chemical law, without a reference even to its possible connection with Voltaic action; and, striking as the fact may now appear, it never attracted much attention. M. Proust observed, that although copper vessels be so imperfectly tinned, as to leave portions of the surface uncovered, still, in cooking utensils, we shall be equally protected from the poisonous effects of the former metal; because, says he, the superior readiness with which tin is oxidized and acted upon by acids, when compared with copper, will not allow this latter metal to appropriate to itself a single atom of oxygen.[103]The same chemist observes, that if lead beassociated with tin, it will be incapable of furnishing to acids any saturnine impregnation, since the latter, being more oxidable than the former, will exclusively dissolve, and thus prevent the former from being attacked.

Whether the principle of Voltaic protection be applicable or not to the purpose of preserving copper sheathing, it is evident that it will suggest numerous other expedients of high importance in the arts, while it will explain phenomena previously unintelligible. By introducing a piece of zinc, or tin, into the iron boiler of the steam-engine, we may prevent the danger of explosion, which generally arises, especially where salt-water is used, as in those of steam-boats, from the wear of one part of the boiler. Another important application is in the prevention of the wear of the paddles, or wheels, which are rapidly dissolved by salt-water.


Back to IndexNext