Chapter 8

Glazed Ant-hill of M. Huber.

The naturalist, Huber, the patient historian of the ants, gives us a very interesting account of the proceedings of these wonderful insects, in actuallyassistingthe young out of their silken cases. These pupæ are enclosed in a tissue of silk, of so compact a texture, and formed of so strong a silk, as to render it impossible for the prisoner within to rupture the fibres, and get out of prison. The worker ants, therefore, areinstructed by a heavenly Ruler and Guide to give help to the prisoners, and to secure their egress. But how do these indefatigable attendants ascertain precisely the moment when their aid is required? The insect within has no power of voice to cry out for help, nor those without, in all probability, the faculty of hearing, if it could do so. It seems probable that they are acquainted with it from some slight movements which take place within, which they ascertain by means of their antennæ. Whatever it be, the attendants never interfere at a wrong time. Their manner of proceeding is beautifully described in the following words of this author:—"Several males and females lay in their envelopes in one of the largest cavities of my glazed ant-hill. The labourer-ants assembled together, and appeared to be in continual motion around them. I noticed three or four mounted upon one of these cocoons, endeavouring to open it with their teeth, at that extremity answering to the head of the pupa. They began to thin it by tearing away some threads of silk where they wished to pierce it, and at length by dint of pinching and biting this tissue, so extremely difficult to break, they formed in it avast number of apertures. They afterwards attempted to enlarge these openings, by tearing or drawing away the silk; but these efforts proving ineffectual, they passed one of their mandibles into the cocoon, through the apertures they had formed, and by cutting each a thread, one after the other, with great patience, at length effected a passage, of a line[P]in diameter, in the superior part of the web. They now uncovered the head and feet of the prisoner, to which they were desirous of giving liberty; but, before they could effect its release, it was absolutely necessary to enlarge theopening. For this purpose these guardians cut out a portion in the longitudinal direction of the cocoon, with their teeth alone, employing these instruments as we are in the habit of employing a pair of scissors. To expedite the work some raised up a little slip cut out in the length of the cocoon, whilst others drew the insect gently from its imprisonment. When the ant was extricated from its enveloping membrane, it was not, like other insects, capable of enjoying its freedom, and taking flight; it could neither fly, nor walk, nor without difficulty stand, for the body was still confined by another membrane, from which it could not by its own exertions disengage itself.

"In this fresh embarrassment the labourer-ants did not forsake it: they removed the satin-like pellicle which embraced every part of the body, drew the antennæ gently from their investment; then disengaged the feet and the wings, and lastly, the body, with the abdomen and its peduncle. The insect was now in a condition to walk, and receive nourishment, for which it appeared there was urgent need; the first attention, therefore, paid it by the guardians was that of giving it the food I had placed within their reach."

It is droll to add, and it may be some of our readers may feel somewhat abashed at the fact, that these labourer-ants are extremely particular in the observance of great order and regularity in their chambers; and they therefore carefully sweep up all the cast-off coverings, which are collected together, and deposited in one of the most distant lodges of their habitation. Could man, with all the powers of reason, and the faculties of an immortal being, have evinced a more striking instance of careful, gentle, and patient assistance in the hour of need than we see manifested in the case of these insects? Alas! how often does man need to come to them to learn not only a lesson of wisdom and order, but of the tenderest sympathy and affection. How often lies a poor fellow-creature in the bondage of hopeless poverty, or in the embarrassment of inextricable difficulties! How seldom does his emergency meet with that resolute and thorough-minded earnestness of brotherly love, which will patiently give him help and pity, until his troubles are surmounted, and his steps set free!

It is time that we spoke somewhat upon the extrication of insects from their pupa cases, even whenunder water. Here arises a great difficulty;—the wings of the insects thus placed, if wet with water, would be unfitted for flight, and would probably frequently lead to the death of the insect by drowning. Yet it is to leave its sub-aqueous abode, mount up through the waves overhead, and finally emerge without a drop of water clinging to its body, and from the glassy surface of the water it is to take its flight into the air. Some will be tempted to exclaim,—"This is a clear impossibility!" Far from it. The little worm so well known to anglers as the "caddis-worm," performs this feat with the greatest ease, and in the following manner:—

The Pupa-case, Larva and Fly of Caddis-worm.

Grating of the Pupa-case.

It has been mentioned that the larva known under this name constructs for itself a case of various materials in which it dwells at the bottom of the waters, where the hand of the young anglerknows well to find them. This case is heavier than water, and consequently cannot float, and so carry the insect to the surface. As the insect enters the pupa state it weaves, at the entrance of its singular habitation, a grating of silk, which, strange to say, is not only not softened and melted away by the water, but hardens under it until it is as hard as gum. This little grating is of a circular form, and fits exactly into the opening, and is perforated with holes, so as to look something like the gratings which cover our coal-cellar mouths in the pavement of cities. These holes are for the purpose of letting in fresh water for the respiration of the insect. Out of this under-water cell the insect must make its escape. To enable it so to do the pupa is furnished with two strong curved jaws, which are of no other use than to assist it in making an opening in one of the silken doors of its case, as they are cast off immediately afterwards, and there remains not a vestige of them in the perfect insect. This opening made, the pupa forces its way out at that end. But what then? How is it to reach the surface,even now? Its legs, as will be seen by looking at the cut, are furnished with a number of hair-like processes, which assist it in swimming; it therefore, still enclosed in the waterproof coat—the pupa skin—strikes upwards to the surface, and reaching it, its skin splits, its impervious raiment is cast aside, and the insect springs from the surface into the air without the minutest drop of water to impede her flight, or injure the delicate tissue of her wings!

Caddis-fly's Legs magnified to show the Hairs.

Escape of the Gnat from its Pupa-case.

We may take another common insect for an illustration of this mode of escape from the pupa, of an equally interesting kind. If the reader will on some fine summer day resort to any place of standing water by the road-side, he may probably succeed in discovering the emergence of a number ofgnats; and a very amusing occupation it is to stand by and watch the insect,—this moment an occupant of the waters, and the next darting in the air, a new and air-breathing form of existence! About ten days after the gnat has become pupa, itprepares for leaving that state and becoming a perfect insect by raising itself to the surface of the water, stretching out its body there, the thorax, or, in simpler language, the front enlarged part being raised above it. Immediately the eye of the observer detects the fact that some change is taking place in the insect; the enlarged portion cracks and splits, and through this opening the head of the gnat makes its appearance; then the trunk of the insect rises in a curious manner through the breach, and more and more of its body rises, preserving all the time a perpendicular position, so that it looks just as if it were rising out of the water, and not out of the horizontal pupa case floating on the surface. The upright body of thegnat now resembles a mast in a boat, only that it is continually being raised higher and higher by the gradual emergence of the insect. Its wings and legs are all folded closely down its sides as is shown in the cut; and it has therefore no power at all to prevent its being overset by a breeze, and drowned in the little waves below; the lower portion of its body alone retains it in this position, being as yet contained within the pupa case. No ship-builder dare venture to put a mast of such proportions into any of his vessels, for fear of their being top-heavy, and hence liable to heel over in a gale of wind. And undoubtedly many gnats, particularly in windy weather, are shipwrecked as soon as they emerge. This is, in fact, a moment of peculiar danger to the little insect-mariner, and a breath of untoward air will frequently drive it about like a ship in a tempestuous ocean; and if it is once laid on its side, all is over with the gnat; no patent apparatus can save it; and we have the mournful testimony of Réaumur, that in stormy weather he has seen a vast number of such shipwrecks in the mimic ocean of a pool of water. Generally speaking, the peril is only momentary, and the insect emergesin safety. Having thus raised itself to the perpendicular position, the gnat withdraws its two forelegs from the pupa case, and stretches them out; then it draws out its two next; and now feeling safe, it quits the perpendicular position and bends toward the water, plants its feet on its glistening surface, which is to it as safe as the land, since it has the faculty of walking on the waves. It is now in perfect safety, its wings expand and become dry, and presently the insect will for the first time make use of them by flying to some adjoining twig.

Blood-worms, natural size and magnified.

But we need not in many cases leave our homes to see an escape from the pupa in every respect as singular as the last, and in many, precisely identical. Before the writer's study-window was an artificial fountain, in which, as the water was not constantly allowed to play, aquatic insects of various kinds had permission to establish themselves. Nor were they long in availing themselves of this liberty. A week or two of genial summer weather was sufficient to people the water with various inhabitants among them was a little creature which will be recognised by every reader when we mention its title—"the blood-worm." Itis in reality not a worm at all, although resembling worm in shape, and in its serpent-like movements. This little creature was for a time particularly active; and in a tumbler of water taken from the fountain might be seen perhaps a dozen of them twisting about in a very singular manner. By-and-by a change came over them, and it turned out that the worm-like creatures had become pupæ of a blackish colour, thus at once deciding their insect character. They belong, in fact, to the insect called theChironomus plumosus. These black pupæ were scarcely less active than the red blood-worms, or larvæ of the same insect. They flapped about their tails with great vehemence, and thus, although their bodies naturally sink in the water, they were able to swim from the bottom to the surface, or from side to side. Observing that they had finished their appointed period in the pupa form, we became anxious to watch their change into the perfect insect. Neglecting, however, tonotice them at the proper period,—the afternoon of a warm sunny day, we were astonished the next morning to find a surprising number of pupa skins lying empty of their tenants on the surface, as though some of the water fairies enumerated in fable had been dancing on the waves all night, and left their little black shoes behind them in their haste to flee from the light of the smiling morning. We determined to be better prepared for the observation on that day; and as the afternoon came we had the gratification of seeing a large number of these insects rise from the water, all in the following[Q]manner:—They rose up from the bottom and reached the surface by the peculiar movement of their tails just described; there the thorax was thrust above the water, and immediately the insect burst its cerements, elevated itself by a wave-like motion from the rest of the pupa-case, which filled with air, and now glistened like silver; it then planted its forelegs on the water, withdrew the rest of its body from the case, unfolded its wings, and in a few moments was sailing in the thin air. On one stormy day the surface of ourfountain was bestrewn with the dead and dying bodies of these insects drowned in the waves.

Pupa and perfect Insect of the Chironomus Plumosus.

De Geer,[R]speaking of the pupæ of a moth, states, that he was not fortunate enough to witness the manner in which they quit their watery abode. But he seems to think that they quit the pupa case, then mount to the surface of the water, or up some aquatic plant, in order to reach a dry spot, where they remain, their wings being developed afterwards, and that thus the risk of their being wetted is avoided. Their bodies being lighter than the water, heconceives, accounts for their being able to rise to its surface. Too much weight, however, must not be attached to this observation, as it is not accompanied with satisfactory ocular evidence of the fact.

Pupæ of Dragon-fly.

Pupa of Dragon-fly, showing the sharp points at the end of its feet.

The pupa of the "dragon-fly" furnishes us with a very interesting example of escape; and it well deserves the reader's attention, if he be so placed as to have the opportunity of observing it. Perhaps, indeed, few insects afford us such a singular series of interesting facts as are to be found in the escape of this one from its pupa. The best method of observing their change is to procure as many of the larvæ as possible, to put them in a basin of water, at the bottom of which are a quantity of dead leaves, and to allow several sticks to be in the water touching the bottom of the basin, and reaching above the level of the water, as shown in the cut. Then we must watch carefully to notice any of the larvæ which, having become pupæ, creep towards the edge of the water. These are such as will in all probability be the first to undergothe change, for they come to that position in order that they may get dry before proceeding further. If these are now closely observed, they will be seen after the lapse of a little time to leave their position, and to begin creeping about in search of a suitable spot where they may undergo their metamorphosis. Most probably they will select for this purpose the sticks we have introduced into the basin, and, after running up and down them, will fix upon a particular spot, where they place themselves securely, the head invariably uppermost. From what will be subsequently mentioned, it is necessary that the insect should fasten itself so firmly to the branch, that not even a violent effort would disturb its position. This is secured by the insect thrusting the sharp claws with which its feet are armed into the stem on which it rests. The points of these claws are so fine and hard as even to penetrate wood with facility. They are shown in the cut; and even after the dragon-fly has escapedout of the pupa case, they may be easily made to fasten upon a piece of a branch, by simply pressing the feet against it very lightly. In order to watch the changes of this insect Réaumur once, whilst staying in the country, collected a large number of the pupæ, and placed them on a piece of cotton-print tapestry, where they soon felt at home, and fixed themselves in preparation for their change, without moving far from the spot where they had been placed. At few periods of the day could a visit be paid to the room where this tapestry was hung without seeing a spectacle at once diverting and extraordinary. Previous to its changes the pupa becomes more transparent, and the large and beautiful eyes of the insect it encloses grow increasingly brilliant. These signs always indicate that the transformation is nigh at hand.

It comes to pass in the following manner:—Some movements of a struggling kind take place inside the pupa case; and at length the case splits at the upper part, near the head: through this rent the body of the dragon-fly appears and tears it open, acting like a wedge, until the slit extends along the head across to the two eyes. The latter transverse slit is producedby a contrivance similar to that mentioned in the case of the blow-fly, a sort of air bladder which the insect distends at its pleasure, and thus causes the skin covering its head and eyes to split open. The head and body of the insect rise and make their appearance through the slit; and the head is now so much larger than it appeared while in the pupa case, that it seems almost impossible that it could ever have been contained within it. The insect continues to rise perpendicularly out of the case, and the legs make their exit, leaving the leg cases of the pupa undisturbed in their attachment to the support on which it rests. In order to facilitate the disengagement of the rest of its body the insect now bends itself in a curved form backwards, being only kept from falling by the last rings or segments of its body being still embraced by the sheath of the pupa case. When it has extricated itself thus far, it begins to move about its legs in different directions for several minutes, as if to get them into use; but after this it ceases all movement whatever. Not a quiver can be seen in its limbs, and the young observer would be inclined to conclude,—as a great entomologist once did, the first time he witnessed thechanges of this insect,—that it was in reality dead, and that it was a waste of time to watch it any longer. This state of profound inaction may endure for a quarter, or even half an hour: it appears to be intended in order to give time to the insect to recruit its strength for a fresh and more violent series of efforts, and to admit of its parts becoming hardened and dry. Suddenly, as we are, perhaps, carelessly looking on the inanimate object, it performs a feat of the most surprising, because unexpected agility. Its body, which was previously much bent backwards, is now swung forwards and bent into a curve; it then swings back, and then forwards again, and so quickly that it almost seems to leap. It then rests its legs upon the front part of the pupa case, and pulls the rest of its body out of the case by degrees, and then creeps forward, leaving the pupa case behind, still immovably fixed upon the plant.

EVENING FLIGHT OF EPHEMERÆ.Page 269.

"Behold," says Réaumur, "the dragon-fly new born, but very different from those which traverse the air, or rest upon the plants around. It is quite in disguise. The body, though longer than the pupa case out of which it was drawn, has not got all its natural length. The wings, which are the large and useful organs of these flies, have as yet very little more volume than they had when enclosed in the short and straitened pupa case. They are merely furrowed plates, or laminæ, of some thickness, and arranged one over the other, as if packed together. One can scarcely conceive how each of these wings can acquire its proper dimensions,—how it is to enlarge and lengthen sufficiently. They are folded into plaits like a fan, or like the leaf of a tree just about to be developed; hence they naturally appear very narrow, and the cause of their appearing so short is, that each of their longitudinal portions is folded up like the paper lanterns, more frequently used by nuns than by other persons."

The remaining portion of the dragon-fly's history will be found in the next chapter.[S]

Some curious instances are given by various authors of the escape of more than one insect from the same pupa. Thus we are told that a male and female emperor moth were once produced from one larva, and therefore one pupa, of extraordinary size. Messrs. Kirby and Spencetell us of a German entomologist who says, that two specimens of the pine-lappet moth were once produced from one pupa, which was of the remarkable size of two inches in length and one in thickness. But these are very rare instances, the common and almost universal rule being that one pupa only contains one insect.

Nothing now remains for us to add to the insect's history in the pupa state. Already,—for it is Spring far advanced,—the air is becoming peopled with insect tribes—

"The insect youth are on the wing,Eager to taste the honied spring,And float amid the liquid noon."

"The insect youth are on the wing,Eager to taste the honied spring,And float amid the liquid noon."

A thousand times ten thousand, nay, thousands of thousands, are already in the air; and the low hum of their wings may be heard if we stand breathless and listen in the midst of some sequestered spot, far from the roar and bustle and strife of town life. But the great life-season of the insect world is yet to come; and though May whispers it is nigh, June, July, and August must bring it to us, and with it a teeming multitude of insect flutterers more numerous than the stars of heaven, or the sand-grains of the sea-shore.

PART IV.—THE IMAGO.

CHAPTER I.

THE NEW-BORN PERFECT INSECT.

"Oh! start not! on thy closing eyesAnother day shall still unfold;A sun of milder radiance rise;A happier age of joys untold.Shall the poor worm that shocks thy sight,The humblest form in nature's train,Thus rise in new-born lustre bright,And yet the emblem teach in vain?"

"Oh! start not! on thy closing eyesAnother day shall still unfold;A sun of milder radiance rise;A happier age of joys untold.Shall the poor worm that shocks thy sight,The humblest form in nature's train,Thus rise in new-born lustre bright,And yet the emblem teach in vain?"

Beautiful as these lines are, and poetical as is the idea they develop, they are incorrect. The perfect insect springing from the pupa is not an emblem of man's glorious resurrection from this body of sin and death; why, we shall immediately discuss. In the oftentimes beautiful mythology of Greece, the name for the butterfly was [Greek: Psychê], that the soul. Just as the insect burstswith brilliant wings from the dull and grovelling form of the pupa, flutters in the blaze of day, roams on untiring wings through the genial air, and enjoys the use of faculties so new and strange to it, when contrasted with those of the pupa state,—so was it imagined that the soul's arising from amid the corruption of this vile body would prove a deliverance from the bondage of mortality, and the countless infirmities to which it is heir. And surely there was much poetry in the conception; but we, who must not leave the path of true insect history for any poetical fancies, have now to remind the reader that the simile is in many respects inaccurate, and in so doing we shall merely bring to his recollection what was said as to the contents of the pupa-case at p. 231. From this it appears that the pupa state, far from being a state of death, is one in which new parts are added to the insect; in which the insect is actually not only alive, but in some instances capable of moving about, as well as before or after; and, lastly, in which the various organs of the perfect insect all exist previous to the disclosure of the latter. Thus, if we were to slit open a pupa-case just before the insect bursts from it, we should findthat, although kept in bondage by the case, the insect was in all respects the same as if we had allowed it to break out of its prison in the ordinary manner. In a word, the perfect insect is after all only the same being which we saw in the egg, larva, and pupa states, now having cast off its last skin, and become an adult being.

When a man or an animal dies, the particles of the body are separated from each other, their union is destroyed, and they themselves are dissipated in various ways. The flesh returns to dust, the spirit to God who gave it. How different this change from that which the insect undergoes! and how inappropriate in strictness, as

"Emblems of our own great resurrection,Emblems of the bright and better land,"

"Emblems of our own great resurrection,Emblems of the bright and better land,"

as emblems of the mysterious union of the immortal soul and its immortal, incorruptible body! The fable of the Phœnix was more expressive of the real nature of this great change; for there the body of the creature was reduced to death first, and the new-born being sprang from its ashes. As we are anxious to convey only the most clear and accurate idea to the reader's mind of the various stages of insect life through which we are conductinghim, it appeared expedient to notice the mistake taught in these pleasing lines, only to avoid the error of its being supposed that they give us an accurate idea of the true nature of the change from pupa toimago.

The termImagois a Latin word, and, like those oflarvaandpupa, was given to insects in this condition by the naturalist Linnæus. It signifies properly an image, copy, or representation of any object. In applying it to insects in their last stage, Linnæus intended that we should understand by it, that the insect had now reached its stage of perfection, and had become in all respects exactly like, that is,the imageof, its parent. And though a better term might probably be found, yet as no person is likely to fall into any serious mistake merely because we call an insect in its last state animago, it is as well to retain it; better indeed, than, by inventing another, to create nothing but confusion and disorder in the minds of young entomologists. In this chapter, therefore,—the last chapter of the Life of an Insect, the wordimagomay be considered as synonymous, or having the same meaning, with that of "perfect insect;" it is an insect's last stage of existence.

It would be a great mistake to suppose that the insect, so soon as it leaves the pupa-case, is in that instant in every respect similar to what is known to us as the perfect insect. When, for example, a butterfly has just succeeded in extricating itself from its pupa-case, if we were to take it up in the expectation of finding it all at once decked with the glories of its wings, and elegant in its form, we should be disappointed. Owing to the cramped position which its limbs, and wings, and other organs, have so long been made to occupy, its appearance when it emerges from the pupa is necessarily different from that which it wears after all its limbs have been in free exercise, and the flutter of its wings has been heard over hill and dale, throwing the gentle air into an irregular line of tumult.

Now that summer has come, abundant opportunities for watching insects in all their stages may be had; and by careful searching of the garden, field, and woodland, a number of pupæ may be discovered on the very eve of disclosing the imago, or perfect insect. Let us suppose that the reader has not looked in vain; but has brought home in a tin box several of thesesingular objects, about which so much has been said. The pupa, ready to burst open and let loose the struggling captive within, is before him; the skin splits, the body of the insect appears, withdraws itself from the pupa-case and inner membranes, and the imago appears before him. But O, how different from the splendidly adorned insect which we know it is still to become! Its tender body is weak, soft, and languid, and bedewed with moisture. Its wings, instead of being of their usual size, and variegated with such glowing and admirably contrasted colours as only a Divine hand could create, are in the largest sized butterflies scarcely bigger than the nail of the little finger; instead of being uplifted in full strength and beauty, they hang drooping down over the sides of the trunk; and their colours are all dull, and muddy, and without any of those distinct spots and beautifully defined marks, streaks, and bands, which we observe with so much admiration in the wings of these insects. Altogether we might take it rather for a mutilated and imperfect insect, instead of what, in spite of its unattractive appearance, it really is,—a perfect insect, and in a short time to become a splendid one.

We have only to wait patiently for the lapse of a little time, and our desires will be fully gratified in beholding all these symptoms of weakness and imperfection disappear. The imago, attaching itself either to the cast-off pupa-case, or to some other convenient support, first stretches out one organ, and then another; its body loses the coating of moisture which bedewed it, its various parts become firm and hardened, and its colours come forth in all their beauty. All the parts which had been forced into a constrained position, now relieved, assume that which is natural to them in the perfect insect; and the wings no longer have a questionable appearance, but become expanded into those light and exquisite structures which form the peculiar beauty and characteristic of many insects, displaying themselves almost magically in the form, it may be, of the thin, transparent membrane of the fly, or as the painted tissue of the moth or butterfly, extending frequently to five or six times their previous dimensions.

Here let us take up, as an illustration of these beautiful and interesting phenomena, the concluding portion of the history of the dragon-fly, commencedat p. 302. The expansion of the wings of this elegant creature, after it has left the pupa-case, and fixed itself, generally on the stem of some pond plant, goes on so rapidly, that we can actually see them becoming larger each moment as we look upon them. If we were to attempt to trace their outline on paper, before the next stroke could be added, their form would be different. During the whole time that the development of the wings goes on, the insect continues perfectly still and immovable. Its wings are not stirred in the least, and the insect seems to avoid all risk of having these delicate organs touched by any surrounding object. Its wings, which are by-and-by to possess almost the stiffness of a thin layer of the mineraltalc, are at present softer and more flexible than wet writing paper, and if they were to receive any injury while in this condition, that injury could never be repaired; hence the insect requires to be in a perfectly quiet condition. The dragon-fly seems to be fully aware of this, and in order to prevent the wings, as they increase in size, from drooping down towards, and coming in contact with, its body, it curves it in the manner represented, so as to allow for the expansionand elongation of the wings. At length, generally in a quarter of an hour's time, their development is fully completed; but they are not yet sufficiently firm and resisting to use in flying. If left to itself, the insect generally waits three, or even four hours, before it puts them into inactivity. In addition to the expansion and elongation of its wings, its body also elongates, until it has acquired its full dimensions. In vain should we look at first for the splendid colours in which these insects are decked; all the tints are blotted and unpleasing. Those charming species, which are spotted with beautiful blue and yellow tints intersprinkled with black, are, when they are but just emerged from the pupa, of a whitish yellow spotted with brown; the yellow marks, however, are seen to change to a beautiful deep orange, the brown to black, and some of the yellow marks to blue.

The following interesting description of the same changes as they take place in the butterfly is from the valuable work of Messrs. Kirby and Spence. "The pupa of a very interesting and beautiful butterfly, the only one of its description that Britain has yet been ascertained to produce,I meanPapilio Machaon, being brought to me by a friend early in May, this year, on the sixteenth of that month I had the pleasure of seeing it leave its pupa-case. With great care I placed it upon my arm, where it kept pacing about for the space of more than an hour, when all its parts appearing consolidated and developed, and the animal perfect in beauty, I secured it, though not without great reluctance, for my cabinet, it being the only living specimen of this fine fly I had ever seen. To observe how gradual, and yet how rapid was the development of the parts and organs, and particularly of the wings, and the perfect coming forth of the colours and spots, as the sun gave vigour to it, was a most interesting spectacle. At first it was unable to elevate or even to move its wings; but in proportion as the aërial or other fluid was forced by the motions of its trunk into their nervures, their numerous corrugations and folds gradually yielded to the action, till they had gained their greatest extent, and the film between all the nervures became tense. The ocelli, and spots, and bars, which appeared at first as but germs or rudiments of what they were to be, grew with the growing wing, and shoneforth upon its complete expansion in full magnitude and beauty."

If we were expert anatomists, and were armed with a good microscope, the study of the wing of a dragon-fly would prove one of great interest to us. These beautiful organs, however, must be examined when they are as yet but a little expanded, as in their completely developed state we should certainly fail in detecting their real structure. Thin and gauze-like as they seem, they are in reality double, consisting of an upper and a lower surface, between which are several parts which are necessary to preserve the shape and carry on the functions of the wings. The two surfaces of the wing enclose what are called thenervures, resembling in some respects the veins of a leaf. These are really fine hollow tubes of some firmness, which ramify in large numbers between the two membranes of the wing, and thus give strength and stability of figure to them. Along these tubes, or nervures, branches of the air-vessels, ortracheæ, and of the blood-vessels, run.

From these necessary details let us turn to make the difficult, but important inquiry—Howare the wings expanded? by what means do they, from being thick, soft, and moist, become thin, hard, and dry? It is to be regretted that this inquiry cannot be answered with that satisfactory certainty which it deserves. It is very difficult to catch the insects in which the expansion of the wings is best observed at the right moment; and even then it is extremely difficult to say whether one cause more than another may contribute to this phenomenon. The following explanation of it is given by Messrs. Kirby and Spence, whose general accuracy on such subjects is well known. "As soon as the insect is disclosed, a fluid enters the tubes or nervures, and being impelled into their minutest ramifications, necessarily expands their folds; for the nervures themselves are folded, and as they gradually extend in length with them, the moist membranes attached to them are also unfolded and extended. In proportion as this takes place, the expanding membranes approach each other, and at last, being dried by the action of the atmosphere, become one. To promote this motion of the fluid seems the object of the agitations which, in many instances, the animal from time to time gives to its unexpanded wings. Thata kind of circulation, or rather an injection of an aqueous fluid into these organs, actually takes place, may be ascertained by a very simple experiment. If you clip the wings of a butterfly during the process of expansion, you will see that the nervures are not only hollow, but that, however dry and empty they may subsequently be found, they at that time actually contain such a fluid. Swammerdam, who appears to have been the first physiologist that paid attention to this subject, was of opinion, that an aëriform as well as an aquiform fluid contributes to produce the effect we are considering. He had observed that if a small portion be cut off from the wing of a bee, a fluid of the latter kind exuded from its vessels in the form of pellucid globules, becoming insensibly drops, which he concluded proved the action of the latter; and he noticed also that the wings were furnished withtracheæ, which were at that time distended by the injected air; whence he justly surmised, that the action of theairwas also of great importance to produce the expansion of the wing." But Swammerdam appears only twice to have seen the expansion of the dragon-fly, in which this phenomenon is best observed. Herold,an eminent naturalist, also attributes the expansion of the wing to the flow of an aqueous fluid into the nervures. M. Chabrier, a French entomologist, having observed a fluid in the interior of the nervures of the wings of insects, thinks it probable that they can introduce it into them and withdraw it at their pleasure, so as to facilitate their unfolding. When we call to mind the force with which the blow-fly, or flesh-fly, and the dragon-fly, are able to expand their heads by forcing air into them, we need scarcely ask for any other explanation than simply that the tracheæ are distended with air, and by that means the soft and yielding wings are made to assume their distended state.

It has been mentioned, that, in the case of the dragon-fly, the completion of the unfolding of its wings occupies about a quarter of an hour, but that sometimes it is even half an hour. The ordinary period is from five to ten or fifteen minutes in most insects, but it is sometimes prolonged to an hour, or to several hours. Again, in others, as we have already seen in the history of the emergence of the gnat, and other insects, from their aquatic state in the pupa, it is completed in a few seconds, and theinsect only rests for this brief period on the surface of the water, previous to taking flight from its apparently somewhat dangerous position.

Some observations of Mr. Rennie show, in a singular manner, the fact before mentioned, that if the wings, while yet wet and soft, are in any way pressed upon, or otherwise injured, they will never assume their proper appearance. "The thread by which a chrysalis is suspended may sometimes snap asunder; when this happens, and the chrysalis is allowed to remain, it will not usually produce an insect complete in all its parts; for the side upon which it lies being pressed against an unyielding substance by its own weight, instead of hanging lightly suspended by a silken cord, is prevented from becoming duly expanded, and when the insect is excluded, it is found to be deformed. A colony of the brown-tail moth, which we reared during the summer of 1829, spun in the corner of a nurse-box, a common web of several chambers for containing the pupæ. One of these chambers being accidentally torn, a pupa fell upon the earth in the bottom of the box, and in due time, a female moth was produced from it; but she never succeeded in expanding her wings, which remained till herdeath, shrunk, rumpled, and totally useless for the purpose of flying, though in every other respect she was full grown, and deposited in the box a group of fertile eggs, covered with down from her tail, as neatly as was done by her sisters of the same brood. In the summer of 1825, the chrysalis of a small tortoise-shell butterfly, (Vanessa urticæ,) lost its hold of its silken suspensory, and fell upon the pasteboard bottom of a nurse-box, resting in a sort of angular position, so that the case of the upper wing on the left side, pressed upon the box with the whole weight of the chrysalis above it. When the butterfly made its appearance, it expanded its wings as usual; but the wing upon which it had rested was not half the size of the one on the right side which had lain uppermost. Another of the same brood had, from some cause, not grown so large in the caterpillar state as the rest. It was transformed, notwithstanding, into a chrysalis, which appeared healthy and well-formed; but when the butterfly appeared, though it did not differ from the usual appearance, its wings never expanded a single hair's breadth, and remained always in the same state as when it issued from the chrysalis."

After the insect has once withdrawn itself from the pupa-case, it generally retains the same appearance and raiment as long as it lives, not casting its skin like the larva, but having put on its permanent clothing immediately upon its leaving the pupa-case. But in the case of an aquatic insect, theEphemera, of which we have before spoken, a remarkable exception to this rule has been noticed. When these insects leave the pupa-case, any one, on looking at them, would say that they had completed their changes; they appear to be furnished with every part necessary to them, and not to have any which is redundant; yet they are destined to go through a change equivalent to that which has just taken place, if, indeed, it is not more apparently difficult than it, and that is,—they have to cast off their skin. That they should be able to withdraw from thence their head, their legs, their body, and their long tails, would be no great difficulty for us to comprehend, because numbers of insects at their escape from the pupa-case do more than this; but in their case we are presented with a more perplexing enigma. In the transformation of other insects, as we have already seen, and, indeed, in that of the insects before us, the wings are at firstvery soft and pliable, and therefore can be easily withdrawn from the cases in which they were contained. But in theEphemera, the wings, after it has left the pupa-case, are fully developed and expanded, and seem to have acquired all their consistence, and to have become hard and inflexible. Moreover, its wings are so thin, that we can scarcely believe that they are in reality double; that is, that they are covered by an outside sheath; and it seems incomprehensible how, if such is the fact, the wings can be withdrawn from this case or sheath, when the only opening that can be discovered for that purpose, is a very minute hole near the spot where the wings take origin from the body of the insect. Let us now see how all these difficulties are overcome, and how the insect withdraws itself from this, as we might almost call it, second pupa-case.


Back to IndexNext