PART II.

[27]American Journal of Science for January 1845.[28]Pseudo-morphic crystals are crystals moulded in the cavities left by other crystals which they have replaced. See Dr. Blum on Pseudo-morphous minerals.[29]Bergman first determined the solubility of silex in simple water, aided by heat, and demonstrated its existence in the Geysers and other boiling springs of Iceland.—Parkinson, Org. Rem.vol. i. p. 324.[30]See my "Notes on a Microscopical Examination of Chalk and Flint," Annals of Natural History, August 1845.

[27]American Journal of Science for January 1845.

[28]Pseudo-morphic crystals are crystals moulded in the cavities left by other crystals which they have replaced. See Dr. Blum on Pseudo-morphous minerals.

[29]Bergman first determined the solubility of silex in simple water, aided by heat, and demonstrated its existence in the Geysers and other boiling springs of Iceland.—Parkinson, Org. Rem.vol. i. p. 324.

[30]See my "Notes on a Microscopical Examination of Chalk and Flint," Annals of Natural History, August 1845.

I proceed to consider the various states in which the remains of animals and plants are preserved in the mineral kingdom, and shall occasionally offer suggestions for collecting and preparing specimens; but particular instructions on this head will be given in the sequel, when the different kinds of fossils are respectively considered.

FOSSIL ANIMAL REMAINS.

Animal Remains.—Of the higher orders of animals, the more durable portions of the skeleton, as the bones and teeth, are almost the only parts that occur in a fossil state; except in some remarkable instances, in which entire carcasses of extinct species of Elephant, and of Rhinoceros, have been found imbedded in solid ice, and frozen gravel. (Wond.p. 152.) The countries of arctic regions are now the only localities in which such phenomena are likely to be met with; it appears, however, that in some remote period, the bodies of large mammalia were transported by icebergs into temperate regions, where the ice melted, and the animals either sunk to the bottom of the sea, or were drifted into estuaries, or stranded on the shore: the soft parts then decomposed, and the skeletons and detached bones were left imbedded in the silt, sand, or shingle.

In this manner alone can be explained the occurrence of bones and teeth of the mammoth, rhinoceros, hippopotamus, &c. so common in the alluvial or drifted deposits of this country; for these relics, though extremely friable, and buried in shingle, boulders, and other transported materials, are not water-worn, but in numerous instances remain as sharp and perfect as when recent. In the ancient shingle of Brighton cliffs (Wond.p. 114), I have found bones and teeth of horse, deer, ox, whale, &c. impacted with quartz and granite pebbles and boulders; the bones, though crumbling to pieces if not very carefully removed, being entire, and the whole mass held together by calcareous spar, deposited by water that had, during the lapse of ages, percolated through the chalk-rubble above.

Fossil bones are found in four different states: 1. With their animal matter, as in the bones of the Mastodons from Big-bone Lick, Kentucky. 2. With the animal matter removed. 3. With the earthy matter partly removed, 4. With the animal matter carbonized, or converted into bitumen; this change is common in the blue Lias clay;the bones retain their usual quantity of phosphate of lime, but the animal matter is converted into carbon. This alteration appears to have taken place unconnected with a high temperature, and to have been a spontaneous change in a moist situation, to which air had no access.[31]

[31]Mr. Smee, London Med. Gazette, November 1840.

[31]Mr. Smee, London Med. Gazette, November 1840.

Another, and very remarkable condition, is that in which the phosphate of lime has been removed by the infiltration of water charged with sulphuric or carbonic acid, and the gelatin converted into leather by tannin; as is the case with bones and teeth of deer, horses, &c. obtained from a submerged forest of oak, larch, &c. near Ferry-bridge, in Yorkshire; of which there are many instructive specimens in the York Museum.[32]

[32]Communicated by Professor John Phillips.

[32]Communicated by Professor John Phillips.

The cancellated structure (that is, the little cells or pores) of the long-bones of mammalia, found in caverns in England and Germany, and in the breccia of Gibraltar, and the conglomerates of Ava and the Sub-Himalaya mountains, &c., are often filled with crystallized carbonate of lime. In the Wealden deposits the osseous carapaces and plastrons of Turtles, and the bones and teeth of Crocodiles, Lizards, &c., are almost without exception heavy, and of various shades of brown or umber, from the infiltration of solutions of carbonates and oxides of iron.

In some instances, bones of a jet black are imbedded in the white calciferous grit; the phosphoric acid in the original organism having combined with iron and produced a deep blue or black phosphate of that mineral, and left the surrounding stone uncoloured.

Petrifaction by the infiltration of calcareous solutions is equally common; and the medullary cavities of the bones are frequently lined or filled with white calc-spar; brilliant pyrites also enters into the composition of these fossils, frosting over with a golden metallic deposit the cavities and fissures.

FOSSIL BONES.

The permeation of the teeth by mineral matter, produces beautiful examples of the tissues of those organs; the dentine is often stained throughout with a rich sienna tint, and sections viewed under the microscope by transmitted light, reveal the character and distribution of the calcigerous tubes more clearly even than in recent specimens.

It is extremely rare that osseous structures are found petrified by flint; among the many thousands of bones which I have extracted from the rocks, or have seen in collections, I know but of one instance of a silicified vertebra, that of a Mosasaurus, from a chalk-pit near Brighton; and a few bones and scales of fishes. But notwithstanding the weight and apparent solidity imparted by these modes of mineralization, the substance is generally rendered extremely brittle, so that the development of the bones from the stone in which they are imbedded, and the removal of the hard ferrugino-calcareous crust investing them, is no easy task, but requires much tact, experience, and patience, to execute successfully.

Hints for collecting fossil bones.—The light, friable, porous bones, require great care in their removal from the deposit in which they are imbedded, whether it be clay, consolidated shingle, or limestone; if of considerable size, they will almost invariably break to pieces, and many examples will not admit of repair. It is therefore always desirable, before attempting to extract a large bone, to make a sketch of it; its form will thus be known, should it be destroyed; and if it crack into fragments that will admit of reunion, the drawing will be a valuable guide for the replacement of the separated parts. If only a few pieces remain, those which show any portion of the terminations, or joints, should be preserved, as they afford the most precise and important characters. The faithful record even of an imperfect and unknown fossil is not without value; and as the antiquary carefully preserves shreds of ancientmanuscripts, in the hope that other documents may one day come to light, and enable him to interpret these now unintelligible records; so the geologist should treasure up every fragment of an undetermined organic remain, for the time may arrive, as I have often experienced, when specimens will be discovered that may illustrate its nature, and prove it to be of considerable interest.

The broken porous bones may be easily repaired by a hot weak solution of glue; and when the joinings are set, the bone should be saturated with thin glue, well brushed in, and the surface be sponged clean with very hot water before the cement is congealed. When dry, the specimens will be found to possess considerable firmness and durability.[33]By this process the tusks of mammoths and elephants may be restored, however much crushed; time, patience, and a little dexterity, only are required, to convert a heap of mere fragments into a valuable relic of the ancient world.

[33]A liquid, called "Neuber's liquid glue," is an excellent cement for this purpose: it is sold at No. 54, New Oxford Street, London.

[33]A liquid, called "Neuber's liquid glue," is an excellent cement for this purpose: it is sold at No. 54, New Oxford Street, London.

When the bones are tolerably perfect, but dry and friable from the loss of their animal oil, they may be made durable by saturating them with drying oil, and exposing them to a considerable degree of heat; in this manner the magnificent skeletons of the sloth tribe, the Megatherium, and Mylodon, in the Hunterian Museum, were prepared. When a bone appears as if cracked into numerous pieces before its removal, but still preserves its form, the only method by which it can be successfully extracted, is by spreading over it a thick layer of plaster of Paris, which should be used of the consistence of cream; when it sets, (which, if the plaster be recently prepared, will be in the course of a few minutes,) the specimen may be carefully extricated, and the plaster removed or not, according to the nature of the fossil, and the parts to be displayed. The bones of the large reptiles which occur in the Wealdenand Oolite, may be restored in the same manner. These remains are generally very brittle, and when imbedded in hard grit cannot be extracted whole: they will often fall to pieces on the slightest blow of the hammer or chisel. When of moderate size, it is best not to attempt their removal from the stone, but to trim the block into a convenient shape, and carefully chisel away the surrounding part, so as to expose the essential characters of the bone. In all cases this is an excellent method where practicable, for such specimens have a double interest; they are at once illustrative examples of the fossil, and of the rock in which it was deposited.

But many specimens will not admit of this method; and with large ones it is inconvenient and undesirable, except where bones lie in juxtaposition. The large examples in Tilgate grit, (figured in the Fossils of Tilgate Forest,) were all extracted piecemeal from the rock: and most of the gigantic bones of the Iguanodon, &c. now in the British Museum, were originally in many hundred pieces, and were cemented together with glue in the manner above described; I have found no other method so convenient and effective.

When a bone is too imperfect to be united as a whole, it may be imbedded in Roman cement, or plaster of Paris, which when dry may be coloured of the prevailing tint of the rock. For large heavy specimens, the cement is preferable; it is of easy application, and the fissures and cracks of the bones may be filled up with it, taking care first to cover the parts with thin hot glue, or the cement, when it dries, will shrink and fall out. A thin coating of mastic varnish will restore the colour, and by excluding the air, tend to preserve the specimens.

The teeth have generally undergone the same changes as the bones with which they are associated. The teeth of elephants or mammoths that are imbedded in loose calcareous earth, like the loam and chalk-rubble of Brightoncliffs, and of Walton in Essex, are friable, and apt to split and separate in the direction of the vertical plates of dentine and bone: the pieces should be glued together, and when set, the tooth be thoroughly saturated with thin glue, used very hot, and the superfluous cement removed with a sponge wrung out as dry as possible from boiling water. If there be any portion of the jaw attached to the teeth, it must be carefully preserved; and search should be made for fragments of the articulations, or parts of the joints and sockets.

In argillaceous strata, as the Lias-shale, London Clay, &c., the fossils are frequently saturated with brilliant pyrites, or sulphuret of iron; a mineral which decomposes upon exposure to the atmosphere, and occasions the destruction of the specimens. The fossils of the Isle of Sheppey are peculiarly obnoxious to this change.

FOSSIL ANIMAL REMAINS.

The remains of vertebrated animals in the Lias, very often occur as skeletons more or less perfect, the entire configuration of the original being preserved in many instances (Bd.pl. 7.Petrifactions, p. 340). But the deposit in which they lie is generally laminated, and the shale flakes off without great care; much time, labour, and practice are therefore required, to obtain specimens of any considerable size. To the late Miss Mary Anning, of Lyme Regis, the merit is due, of having first accomplished this difficult task; Mr. Hawkins has subsequently carried the art to perfection, as may be seen in the marvellous examples of Ichthyosauri and Plesiosauri, in the British Museum.[34]

[34]Petrifactions, Room IV. chap. iv. pp. 341, 376.

[34]Petrifactions, Room IV. chap. iv. pp. 341, 376.

The small specimens, such as the detached paddles, groups of vertebræ and ribs, &c., that are likely to come under the collector's notice in his personal researches, are not difficult of preservation. Mr. Hawkins employed a strong watery solution of gum arabic as the cement, and plaster of Paris as the ground, using shallow wooden trays of well-seasonedwood, in which the specimens were permanently imbedded: the bones, scales, &c. were then varnished with a solution of mastic, and the ground coloured bluish grey, to imitate the Lias. I have had considerable practice in the dissection of skeletons imbedded in Lias, and having found the method previously described answer every purpose, have not employed that recommended by Mr. Hawkins.

The scales of reptiles and fishes, either in connected masses or detached, are frequently met with in great perfection, and sometimes associated with the teeth and bones. In the Lias, even the remains of the skin and integuments (Bd.pl. 10) have been discovered. Whenever any part of a skeleton is found lying in shale or stone, the surrounding block should therefore be carefully examined, to ascertain if there be traces of the skin or integuments, before any part is removed by the chisel. The specimen of an Ichthyosaurian paddle, figured in the second volume of this work, affords a good illustration of the propriety of this caution. Around the bones are seen the carbonized remains of the cartilaginous fringe that supported the integuments, and thus the perfect form of the paddle has been ascertained; had the surrounding stone been chiselled away, the most important characters would have been obliterated, as probably they have been in numerous instances.

Nodular masses of indurated clay containing fishes, are often broken with difficulty in such a manner as will expose the enclosed fossil, for the nodule generally splits in various directions, and the specimen is irreparably mutilated or defaced. My friend Sir Woodbine Parish informs me that by subjecting such nodules to a high temperature—but not to a red heat—and then plunging them in cold water, they may when dry, by a properly directed blow of a hammer, be readily fractured in a direction parallel with the plane of the imbedded fossil, and the fish be laid bare in the most favourable position.

The scales of fishes, and the integuments of marine reptiles, are not the only vestiges of the dermal coverings of vertebrated animals that are preserved by mineralization. Traces of the wing-integument of flying reptiles, and of the feathers of birds, are sometimes manifest: and even when every atom of the original structure has perished, the impression may remain, and afford satisfactory results. The footmarks of unknown animals are often preserved in the rocks, and the imprints of the feet of several species of bipeds, presumed to be birds of colossal size, in tracks as distinct as if but recently made, have been discovered in the New Red sandstone of North America; in the section on fossil birds, this highly interesting subject will be fully explained.

The student, even from this brief review, will perceive how many valuable facts may be unnoticed, and irretrievably lost, unless attention be paid to the various circumstances under which fossil remains are presented to his notice.

Of the invertebrated orders, the most durable, and consequently the most numerous relics, are shells and corals. The integuments of the eyes, antennæ, and wings of Insects occur; and the shelly coverings of Crustaceans are not uncommon; those of the Echinoderms, the Star-fishes, and of the Crinoidea or Lily-animals, are very abundant in certain deposits. Instructions for the collection and arrangement of these fossils will be given in the chapters in which they are severally described.

FOSSIL BOTANY.

Fossil Vegetables.—The remains of the vegetable kingdom are presented to the notice of the geologist in various conditions; in some instances these relics are but little changed in their aspect, as, for example, in the recent accumulations of mud and silt, at the bottoms of lakes and rivers, and in morasses, and peat-bogs. In tufaceous incrustations, the imprints of wood, and of leaves and stems, are often sharply defined on the solid masses of concretionary and crystalline limestone.

In the ancient deposits, vegetables are found in two different states. In the one their substance is completely permeated by mineral matter; it may be calcareous (lime), siliceous (flint), ferruginous (iron), or pyritous (sulphuret of iron); and yet both the external characters, and the internal structure, may be preserved. Such are the fossil trees of the Isle of Portland, fragments of which so closely resemble decayed wood, as to deceive the casual observer, until by close examination of their texture and substance he finds that they possess the weight and hardness of stone. In the silicified wood which abounds in many of the tertiary strata, the most delicate tissues of the original are preserved, and by microscopical examination (seePl. V.) maybe displayed in a distinct and beautiful manner. In calcareous fossil wood the structure is also retained; and in many limestones, leaves and seed-vessels are well preserved.

The ligneous coverings, or the husks and shells, of nuciferous fruits, and the cones or strobili of Firs and Pines, are frequently met with in an excellent state of preservation; in some rare instances indications of flowers have been observed (Lign.67). The parts of fructification in some of the fern tribe (Lign.25and27), occur in coal-shale, and in the grit of Tilgate Forest (Wond.p. 394): the pollen, and the resinous secretions of pines and firs, have been discovered in tertiary marls, and in the Greensand. The well-known substance. Amber, so much in request for ornaments, is unquestionably of vegetable origin; it has been found impacted in the trunks of its parent trees (Wond.p. 242). Thefossil resindiscovered in the London clay, at Highgate and the Isle of Sheppey, is doubtless referable to the coniferæ found in that deposit.

In the Clathrariæ of Tilgate Forest, indications of a resinous secretion have been detected.

TheDiamond, which is pure charcoal, is probably a vegetable secretion, that has acquired a crystalline structure by electro-chemical forces. It has been converted intoCokeandGraphiteby the action of intense heat; and the electrical properties of the substance were changed, the Diamond being an insulator, and the Coke, a conductor of electricity. (Wond.p. 706.)

When the microscope is more extensively employed in investigations of this kind, it is probable that the siliceous spines and stars which begem the foliage of many plants (as theDeutzia,Lithospermum officinale, &c), will be discovered in a fossil state, for they are as indestructible as the frustules of Diatomaceæ, and the spicules of sponges which are so common in flint and chalcedony.

FOSSIL VEGETABLES.

But vegetables occur not only as petrified stems, leaves.and fruits, associated with other remains in the strata, but also in beds of great thickness and extent, consisting wholly of plants transmuted, by that peculiar process which vegetable matter undergoes when excluded from atmospheric influence, and under great pressure, intoLignite, andCoal. And there are intermediate stages of this process, in which the form and structure of the trees and plants are apparent; and a gradual transition may be traced, from the peat-wood and submerged forests of modern epochs, in which leaves, fruits, and trunks of indigenous species are preserved, to those ancient accumulations of carbonaceous matter, whose vegetable origin the eye of science can alone detect.

For the collection and preservation of fossil vegetables, with the exception of those which are permeated with. pyrites (as those of the Isle of Sheppey, &c.), but few instructions are required. The silicified and calcareous stems are generally easy of extraction, even when imbedded in hard stone, and if broken can be repaired with glue. When the stems bear the imprints of leaf-stalks (as inLign.31and54), the surrounding stone should be carefully examined, with the view of detecting impressions, or other indications of the foliage. Delicate leaves in clay, or shale, must not be washed; a thin coat of mastic varnish, or of gum-water, applied with a camel-hair pencil, will preserve them, and render them more distinct. When a leaf, fruit, seed-vessel, or other fragile object is attached to clay or friable sandstone, it is advisable to glue the specimen to a piece of thin wood or pasteboard, of suitable proportions.

The Sheppey fruits and other fossils permeated with iron pyrites, generally decompose after a few months' exposure to the air. The fruits, especially, are liable to decomposition; Mr. Bowerbank keeps his specimens in bottles of water; a solution of isinglass in spirits of wine is the best varnish to preserve such fossils, without obscuring their character and injuring their appearance: but even this method isoften unavailing. The pyritified fir-cones of the Wealden decompose in like manner: I have had the misfortune to lose several unique and most instructive specimens from this cause; boiling them in linseed oil preserves them, but greatly impairs their appearance.

ON THE INVESTIGATION OF THE FOSSIL REMAINS OF VEGETABLES.

Vegetable Organization.—As fragments of the stems, trunks, and branches, are very often the only vestiges of fossil plants, a knowledge of the characters by which the principal divisions of the vegetable kingdom may be distinguished by their internal structure, is indispensable to the successful investigation of the Flora of the ancient world. Although I have treated of this subject in the Wonders of Geology, (Wond.p. 694,) it will here be necessary to present the student with more ample details. The excellent introductory botanical works of Dr. Lindley, and Professor Henslow, convey full information on this, and every other department of the science, and should be consulted by those who intend to make this branch of Geology their particular study. For the general reader, and amateur collector, the following brief notice of a few obvious essential characters of vegetable organization, may perhaps afford sufficient information, to enable them to understand the principles on which the successful investigation of the nature and affinities of fossil plants must be conducted.

Lign. 1.Sections of Recent Vegetables; illustrative of their internal organization. (FromDr. Lindley.)Fig.1.—Longitudinal Section of Coniferous Wood.a.The Ducts,b.Spiral Vessels,c.Glandular vessels.2.—Transverse section of a dicotyledonous stem.a.Pith, or central column.b.The bark.c.Medullary rays.d.Vascular tissue between the medullary rays.3.—Elongated cellular tissue, forming the medullary rays.4.—Transverse section of a monocotyledonous stem.

Lign. 1.Sections of Recent Vegetables; illustrative of their internal organization. (FromDr. Lindley.)Fig.1.—Longitudinal Section of Coniferous Wood.a.The Ducts,b.Spiral Vessels,c.Glandular vessels.2.—Transverse section of a dicotyledonous stem.a.Pith, or central column.b.The bark.c.Medullary rays.d.Vascular tissue between the medullary rays.3.—Elongated cellular tissue, forming the medullary rays.4.—Transverse section of a monocotyledonous stem.

STRUCTURE OF VEGETABLES.

Every plant is essentially an aggregation of cells;[35]and the most simple forms of vegetation consist of a congeries of cells (cellular tissue) of the same kind, and have no visible fructification; such are the sea-weeds (algæ,conferæ, &c.), mosses, and lichens. In the more complex tribes the cells become variously modified, are elongated into tubes or vessels (vascular tissue), some of which possess a spiral structure, and others have their sides studded with little glands. The vascular tissue consists of two kinds of vessels. 1. Thespiral vesselsortracheæ: these are membraneous tubes, with conical extremities, having within a coil of elastic fibre spirally twisted, and capable of being unrolled (Lign.1,b.). 2. Theducts; which are a modification of the structure of the spiral vessel; their extremitiesare rounded or conical, and their sides marked with transverse lines, rings, or bars. Their functions appear to be different from those of the spiral vessels, and they are found in situations where the latter never occur.

[35]"Acellin botanical language, means a little bag composed of membrane, and containing a living substance capable of spontaneous growth by multiplication, or division of its parts. Of such little bodies, millions of which may be contained within the space of a cubic inch, all the soft parts of vegetables are composed; in sea-weeds they are often of large size."—Dr. Harvey's Sea-side Book, with which the reader is doubtless familiar.

[35]"Acellin botanical language, means a little bag composed of membrane, and containing a living substance capable of spontaneous growth by multiplication, or division of its parts. Of such little bodies, millions of which may be contained within the space of a cubic inch, all the soft parts of vegetables are composed; in sea-weeds they are often of large size."—Dr. Harvey's Sea-side Book, with which the reader is doubtless familiar.

The organization of the stem in the whole class of flowering plants, possesses characters so evident, as to afford the most important aid in the investigation of their fossil remains. Without dwelling on minor modifications, they are separable into two divisions, namely, the Endogenous (signifyingto grow from within), and the Exogenous (to grow from without). Both possess vascular tissue, but so differently arranged in the two classes, as to constitute distinctive characters which are seldom obliterated, although what was once a flexible stem, is now a mass of flint.

Endogenous Stems.—As the seeds of the plants belonging to this division have but one cotyledon, orseed-lobe, as the Lily, they are also termed monocotyledonous; the reader therefore must remember that these terms are synonymous. These stems consist of an uniform mass of cellular tissue, in which bundles of vascular or woody fibre are imbedded; a transverse section presents a surface dotted over with spots, produced by the division of these groups of vessels, pretty uniformly distributed, but more densely arranged towards the circumference (Lign. 1, fig. 4). A slice of cane affords an illustration of this structure.

The increase of these stems is effected by the formation of new cells and bundles of vessels in the central axis, which force their way among the old tissue, and occasion the condensation of the latter towards the outer edge. These plants have neither pith, concentric circles of woody fibre, nor true bark; negative characters of the highest importance in the determination of fossil stems.

Exogenous Stems.—The seeds have two cotyledons, or seed-lobes, as in the Bean, hence the plants of this class arealso called dicotyledonous. In these stems the cellular tissue forms a central column, or pith (Lign. 1, fig. 2, a.), and an external band, or cylinder, called the bark (fig. 2, b.); the two being connected by thin vertical plates, termed medullary rays, which are also formed of cells (fig. 2, c, c.); the diagram,Lign. 1, exhibits this arrangement. The interval between the pith and the bark, and the interspaces of the vertical radiating plates (fig. 2, d.), are filled up by woody fibre or vascular tissue, consisting of spiral and other vessels. The ligneous structure of exogenous stems consists, therefore, of a cylinder formed of wedge-shaped processes, that extend between the medullary rays to the pith, and is surrounded by the bark; a new zone of woody fibre is added annually between the bark and the former cylinder, and from this mode of increase the termexogenousis derived: a transverse section of a branch of oak or ash will show this structure. The rings, or concentric circles, are the annual zones of wood; the fine lines radiating from the centre, or pith, to the circumference, or bark, are the medullary rays (Lign. 1, fig. 2, c: see alsoPlate V. fig. 4).

The organization above described, will be found more or less manifest in fossil wood, stems, and branches. The monocotyledonous structure is beautifully displayed in the silicified stems of palms from Antigua (Plate V. fig. 1, 1a.): and the dicotyledonous, in petrified trees from Egypt. The pith, medullary rays, vascular tissue, and circles of growth, are preserved in the siliceous and calcareous wood found in many parts of England.

STRUCTURE OF CONIFERÆ.

Structure of Coniferæ(cone-bearing).—The remains of a numerous family of dicotyledonous trees, termedConiferæ, as the pine, fir, larch, &c., are so abundant in the stratified rocks, that it is necessary to describe in more detail the peculiarity of structure by which their stems and branches may be recognised. The most delicate woody tissue, as wehave above stated, consists of elongated cells or tubes, of two kinds: in the one, the membrane of which they are composed is smooth: in the other, the walls of the tubes are covered by little oval or circular bodies called glands (Lign. 1, fig. 1, c.). A branch of larch or pine, split longitudinally, and viewed by a powerful lens, will exhibit the appearance here described. This glandular structure is so constantly and largely developed in the coniferæ, that although it is also possessed by other aromatic trees, we shall rarely err in referring fossil wood in which this organization is apparent, to this family of vegetables (seePlate V. figs. 2, 3). These glands in the pines and firs, are supposed to be the cells which secrete a colourless volatile oil, that exudes in the state of turpentine.

From this general account of the vegetable structures that may be expected to occur in the mineral kingdom, the student will in some measure be prepared for the investigation of fossil trees and plants; but for the guidance of those who are wholly unacquainted with the principles on which the Natural System of Botany adopted in this work, is founded, I am induced to present the following concise view of the principal divisions of the vegetable kingdom, though it involves some repetition.

BOTANICAL PRINCIPLES.

The following summary is given nearly in Dr. Lindley's own language:—

Botanical Principles.—One of the first things that strikes an inquirer into the structure of plants, is the fact, that while all species are capable of propagating their race, the mode in which this function is effected is essentially different in different cases. In most tribes of plants, flowers are produced, and these are succeeded by fruit, containing seed, which is shed, or scattered abroad, and grows into new individuals. But in certain families (theCryptogamia), as Ferns, Mosses, Mushrooms, and the like, neither flowers, nor seeds properly so called, have been detected; but propagationis effected by the dispersion of grains or spores, which are usually generated in the substance of the plant, and seem to have but little analogy with true seeds. Hence the vegetable kingdom is separated into two distinct groups, namely, theflowering(Phanerogamia), and theflowerless(CryptogamiaorAgamia). As the former usually possess a highly developed system of spiral and other vessels, while the latter are either altogether destitute of them, or have them only in a few of the highest orders, and those in a peculiar state, the flowering plants are termed Vasculares, and the flowerlessCellulares. And as all the flowering, or vascular plants, when they form stems, increase by an extension of their ends, and a distension or enlargement of their circumference, but the flowerless or cellular plants form their stems simply by the addition of new matter to their points, the latter are calledAcrogens, signifying increase from the summit.

Flowering plants are also for the most part furnished with respiratory or breathing organs (stomata), of which the flowerless vegetables are to a great extent destitute.

The flowering or vascular plants are also divisible into two well marked groups, namely, theExogens, orDicotyledons, and theEndogens, orMonocotyledons.

TheExogens(growing from without), increase by the addition of new woody matter to the outside of the stems beneath the bark; and they are further characterized by the embryo having two or more cotyledons, or seed-lobes, hence they are also calledDicotyledons; such as the Elm, Beech, &c.

TheEndogens, as we have previously stated, increase by the addition of ligneous matter to the inside of their stems near the centre; and as the embryo in this class has but one cotyledon, they are likewise termedmonocotyledons, as the Cane, Palm, &c. Again, exogenous plants have the young external wood connected with a central pith, by medullaryprocesses; while endogens do not possess such a structure, having no central pith. In exogens the veins (venation) of the leaves, are disposed in meshes, like net-work, but in endogens the veins run parallel to each other.

The number of parts in the flower of an exogenous plant is usually five, or its multiples: in the endogens it is commonly three, or its multiples. In the germination, the young root of exogens is a mere extension of the radicle; but in endogens it is protruded from within.

Thus, in the flowering or vascular plants, we have two groups distinct from each other in their germination, the structure of their stems and leaves, their mode of growth, the arrangement of the parts of the flower, and in the structure of the embryo.

The vegetable kingdom is thus separated into three natural classes,—1, theExogens, 2, theEndogens, 3, theAcrogens; but there are likewise other divisions, a knowledge of which is of great importance in the study of fossil botany; the sub-class termedGymnospermsespecially requires notice.

In the strictly exogenous and endogenous plants, the fertilizing principle is communicated to the young seeds through the medium of astigmaandstyle, that terminate the case or pericarp in which the seeds are enclosed: but in another important group of the vegetable kingdom, the pollen is directly applied to the ovule, without the intervention of any pericarpial apparatus; hence these are termedGymnosperms, signifying naked seeds. These plants have the same relation to the other exogens, as frogs and analogous reptiles bear to the other orders of their Class; they comprise the two natural ordersConiferæ, andCycadaceæ.

The Gymnosperms also possess peculiarities of a subordinate nature: thus, many kinds have more than two cotyledons, and are therefore termedpolycotyledons; again, the radicle usually adheres to the albumen in which theembryo lies, hence they are sometimes namedSynorhiza. The veins of the leaves (in those whose leaves are veined), are either simple or forked; in which respect they approach the endogens on the one hand, and the acrogens on the other.

This concise definition of the natural divisions of the vegetable kingdom will enable the reader to comprehend the botanical principles which must guide him in his attempt to explore the ancient floras, whose fossil remains are generally found in a very fragmentary condition.

I need only add that M. Ad. Brongniart, in his great work on Fossil Plants, arranges the vegetable kingdom into five classes, viz.:—

1. Cellular Cryptogamia,[36]or Amphigens.

2. Vascular Cryptogamia,[37]or Acrogens.

3. Monocotyledons.[38]

4. Gymnospermous Dicotyledons.[39]

5. Angiospermous Dicotyledons.[40]

[36]Plants having the fructification concealed, and of cellular structure only.[37]Plants having the fructification concealed, and with vessels, or vascular tissue.[38]Flowering plants with one cotyledon; the Endogens.[39]Plants with naked seeds; that is, destitute of a pericarp or case.[40]Plants with the seeds in a receptacle or pericarp, with a style and stigma.

[36]Plants having the fructification concealed, and of cellular structure only.

[37]Plants having the fructification concealed, and with vessels, or vascular tissue.

[38]Flowering plants with one cotyledon; the Endogens.

[39]Plants with naked seeds; that is, destitute of a pericarp or case.

[40]Plants with the seeds in a receptacle or pericarp, with a style and stigma.

ON THE MODE OF INVESTIGATING FOSSIL REMAINS OF VEGETABLES.

INVESTIGATION OF FOSSIL PLANTS.

The distinguished authors of the British Fossil Flora justly remark, that a few isolated, and very imperfect data, exclusively afforded by the remains of the organs of vegetation, are but too often the sole guide to the class, order, orgenus of the fossil plants which the geologist has to examine; hence, in most instances, a general idea only can be obtained of the nature of the original.[41]To facilitate the study of Fossil Botany they offer some practical suggestions, which have served as the basis of the following directions for the investigation of vegetable remains, and which the previous remarks will, we trust, render intelligible.

[41]Foss. Flor. vol. I. p. xxvi.

[41]Foss. Flor. vol. I. p. xxvi.

1.The Trunk, or Stem.—Examine if the wood in a transverse section be disposed in concentric circles (asPlate V. fig 4): if so, it belonged to an exogenous tree: if, on the contrary, the wood appears deposited irregularly in spots (Lign. 1, fig. 4), then the original was endogenous. If a transverse section show remains of sinuous, unconnected layers, resembling arcs with their ends directed outwards, and of a solid structure, and imbedded among looser tissue, then it belonged to an arborescent fern; see the subjoined figures (Lign. 2).


Back to IndexNext