FEATHERSTONE “CHANGE GEAR” CHAINLESS.
FEATHERSTONE “CHANGE GEAR” CHAINLESS.
The manner in which these results are accomplished can be made out by a careful examination of thesectional cut of the interior of the crank hanger, for which cut (exclusive of the lettering and description) we are indebted to the Cycle Age. Gear marked 1 is firmly attached to the crank shaft and stands at the top, as shown in the cut of the bicycle. This gear 1 meshes into the one marked x-1-x, and this latter one, it must be understood, is placed between gears 2 and 2x, which are on the same shaft; the three are on one shaft (the one indicated just forward of the crank), but are not in any way fast to one another except by a device to be presently mentioned. Gear 2 (the larger of the two whose teeth are shown, the gear x-1-x being concealed between them) meshes with gear 3x on the third and rearward shaft, this gear being shown in dotted lines because it is hidden behind its larger fellow, gear 3; gear 2x in its turn meshes with gear 3. There are in all six spur pinions or gears within the crank-hanger. The pair on the rearward shaft, gears 3 and 3x, are fast on the same shaft, and hence must revolve at the same speed. The shaft marked C is hollow or slotted and contains what is known as a sliding clutch, operated by the small rod or cord and little crank shown reaching up to the top bar of the bicycle.
Gear 1, being fast on the pedal shaft, runs with the pedals, and of course carries with it gear x-1-x. Now if the clutch just mentioned makes gear 2 fast to x-1-x, the motion of gear 2 is carried to gear 3x and to the shaft of this latter gear are attached the pair of outside cranks which drive the other pair on the rear wheel by means of the connecting rods, so the bicycle is driven at a certain speed. If the clutch makes gear 2x fast to x-1-x, then the motion of 2x is carried to gear 3, and the drive cranks and drive rods are run at another rate of speed, slower than before. When the clutch makes x-1-x fast to either gear 2 or gear 2x, it causes it to let go of the other one, and that other one, thus released, runs around on the shaft independently, at the rate it is carried by its connection with the gear back of it. When the clutch is moved into the “midway” position gear x-1-x does not grip either of its neighbors on the shaft; then the feet can be held still on the pedals, gears 1 and x-1-x being stationary while the other four run along with the bicycle until another movement of the shifting clutch locks either 2 or 2x with gear 1 and the pedal shaft as already described. Of course, this arrangement does not interfere with back pedalling, as usual, unless the clutch is moved so as to throw the gears out of mesh.
FEATHERSTONECHAINLESSCRANK HANGER—SECTIONAL VIEW.
FEATHERSTONECHAINLESSCRANK HANGER—SECTIONAL VIEW.
The gear ratios provided are regularly to be seventy-four and fifty-three. It will perhaps be fair, having described the working of this device, to allow the makers to state their own general description and their claims for it:
DRIVING GEAR OFDAYTON CHAINLESS.
DRIVING GEAR OFDAYTON CHAINLESS.
“The whole machine in general construction—frame, front forks, handlebars, wheel, front hub, cranks and pedals—is our own regular highest grade work, as used on the Road King. The rear hub is so constructed that the wheel can be removed or returned to frame for repairing tire without disturbing the adjustment of the bearings. The front wheel is removable, same as in other bicycles. All bearings, including connections on side rods, are ball bearings.
“As the power is applied evenly from both sides, and the gears used for driving are at centre of crank-hanger box in frame, the centre of gravity is forward of the rider, where it should be, same as in regular chain wheels. This is a very important feature, and insures for this system a very material point of superiority over other chainless bicycles—that of lightness, perfection of balance and great strength.Another very important feature is the durability and lack of attention required. The chain on chain wheels requires a great deal of attention, while the driving mechanism of this wheel requires only proper adjustment at first, and then very limited attention at long intervals.
“The driving rods in connection with the divided crank axle being easily and entirely detachable from either side, in case of accident, should one pedal, crank or driving rod on same side be broken, the broken parts can be immediately detached and the rider can continue his journey without trouble or delay, using the remaining drives on opposite side. The machine is a marvel of fine mechanical skill, carried to a point described best by the word ‘frictionless.’”
Whatever peculiarities are involved in driving a bicycle by this method will be shared equally by theDaytonand theFeatherstone, the change gear of the latter, of course, excepted; and what inconvenience may be found from lack of a step will pertain to both. The statement in the Featherstone catalogue, above quoted, that in case of breakage of the driving gear on one side the rider can continue his journey without trouble or delay by using the drivers on the remaining side was evidently made without having tried the experiment or having talked with a locomotive engineer about it. In any change of gear which shifts a pinion into or out of engagement with another, there is always liability to a shock or jar as the teeth of one slip into the spaces in the other, and this will occur whether the engaging pinion is moved directly forward in the same plane with the other or from one side. The shifting clutch on the Featherstone chainless probably resembles a pinion with only a single tooth, which tooth is to enter and catch in a single space. How far this clutch will be able to avoid the usual drawbacks of shifts in practice time must determine; we cannot speak from observation, for no specimen of the bicycle has come eastward as yet.
As illustrating the somewhat uncertain operation of change gears, an incident which occurred to a certain rider comes to mind. Some years ago he was convoying a small party over a country road, being himself mounted on a bicycle fitted with a “Hy-Lo” gear which he was testing. While climbing a hill and nearly at its top, the jolt by unexpectedly striking a brick caused his knee to hit the tripping device which governed the shift, and this moved the gear into midway position; the pedals then “became footrests,” and the bicycle began to back with its rider down the hill, pawing the air ineffectually with his feet, until he was landed in a blackberry bush at the bottom, greatly to the amusement of his companions and to his own discomfiture, as he had just been kindly “coaching” one of them as to the best way to overcome a grade. There may be some question, in general, as to whether changing gear at will might not, in practice, prove less desirable than we are all disposed to imagine, and for this reason: the learner finds the bicycle very fatiguing, partly from the nervous strain and partly because the muscles are put to a strange service; they become wonted to that service in time and cease to trouble, but if the gear ratio could be readily changed while riding (as theoretically seems desirable) the rhythm of pedalling might be so disturbed as to measurably bring back the original fatigue.
ThePine chainless, located at 23 Duane street, is a model still behind, so that we have not been able to see a finished sample or even any working part. The general appearance is that of the Sager gear, the shaft being tubular and revolving outside the stay as in that type. The gears are claimed to be really spur gears with teeth cut square; that is, essentially so, for there must be some slight modification, as it is not as if two ordinary spur gears were placed at right angles and made to mesh in that position. The teeth, however, are said to besquare-cut, not radial; their sides are parallel, hence not pointing to the centre; the teeth are cut in a sort of trough, leaving a margin or hollow at their ends. The inventor terms his gear a “face” gear, and makes for it a number of claims, one of which is that he can and will convert any chain wheel into aPine chainlessat a cost of about $20. He likens his gear, in working, to the familiar breast drill, except that the drill has its teeth somewhat bevelled. If simplicity coupled with great strength and rigidity of frame, together with cheap construction and smooth and quiet action, are attained by this gear, as expected, it will evidently score a point among chainless models; but that straight-cut teeth can interact successfully at all with gears set at right angles or nearly so is contrary to all ideas heretofore, and in the lack of a model for examination we must forbear any opinion. The inventor’s own description is appended in justice to him:
PINE “SQUARE-TOOTH” CHAINLESS.
PINE “SQUARE-TOOTH” CHAINLESS.
“This invention relates to driving or propelling mechanism applicable to various machines or vehicles, but intended particularly for bicycles. It comprises mainly a sprocket wheel carried by the crank shaft with straight teeth on the inner face on a raised edge, so cut upon a new principle and arranged to mesh with a spur or pinion fixed at one end of a tube, which revolves on ball bearings arranged on rear-fork sides or rod with another gear or sprocket, the opposite end of said tube having also a spur or pinion meshing with another sprocket secured to rear hub cut in a similar manner as front sprocket. The driving power being transmitted from front sprocket or gear by shaft tube to rear gear or sprocket, all being suitably secured as above stated to frame upon rear fork rotatably supported by ball bearings connected to the frame and forks.
“This does precisely what has always been accounted to be out of the question and confutes both theoretical and practical mechanics. It is a gear that turns the corner by means of square cut teeth that mesh directly instead of by means of bevel teeth, and we call it a face gear. It has generally been the accepted rule that in order to transmit power from one shaft to another running at right angles by means of cogs the cogs must be V-shaped and cut on a bevel plane. Spur gears have hitherto been used only for engagements between wheels turning in a direct line with each other; our new chainless looks much like a bevel-gear wheel at first glance, but a closer inspection shows that the teeth on the inside of front sprocket or pinion wheel as well as those on the driving shaft are perfectly square and mesh together as spur gears.”
Mr. J. C. English of No. 141 Centre street, this city, formerly of Edison’s staff, has produced a sample of a chainless for which he has neither name nor facilities for production as yet. It uses the Crypto internal gear in principle of operation, the same as on theBantam. The principle of this gear is that when a pinion on a crank or arm is carried around while in mesh with an internally-toothed rack or ring, which is itself held fast against revolving, the pinion rotates on its own axis with an accelerated velocity, and of course it must impart such increased velocity to any wheel with which it is “in touch.”
This may sound complicated, but if the reader will carefully examine the cut he will not find it hard to understand. Here the gearing is within what appears to be a box-like hub. The disk in which the spokes are headed is independent of the toothed rack, but is fast to the central pinion; the toothed rack is a part of the framework and cannot turn. Now, when the pinion which meshes in the rack is carried aroundthe circle by the short arm or crank which holds it (within the “box”) it is plain that this pinion rolls around upon the teeth of the rack. Rolling thus, as the rack is larger than the pinion, having 3½ times as many teeth, the pinion must make 3½ turns on its own axis while it is carried once around upon the rack. But this pinion cannot turn without turning the central pinion with which it is in mesh (just as on theBantam), and the central pinion is fast to the driving wheel; so the wheel itself is driven, too. The sample gear ratio is 93⅓.
THE “ENGLISH” CHAINLESS.
THE “ENGLISH” CHAINLESS.
The lever measures 4⅝ inches between its fulcrum and the point of attachment to the crank, and 14 inches between the crank pin and the pedal. The crank itself is only 1⅞ inches long, being singularly short as compared with usual crank lengths in direct driving. The pinion on the crank is 1 inch in diameter, with 14 teeth; the central pinion is 1½ inches in diameter, with 21 teeth; the fixed rack is 3½ inches in diameter, with 49 teeth, all the teeth used thus being of “14 pitch.” The stroke of the pedal is 7¼ inches in each direction. Having a rocking movement necessarily, the path of the pedal is not an arc of a circle, but is peculiar, being somewhat like a bow and its string in shape, the down stroke being in the “bow” and the return stroke in the “string,” as shown in theaccompanying cut. The pedal also has the somewhat irregular motion and the “quick return” characteristic of the old Facile, and of all levers which are attached to cranks. The fulcrum of this lever, as appears in the cut, and as evidently must be the case, is not fixed in all directions, but slides back and forth, giving the pedal a part of the peculiar motion of the latter.
Summing up this device, we must say that its disadvantages are in the direction of some complexity of structure, weight, and what seems at present view insufficient crank throw, with the inseparable drawbacks of lever-driving. On the other hand, the lever has some good points, among them all that is in the vertical position of the rider, the gear construction supplies its own enclosure against dirt, and thegearsare of the simple spur variety, thus escaping any distinctive troubles of the bevel-gear. Arguing from the full trial on theBantam, this gear may be expected to run well and have good endurance if properly made.
As already remarked, England has thus far taken little interest in the present movement to revive chainless driving. One of the leading trade journals (the first one founded after the cycle era really began, some twenty years ago) hardly conceals its contempt of the movement, especially of bevel-gears; another, in a paragraph quoted further on, admits that such gears have not yet had a conclusive practical test, and that there may be a future for them in cycling, now that their construction is so much improved. The reason why so little interest has been taken in the subject is that England, in common with other cycling countries of Europe, has been, on the whole, satisfied with chain-driving. As an illustration, one maker now takes occasion to advertise “The English Sunbeam—eight years ahead of American cycles,” and then he proceeds to explain thus:
“A leading American firm have just issued their 1898 Catalogue, giving reasons why their new Chainless Cycle is an improvement on all existingAmerican machines. They say the new mechanism is easier to keep clean—has no backlash—no teeth to catch—is thoroughly lubricated—is weather-proof—does not wear—does not lose pitch. Now the Sunbeam, thanks to its little oil-bath dust-proof gear case, has had all these advantages since 1890. Now you know why Sunbeams go!”
Yet, as one of these journals puts it, “the vogue which has been given to the chainless bicycle by the booming of theColumbia bevel-gearhas brought out all sorts of expedients for suppressing the chain.” A few of these appeared at the recent exhibition in Paris, which, however, was almost exclusively American; at the English shows this winter theColumbiaand the Quadrant were the sole specimens of any consequence.
“ENGLISH” CHAINLESSDRIVING GEAR
“ENGLISH” CHAINLESSDRIVING GEAR
When the rear-driving chain wheel began to press the “good old ordinary” out of the field the latter endeavored to compromise upon a modified pattern called the “Rational.” The changes were few and simple. The back wheel was enlarged to 22 inches diameter and finally to 24; the backward “rake” of the front fork was made 2 and next 4 inches; the saddle was placed further back, and thus, with a crank lengthened to 7 inches, the rider was able to use a wheel two sizes smaller than formerly. This construction was much nearer to safety from “headers,” but after three or four years the rationalized “ordinary” had to give up the struggle. It was succeeded by thegeared ordinary, which favored safety by further reducing the size of wheel, obtained leg-room by placing the saddle further back and raising it above the backbone, and retained speed by gearing up. A number of spur gears for this purpose were in the market five years ago. The best pattern of this type of bicycle is shown in the cut. This had a 24-inch back wheel; a 4-inch rake, with the saddle from 12 to even 16 inches behind the head; 7-inch cranks; a 46-inch wheel, geared to 62, although 44 and 48 were made; weight about thirty-six pounds, which was moderate in those times. The gear was the Crypto, brought out in 1883; being hidden out of sight and closed against dirt in one of the hubs, it formed its own gear case.
In conformity to the growing use of small wheels, thegeared ordinarywent on shrinking in size to 42, 38, 36, 34, 32, 30, the gear being modified to retain a proper ratio. The name was changed to theBantam, and with the 1898 model shown in the cut, with its peculiar “Alpha” frame, the long evolution process comes down to this present date.
BANTAM CHAINLESS—1898.
BANTAM CHAINLESS—1898.
The Bantam, an English front-driving chainless, with a Crypto gear inclosed in one of the front hubs, has been modified for 1898. All the frame lines have become straight, and the frame is made up of one vertical and two horizontal tubes, with a diagonal one that holds the saddle stem. The rear wheel is now brought to the size of the front, increasing the resemblance to the prevailing type; the wheel base, however, still remains singularly short. This gives great handiness, theBantamneeding little space for stowing, and being so light and handy that it can be taken almost anywhere. Its wheel is from 22 to 24 or even 26 inches in diameter, geared from 60 to 72; it is easily mounted without a step. As to safety, two-fifths of the rider’s weight rests on the rear wheel. The gear, which was used some years ago by Frank Shorland in making what were then astonishing road records, is in principle the same as that on a rear-driver described further on, and one of its good points is that its operation and endurance are independent of what happens to the frame. It is not adjustable for wear, but this is true of all gears and of the chain and sprocket, except that the chain may be tightened in the familiar manner. The large internally toothed ring is part of the frame and does not move. The central gear is fast to the wheel and carries that with it. The small pinions are carried around by the crank (there are four in order to lessen wear, but one would work alone), and as they roll upon the fixed ring they are speeded up, giving a faster motion to the large pinion and the wheel. Their endurance under use has been wellestablished, this form of gearing having had years of trial, and they run easily and smoothly. The maker figures that they ought to last, with fair care, from 20,000 to 50,000 miles of travel.
DRIVING GEAR OFBANTAM CHAINLESS.
DRIVING GEAR OFBANTAM CHAINLESS.
TheBantamis also made with a drop frame, for ladies’ use. The chief drawback to its popularity in this country, in either form, is that the position of the rider with reference to the pedals does not and cannot conform to the American custom.
TheBantamis the only front-driver now surviving, so far as can be ascertained.
DRIVING GEAR OFACATENE CHAINLESS.
DRIVING GEAR OFACATENE CHAINLESS.
The French Acatene is the only European bevel-gear chainless which has made any stir abroad as yet, and it was on a bicycle of this make that Rivierre, the long-distance French crack, rode 533 miles within twenty-four hours, in Paris, in June of 1896, making the world’s record which is now cited as evidence of the suitability of such gears for driving bicycles. Soon after that date an English trade journal said of it that “for military purposes we think the Acatene is especially suited, and while we do not think it is destined to revolutionize the cycling world, as some Americans seem to think, we feel fully confident that there is a future for it if well handled.”
It is said that at least one reason for putting the transmitting shaft outside instead of within the back fork in the Sager gear—now on exhibition on theMonarch chainless—was in order to avoid an existing patent which claims a shaft carried through that fork. This outside position of the hollow shaft was used on the Acatene, and we give a cut of it, mainly for that reason, since in other respects it is not unlike other bevel-gear models. Inthis cut, taken from an English journal published in November of 1896, the relative positions of the shaft and the fork are seen; the accompanying description also says that “undoubtedly the chief point of success in the Acatene gear is the utilization of the ball bearing principle to take up the end-thrust on the cog shaft connecting the crank axle and the driving-hub cogs, as well as fitting that shaft outside the usual bottom fork in such a way as affords a very considerable support against the disaligning action of the cogs themselves.”
We also recall having seen a specimen of the Acatene in New York, about a year ago, and having noted the peculiar appearance of the shaft. If the Sager claim covers putting the shaft outside the fork this apparent anticipation may have a bearing on the value of such claim.
At the Stanley and the National shows in London, chainless driving—with the exception of a few which are close upon or within the freak line and do not need mention here—was represented by theColumbia bevel-gearand by theLloyd cross-rolleras exhibited by the “Quadrant” makers. This latter is like the bevel in using a shaft to reach from crank axle to rear-wheel axle, and so might in a general way be classed in the bevel-gear type; yet in important details it is materially different, the gears themselves being replaced by roller-and-pin wheels. This is an adaptation, with some changes in the shape of the rubbing parts, of the old crown wheel and of its pinion constructed of wire pins instead of cut teeth, this form of pinion being now in use in clock trains by the million. The large wheel on the crank axle has horizontal pins or studs projecting from its rim, the bottom ends of the pins being seen in the cut but the pins themselves being behind the wheel; these pins mesh into a roller pinion on the shaft, the common fixed pins being replaced by rollers turning on pins in order to substitute rolling for rubbing friction. The same construction is at the rear end, only reversed in position. In front, the pins drive the roller pinion; at the back end of the shaft, the roller-pinion drives the wheel by meshing with the pins on its hub.
It is impossible, from only the cuts and descriptions in the English trade journals, to be entirely sure of the precise shape of the engaging portions of this device, but the foregoing is substantially correct. The best authority in those journals, which expresses a high opinion of it, says: “The cross rollers act in practice more smoothly than the idea would seem to suggest. The gear is in effect almost thesame thing as a bevel-gear, since the ends of the rollers which impinge nearest upon each other are slightly tapered and rounded. There seems, however, to be less tendency for the gear to force itself apart than when bevels are used, and the rollers of course remove a lot of the rubbing friction inseparable from plain bevel-gears.”
On the other hand, the same writer says of the bevel: “Bevel gearing has been almost universally condemned by experts generally, but we do not think that the latest patterns of bevel-geared machines have been put to a really practical test. Taking theColumbiaas one of the most perfect examples of this class of machine, the cutting of the teeth and the general construction of the gear is so vastly superior to anything before turned out that previous tests are really very little guide. No other firm has given so much attention to the matter as theColumbiapeople, and we hope at an early date to have an opportunity of testing one of their machines. If the loss from increased friction is only slight, bevel-gears will have a considerable run—it all hinges on that.”
The Quadrant Cycle Company make for theLloyd’s roller-pin gear constructionthe following claims:
1. Obviates all the troubles of the chain.2. Minimum of working friction. Spins free of the ground from three to six times as long as a chain gear.3. Does not distort the frame or crossbind the bearings, consequently4. It climbs with about two-thirds the usual exertion.5. Responds instantly to the pressure of the foot.6. Is not a bevel-gear, consequently7. No spreading, no friction of cogs, no noise, no jar to the feet.8. Extremely durable, no backlash, no adjustment, ever required.
1. Obviates all the troubles of the chain.
2. Minimum of working friction. Spins free of the ground from three to six times as long as a chain gear.
3. Does not distort the frame or crossbind the bearings, consequently
4. It climbs with about two-thirds the usual exertion.
5. Responds instantly to the pressure of the foot.
6. Is not a bevel-gear, consequently
7. No spreading, no friction of cogs, no noise, no jar to the feet.
8. Extremely durable, no backlash, no adjustment, ever required.
LLOYD’S CROSS ROLLERDRIVING GEAR ONQUADRANT CHAINLESS.
LLOYD’S CROSS ROLLERDRIVING GEAR ONQUADRANT CHAINLESS.
The appearance of the crank-axle wheel in the cut suggests that the wheel is provided with pins of a generally round shape rather than with any such V-tooth as in the Sager device now shown on the Monarch. Application was filed by Fitzgerald and Clement in December last for an English patent on a device somewhat resembling the Quadrant. The crank axle clearly shows a central gear wheel, with regular crown-wheel teeth; and although the cuts in the specification are difficult to make out, the text describes a roller-toothed pinion on the forward end of the shaft, a crown-wheel toothed pinion on the rear end, and a wheel hub provided with roller teeth. The teeth thus described would not act precisely like those which appear to be on the Quadrant.
Mr. J. H. Harell of this city has produced a specimen which is apparently identical with the Quadrant, except that in the former the driving is applied to the back side of the wheel hub, as on theSpalding Chainless, while on the Quadrant the position of the driving parts is as on theColumbia. The pins which engage the rollers are rounded off and slightly tapered, resembling the shape of the bullet in ordinary fixed ammunition; but in the lack of more precise information as to the form of the pins on the Quadrant it is not certain that Mr. Harell has made any improvement.
GEARED ORDINARY—1892.
GEARED ORDINARY—1892.