Chapter 3

PART FOURTH.The development of the rivers of Pennsylvania.

PART FOURTH.The development of the rivers of Pennsylvania.

23.Means of distinguishing between antecedent and adjusted consequent rivers.—The outline of the geological history of Pennsylvania given above affords means of dividing the long progress of the development of our rivers into the several cycles which make up their complete life. We must go far back into the past and imagine ancient streams flowing down from the Archean land towards the paleozoic sea; gaining length by addition to their lower portions as the land grew with the building on of successive mountain ranges; for example, if there were a Cambro-Silurian deformation, a continuation of the Green Mountains into Pennsylvania, we suppose that the pre-existent streams must in some manner have found their way westward to the new coastline; and from the date of this mountain growth, it is apparent that any streams then born must have advanced far in their history before the greater Appalachian disturbance began. At the beginning of the latter, as of the former, there must have been streams running from the land into the sea, and at times of temporary elevation of the broad sand-flats of the coal measures, such streams must have had considerable additions to their lower length; rising in long-growing Archean highlands or mountains, snow-capped and drained by glaciers for all we can say to the contrary, descending across the Green Mountain belt, by that time worn to moderate relief in the far advanced stage of its topographic development, and finally flowing across the coal-measure lowlands of recent appearance. It was across the lower courses of such rivers that the Appalachian folds were formed, and the first step in our problem consists in deciding if possible whether the streams held their courses after the antecedent fashion, or whether they were thrown into new courses by the growing folds, so that a new drainage system would be formed. Possibly both conditions prevailed; the larger streams holding their courses little disturbed, and the smaller ones disappearing, to be replaced by others as the slopes of the growing surface should demand. It is not easy to make choice in this matter. To decide that the larger streams persisted and are still to be seen in the greater rivers of to-day, only reversed in direction of flow, is certainly a simple method of treating the problem, but unless some independent reasons are found for this choice, it savors of assumption. Moreover, it is difficult to believe that any streams, even if antecedent and more or less persistent for a time during the mountain growth, could preserve till now their pre-Appalachian courses through all the varying conditions presented by the alternations of hard and soft rocks through which they have had to cut, and at all the different altitudes above baselevel in which they have stood. A better means of deciding the question will be to admit provisionally the occurrence of a completely original system of consequent drainage, located in perfect accord with the slopes of the growing mountains; to study out the changes of stream-courses that would result from later disturbances and from the mutual adjustments of the several members of such a system in the different cycles of its history; and finally to compare the courses thus deduced with those now seen. If there be no accord, either the method is wrong or the streams are not consequent but of some other origin, such as antecedent; if the accord between deduction and fact be well marked, varying only where no definite location can be given to the deduced streams, but agreeing where they can be located more precisely, then it seems to me that the best conclusion is distinctly in favor of the correctness of the deductions. For it is not likely, even if it be possible, that antecedent streams should have accidentally taken, before the mountains were formed, just such locations as would have resulted from the subsequent growth of the mountains and from the complex changes in the initial river courses due to later adjustments. I shall therefore follow the deductive method thus indicated and attempt to trace out the history of a completely original, consequent system of drainage accordant with the growth of the central mountain district.

In doing this, it is first necessary to restore the constructional topography of the region; that is, the form that the surface would have had if no erosion had accompanied its deformation. This involves certain postulates which must be clearly conceived if any measure of confidence is to be gained in the results based upon them.

24.Postulates of the argument.—In the first place, I assume an essential constancy in the thickness of the paleozoic sediments over the entire area in question. This is warranted here because the known variations of thickness are relatively of a second order, and will not affect the distribution of high and low ground as produced by the intense Permian folding. The reasons for maintaining that the whole series had a considerable extension southeast of the present margin of the Medina sandstone have already been presented.

In the second place, I shall assume that the dips and folds of the beds now exposed at the surface of the ground may be projected upwards into the air in order to restore the form of the eroded beds. This is certainly inadmissible in detail, for it cannot be assumed that the folded slates and limestones of the Nittany valley, for instance, give any close indication of the form that the coal measures would have taken, had they extended over this district, unworn. But in a general way, the Nittany massif was a complex arch in the coal measures as well as in the Cambrian beds; for our purpose and in view of the moderate relief of the existing topography, it suffices to say that wherever the lower rocks are now revealed in anticlinal structure, there was a great upfolding and elevation of the original surface; and wherever the higher rocks are still preserved, there was a relatively small elevation.

In the third place, I assume that by reconstructing from the completed folds the form which the country would have had if unworn, we gain a sufficiently definite picture of the form through which it actually passed at the time of initial and progressive folding. The difference between the form of the folds completely restored and the form that the surface actually reached is rather one of degree than of kind; the two must correspond in the general distribution of high and low ground and this is the chief consideration in our problem. When we remember how accurately water finds its level, it will be clearer that what is needed in the discussion is the location of the regions that were relatively raised and lowered, as we shall then have marked out the general course of the consequent water ways and the trend of the intervening constructional ridges.

Accepting these postulates, it may be said in brief that the outlines of the formations as at present exposed are in effect so many contour lines of the old constructional surface, on which the Permian rivers took their consequent courses. Where the Trenton limestone is now seen, the greatest amount of overlying strata must have been removed; hence the outline of the Trenton formation is our highest contour line. Where the Helderberg limestone appears, there has been a less amount of material removed; hence the Helderberg outcrop is a contour of less elevation. Where the coal beds still are preserved, there has been least wasting, and these beds therefore mark the lowest contour of the early surface. It is manifest that this method assumes that the present outcrops are on a level surface; this is not true, for the ridges through the State rise a thousand feet more or less over the intervening valley lowlands, and yet the existing relief does not count for much in discussing the enormous relief of the Permian surface that must have been measured in tens of thousands of feet at the time of its greatest strength.

25.Constructional Permian topography and consequent drainage.—A rough restoration of the early constructional topography is given in fig. 21 for the central part of the State, the closest shading being the area of the Trenton limestone, indicating the highest ground, or better, the places of greatest elevation, while the Carboniferous area is unshaded, indicating the early lowlands. The prevalence of northeast and southwest trends was then even more pronounced than now. Several of the stronger elements of form deserve names, for convenient reference. Thus we have the great Kittatinny or Cumberland highland, C, C, on the southeast, backed by the older mountains of Cambrian and Archean rocks, falling by the Kittatinny slope to the synclinal lowland troughs of the central district. In this lower ground lay the synclinal troughs of the eastern coal regions, and the more local Broad Top basin, BT, on the southwest, then better than now deserving the name of basins. Beyond the corrugated area that connected the coal basins rose the great Nittany highland, N, and its southwest extension in the Bedford range, with the less conspicuous Kishicoquilas highland, K, in the foreground. Beyond all stretched the great Alleghany lowland plains. The names thus suggested are compounded of the local names of to-day and the morphological names of Permian time.

What would be the drainage of such a country? Deductively we are led to believe that it consisted of numerous streams as marked in full lines on the figure, following synclinal axes until some master streams led them across the intervening anticlinal ridges at the lowest points of their crests and away into the open country to the northwest. All the enclosed basins would hold lakes, overflowing at the lowest part of the rim. The general discharge of the whole system would be to the northwest. Here again we must resort to special names for the easy indication of these well-marked features of the ancient and now apparently lost drainage system. The master stream of the region is the great Anthracite river, carrying the overflow of the Anthracite lakes off to the northwest and there perhaps turning along one of the faintly marked synclines of the plateau and joining the original Ohio, which was thus confirmed in its previous location across the Carboniferous marshes. The synclinal streams that entered the Anthracite lakes from the southwest may be named, beginning on the south, the Swatara, S, fig. 21, the Wiconisco, Wo, the Tuscarora-Mahanoy, M, the Juniata-Catawissa, C, and the Wyoming, Wy. One of these, probably the fourth, led the overflow from the Broad Top lake into the Catawissa lake on the middle Anthracite river. The Nittany highland formed a strong divide between the central and northwestern rivers, and on its outer slope there must have been streams descending to the Alleghany lowlands; and some of these may be regarded as the lower courses of Carboniferous rivers, that once rose in the Archean mountains, now beheaded by the growth of mountain ranges across their middle.

26.The Jura mountains homologous with the Permian Alleghanies.—However willing one may be to grant the former existence of such a drainage system as the above, an example of a similar one still in existence would be acceptable as a witness to the possibilities of the past. Therefore we turn for a moment to the Jura mountains, always compared to the Appalachians on account of the regular series of folds by which the two are characterized. But while the initial topography is long lost in our old mountains, it is still clearly perceptible in the young Jura, where the anticlines are still ridges and the longitudinal streams still follow the synclinal troughs; while the transverse streams cross from one synclinal valley to another at points where the intervening anticlinal arches are lowest.21We could hardly ask for better illustration of the deductive drainage system of our early Appalachians than is here presented.

21This is beautifully illustrated in the recent monograph by La Noë and Margerie on "Les Formes du Terrain."

27.Development and adjustment of the Permian drainage.—The problem is now before us. Can the normal sequence of changes in the regular course of river development, aided by the post-Permian deformations and elevations, evolve the existing rivers out of the ancient ones?

In order to note the degree of comparison that exists between the two, several of the larger rivers of to-day are dotted on the figure. The points of agreement are indeed few and small. Perhaps the most important ones are that the Broad Top region is drained by a stream, the Juniata, which for a short distance follows near the course predicted for it; and that the Nittany district, then a highland, is still a well-marked divide although now a lowland. But there is no Anthracite river, and the region of the ancient coal-basin lakes is now avoided by large streams; conversely, a great river—the Susquehanna—appears where no consequent river ran in Permian time, and the early synclinal streams frequently turn from the structural troughs to valleys located on the structural arches.

28.Lateral water-gaps near the apex of synclinal ridges.—One of the most frequent discrepancies between the hypothetical and actual streams is that the latter never follow the axis of a descending syncline along its whole length, as the original streams must have done, but depart for a time from the axis and then return to it, notching the ridge formed on any hard bed at the side instead of at the apex of its curve across the axis of the syncline. There is not a single case in the state of a stream cutting a gap at the apex of such a synclinal curve, but there are perhaps hundreds of cases where the streams notch the curve to one side of the apex. This, however, is precisely the arrangement attained by spontaneous adjustment from an initial axial course, as indicated infigure 13. The gaps may be located on small transverse faults, but as a rule they seem to have no such guidance. It is true that most of our streams now run out of and not into the synclinal basins, but a reason for this will be found later; for the present we look only at the location of the streams, not at their direction of flow. As far as this illustration goes, it gives evidence that the smaller streams at least possess certain peculiarities that could not be derived from persistence in a previous accidental location, but which would be necessarily derived from a process of adjustment following the original establishment of strictly consequent streams. Hence the hypothesis that these smaller streams were long ago consequent on the Permian folding receives confirmation; but this says nothing as to the origin of the larger rivers, which might at the same time be antecedent.

29.Departure of the Juniata from the Juniata-Catawissa syncline.—It may be next noted that the drainage of the Broad Top region does not follow a single syncline to the Anthracite region, as it should have in the initial stage of the consequent Permian drainage, but soon turns aside from the syncline in which it starts and runs across country to the Susquehanna. It is true that in its upper course the Juniata departs from the Broad Top region by one of the two synclines that were indicated as the probable line of discharge of the ancient Broad Top lake in our restoration of the constructional topography of the State; there does not appear to be any significant difference between the summit altitudes of the Tuscarora-Mahanoy and the Juniata-Catawissa synclinal axes and hence the choice must have been made for reasons that cannot be detected; or it may be that the syncline lying more to the northwest was raised last, and for this reason was taken as the line of overflow. The beginning of the river is therefore not discordant with the hypothesis of consequent drainage, but the southward departure from the Catawissa syncline at Lewistown remains to be explained. It seems to me that some reason for the departure may be found by likening it to the case already given infigs. 16-18. The several synclines with which the Juniata is concerned have precisely the relative attitudes that are there discussed. The Juniata-Catawissa syncline has parallel sides for many miles about its middle, and hence must have long maintained the initial Juniata well above baselevel over all this distance; the progress of cutting down a channel through all the hard Carboniferous sandstones for so great a distance along the axis must have been exceedingly slow. But the synclines next south, the Tuscarora-Mahanoy and the Wiconisco, plunge to the northeast more rapidly, as the rapid divergence of their margins demonstrates, and must for this reason have carried the hard sandstones below baselevel in a shorter distance and on a steeper slope than in the Catawissa syncline. The further southwestward extension of the Pocono sandstone ridges in the southern than in the northern syncline gives further illustration of this peculiarity of form. Lateral capture of the Juniata by a branch of the initial Tuscarora, and of the latter by a branch of the Wiconisco therefore seems possible, and the accordance of the facts with so highly specialized an arrangement is certainly again indicative of the correctness of the hypothesis of consequent drainage, and this time in a larger stream than before. At first sight, it appears that an easier lateral capture might have been made by some of the streams flowing from the outer slope of the Nittany highland; but this becomes improbable when it is perceived that the heavy Medina sandstone would here have to be worn through as well as the repeated arches of the Carboniferous beds in the many high folds of the Seven Mountains. Again, as far as present appearances go, we can give no sufficient reason to explain why possession of the headwaters of the Juniata was not gained by some subsequent stream of its own, such as G,fig. 18, instead of by a side-stream of the river in the neighboring syncline; but it may be admitted, on the other hand, that as far as we can estimate the chances for conquest, there was nothing distinctly in favor of one or the other of the side-streams concerned; and as long as the problem is solved indifferently in favor of one or the other, we may accept the lead of the facts and say that some control not now apparent determined that the diversion should be, as drawn, through D and not through G. The detailed location of the Juniata in its middle course below Lewistown will be considered in a later section.

30.Avoidance of the Broad Top basin by the Juniata headwaters.—Another highly characteristic change that the Juniata has suffered is revealed by examining the adjustments that would have taken place in the general topography of the Broad Top district during the Perm-Triassic cycle of erosion. When the basin, BT, fig. 22, was first outlined, centripetal streams descended its slopes from all sides and their waters accumulated as a lake in the center, overflowing to the east into the subordinate basin, A, in the Juniata syncline along side of the larger basin, and thence escaping northeast. In due time, the breaching of the slopes opened the softer Devonian rocks beneath and peripheral lowlands were opened on them. The process by which the Juniata departed from its original axial location, J, fig. 22, to a parallel course on the southeastern side of the syncline, J, fig. 23, has been described (fig. 18). The subsequent changes are manifest. Some lateral branch of the Juniata, like N, fig. 23, would work its way around the northern end of the Broad Top canoe on the soft underlying rocks and capture the axial stream, C, that came from the depression between Nittany and Kishicoquillas highlands; thus reënforced, capture would be made of a radial stream from the west, Tn, the existing Tyrone branch of the Juniata; in a later stage the other streams of the western side of the basin would be acquired, their divertor constituting the Little Juniata of to-day; and the end would be when the original Juniata, A, fig. 22, that once issued from the subordinate synclinal as a large stream, had lost all its western tributaries, and was but a shrunken beheaded remnant of a river, now seen in Aughwick creek, A, fig. 24. In the meantime, the former lake basin was fast becoming a synclinal mountain of diminishing perimeter. The only really mysterious courses of the present streams are where the Little Juniata runs in and out of the western border of the Broad Top synclinal, and where the Frankstown (FT) branch of the Juniata maintains its independent gap across Tussey's mountain (Medina), although diverted to the Tyrone or main Juniata (Tn) by Warrior's ridge (Oriskany) just below. At the time of the early predatory growth of the initial divertor, N, its course lay by the very conditions of its growth on only the weakest rocks; but after this little stream had grown to a good-sized river, further rising of the land, probably in the time of the Jurassic elevation, allowed the river to sink its channel to a greater depth, and in doing so, it encountered the hard Medina anticline of Jack's mountain; here it has since persisted, because, as we may suppose, there has been no stream able to divert the course of so large a river from its crossing of a single hard anticlinal.

The doubt that one must feel as to the possibility of the processes just outlined arises, if I may gauge it by my own feeling, rather from incredulity than from direct objections. It seems incredible that the waste of the valley slopes should allow the backward growth of N at such a rate as to enable it to capture the heads of C, Tn, F, and so on, before they had cut their beds down close enough to the baselevel of the time to be safe from capture. But it is difficult to urge explicit objections against the process or to show its quantitative insufficiency. It must be remembered that when these adjustments were going on, the region was one of great altitude, its rocks then had the same strong contrasts of strength and weakness that are so apparent in the present relief of the surface and the streams concerned were of moderate size; less than now, for at the time, the Tyrone, Frankstown and Bedford head branches of the Juniata had not acquired drainage west of the great Nittany-Bedford anticlinal axis, but were supplied only by the rainfall on its eastern slope (seesection 39)—and all these conditions conspired to favor the adjustment. Finally, while apparently extraordinary and difficult of demonstration, the explanation if applicable at all certainly gives rational correlation to a number of peculiar and special stream courses in the upper Juniata district that are meaningless under any other theory that has come to my notice. It is chiefly for this reason that I am inclined to accept the explanation.

31.Reversal of larger rivers to southeast courses.—Our large rivers at present flow to the southeast, not to the northwest. It is difficult to find any precise date for this reversal of flow from the initial hypothetical direction, but it may be suggested that it occurred about the time of the Triassic depression of the Newark belt. We have been persuaded that much time elapsed between the Permian folding and the Newark deposition, even under the most liberal allowance for pre-Permian erosion in the Newark belt; hence when the depression began, the rivers must have had but moderate northwestward declivity. The depression and submergence of the broad Newark belt may at this time have broken the continuity of the streams that once flowed across it. The headwater streams from the ancient Archean country maintained their courses to the depression; the lower portions of the rivers may also have gone on as before; but the middle courses were perhaps turned from the central part of the state back of the Newark belt. No change of attitude gives so fitting a cause of the southeastward flow of our rivers as this. The only test that I have been able to devise for the suggestion is one that is derived from the relation that exists between the location of the Newark belt along the Atlantic slope and the course of the neighboring transverse rivers. In Pennsylvania, where the belt reaches somewhat beyond the northwestern margin of the crystalline rocks in South mountain, the streams are reversed, as above stated; but in the Carolinas where the Newark belt lies far to the east of the boundary between the Cambrian and crystalline rocks, the Tennessee streams persevere in what we suppose to have been their original direction of flow. This may be interpreted as meaning that in the latter region, the Newark depression was not felt distinctly enough, if at all, within the Alleghany belt to reverse the flow of the streams; while in the former region, it was nearer to these streams and determined a change in their courses. The original Anthracite river ran to the northwest, but its middle course was afterwards turned to the southeast.

I am free to allow that this has the appearance of heaping hypothesis on hypothesis; but in no other way does the analysis of the history of our streams seem possible, and the success of the experiment can be judged only after making it. At the same time, I am constrained to admit that this is to my own view the least satisfactory of the suggestions here presented. It may be correct, but there seems to be no sufficient exclusion of other possibilities. For example, it must not be overlooked that, if the Anthracite river ran southeast during Newark deposition, the formation of the Newark northwestward monocline by the Jurassic tilting would have had a tendency to turn the river back again to its northwest flow. But as the drainage of the region is still southeastward, I am tempted to think that the Jurassic tilting was not here strong enough to reverse the flow of so strong and mature a river as the Anthracite had by that time come to be; and that the elevation that accompanied the tilting was not so powerful in reversing the river to a northwest course as the previous depression of the Newark basin had been in turning it to the southeast. If the Anthracite did continue to flow to the southeast, it may be added that the down-cutting of its upper branches was greatly retarded by the decrease of slope in its lower course when the monocline was formed.

The only other method of reversing the original northwestward flow of the streams that I have imagined is by capture of their headwaters by Atlantic rivers. This seems to me less effective than the method just considered; but they are not mutually exclusive and the actual result may be the sum of the two processes. The outline of the idea is as follows. The long continued supply of sedimentary material from the Archean land on the southeast implies that it was as continually elevated. But there came a time when there is no record of further supply of material, and when we may therefore suppose the elevation was no longer maintained. From that time onward, the Archean range must have dwindled away, what with the encroachment of the Atlantic on its eastern shore and the general action of denuding forces on its surface. The Newark depression was an effective aid to the same end, as has been stated above, and for a moderate distance westward of the depressed belt, the former direction of the streams must certainly have been reversed; but the question remains whether this reversal extended as far as the Wyoming basin, and whether the subsequent formation of the Newark monocline did not undo the effect of the Newark depression. It is manifest that as far as our limited knowledge goes, it is impossible to estimate these matters quantitatively, and hence the importance of looking for additional processes that may supplement the effect of the Newark depression and counteract the effect of the Newark uplift in changing the course of the rivers. Let it be supposed for the moment that at the end of the Jurassic uplift by which the Newark monocline was formed, the divide between the Ohio and the Atlantic drainage lay about the middle of the Newark belt. There was a long gentle descent westward from this watershed and a shorter and hence steeper descent eastward. Under such conditions, the divide must have been pushed westward, and as long as the rocks were so exposed as to open areas of weak sediments on which capture by the Atlantic streams could go on with relative rapidity, the westward migration of the divide would be important. For this reason, it might be carried from the Newark belt as far as the present Alleghany front, beyond which further pushing would be slow, on account of the broad stretch of country there covered by hard horizontal beds.

The end of this is that, under any of the circumstances here detailed, there would be early in the Jurassic-Cretaceous cycle a distinct tendency to a westward migration of the Atlantic-Ohio divide; it is the consequences of this that have now to be examined.

32.Capture of the Anthracite headwaters by the growing Susquehanna.—Throughout the Perm-Triassic period of denudation, a great work was done in wearing down the original Alleghanies. Anticlines of hard sandstone were breached, and broad lowlands were opened on the softer rocks beneath. Little semblance of the early constructional topography remained when the period of Newark depression was brought to a close; and all the while the headwater streams of the region were gnawing at the divides, seeking to develop the most perfect arrangement of waterways. Several adjustments have taken place, and the larger streams have been reversed in the direction of their flow; but a more serious problem is found in the disappearance of the original master stream, the great Anthracite river, which must have at first led away the water from all the lateral synclinal streams. Being a large river, it could not have been easily diverted from its course, unless it was greatly retarded in cutting down its channel by the presence of many beds of hard rocks on its way. The following considerations may perhaps throw some light on this obscure point.

It may be assumed that the whole group of mountains formed by the Permian deformation had been reduced to a moderate relief when the Newark deposition was stopped by the Jurassic elevation. The harder ribs of rock doubtless remained as ridges projecting above the intervening lowlands, but the strength of relief that had been given by the constructional forces had been lost. The general distribution of residual elevations then remaining unsubdued is indicated in fig. 25, in which the Crystalline, the Medina, and the two Carboniferous sandstone ridges are denoted by appropriate symbols. In restoring this phase of the surface form, when the country stood lower than now, I have reduced the anticlines from their present outlines and increased the synclines, the change of area being made greatest where the dips are least, and hence most apparent at the ends of the plunging anticlines and synclines. Some of the Medina anticlines of Perry and Juniata counties are not indicated because they were not then uncovered. The country between the residual ridges of Jurassic time was chiefly Cambrian limestone and Siluro-Devonian shales and soft sandstones. The moderate ridges developed on the Oriskany and Chemung sandstones are not represented. The drainage of this stage retained the original courses of the streams, except for the adjustments that have been described, but the great Anthracite river is drawn as if it had been controlled by the Newark depression and reversed in the direction of its flow, so that its former upper course on the Cambrian rocks was replaced by a superimposed Newark lower course. Fig. 25 therefore represents the streams for the most part still following near their synclinal axes, although departing from them where they have to enter a synclinal cove-mountain ridge; the headwaters of the Juniata avoid the mass of hard sandstones discovered in the bottom of old Broad Top lake, and flow around them to the north, and then by a cross-country course to the Wiconisco synclinal, as already described in detail. Several streams come from the northeast, entering the Anthracite district after the fashion generalized infig. 13. Three of the many streams that were developed on the great Kittatinny slope are located, with their direction of flow reversed; these are marked Sq, L and D, and are intended to represent the ancestors of the existing Susquehanna, Lehigh and Delaware. We have now to examine the opportunities offered to these small streams to increase their drainage areas.

The Jurassic elevation, by which the Newark deposition was stopped, restored to activity all the streams that had in the previous cycle sought and found a course close to baselevel. They now all set to work again deepening their channels. But in this restoration of lost activity with reference to a new baselevel, there came the best possible chance for numerous re-arrangements of drainage areas by mutual adjustment into which we must inquire.

I have already illustrated what seems to me to be the type of the conditions involved at this time infigs. 19 and 20. The master stream, A, traversing the synclines, corresponds to the reversed Anthracite river; the lowlands at the top are those that have been opened out on the Siluro-Devonian beds of the present Susquehanna middle course between the Pocono and the Medina ridges. The small stream, B, that is gaining drainage area in these lowlands, corresponds to the embryo of the present Susquehanna, Sq,fig. 25, this having been itself once a branch on the south side of the Swatara synclinal stream,fig. 21, from which it was first turned by the change of slope accompanying the Newark depression; but it is located a little farther west than the actual Susquehanna, so as to avoid the two synclinal cove mountains of Pocono sandstone that the Susquehanna now traverses, for reasons to be stated below (section 35). This stream had to cross only one bed of hard rock, the outer wall of Medina sandstone, between the broad inner lowlands of the relatively weak Siluro-Devonian rocks and the great valley lowlands on the still weaker Cambrian limestones. Step by step it must have pushed its headwater divide northward, and from time to time it would have thus captured a subsequent stream, that crossed the lowlands eastward, and entered a Carboniferous syncline by one of the lateral gaps already described. With every such capture, the power of the growing stream to capture others was increased.Fig. 19represents a stage after the streams in the Swatara and Wiconisco synclines (the latter then having gained the Juniata) had been turned aside on their way to the Carboniferous basins. On the other hand, the Anthracite river, rising somewhere on the plains north of the Wyoming syncline and pursuing an irregular course from one coal basin to another, found an extremely difficult task in cutting down its channel across the numerous hard beds of the Carboniferous sandstones, so often repeated in the rolling folds of the coal fields. It is also important to remember that an aid to other conditions concerned in the diversion of the upper Anthracite is found in the decrease of slope that its lower course suffered in crossing the coal fields, if that area took any part in the deformation that produced the Newark monocline—whichever theory prove true in regard to the origin of the southeastward flow of the rivers—for loss of slope in the middle course, where the river had to cross many reefs of hard sandstone, would have been very effective in lengthening the time allowed for the diversion of the headwaters.

The question is, therefore, whether the retardation of down-cutting here experienced by the Anthracite was sufficient to allow the capture of its headwaters by the Susquehanna. There can be little doubt as to the correct quality of the process, but whether it was quantitatively sufficient is another matter. In the absence of any means of testing its sufficiency, may the result not be taken as the test? Is not the correspondence between deduction and fact close enough to prove the correctness of the deduction?

33.Present outward drainage of the Anthracite basins.—The Lehigh, like the Susquehanna, made an attempt to capture the headwaters of adjacent streams, but failed to acquire much territory from the Anthracite because the Carboniferous sandstones spread out between the two in a broad plateau of hard rocks, across which the divide made little movement. The plateau area that its upper branches drain is, I think, the conquest of a later cycle of growth. The Delaware had little success, except as against certain eastern synclinal branches of the Anthracite, for the same reason. The ancestor of the Swatara of to-day made little progress in extending its headwaters because its point of attack was against the repeated Carboniferous sandstones in the Swatara synclinal. One early stream alone found a favorable opportunity for conquest, and thus grew to be the master river—the Susquehanna of to-day. The head of the Anthracite was carried away by this captor, and its beheaded lower portion remains in our Schuylkill. The Anthracite coal basins, formerly drained by the single master stream, have since been apportioned to the surrounding rivers. As the Siluro-Devonian lowlands were opened around the coal-basins, especially on the north and west, the streams that formerly flowed into the basins were gradually inverted and flowed out of them, as they still do. The extent of the inversion seems to be in a general way proportionate to its opportunity. The most considerable conquests were made in the upper basins, where the Catawissa and Nescopec streams of to-day drain many square miles of wide valleys opened on the Mauch Chunk red shale between the Pocono and Pottsville sandstone ridges; the ancient middle waters of the Anthracite here being inverted to the Susquehanna tributaries, because the northern coal basins were degraded very slowly after the upper Anthracite had been diverted. The Schuylkill as the modern representative of the Anthracite retains only certain streams south of a medial divide between Nescopec and Blue mountains. The only considerable part of the old Anthracite river that still retains a course along the axis of a synclinal trough seems to be that part which follows the Wyoming basin; none of the many other coal basins are now occupied by the large stream that originally followed them. The reason for this is manifestly to be found in the great depth of the Wyoming basin, whereby the axial portion of its hard sandstones are even now below baselevel, and hence have never yet acted to throw the river from its axial course. Indeed, during the early cycles of denudation, this basin must have been changed from a deep lake to a lacustrine plain by the accumulation in it of waste from the surrounding highlands, and for a time the streams that entered it may have flowed in meandering courses across the ancient alluvial surface; the lacustrine and alluvial condition may have been temporarily revived at the time of the Jurassic elevation. It is perhaps as an inheritance from a course thus locally superimposed that we may come to regard the deflection of the river at Nanticoke from the axis of the syncline to a narrow shale valley on its northern side, before turning south again and leaving the basin altogether. But like certain other suggestions, this can only be regarded as an open hypothesis, to be tested by some better method of river analysis than we now possess; like several of the other explanations here offered, it is presented more as a possibility to be discussed than as a conclusion to be accepted.

I believe that it was during the earlier part of the great Jura-Cretaceous cycle of denudation that the Susquehanna thus became the master stream of the central district of the state. For the rest of the cycle, it was occupied in carrying off the waste and reducing the surface to a well finished baselevel lowland that characterized the end of Cretaceous time. From an active youth of conquest, the Susquehanna advanced into an old age of established boundaries; and in later times, its area of drainage does not seem to have been greatly altered from that so long ago defined; except perhaps in the districts drained by the West and North Branch headwaters.

34.Homologies of the Susquehanna and Juniata.—Looking at the change from the Anthracite to the Susquehanna in a broad way, one may perceive that it is an effect of the same order as the peripheral diversion of the Broad Top drainage, illustrated infigures 22, 23 and 24; another example of a similar change is seen in the lateral diversion of the Juniata above Lewistown and its rectilinear continuation in Aughwick creek, from their original axial location when they formed the initial Broad Top outlet. They have departed from the axis of their syncline to the softer beds on its southern side; FE offig. 17has been diverted to FD offig. 18.

All of these examples are truly only special cases of the one already described in which the Juniata left its original syncline for others to the south. The general case may be stated in a few words. A stream flowing along a syncline of hard beds (Carboniferous sandstones) develops side streams which breach the adjacent anticlines and open lowlands in the underlying softer beds (Devonian and Silurian). On these lowlands, the headwaters of side streams from other synclines are encountered and a contest ensues as to possession of the drainage territory. The divides are pushed away from those headwaters whose lower course leads them over the fewest hard barriers; this conquest goes on until the upper course of the initial main stream is diverted to a new and easier path than the one it chose in its youth in obedience to the first deformation of the region. Thus the Juniata now avoids the center and once deepest part of the old Broad Top lake, because in the general progress of erosion, lowlands on soft Devonian beds were opened all around the edge of the great mass of sandstones that held the lake; the original drainage across the lake, from its western slopes to its outlet just south of the Jack's mountain anticline, has now taken an easier path along the Devonian beds to the west of the old lake basin, and is seen in the Little Juniata, flowing along the outer side of Terrace mountain and rounding the northern synclinal point where Terrace mountain joins Sideling hill. It then crosses Jack's mountain at a point where the hard Medina sandstones of the mountain were still buried at the time of the choice of this channel. In the same way, the drainage of the subordinate basin, through which the main lake discharged eastward, is now not along the axis of the Juniata-Catawissa syncline, but on the softer beds along one side of it; and along the southern side because the easier escape that was provided for it lay on that side, namely, via the Tuscarora and Wiconisco synclines, as already described. The much broader change from the Anthracite to the Susquehanna was only another form of the same process. Taking a transverse view of the whole system of central folds, it is perceived that their axes descend into the Anthracite district from the east and rise westward therefrom; it is as if the whole region had received a slight transverse folding, and the transverse axis of depression thus formed defined the initial course of the first master stream. But this master stream deserted its original course on the transverse axis of depression because a lateral course across lowlands on softer beds was opened by its side streams; and in the contest on these lowlands with an external stream, the Susquehanna, the upper portion of the Anthracite was diverted from the hard rocks that had appeared on the transverse axis. The distance of diversion from the axial to the lateral course in this case was great because of the gentle quality of the transverse folding; or, better said, because of the gentle dips of the axes of the longitudinal folds. This appearance of systematic re-arrangement in the several river courses where none was expected is to my mind a strong argument in favor of the originally consequent location of the rivers and their later mutual adjustment. It may perhaps be conceived that antecedent streams might imitate one another roughly in the attitude that they prophetically chose with regard to folds subsequently formed, but no reason has been suggested for the imitation being carried to so remarkable and definite a degree as that here outlined.


Back to IndexNext