Chapter 2

[5]A plastic substance is one with the characteristics of 'a fluid of so great a viscosity that it does not lose its shape under the influence of gravitation.'

[5]A plastic substance is one with the characteristics of 'a fluid of so great a viscosity that it does not lose its shape under the influence of gravitation.'

The causes of plasticity appear to be somewhat numerous, though there is no generally accepted explanation of this remarkable quality which distinguishes clays from most other substances. It is true that wet sand, soap, wax, lead and some other materials possess a certain amount of plasticity, but not to anything like the same extent as clay.

So far as clays are concerned, their plasticity appears to be connected with the presence of combined water as well as of mechanically mixed water, for if either of these are removed, plasticity—both actual and potential—is destroyed. The part played by water is not, however, completely known, for the many theories which have been advanced only cover some of the conditions and facts.

A number of observers agree that the molecular constitution of clay is peculiar and that it is to this that plasticity is due. Yet the curious fact that the purest clays—the kaolins—are remarkably deficient in plasticity shows that molecular constitution is not, alone, sufficient. Others hold that the remarkably small size of clay particles enables them to pack together more closely than do particles of othermaterials and to retain around them a film of water which acts partly as a lubricant, facilitating the change of shape of the mass when under pressure, and partly as an adhesive, causing the particles to adhere to each other when the pressure is removed.

Zschokke has laid much emphasis on the importance of molecular attraction between clay and water as a cause of plasticity, and has suggested that the absorption of the water effects a change in the surfaces of the clay particles, giving them a gelatinous nature and enabling them to change their form and yet keep in close contact.

The fact that mica, fluorspar and quartz, when in a sufficiently finely divided state, are also slightly plastic, appears to be opposed to the molecular constitution theory. Smallness of grain undoubtedly has an influence on the plasticity of clay, coarse-grained clays being notably less plastic than others.

Daubrée pointed out that felspar, when ground with water, develops plasticity to a small extent, and Olschewsky carried this observation further and has suggested that clays owe their plasticity to prolonged contact with water during their removal from their place of formation and previous to or during their deposition. A further confirmation of this theory is due to Mellor (3) who showed that on heating china clay with water under very considerable pressure its plasticity was increased and that felspar and someother non-plastic materials developed plasticity under these conditions.

Johnson and Blake (21) supposed that plasticity is due to the clay being composed of extremely minute plates 'bunched together,' a view which was also held by Biedermann and Herzfield, Le Chatelier and others. Olschewsky enlarged this theory by suggesting that the plasticity of certain clays is dependent on the large surface and the interlocking of irregular particles with the plates just mentioned. These theories of interlocking are, however, incomplete, because the tensile strength of clays should accurately represent the plasticity if interlocking were the sole cause. Zschokke has shown that tensile strength is only one factor which must be determined in any attempt to measure plasticity.

E. H. L. Schwarz (35) has suggested that many clays are composed of small globular masses of plates so arranged as to form an open network (fig. 4) which is sufficiently strong not to be destroyed by pressure. In the presence of water and much rubbing the plates are separated and are made to lie flat on each other, thereby giving a plastic and impermeable mass. If this is really the case it would explain the porosity and large surface of some clays and might account for their adsorptive power.

Fig. 4. Illustrating the structure of a 'clay crumb.' (After Schwarz.)

Fig. 4. Illustrating the structure of a 'clay crumb.' (After Schwarz.)

A theory which was first promulgated in 1850 by Way (4), but which has only received detailedattention during the last few years, attributes plasticity to the presence of colloid substances in clay or to the fact that clay particles possess physical characters analogous to those of glue and other colloids. These colloid substances have a submicroscopic or micellian structure; they are web-like, porous and absorb water eagerly. This water may be removed by drying, only to be re-absorbed on cooling, but if the heating temperature is excessive the structure of the colloids is destroyed. This colloid theory explains many of the facts noted by earlier investigators such as Aron, Bischof, Seger, Olschewsky, etc., but it is not entirely satisfactory, though Rohland (5)—to whom the present prominence of this theory in Europe is largely due—persistentlymaintains the contrary. One great objection is the fact that no characteristicinorganiccolloid substance has been isolated from pure clay. It is possible that some of the so-called 'colloidal' properties of clay may be due to the smallness of its particles and to their great porosity, as suggested by Olschewsky.

Despite the present impossibility of producing a plastic material from artificially prepared colloidal hydro-alumino-silicates of the same ultimate composition as clay, and the fact that the addition of colloidal substances does not necessarily increase the true plasticity of clay, it cannot be denied that the presence of colloids has an important influence on it. The addition of starches, glue, gums and similar substances whilst apparently increasing the plasticity of clay does not do so in reality. The addition of 1 per cent. of tannin, on the contrary, has been found by Ries (6) to increase both plasticity and binding power.

Plasticity appears to be composed of a number of characteristics so that it is scarcely likely that any single cause can be assigned to it. On the contrary, a study of the binding power, tensile strength, extensibility, adsorption, texture and molecular constitution of clays suggests very strongly that all these properties are involved in the production of plasticity and that it is due to the chemical as well as thephysical nature of clay. No clay is entirely colloidal—or it would be elastic and not plastic—but all appear to contain both colloidal and non-colloidal (including plate-like) particles, and it is not improbable that materials in both these states are required, the colloidal matter acting as a cement. Ries (6) has, in fact, pointed out that colloids alone lack cohesiveness and solidity, and a fine mineral aggregate is necessary to change them into a plastic mass resembling clay. The relative proportions of the colloidal material and the sizes of the non-plastic grains will exercise an important influence on all the physical characteristics mentioned above, and therefore on the plasticity.

The manner in which slightly plastic clays become highly plastic in nature is by no means certainly known. It has long been understood that the increase of plasticity is due to changes undergone by the clay during transportation. The most illuminating suggestion is that made by Acheson in 1902, who concluded that it is due to impurities in the water used in transporting the clay or remaining in contact with it during and after its deposition. These impurities may be considered as derived from the washings of forests, and after many experiments with plant extracts Acheson believed the most important substance in this connection to be tannin or gallo-tannic acid, a dilute solution of which he foundincreased the plasticity of china clay by 300 per cent. From this he further argued that the use of chopped straw by the Israelites in Egypt in the manufacture of bricks was unconsciously based on the tannin content of the straw increasing the plasticity of the material.

Fig. 5. Chart showing rates of drying. (After Bleininger.)

Fig. 5. Chart showing rates of drying. (After Bleininger.)

Beadle has stated that 2 per cent. of dissolved cellulose will increase the plasticity of china clay and make it equal to that of ordinary clay.

Plasticity is diminished by heating clays, and whilst much of it may be recovered if the temperature has not risen above 400° C. it cannot be completely restored. Moreover, a clay which has once been heated to a temperature above 100° C. dries in a somewhat different manner to a raw clay. This is well shown infig. 5in which are summarized the results obtained by A. V. Bleininger on a sample of ball clay from Dorset before heating and after portions of it had been heated for 16 hours to 200°, 250°, 300°, 350° and 400° C. respectively. It is not impossible that if subjected to the influence of water for a sufficiently long time the whole of the plasticity of a heated clay may be restored, providing that the temperature has not been sufficient to cause a destruction of the clay molecule, but as this resumption requires a certain amount of time, Bleininger has proposed to use the reduction in plasticity effected by the heating to enable excessively plastic clays to be worked without the necessity of adding non-plastic material to them. If any destruction of the clay-molecules has occurred, the plasticity of that portion of the clay can never be restored.

Thebinding powerof clays is a characteristic closely connected with plasticity and occasionally confused with it. All plastic clays have the power of remaining plastic when mixed with materials such as sand, brick-dust ('grog') and other materials whichare quite devoid of plasticity. The extent to which a clay can thus bind other materials together into a plastic mass depends, apparently, on the plasticity of the clay itself and on the size and nature of the particles of the added material; the more plastic the clay the larger will be the amount of material it can thus 'bind,' and the finer the latter the more easily will it form a strong material when mixed with a plastic clay.

Rohland (5) has shown that the binding power of clay is not alone due to its cohesion, but that it is closely associated with the colloidal nature of plastic clays: 'fat' clays being those which are highly colloidal, highly plastic and possessing great binding power, whilst 'lean' clays are those deficient in these characteristics. The fact that, as a general rule, the dark coloured clays possess the most binding power, confirms this suggestion, as the dark colour is largely due to organic materials, probably in a colloidal state.

Theshrinkagewhich all clays undergo on drying and when heated is another important characteristic. It is due to the fact that as water is removed the solid particles approach closer to each other, the volume of the whole mass being thereby reduced. In a wet piece of clay each particle is surrounded by a film of water, the thickness of which depends on the nature of the clay. As this water evaporates fromthe surface of the clay its place is taken by water from the interior which rises to the surface by capillary attraction. So long as there is any water between the particles of clay there will be shrinkage when this water is removed, but a stage is eventually reached when the particles of clay are in contact with each other and no more shrinkage can occur. That this cessation of shrinkage may take place before all the water has been removed from the clay is easily understood when it is remembered that whilst the clay particles may be in contact, yet there are still places (pores) where the contact is incomplete, and in these pores water may be retained. The amount of shrinkage clays undergo on drying depends partly on the proportion of water added to them and partly on the sizes of the different particles of clay, sand, etc. present. An average reduction in volume of 12 to 38 per cent. may be regarded as normal, but coarse loams may shrink only 1 per cent. and very finely ground, highly plastic ball clays may shrink as much as 50 per cent., though this is unusual.

As all coagulated colloids, which have absorbed water, shrink on drying, this behaviour of clay appears to confirm the view as to its partially colloidal nature held by some investigators.

When a piece of dry clay is heated sufficiently a further shrinkage (technically known askiln shrinkage) occurs. This begins somewhat belowa red heat and increases in rough proportion to the temperature and the duration of the heating. Prolonged heating at a lower temperature will effect the same amount of shrinkage as a short exposure to a higher temperature, but though the greater part of the shrinkage occurs in a comparatively short time, continued heating will be accompanied by a further reduction in volume.

This is due to the fact that clays have no definite melting point, but undergo partial fusion at all temperatures above 950° C. or, in some cases, at even lower ones. As a portion of the material fuses, it fills up the pores in the mass and attacks the unfused material, this process being continued until either the heating is stopped or the whole material is reduced to a viscous slag.

The reduction in the volume of commercial articles made of clay and placed in kilns varies greatly. With bricks, terra-cotta and pottery it must not, usually, exceed 40 per cent. or the warping and cracking which occur will be so great as to make the articles useless. The fineness of the particles exercises an important influence on the kiln shrinkage of a clay, and the latter is frequently reduced in commercial clayworking by adding burned clay ground to a coarse powder to the plastic clay before it is used. Sand is sometimes added for the same purpose, though its more frequent use is to reduce the shrinkage in drying.

Quartz and other forms of free silica expand on heating, so that clays containing them in large quantities shrink very slightly or may even expand.

As clays shrink equally in all directions it is usual to state the contraction in linear instead of volume form. Thus instead of stating that a certain clay when moulded into bricks, dried and burned, shrinks 18 per cent. by volume, it is customary to state that it shrinks3/4in. per (linear) foot. For many purposes, it is sufficient to regard the linear shrinkage as one-third the volume-shrinkage, but this is not strictly accurate.

Thefusibilityof clays is a characteristic which has been very imperfectly studied. Most clayworkers and investigators employ the term 'fusibility' in a special sense which is apt to be misleading. Owing to the extremely high temperatures to which refractory clays can be heated without even losing their shape, it is almost impossible to fuse them completely. In addition to this, clays are not perfectly homogeneous materials and some of their constituents melt at lower temperatures than others. For this reason a clay may show signs of fusion at 1100° C., but it may be heated for some hours at 1800° C. and yet not be completely melted! Consequently no single 'fusing point' can be stated.

In practice, a suggestion made many years ago by Seger (7) is used; the clay to be tested is madeinto a small tetrahedron (fig. 6), heated slowly until it bends over and the point of the test-piece is almost on a level with the base. The temperature at which this occurs is termed the 'fusing point' though it really only indicates the heat-treatment which is sufficient to soften the material sufficiently to cause it to bend in the manner described. In spite of the apparent crudeness of the test this 'softening point' appears to be fairly constant for most refractory clays.

The bending of a test-piece in this manner is the result of the action of all fluxes[6]in the clay, and as this depends on the size of grain and the duration of the heating above incipient fusion and does not give a direct measure of temperature, nor is the softening effect under one rate of rise in temperature the same as that at another rate. Nevertheless a study of the behaviour of various clays heated simultaneously is valuable and the method forms a convenient means of comparing different materials.

[6]For fluxing materials seep. 8.

[6]For fluxing materials seep. 8.

The temperature may be measured by means of a pyrometer, but for the reason just stated it is more convenient and in some respects more accurate to use standard mixtures known as Seger Cones (fig. 6), and to state the softening point in terms of the 'cone' which behaves like the clay being tested. A medium fireclay will not soften below Seger Cone 26 (1650° C.)and a really good one will have a softening point of cone 34 or 35 (1750° to 1800° C.).

Fig. 6. Seger Cones indicating a temperature of 1250° C.

Fig. 6. Seger Cones indicating a temperature of 1250° C.

Therefractorinessof a clay, or its resistance to high temperatures, is an important requirement in bricks required for furnace linings, in crucibles, gas retorts and other articles used in the metallurgical and other industries. The term is much abused and is frequently understood to mean resistance to the cutting action of flue gases and flame, the corrosive action of slags, and the strains set up by the repeated changes in temperature. This is unfortunate, for the term refractoriness has a perfectly definite meaning and should be employed exclusively to denote that a given clay is capable of retaining its shape at a giventemperature or under given conditions when heated alone and without being subjected to any pressure. In Great Britain there is no officially recognized standard of minimum refractoriness[7], but where one is required the suggested minimum of Seger Cone 26 (1650° C.) made by E. Cramer (8) is usually employed. This is the recognized minimum in Germany for fireclays, and though objections may be urged against the use of Seger Cones as a standard, equally forcible ones may be brought against making a temperature-scale the basis of measurement. Under present circumstances, however, it is necessary to adopt one or other of these.

[7]SeeRefractory Clays,ChapterV.

[7]SeeRefractory Clays,ChapterV.

Various attempts have been made to ascertain the relationship (if any) between the refractoriness of clays and their chemical composition. If attention is confined strictly to the more refractory clays, some kind of relationship does appear to exist. Thus Richter found that the refractoriness of clay is influenced by certain oxides in the following order: magnesia, lime, ferrous oxide, soda and potash, but this only applies to clays containing less than 3 per cent. of all these oxides. Cramer, in 1895, found that free silica also interfered with the action of these oxides and more recently Ludwig (9) has devised a chart (fig. 7), on the upright sides of which are plotted the equivalents of the lime, magnesia and alkalies,whilst the silica equivalents are plotted on the horizontal base. In each case the 'molecular formula' of the clay is calculated from its percentage composition, and this 'formula' is reduced so as to have one 'molecule' of alumina, thereby fixing the alumina as a constant and reducing the number of variables to two—the metallic oxides and the silica. Unfortunately Ludwig's chart is only applicable to the more refractory clays and cannot be relied upon even for these, though it is extremely useful for comparing clays from identical or similar geological formations.

Fig. 7. Ludwig's Chart.

Fig. 7. Ludwig's Chart.

Attempts to express the refractoriness of clays by means of formulae proving abortive, there onlyremains the direct test of heating a clay under definite conditions in the manner previously described.

Vitrificationis closely connected with the fusibility and refractoriness of clays, and, as a term, indicates the amount of fusion which has occurred under certain conditions of heating. As already mentioned, all clays, on being subjected to a high temperature, undergo partial fusion, the more powerful bases attacking the finest particles of clay and silica, forming molten silicates, and then slowly attacking the more refractory portion; this slow fusion and solution continues until the whole of the material is melted. If the heating is stopped before the fusion has begun, the clay will be porous and comparatively soft, but as more and more material fuses, the mass (on cooling) becomes harder and less porous, as the fused material occupies the pores and sets to a dense, firm glassy mass. The amount of vitrification, or partial fusion, which occurs is, therefore, of great importance in some industries, as by stopping it at an appropriate stage articles of any desired degree of porosity, translucency or strength may be obtained. Thus for common bricks, only sufficient vitrification is permitted to bind the particles firmly together, but in engineering bricks—where much greater strength is required—the vitrification is more complete. Porcelain and earthenware may be similarly distinguished.

The extent to which a given clay will vitrify depends on the amount of fluxing material (metallic compounds, and oxides other than ferric oxide and alumina) it contains, on the smallness of its particles and on the duration and intensity of the heating. Clays containing alkalies and lime compounds vitrify with great rapidity when once the necessary temperature has been reached, so that unless great care is exercised the action will proceed too far and the goods will be warped and twisted or may even form a rough slag. Refractory clays, on the contrary, vitrify more slowly and at much higher temperatures so that accidental overheatings of them are far less common.

The difference between the temperature at which sintering or vitrification occurs and that at which the clay melts completely—usually termed the 'vitrification range'—varies with the nature of the clay. In some cases the clay melts as soon as vitrification becomes noticeable, in others the vitrification occurs at a dull red heat, but the material does not lose its shape until after a prolonged heating at the highest temperature of a firebrick kiln or testing furnace.

Calcareous clays have the melting and sintering points close together, so that it is almost impossible to produce vitrified and impervious ware from them, as they lose their shape too readily. If, however, the difference between the sintering and fusingtemperatures can be enlarged—that is, if the vitrification range can be extended—more impervious ware can be made. The easiest means of extending the vitrification range consists in regulating the proportion of large and small particles. The former increase and the latter diminish the range.

Basic compounds and fluxes cause a lowering of the melting-point and a shortening of the vitrification range.

Theporosityof raw clay is usually of small importance, but the porosity of fired clay or ware is often a serious factor in determining the suitability of certain articles for their intended purposes. In its natural state, clay does not readily absorb much water; on the contrary it becomes pasty and impervious unless it is disturbed and its texture destroyed, when it may be mixed with water to form a paste or, with more water, a thin 'cream' or 'slurry.'

When heated moderately, clay forms a porous material and, unless the heating is excessive, it will absorb about one-eighth of its weight of water. Further heating at a higher temperature reduces its porosity—the more easily fused material filling some of the pores—until a stage is reached when the material is completely vitrified and is no longer porous.

Porosity may thus be regarded as the opposite of vitrification; porous goods being relatively light andsoft whilst vitrified ones are dense and hard. For some purposes, porosity is an important characteristic: for example, building bricks which are moderately porous are preferable to those which are vitrified. The manufacture of porous blocks for the construction of light, sound-proof partitions, etc. has increased rapidly of late. They are made by adding sawdust or other combustible material to the clay. The added substances burn out on firing the goods in a kiln.

Clays which are porous can be dried more readily and with less risk of cracking than those which are more dense. For this reason, some clayworkers mix non-plastic material such as sand or burned clay with their raw material.

Theimpermeabilityof plastic clay to water is a characteristic which is important for many purposes.

Theabsorptive powerof clays is closely related to their porosity so far as pure water is concerned, but if the water contains certain salts in solution a selective absorption occurs, the bases being retained by the clay in such a manner that they cannot be removed by washing. The selective action is known asadsorptionand is most noticeable in highly plastic clays. Bourry (10) has shown that the slightly plastic china clays only exercise a small power of adsorbing calcium carbonate from solution, but highly plastic clays may adsorb 20 per cent. of it. Thealkaline chlorides and sulphates do not appear to be adsorbed in this manner, but the carbonates are readily removed from solution. All calcium and magnesium compounds appear to be adsorbed, though in variable quantities, the reaction being complicated when several soluble salts are present. Ries (6) has found that gallo-tannic acid is adsorbed readily and increases the plasticity of clay.

Ashley (11) has endeavoured to measure the plasticity of clays by determining their adsorption capacity for various aniline dyes, but his untimely decease prevented the investigation being completed. There is reason to suppose that the relation between adsorption and plasticity is extremely close in many clays and that the former may, to an important extent, be used as a measure of the latter. In some clays, however, this relationship does not exist.

Sand and burned clay only show faint adsorption phenomena; felspar shows them to a slight and almost negligible extent and most of the other non-plastic ingredients of clays are non-adsorptive.

Selective adsorption being an important characteristic of colloidal substances, the possession of this power by plastic clays supports the claim that plasticity is due, at least in part, to the presence of colloids.

The addition of small quantities of a solution of certain substances to a stiff clay paste usually reducesits stiffness, and in some cases turns it into a liquid. The alkalies are particularly powerful in this respect and their action may be strikingly illustrated by mixing a few drops of caustic soda with a stiff clay paste. In a few moments the mixture will be sufficiently liquid to pour readily, but it may be rendered quite stiff again by adding sufficient acid to neutralize the alkali previously used. Weber (12) has utilized this characteristic to great advantage in the production of sanitary ware and crucibles for glass-making by a process of casting which he has patented.

The effect of adding water to a dry clay is curious. At first the particles in contact with the water become sticky and plastic, and if the proportion of water added is suitable and the mixing is sufficiently thorough a plastic mass will be produced, the characteristics of which will depend on the nature of the clay used. This process of mixing clay with a limited amount of water is known as 'tempering.' The proportion of water required to make a paste of suitable consistency for modelling appears to be constant for each clay. If, however, a larger proportion of water is added the particles of clay will be separated so widely from each other that they lose their cohesion, and instead of a plastic mass, the material will form a liquid of cream-like consistency. If a piece of stiff clay paste is suspended in a large volume of water without stirring, disintegration willstill occur (though a much longer time will be required) and the clay will be deposited as a sediment at the bottom of the vessel. The leaner the clay or the larger the proportion of non-plastic material it contains, the more rapidly will this disintegration take place. A highly plastic clay will become almost impervious and will retain its shape indefinitely.

If a mixture of clay and water in the form of a cream or slurry be allowed to rest, the larger and less plastic particles will settle, but many of the particles of true clay will remain suspended for several hours and some of them for several days. Some particles of clay are so small that it is doubtful if they would ever settle completely unless some coagulant were added, and as they readily pass through all ordinary filtering media it is extremely difficult to collect them in a pure state. These turbid suspensions of clay may be rapidly cleared by the addition of sodium chloride which increases the surface tension of the solution. The fine particles behave in the same way as colloidal substances,i.e.as if they possessed an electrostatic charge. Hence the addition of a salt (electrolyte), whose ions annul the opposite charges of the electric double layer assumed by Helmholtz to be present, enables the particles to coagulate in accordance with the ordinary laws of surface tension (14).

Exposureto the action of air and frost has amarked effect on many clays. When freshly dug these may be hard and difficult to crush, but after exposure they break up readily into small fragments. Clays differ greatly in the extent to which they are affected by exposure; some are completely disintegrated by standing 48 hours in the open air, whilst others are scarcely affected by exposure in bleak places through several years of storm, sunshine and frost. Usually, however, the effect of a couple of nights exposure to hard frost will produce a marked disintegration of the material.

This process of exposure is known as 'weathering' and its effects are so important that it is employed whenever possible for clays requiring to be crushed before use. All clays are rendered more workable by exposure, but some of them are damaged by the oxidation of some impurities (e.g.pyrites) in them, though in other clays this very oxidation, if followed by the leaching action of rain, effects an important purification of the material.

Weathering appears to have no effect on the chemical composition of the particles of true clay in the material, though it may decompose the impurities present. On the clay itself its action is largely physical and consists chiefly in separating the particles slightly from each other, thereby enabling water to penetrate the material more readily and facilitating the production of a plastic paste. The disintegrating actionof the weather on some 'clays' is so complete that they require no crushing but can be converted into a homogeneous paste by simply kneading them with a suitable proportion of water.

It is possible that on exposure to the heat of the sun's rays—particularly in tropical climates—some chemical decomposition of the clay may occur, but compared with the purely physical action of weathering the amount of such chemical decomposition must be relatively unimportant in most cases. It may, however, account for the presence of free silica and free alumina in some clays.

The action of the weather on rocks, resulting in the formation of clays, is described inChapterIII.

Heateffects remarkable changes in the physical character of clays; the most important of these have already been noted. At a gentle heat, the clay is dried and retains most of its power of becoming plastic when moistened; very little, if any, decomposition occurs. At a higher temperature it loses its 'combined water,' the clay molecule apparently dissociating, and a hard stony mass—consisting of particles of free silica and free alumina cemented together by the more easily fusible impurities present—is formed. If the heating is continued the hardness of the material is increased owing to more molten silicate having been produced from the impurities present, and on cooling, its tensile strengthand resistance to crushing will be found to be enormously greater than those of the original clay. All potential plasticity is destroyed by heating to 700° C. and no method of restoring it has yet been devised. As clays are abundant, this is not a serious disadvantage for the specially desired characteristics of bricks, terra-cotta, pottery and porcelain are all such as to be incompatible with plasticity. The latter is extremely valuable in the shaping of the wares mentioned, but after the manufacture is completed, the destruction of the plasticity is an essential feature of their usefulness.

If the heating is very prolonged or is repeated several times, clays change other of their physical characters and become brittle and liable to crack under sudden changes of temperature. This is partly due to the further fusion (vitrification) which occurs and partly to the formation of crystalline silicates, notablySillimanite(13).

The extent to which clays are ordinarily heated and the conditions under which they are cooled do not usually induce the formation of crystals; the object of the clayworker being to produce a homogeneous mass, the particles of which are securely held together. The result is that burned clay products are usually composed of amorphous particles cemented by a glass-like material formed by the fusion of some of the mineral ingredients of theoriginal substance. The silicates formed are, therefore, in a condition of solid, super-cooled solution in which the tendency to crystallize is restrained by viscosity.

On raising the temperature of firing or on prolonging the heating at the previous maximum temperature the viscosity of the fused portion is diminished and crystallization may then occur. The facility with which crystallization occurs varies greatly with the composition of the fused material, those silicates which are rich in lime and magnesia crystallizing more readily than those containing potash or soda. Vogt has stated that small quantities of alumina promote the formation of a glassy structure, and Morozewicz has shown that a large excess of this substance must be present if crystallization is to occur.

The study of the reactions which occur when clays are heated is, however, extremely complex, not only on account of the variety of substances present, but also on account of the high temperatures at which it is necessary to work, so that for a further consideration of it the reader should consult special treatises on the fusion of silicates. This subject has now become an important branch of physical chemistry.

CHAPTER II

CLAY AND ASSOCIATED ROCKS

Clay, as already mentioned, is geologically a rock and not a mineral, and belongs to the important group of sedimentary rocks which have been derived from the igneous or primary ones by processes of weathering, suspension in water and subsequent deposition or sedimentation.

Whatever may be the primary origin of clay, its chief occurrence is in geological formations which have undoubtedly been formed by aqueous action. The materials resulting from the exposure of primary rocks to the action of the elements have been carried away by water—often for long distances—and after undergoing various purifications have been deposited where the speed of the water has been sufficiently reduced.

In some cases they have again been transported and re-deposited and not infrequently clay depositsare found which show signs of subsequent immersion at considerable depths and have every appearance of having been subjected to enormous pressures and possibly to high temperatures.

Some clays have only been carried by small streams and for short distances; these are seldom highly plastic and resemble the lean china clays and kaolins. Others have been carried by rapidly moving rivers and have been discharged into lakes or into the sea; they have thus undergone a process of gradual purification by elutriation, the sand and other heavier particles being first deposited and the far smaller particles of clay being carried a greater distance towards the centre of the lake or the quieter portions of the ocean. The nature of such deposits will, naturally, differ greatly from each other, the materials at first associated with the clay, or becoming mixed with it at a later stage, exercising an important influence on its texture, composition and properties. If the transporting stream flows through valleys whose sides are formed of limestone, chalk, sandstone or other materials, these will become mixed with the clay, and to so great an extent has the mixing occurred that very few clays occur in a state even approximating to purity. The majority of clays are contaminated with iron oxide, lime compounds and free silica in such a fine state of division that it is impossible to purify them completely withoutdestroying the nature of the clay. In addition to this it must be remembered that the land is continually rising or sinking owing to internal changes in the interior of the earth, and that these subterranean changes bring about tilting, folding, overturning and other secondary changes, which, later, cause a fresh set of materials to be mixed with the clays. Further than this, the action of the weather, of rivers and of the sea never ceases, so that a process of re-mixing and re-sorting of materials is continuously taking place, and has been doing so for countless ages. It is, therefore, a legitimate cause for wonder that such enormous deposits of clays of so uniform a character should occur throughout the length and breadth of Europe, and practically throughout the world. For although the composition of many of these beds is of a most highly complex nature, the general properties such as plasticity, behaviour on heating, etc., remain remarkably constant over large areas of country, and the clays of each geological formation are so much alike in different parts of the world as to be readily recognized by anyone familiar with the material of the same formations in this country. Considerable differences undoubtedly exist, but these are insignificant in comparison with the vastly different circumstances under which the deposits were accumulated.

Leaving the consideration of the modes of formation of the various clay deposits to later chapters(IIIandIV), it is convenient here to enumerate some of the chief characteristics of the different clay deposits and their associated rocks. In this connection it is not proposed to enter into minute details, but rather to indicate in broad outline the chief characteristics of the clays from the different deposits. This general view is the more necessary as clay occurs in each main geological division of the sedimentary rocks and in almost every sub-division in various parts of the world.

ThePrecambrian, Cambrian, Silurian and Devonian'clays' are chiefly in the form of shales or slates, the latter being clays which have undergone a metamorphic change; the latter resulted in the production of a hard and partially crystalline material with but little potential plasticity and therefore of small importance for the ordinary purposes of clay working.

Slatesare distinguished from shales by their splitting into thin leaves which are not in the plane of original deposition, but are due to the deposited material being subjected to great lateral pressure. The re-arrangement of the particles thus produced has imparted to the material a cleavage quite independent of the original lamination.

The shales in these formations are occasionally soft and friable and are then termedmarls, but this name is misleading as they contain no appreciableproportion of finely divided calcium carbonate as do the true marls[8].


Back to IndexNext