Chapter 5

Power House

The power house is fully described elsewhere in this publication, but it is not inappropriate to refer briefly in this place to certain considerations governing the selection of the generating unit, and the use of engines rather than steam turbines.

OIL SWITCHES—MAIN POWER STATIONOIL SWITCHES—MAIN POWER STATION

The 5,000-kilowatt generating unit was chosen because it ispractically as large a unit of the direct-connected type as can be constructed by the engine builders unless more than two bearings be used—an alternative deemed inadvisable by the engineers of the company. The adoption of a smaller unit would be less economical of floor space and would tend to produce extreme complication in so large an installation, and, in view of the rapid changes in load which in urban railway service of this character occur in the morning and again late in the afternoon, would be extremely difficult to operate.

The experience of the Manhattan plant has shown, as was anticipated in the installation of less output than this, the alternators must be put in service at intervals of twenty minutes to meet the load upon the station while it is rising to the maximum attained during rush hours.

After careful consideration of the possible use of steam turbines as prime-movers to drive the alternators, the company's engineers decided in favor of reciprocating engines. This decision was made three years ago and, while the steam turbine since that time has made material progress, those responsible for the decision are confirmed in their opinion that it was wise.

PART OF BUS BAR COMPARTMENTS—MAIN POWER STATIONPART OF BUS BAR COMPARTMENTS—MAIN POWER STATION

Alternators

The alternators closely resemble those installed by the Manhattan Railway Company (now the Manhattan division of the Interborough Rapid Transit Company) in its plant on the East River, between 74th Street and 75th Street. They differ, however, in having the stationary armature divided into seven castings instead of six, and in respect to details of the armature winding. They are three-phase machines, delivering twenty-five cycle alternating currents at an effective potential of 11,000 volts. They are 42 feet in height, thediameter of the revolving part is 32 feet, its weight, 332,000 pounds, and the aggregate weight of the machine, 889,000 pounds. The design of the engine dynamo unit eliminates the auxiliary fly wheel generally used in the construction of large direct-connected units prior to the erection of the Manhattan plant, the weight and dimensions of the revolving alternator field being such with reference to the turning moment of the engine as to secure close uniformity of rotation, while at the same time this construction results in narrowing the engine and reducing the engine shafts between bearings.

REAR VIEW OF BUS BAR COMPARTMENTS—MAIN POWER STATIONREAR VIEW OF BUS BAR COMPARTMENTS—MAIN POWER STATION

DUCT LINE ACROSS 58TH STREET 32 DUCTSDUCT LINE ACROSS 58TH STREET 32 DUCTS

Construction of the revolving parts of the alternators is such as to secure very great strength and consequent ability to resist the tendency to burst and fly apart in case of temporary abnormal speed through accident of any kind. The hub of the revolving field is of cast steel, and the rim is carried not by the usual spokes but by two wedges of rolled steel. The construction of the revolving field is illustrated on pages91and92. The angular velocity of the revolving field is remarkably uniform. This result is due primarily to the fact that the turning movement of the four-cylinder engine is far more uniform than is the case,for example, with an ordinary two-cylinder engine. The large fly-wheel capacity of the rotating element of the machine also contributes materially to secure uniformity of rotation.

MAIN CONTROLLING BOARD IN POWER STATIONMAIN CONTROLLING BOARD IN POWER STATION

CONTROL AND INSTRUMENT BOARD—MAIN POWER STATIONCONTROL AND INSTRUMENT BOARD—MAIN POWER STATION

The alternators have forty field poles and operates at seventy-five revolutions per minute. The field magnets constitute the periphery of the revolving field, the poles and rim of the field being built up by steel plates which are dovetailed to the driving spider. The heavy steel end plates are bolted together, the laminations breaking joints in the middle of the pole. The field coils are secured by copper wedges, which aresubjected to shearing strains only. In the body of the poles, at intervals of approximately three inches, ventilating spaces are provided, these spaces registering with corresponding air ducts in the external armature. The field winding consists of copper strap on edge, one layer deep, with fibrous material cemented in place between turns, the edges of the strap being exposed.

DUCTS UNDER PASSENGER STATION PLATFORM 64 DUCTSDUCTS UNDER PASSENGER STATION PLATFORM 64 DUCTS

The armature is stationary and exterior to the field. It consists of a laminated ring with slots on its inner surface and supported by a massive external cast-iron frame. The armature, as has been noted, comprises seven segments, the topmost segment being in the form of a small keystone. This may be removed readily, affording access to any field coil, which in this way may be easily removed and replaced. The armature winding consists of U-shaped copper bars in partially closed slots. There are four bars per slot and three slots per phase per pole. The bars in any slot may be removed from the armature without removing the frame. The alternators, of course, are separately excited, the potential of the exciting current used being 250 volts.

As regards regulation, the manufacturer's guarantee is that at 100 per cent. power factor if full rated load be thrown off the e. m. f. will rise 6 per cent. with constant speed and constant excitation. The guarantee as to efficiency is as follows: On non-inductive load, the alternators will have an efficiency of not less than 90.5 per cent. at one-quarter load; 94.75 per cent. at one-half load; 96.25 per cent. at three-quarters load; 97 per cent. at full load, and 97.25 per cent. at one and one-quarter load. These figures refer, of course, to electrical efficiency, and do not include windage and bearing friction. The machines are designed to operate under their rated full load with rise of temperature not exceeding 35 degrees C. after twenty-four hours.

THREE-CONDUCTOR NO. 000 CABLE FOR 11,000 VOLT DISTRIBUTIONTHREE-CONDUCTOR NO. 000 CABLE FOR 11,000 VOLT DISTRIBUTION

Exciters

To supply exciting current for the fields of the alternators and to operate motors driving auxiliary apparatus, five 250-kilowatt direct current dynamos are provided. These deliver their current at a potential of 250 volts. Two of them are driven by 400 horse-power engines of the marine type, to which they are direct-connected, while the remaining three units are direct-connected to 365 horse-power tri-phase induction motors operating at 400 volts. A storage battery capable of furnishing 3,000 amperes for one hour is used in co-operation with the dynamos provided to excite the alternators. The five direct-current dynamos are connected to the organization of switching apparatus in such a way that each unit may be connected at will either to the exciting circuits or to the circuits through which auxiliary motors are supplied.

The alternators for which the new Interborough Power House are designed will deliver to the bus bars 100,000 electrical horse power. The current delivered by these alternators reverses its direction fifty times per second and in connecting dynamos just coming into service with those already in operation the allowable difference in phase relation at the instant the circuit is completed is, of course, but a fraction of the fiftieth of a second. Where the power to be controlled is so great, the potential so high, and the speed requirements in respect to synchronous operation so exacting, it is obvious that the perfection of control attained in some of our modern plants is not their least characteristic.

Switching Apparatus

The switch used for the 11,000-volt circuits is so constructed that the circuits are made and broken under oil, the switch being electrically operated. Two complete and independent sets of bus bars are used, and the connections are such that each alternator and each feeder may be connected to either of these sets of bus bars at the will of the operator. From alternators to bus bars the current passes, first, through the alternator switch, and then alternatively through one or the other of two selector switches which are connected, respectively, to the two sets of bus bars.

INSIDE WALL OF TUNNEL SHOWING 64 DUCTSINSIDE WALL OF TUNNEL SHOWING 64 DUCTS

Provision is made for an ultimate total of twelve sub-stations, to each of which as many as eight feeders may be installed if the development of the company's business should require that number. But eight sub-stations are required at present, and to some of these not more than three feeders each are necessary. The aggregate number of feeders installed for theinitial operation of the subway system is thirty-four.

Each feeder circuit is provided with a type H-oil switch arranged to be open and closed at will by the operator, and also to open automatically in the case of abnormal flow of current through the feeder. The feeders are arranged in groups, each group being supplied from a set of auxiliary bus bars, which in turn receives its supply from one or the other of the two sets of main bus bars; means for selection being provided as in the case of the alternator circuits by a pair of selector switches, in this case designated as group switches. The diagram onpage 93illustrates the essential features of the organization and connections of the 11,000-volt circuits in the power house.

MANHOLES IN SIDE WALL OF SUBWAYMANHOLES IN SIDE WALL OF SUBWAY

Any and every switch can be opened or closed at will by the operator standing at the control board described. The alternator switches are provided also with automatic overload and reversed current relays, and the feeder switches, as above mentioned, are provided with automatic overload relays. These overload relays have a time attachment which can be set to open the switch at the expiration of a predetermined time ranging from .3 of a second to 5 seconds.

CONVERTER FLOOR PLAN SUB-STATION NO. 14CONVERTER FLOOR PLAN SUB-STATION NO. 14

The type H-oil switch is operated by an electric motor through the intervention of a mechanism comprising powerful springs which open and close the switch with great speed. This switch when opened introduces in each of the three sides of the circuit two breaks which are in series with each other. Each side of the circuit is separated from the others by its location in an enclosed compartment, the walls of which are brick and soapstone. The general construction of the switch is illustrated by the photograph onpage 94.

CROSS SECTION SUB-STATION NO. 14CROSS SECTION SUB-STATION NO. 14

INTERIOR OF SUB-STATION NO. 11INTERIOR OF SUB-STATION NO. 11

LONGITUDINAL SECTION SUB-STATION NO. 14LONGITUDINAL SECTION SUB-STATION NO. 14

Like all current-carrying parts of the switches, the bus bars are enclosed in separate compartments. These are constructed of brick, small doors for inspection and maintenance being provided opposite all points where the bus bars are supported upon insulators. The photographs on pages95and96are views of a part of the bus bar and switch compartments.

TWO GROUPS OF TRANSFORMERSTWO GROUPS OF TRANSFORMERS

The oil switches and group bus bars are located upon the main floor and extend along the 59th Street wall of the engine room a distance of about 600 feet. The main bus bars are arranged in two lines of brick compartments, which are placed below the engine-room floor. These bus bars are arranged vertically and are placed directly beneath the rows of oil switches located upon the main floor of the power house. Above these rows of oil switches and the group bus bars, galleries are constructed which extend the entire length of the power house, and upon the first of these galleries at a point opposite the middle of the power house are located the control board and instrument board, by means of which the operator in charge regulates and directs the entire output of the plant, maintaining a supply of power at all times adequate to the demands of the transportation service.

MOTOR-GENERATORS AND BATTERY BOARD FOR CONTROL CIRCUITS—SUB-STATIONMOTOR-GENERATORS AND BATTERY BOARD FOR CONTROL CIRCUITS—SUB-STATION

1,500 K. W. ROTARY CONVERTER1,500 K. W. ROTARY CONVERTER

The Control Board

The control board is shown in the photograph onpage 97. Every alternator switch, every selector switch, every group switch, and every feeder switch upon the main floor is here represented by a small switch. The small switch is connected into a control circuit which receives its supply of energy at 110 volts from a small motor generator set and storage battery. The motors which actuate the large oil switches upon the main floor are driven by this 110 volt control current, and thus in the hands of the operator the control switches make or break the relatively feeble control currents, which, in turn, close or open the switches in the main power circuits. The control switches are systematically assembled upon the control bench board in conjunction with dummy bus bars and other apparent (but not real) metallic connections, the whole constituting at all times a correct diagram of the existing connections of the main power circuits. Every time the operator changes a connection by opening or closing one of the main switches, he necessarily changes his diagram so that it represents the new conditions established by opening or closing the main switch. In connection with each control switch two small bull's-eye lamps are used, one red, to indicate that the corresponding main switch is closed, the other green, to indicate that it is open. These lamps are lighted when the moving part of the main switch reaches approximately the end of its travel. If for any reason, therefore, the movement of the control switch should fail to actuate the main switch, the indicator lamp will not be lighted.

MOTOR-GENERATOR SET SUPPLYING ALTERNATING CURRENT FOR BLOCK SIGNALS AND MOTOR-GENERATOR STARTING SETMOTOR-GENERATOR SET SUPPLYING ALTERNATING CURRENT FOR BLOCK SIGNALS AND MOTOR-GENERATOR STARTING SET

The control board is divided into two parts—one for the connections of thealternators to the bus bars and the other for the connection of feeders to bus bars. The drawing onpage 97shows in plain view the essential features of the control boards.

The Instrument Board

A front view of the Instrument Board is shown onpage 97. This board contains all indicating instruments for alternators and feeders. It also carries standardizing instruments and a clock. In theillustrationthe alternator panels are shown at the left and the feeder panels at the right. For the alternator panels, instruments of the vertical edgewise type are used. Each vertical row comprises the measuring instruments for an alternator. Beginning at the top and enumerating them in order these instruments are: Three ammeters, one for each phase, a volumeter, an indicating wattmeter, a power factor indicator and a field ammeter. The round dial instrument shown at the bottom of each row of instruments is a three-phase recording wattmeter.

A panel located near the center of the board between alternator panels and feeder panels carries standard instruments used for convenient calibration of the alternator and feeder instruments. Provision is made on the back of the board for convenient connection of the standard instruments in series with the instruments to be compared. The panel which carries the standard instruments also carries ammeters used to measure current to auxiliary circuits in the power house.

For the feeder board, instruments of the round dial pattern are used, and for each feeder a single instrument is provided, viz., an ammeter. Each vertical row comprises the ammeters belonging to the feeders which supply a given sub-station, and from left to right these are in order sub-stations Nos. 11, 12, 13, 14, 15, 16, 17, and 18; blank spaces are left for four additional sub-stations. Each horizontal row comprises the ammeter belonging to feeders which are supplied through a given group switch.

This arrangement in vertical and horizontal lines, indicating respectively feeders to given sub-stations and feeders connected to the several group switches, is intended to facilitate the work of the operator. A glance down a vertical row without stopping to reach the scales of the instruments will tell him whether the feeders are dividing with approximate equality the load to a given sub-station. Feeders to different sub-stations usually carry different loads and, generally speaking, a glance along a horizontal row will convey no information of especial importance. If, however, for any reason the operator should desire to know the approximate aggregate load upon a group of feeders this systematic arrangement of the instruments is of use.

SWITCHBOARD FOR ALTERNATING CURRENT BLOCK SIGNAL CIRCUITS—IN SUB-STATIONSWITCHBOARD FOR ALTERNATING CURRENT BLOCK SIGNAL CIRCUITS—IN SUB-STATION

EXTERIOR OF SUB-STATION NO. 18EXTERIOR OF SUB-STATION NO. 18

Alternating Current Distribution to Sub-Stations Power House Ducts and Cables

From alternators to alternator switches the 11,000 volt alternating currents are conveyed through single conductor cables, insulated by oil cambric, the thickness of the wall being 12/32 of an inch. These conductors are installed in vitrified clay ducts. From dynamo switches to bus bars and from bus bars to group and feeder switches, vulcanized rubber insulation containing 30 per cent. pure Para rubber is employed. The thickness of insulating wall is 9/32 of an inch and the conductors are supported upon porcelain insulators.

Conduit System for Distribution

From the power house to the subway at 58th Street and Broadway two lines of conduit, each comprising thirty-two ducts, have been constructed. These conduits are located on opposite sides of the street. The arrangement of ducts is 8 x 4, as shown in the section onpage 96.

EXTERIOR OF SUB-STATION NO. 11EXTERIOR OF SUB-STATION NO. 11

The location and arrangement of ducts along the line of the subway are illustrated in photographs on pages98and99, which show respectively a section of ducts on one side of the subway, between passenger stations, and a section of ducts and one side of the subway, beneath the platform of a passenger station. From City Hall to 96th Street (except through the Park Avenue Tunnel) sixty-four ducts are provided on each side of the subway. North of 96th Street sixty-four ducts are provided for the West-side lines and an equal number for the East-side lines. Between passenger stations these ducts help to form the side walls of the subway, and are arranged thirty-two ducts high and two ducts wide. Beneath the platform of passenger stations the arrangement is somewhat varied because of localobstructions, such as pipes, sewers, etc., of which it was necessary to take account in the construction of the stations. The plan shown onpage 98, however, is typical.

The necessity of passing the cables from the 32 x 2 arrangement of ducts along the side of the tunnel to 8 x 8 and 16 x 4 arrangements of ducts beneath the passenger platforms involves serious difficulties in the proper support and protection of cables in manholes at the ends of the station platforms. In order to minimize the risk of interruption of service due to possible damage to a considerable number of cables in one of these manholes, resulting from short circuit in a single cable, all cables except at the joints are covered with two layers of asbestos aggregating a full 1/4-inch in thickness. This asbestos is specially prepared and is applied by wrapping the cable with two strips each 3 inches in width, the outer strip covering the line of junction between adjacent spirals of the inner strip, the whole when in place being impregnated with a solution of silicate of soda. The joints themselves are covered with two layers of asbestos held in place by steel tape applied spirally. To distribute the strains upon the cables in manholes, radical supports of various curvatures, and made of malleable cast iron, are used. The photograph onpage 100illustrates the arrangement of cables in one of these manholes.

OPERATING BOARD—SUB-STATION NO. 11OPERATING BOARD—SUB-STATION NO. 11

In order to further diminish the risk of interruption of the service due to failure of power supply, each sub-station south of 96th Street receives its alternating current from the power house through cables carried on opposite sides of the subway. To protect the lead sheaths of the cables against damage by electrolysis, rubber insulating pieces 1/6 of an inch in thickness are placed between the sheaths and the iron bracket supports in the manholes.

Cable Conveying Energy from Power House to Sub-Stations

The cables used for conveying energy from the power house to the several sub-stations aggregate approximately 150 miles in length. The cable used for this purpose comprises three stranded copper conductors each of which contains nineteen wires, and the diameter of the stranded conductor thus formed is 2/5 of an inch. Paper insulation is employed and the triple cable is enclosed in a lead sheath 9/64 of an inch thick. Each conductor is separated from its neighbors and from the lead sheath by insulation of treated paper 7/16 of an inch in thickness. The outside diameter of the cables is 2-5/8 inches, and the weight 8-1/2 pounds per lineal foot. In the factories the cable as manufactured was cut into lengths corresponding to the distance between manholes, and each length subjected to severe tests including application to the insulation of an alternating current potential of 30,000 volts for a period of thirty minutes. These cables were installed under the supervision of the Interborough Company's engineers, and after jointing, each complete cable from power house to sub-station was tested by applying an alternating potential of 30,000 volts for thirty minutes between each conductor and its neighbors, and between each conductor and the lead sheath. The photographs onpage 98illustrates the construction of this cable.

Sub-Station

The tri-phase alternating current generated at the power house is conveyed through the high potential cable system to eight sub-stations containing the necessary transforming and converting machinery. These sub-stations are designed and located as follows:

DIAGRAMS OF DIRECT CURRENT FEEDER AND RETURN CIRCUITSDIAGRAMS OF DIRECT CURRENT FEEDER AND RETURN CIRCUITS

Sub-station No. 11—29-33 City Hall Place.Sub-station No. 12—108-110 East 19th Street.Sub-station No. 13—225-227 West 53d Street.Sub-station No. 14—264-266 West 96th Street.Sub-station No. 15—606-608 West 143d Street.Sub-station No. 16—73-77 West 132d Street.Sub-station No. 17—Hillside Avenue, 301 feet West of Eleventh Avenue.Sub-station No. 18—South side of Fox Street (Simpson Street), 60 feet north of Westchester Avenue.

Sub-station No. 11—29-33 City Hall Place.

Sub-station No. 12—108-110 East 19th Street.

Sub-station No. 13—225-227 West 53d Street.

Sub-station No. 14—264-266 West 96th Street.

Sub-station No. 15—606-608 West 143d Street.

Sub-station No. 16—73-77 West 132d Street.

Sub-station No. 17—Hillside Avenue, 301 feet West of Eleventh Avenue.

Sub-station No. 18—South side of Fox Street (Simpson Street), 60 feet north of Westchester Avenue.

SWITCH CONNECTING FEEDER TO CONTACT RAILSWITCH CONNECTING FEEDER TO CONTACT RAIL

CONTACT RAIL JOINT WITH FISH PLATECONTACT RAIL JOINT WITH FISH PLATE

The converter unit selected to receive the alternating current and deliver direct current to the track, etc., has an output of 1,500 kilowatts with ability to carry 50 per cent. overload for three hours. The average area of a city lot is 25 x 100 feet, and a sub-station site comprising two adjacent lots of this approximate size permits the installation of a maximum of eight 1,500 kilowatts converters with necessary transformers, switchboard and other auxiliary apparatus. In designing the sub-stations, a type of building with a central air-well was selected. The typical organization of apparatus is illustrated in the ground plan and vertical section on pages101,102and103and provides, as shown, for two lines of converters, the three transformerswhich supply each converter being located between it and the adjacent side wall. The switchboard is located at the rear of the station. The central shaft affords excellent light and ventilation for the operating room. The steel work of the sub-stations is designed with a view to the addition of two storage battery floors, should it be decided at some future time that the addition of such an auxiliary is advisable.

CONTACT RAIL BANDSCONTACT RAIL BANDS

The necessary equipment of the sub-stations implies sites approximately 50 x 100 feet in dimensions; and sub-stations Nos. 14, 15, 17, and 18 are practically all this size. Sub-stations Nos. 11 and 16 are 100 feet in length, but the lots acquired in these instances being of unusual width, these sub-stations are approximately 60 feet wide. Sub-station No. 12, on account of limited ground space, is but 48 feet wide and 92 feet long. In each of the sub-stations, except No. 13, foundations are provided for eight converters; sub-station No. 13 contains foundations for the ultimate installation of ten converters.

DIRECT CURRENT FEEDERS FROM MANHOLE TO CONTACT RAILDIRECT CURRENT FEEDERS FROM MANHOLE TO CONTACT RAIL

The function of the electrical apparatus in sub-stations, as has been stated, is the conversion of the high potential alternating current energy delivered from the power house through the tri-phase cables into direct current adapted to operate the motors with which the rolling stock is equipped. This apparatus comprises transformers, converters, and certain minor auxiliaries. The transformers, which are arranged in groups of three, receive the tri-phase alternating current at a potentialapproximating 10,500 volts, and deliver equivalent energy (less the loss of about 2 per cent. in the transformation) to the converters at a potential of about 390 volts. The converters receiving this energy from their respective groups of transformers in turn deliver it (less a loss approximating 4 per cent. at full load) in the form of direct current at a potential of 625 volts to the bus bars of the direct current switchboards, from which it is conveyed by insulated cables to the contact rails. The photograph onpage 102is a general view of the interior of one of the sub-stations. The exterior of sub-stations Nos. 11 and 18 are shown onpage 107.

CONTACT RAILS, SHOWING END INCLINESCONTACT RAILS, SHOWING END INCLINES

The illustration onpage 108is from a photograph taken on one of the switchboard galleries. In the sub-stations, as in the power house, the high potential alternating current circuits are opened and closed by oil switches, which are electrically operated by motors, these in turn being controlled by 110 volt direct current circuits. Diagramatic bench boards are used, as at the power house, but in the sub-stations they are of course relatively small and free from complication.

The instrument board is supported by iron columns and is carried at a sufficient height above the bench board to enable the operator, while facing the bench board and the instruments, to look out over the floor of the sub-station without turning his head. The switches of the direct current circuits are hand-operated and are located upon boards at the right and left of the control board.

A novel and important feature introduced (it is believed for the first time) in these sub-stations, is the location in separate brick compartments of the automatic circuit breakers in the direct current feeder circuits. These circuit breaker compartments are shown in the photograph onpage 93, and are in a line facing the boards which carry the direct feeder switches, each circuit breaker being located in a compartment directly opposite the panel which carries the switch belonging to the corresponding circuit. This plan will effectually prevent damage to other parts of the switchboard equipment when circuit-breakers open automatically under conditions of short-circuit. It also tends to eliminate risk to the operator, and, therefore, to increase his confidence and accuracy in manipulating the hand-operated switches.

ASSEMBLY OF CONTACT RAIL AND PROTECTIONASSEMBLY OF CONTACT RAIL AND PROTECTION

The three conductor cables which convey tri-phase currents from the power house are carried through tile ducts from the manholes located in the street directly in front of each sub-station to the back of the station where the end of the cable is connected directly beneath its oil switch. The three conductors, now well separated, extend vertically to the fixed terminals of the switch. In each sub-station but one set of high-potential alternating current bus bars is installed and between each incoming cable and these bus bars is connected an oil switch. In like manner, between each converter unit and the bus bars an oil switch is connected into the high potential circuit. The bus bars are so arranged that they may be divided into any number of sections not exceeding the number of converter units, by means of movable links which, in their normal condition, constitute a part of the bus bars.

Each of the oil switches between incoming circuits and bus bars is arranged for automatic operation and is equipped with a reversed current relay, which, in the case of a short-circuit in its alternating current feeder cable opens the switch and so disconnects the cable from the sub-station without interference with the operation of the other cables or the converting machinery.

CONTACT RAIL INSULATORCONTACT RAIL INSULATOR

Direct Current Distribution from Sub-Stations

The organization of electrical conductors provided to convey direct current from the sub-stations to the moving trains can be described most conveniently by beginning with the contact, or so-called third rail. South of 96th Street the average distance between sub-stations approximates 12,000 feet, and north of 96th Streetthe average distance is about 15,000 feet. Each track, of course, is provided with a contact rail. There are four tracks and consequently four contact rails from City Hall to 96th Street, three from 96th Street to 145th Street on the West Side, two from 145th Street to Dyckman Street, and three from Dyckman Street to the northern terminal of the West Side extension of the system. From 96th Street, the East Side has two tracks and two contact rails to Mott Avenue, and from that point to the terminal at 182d Street three tracks and three contact rails.

CONTACT SHOE AND FUSECONTACT SHOE AND FUSE

Contact rails south of Reade Street are supplied from sub-station No. 11; from Reade Street to 19th Street they are supplied from sub-stations Nos. 11 and 12; from 19th Street they are supplied from sub-stations Nos. 12 and 13; from the point last named to 96th Street they are supplied from sub-stations Nos. 13 and 14; from 96th Street to 143d Street, on the West Side, they are supplied from sub-stations Nos. 14 and 15; from 143d Street to Dyckman Street they are supplied from sub-stations Nos. 15 and 17; and from that point to the terminal they are supplied from sub-station No. 17. On the East Side branch contact rails from 96th Street to 132d Street are supplied from sub-stations Nos. 14 and 16; from 132d to 165th Street they are supplied from sub-stations Nos. 16 and 18; and from 165th Street to 182d Street they are supplied from sub-station No. 18.

Each contact rail is insulated from all contact rails belonging to adjacent tracks. This is done in order that in case of derailment or other accident necessitating interruption of service on a given track, trains may be operated upon the other tracks having their separate and independent channels of electrical supply. To make this clear, we may consider that section of the subway which lies between Reade Street and 19th Street. This section is equipped with four tracks, and the contact rail for each track, together with the direct current feeders which supply it from sub-stations Nos. 11 and 12, are electrically insulated from all other circuits. Of each pair of track rails one is used for the automatic block signaling system, and, therefore, is not used as a part of the negative or return side of the direct current system. The other four track rails, however, are bonded, and together with the negative feeders constitute the track return or negative side of the direct current system.

The diagram onpage 109illustrates the connections of the contact rails, track rails and the positive and negative feeders. All negative as well as positive feeders are cables of 2,000,000 c. m. section and lead sheathed. In emergency, as, for example, in the case of the destruction of a number of the cables in a manhole, they are, therefore, interchangeable. The connections are such as to minimize "track drop," as will be evident upon examination of the diagram. The electrical separation of the several contact rails and the positive feeders connected thereto secures a further important advantage in permitting the use at sub-stations of direct-current circuit-breakers of moderate size and capacity, which can be set to open automatically at much lower currents than would be practicable were all contact rails electrically connected, thus reducing the limiting current and consequently the intensity of the arcs which might occur in the subway in case of short-circuit between contact rail and earth.

The contact rail itself is of special soft steel, to secure high conductivity. Its composition, as shown by tests, is as follows: Carbon, .08 to .15; silicon, .05; phosphorus, .10; manganese, .50 to .70; and sulphur, .05. Its resistance is not more than eight times the resistance of pure copper of equal cross-section. The section chosen weighs 75 pounds per yard. The length used in general is 60 feet, but in some cases 40 feet lengths are substituted. The contact rails are bounded by four bonds, aggregating 1,200,000 c. m. section. The bonds are of flexible copper and their terminals are riveted to the steel by hydraulic presses, producing a pressure of 35 tons. The bonds when in use are covered by special malleable iron fish-plates which insure alignment of rail. Each length of rail is anchored at its middle point and a small clearance is allowed between ends of adjacent rails for expansion and contraction, which in the subway, owing to the relatively small change of temperature, will be reduced to a minimum. The photographs on pages110and111illustrate the method of bonding the rail, and show the bonded joint completed by the addition of the fish-plates.

The contact rail is carried upon block insulators supported upon malleable iron castings. Castings of the same material are used to secure the contact rail in position upon the insulators. A photograph of the insulator with its castings is shown onpage 113.


Back to IndexNext