Chapter 13

Fig. 106.—Diagram of Sagittal Median Section through B, Eurypterus; C, Larval Ammocœtes; D, Full-grown Ammocœtes.

Fig. 106.—Diagram of Sagittal Median Section through B, Eurypterus; C, Larval Ammocœtes; D, Full-grown Ammocœtes.

Fig. 106.—Diagram of Sagittal Median Section through B, Eurypterus; C, Larval Ammocœtes; D, Full-grown Ammocœtes.

Next among the mysteries requiring explanation is the pituitary body, that strange glandular organ always found so closely attached to the brain in the infundibular region that when it is detached in taking out the brain it leaves the infundibular canal patent right into the IIIrd ventricle. A comparison of the two diagrams indicates that such a glandular organ (Pit.), Fig.106, C, was there because the coxal excretory glands (cox. gl.), Fig.106, B, were in a similar position in the palæostracan ancestor—that, indeed, the pituitary body is the descendant of the coxal glands.

Finally, the diagrams not only indicate how the mesosomatic appendage-nerves supplying in the one case the operculum and the respiratory appendages correspond to the respiratory group of nerves, VII., IX., X., supplying in the other case the thyroid, hyoid, and branchial segments, but also that a similar correspondence exists between the prosomatic appendage-nerves in the one case and the trigeminal nerve in the other; a correspondence which supplies the reason why in the vertebrate a septum originally existed between an oral and respiratory chamber.

Such a comparison, then, leads directly to the suggestion that the trigeminal nerve originally supplied the prosomatic appendages, such appendages being: 1. The metastoma, which has become in Ammocœtes the lower lip supplied by the velar or mandibular branch of the trigeminal nerve (7); 2. The ectognath, which has become the large median ventral tentacle, called by Rathke the tongue, supplied by the tongue nerve (6); 3. The endognaths, which have been reduced to tentacles and are supplied by the tentacular branch of the trigeminal nerve (2, 3, 4, 5).

I have purposely put these two diagrams of the larval Ammocœtes and of Eurypterus before the minds of my readers at this early stage of my argument, so as to make what follows more understandable. I propose now to consider fully each one of these suggestive comparisons, and to see whether or no they are in accordance with the results of modern research.

In the first instance, the diagrams suggest that the trigeminal nerve originally supplied the prosomatic appendages of the palæostracan ancestor, while the eye-muscle nerves supplied the body-muscles of the prosoma.

As these appendages did not carry any vital organs such as branchiæ, but were mainly locomotor and masticatory in function, it follows that their disappearance as such would be much more complete than that of the mesosomatic branchial appendages. Most probably, then, in the higher vertebrates no trace of such appendages might be left; consequently the segmentation due to their presence would be very obscure, so that in this region the very reverse of what is found in the region of the vagus nerve would be the rule. There branchiomeric segmentation is especially evident, owing to the persistence of the branchial part of the branchial appendages; here, owing to the disappearance of the appendages, the segmentation is no longer branchiomeric, but essentially mesomeric in consequence of the persistence of the somatic eye-muscles.

In addition to the evidence of the appendages themselves, the number of prosomatic segments is well marked out in all the members of the scorpion group by the divisions of the central nervous system into well-defined neuromeres in accordance with the appendages, a segmentation the reminiscence of which may still persist after the appendages themselves have dwindled or disappeared. In accordance with this possibility we see that one of the most recent discoveries in favour of a number of segments in the head-region of the vertebrate is the discovery in the early embryo of a number of partial divisions in the brain-mass, forming a system of cephalic neuromeres which may well be the rudiments of the well-defined cephalic neuromeres of animals such as the scorpion.

The Evidence of the Prosomatic Musculature.

Even if the appendages as such become obscure, yet their muscles might remain and show evidence of their presence. The most persistent of all the appendage-muscles are the basal muscles which pass from coxa to carapace and are known by the name of tergo-coxal muscles. They are large, well marked, segmentally arranged muscles, dorso-ventral in direction, and, owing to their connecting the limb with the carapace, are likely to be retained even if the appendage dwindles away.

The muscular system of Limulus and Scorpio has been investigated by Benham and Miss Beck under Lankester's direction, and the conclusions to which Lankester comes are these—

The simple musculature of the primitive animal from which both Limulus and the scorpions arose consisted of—

1. A series of paired longitudinal dorsal muscles passing from tergite to tergite of each successive segment.2. A similar series of paired longitudinal ventral muscles.3. A pair of dorso-ventral muscles passing from tergite to sternite in each segment.4. A set of dorso-ventral muscles moving the coxa of each limb in its socket.5. A pair of veno-pericardial muscles in each segment.

1. A series of paired longitudinal dorsal muscles passing from tergite to tergite of each successive segment.

2. A similar series of paired longitudinal ventral muscles.

3. A pair of dorso-ventral muscles passing from tergite to sternite in each segment.

4. A set of dorso-ventral muscles moving the coxa of each limb in its socket.

5. A pair of veno-pericardial muscles in each segment.

Of these groups of muscles, any one of which would indicate the number of segments, Groups 1 and 2 do not extend into the prosomatic region, and Group 5 extends only as far as the heart extends in the case of both Limulus and the Scorpion group; so that we may safely conclude that in the Palæostraca the evidence of somatic segmentation in the prosomatic region would be given, as far as the musculature is concerned, by the dorso-ventral somatic muscles (Group 3), and of segmentation due to the appendages by the dorso-ventral appendage musculature (Group 4).

Therefore, if, as the evidence so far indicates, the vertebrate has arisen from a palæostracan stock, we should expect to find that the musculature of the somatic segments in the region of the trigeminal nerve did not resemble the segmental muscles of the spinal region, was not, therefore, the continuation of the longitudinal musculature of the body, but was dorso-ventral in position, and that the musculature of the splanchic segments resembled that of the vagus region, where, as pointed out in Chapter IV., the respiratory muscles arose from the dorso-ventral muscles of the mesosomatic appendages. This is, of course, exactly what is found for the muscles which move the lateral eyes of the vertebrate; these muscles, innervated by the IIIrd, IVth, and VIth nerves, afford one of the main evidences of segmentation in this region, are always grouped in line with the somatic muscles of spinal segments, and yet cannot be classed as longitudinal muscles. They are dorso-ventral in direction, and yet belong to the somatic system; they are exactly what one ought to find if they represent Group 3—the dorso-ventral body-muscles of the prosomatic segments of the invertebrate ancestor.

The interpretation of these muscles will be given immediately; at present I want to pass in review all the different kinds of evidenceof segmentation in this region afforded by the examination of the invertebrate, whether living or fossil, so as to see what clues are left if the evidence of appendages fails us. I will take in the first instance the evidence of segmentation afforded by the presence of the musculature of Group 4, even when, as in the case of many fossils, no appendages have yet been found. In such animals as Mygale and Phrynus the prosomatic carapace is seen to be marked out into a series of elevations and depressions, and upon removing the carapace we see that these elevations correspond with and are due to the large tergo-coxal muscles of the appendages; so that if such carapace alone were found fossilized we could say with certainty: this animal possessed prosomatic appendages the number of which can be guessed with more or less certainty by these indications of segments on the carapace.

In those forms, then, which are only known to us in the fossil condition, in which no prosomatic appendages have been found, but which possess, more or less clearly, radial markings on the prosomatic carapace resembling those of Phrynus or Mygale, such radial markings may be interpreted as due to the presence of prosomatic appendages, which are either entirely concealed by the prosomatic carapace or dorsal head-plate, or were of such a nature as not to have been capable of fossilization.

The group of animals in question forms the great group of animals, chiefly extinct, classified by H. Woodward under the order of Merostomata. They are divided by him into the sub-order of Eurypteridæ, which includes—(1) Pterygotus, (2) Slimonia, (3) Stylonurus, (4) Eurypterus, (5) Adelophthalmus, (6) Bunodes, (7) Arthropleura, (8) Hemiaspis, (9) Exapinurus, (10) Pseudoniscus; and the sub-order Xiphosura, which includes—(1) Belinurus, (2) Prestwichia, (3) Limulus.

Fig. 107.—Phrynus Margine-Maculata.Ce., median eyes;le., lateral eyes;glab., median plate over brain;Fo., fovea.

Fig. 107.—Phrynus Margine-Maculata.Ce., median eyes;le., lateral eyes;glab., median plate over brain;Fo., fovea.

Fig. 107.—Phrynus Margine-Maculata.

Ce., median eyes;le., lateral eyes;glab., median plate over brain;Fo., fovea.

Fig. 108.—Phrynus sp.(?).Carapace removed.cam., camerostome;pl., plastron.

Fig. 108.—Phrynus sp.(?).Carapace removed.cam., camerostome;pl., plastron.

Fig. 108.—Phrynus sp.(?).Carapace removed.

cam., camerostome;pl., plastron.

The evidence of the Xiphosura and of the Hemiaspidæ conclusively shows, in Woodward's opinion, that the Merostomata are closely related to the Trilobita, and the Hemiaspidæ especially are supposed to be intermediate between the trilobites and the king-crabs. They are characterized, as also Belinurus and Prestwichia, by the absence of any prosomatic appendages, so that in these cases, as is seen in Fig.12(p.30), representingBunodes lunula, found in the Eurypterus layer at Rootziküll, we have an animal somewhat resembling Limulus in which the prosomatic appendages have either dwindled away and are completely hidden by the prosomatic carapace, or became so soft as not to be preserved in the fossilized condition. The appearance of the prosomatic carapace is, to my mind, suggestive of the presence of such appendages, for it is marked out radially, as is seen in the figure, in a manner resembling somewhat the markings on the prosomatic carapace of Mygale or Phrynus; the latter markings, as already mentioned, are due to the aponeuroses between the tergo-coxal muscles of the prosomatic appendages which lie underneath and are attached to the carapace.

A very similar radial marking is shown by Woodward in his picture ofHemiaspis limuloides, reproduced in Fig. 109, found in the Lower Ludlow beds at Leintwardine. This species has yielded the most perfect specimens of the genus Hemiaspis, which is recognized as differing from Bunodes by the possession of a telson.

It is striking to find that similar indications of segments have been found on the dorsal surface of the head-region in many of the most ancient extinct fishes, as will be fully discussed later on.

Fig.109.—Hemiaspis limuloides.(FromWoodward.)gl., glabellum.

Fig.109.—Hemiaspis limuloides.(FromWoodward.)gl., glabellum.

Fig.109.—Hemiaspis limuloides.(FromWoodward.)

gl., glabellum.

The Evidence of Cœlomic Cavities.

In the head-region of the vertebrate, morphologists depend largely upon the embryonic divisions of the mesoderm for the estimation of the number of segments, and, therefore, upon the number of cœlomic cavities in this region, the walls of which give origin to the striated muscles of the head, so that the question of the number of segments depends very largely upon the origin of the muscles from the walls of these head-cavities. It is therefore interesting to examine whether a similar criterion of segmentation holds good in such a segmentedanimal as Limulus, or in the members of the scorpion group, in which the number of segments are known definitely by the presence of the appendages. In Limulus we know, from the observations of Kishinouye, that a series of cœlomic cavities are formed embryologically in the various segments of the mesosoma and prosoma, in a manner exceedingly similar to their mode of formation in the head-region of the vertebrate, and he has shown that in the mesosoma a separate cœlomic cavity exists for each segment, so that just as the dorso-ventral somatic muscles are regularly segmentally arranged in this region, so are the cœlomic cavities, and we should be right in our estimation of the number of segments in this region by the consideration of the numerical correspondence of these cavities with the mesomatic appendages. Similarly, in the vertebrate, we find every reason to believe that a single, separate head-cavity corresponds to each of the branchial segments in the opisthotic region, and therefore we should estimate rightly the number of segments by the division of the mesoderm in this region.

In the prosomatic region of Limulus, the dorso-ventral muscles are not arranged with such absolute segmental regularity as in the mesosomatic region, and Kishinouye's observations show that the cœlomic cavities in this region do not correspond absolutely with the number of prosomatic appendages. His words are:—

A pair of cœlomic cavities appears in every segment except the segments of the 2nd, 3rd, and 4th appendages, in which cœlomic cavities do not appear at all. At least eleven pairs of these cavities are produced. The eleventh pair belongs to the seventh abdominal segment.

The first pair of cœlomic cavities is common to the cephalic lobe and the segment of the first appendage (i.e.the cheliceræ).

The second cœlomic cavity belongs to the segment of the fifth appendage. It is well developed.

The ventral portion of the second cœlomic cavity remains as the coxal gland.

Consequently, if we were to estimate the number of segments in this region by the number of cœlomic cavities we should not judge rightly, for we should find only four cavities and seven appendages, as is seen in the following table:—

The second cavity would in reality represent four segments belonging to the 2nd, 3rd, 4th, 5th locomotor appendages,i.e.the very four segments which in the Eurypteridæ are concentrated together to form the endognaths, and we should be justified in putting this interpretation on it, because, according to Kishinouye, its ventral portion forms the coxal gland, and, according to Lankester, the coxal gland sends prolongations into the coxa of the 2nd, 3rd, 4th, 5th locomotor appendages. Similarly in the vertebrate, we find three head-cavities in the region which corresponds, on my theory, to the prosomatic region of Limulus, (1) the anterior cavity discovered by Miss Platt, (2) the premandibular cavity, and (3) the mandibular cavity, which, if they corresponded with the prosomatic cœlomic cavities of Limulus, would represent not three segments but seven segments, as follows:—the anterior cavity would correspond to the first cœlomic cavity,i.e.the cavity of the cheliceral segments in both Limulus and the Eurypteridæ; the premandibular, to the second cœlomic cavity, representing, therefore, the 2nd, 3rd, 4th, 5th prosomatic segments in Limulus and the endognathal segments in the Eurypteridæ; and the mandibular to the 3rd and 4th cœlomic cavities, representing the last locomotor and chilarial segments in Limulus,i.e.the ectognathal and metastomal segments in the Eurypteridæ.

It is worthy of note that, in respect to their cœlomic cavities, as in the position and origin of their nerves in the central nervous system, the first pair of appendages, the cheliceræ, retain a unique position, differing from the rest of the prosomatic appendages.

In the table I have shown how the vertebrate cœlomic cavities may be compared with those of Limulus. The next question to consider is the evidence obtained by morphologists and anatomists as to the number of segments supplied by the trigeminal nerve-group; this question will be considered in the next chapter.

Summary.

In Chapters IV. and V. I have dealt with the opisthotic segments of the vertebrate, including therein the segments supplied by the facial nerve, and shown that they correspond to the mesosomatic segments of the palæostracan; consequently the facial (VII.), glossopharyngeal (IX.), and vagus (X.) nerves originally supplied the branchial and opercular appendages.In this chapter the consideration of the pro-otic segments is commenced, that is, the segments supplied by the trigeminal (V.) and the eye-muscle nerves (III., IV., VI.). I have considered the VIth nerve with the rest of the eye-muscle nerves for convenience' sake, though in reality it belongs to the same segment as the facial. Of these, that part of the trigeminal which innervates the muscles of mastication corresponds to the splanchnic segments, while the eye-muscle nerves belong to the corresponding somatic segments; but the pro-otic segments of the vertebrate ought to correspond to the prosomatic segments of the invertebrate, just as the opisthotic correspond to the mesosomatic. Therefore the motor part of the trigeminal ought to supply muscles which originally moved the prosomatic appendages, while the eye-muscles ought to have belonged to the somatic part of the same segments.The first question considered is the number of segments which ought to be found in this region. In Limulus, the Eurypteridæ, and the scorpions there are seven prosomatic segments which carry (1) the cheliceræ, (2, 3, 4, 5) the four first locomotor appendages—the endognaths, (6) the large special appendage—the ectognath—and (7) the appendages, which in Limulus are known as the chilaria, and are small and insignificant, but in Eurypterus and other forms grow forwards, fuse together, and form a single median lip to an accessory oral chamber, which lip is known as the metastoma. Of these appendages the cheliceræ and endognaths tend to dwindle away and become mere tentacles, while the large swimming ectognath and metastoma remain strong and vigorous.In this, the prosomatic region, the somatic segmentation is not characterized by the presence of the longitudinal muscle segments, for they do not extend into this head-region, but only by the presence of the segmental somaticventro-dorsal muscles. Among the muscles of the appendages the system of large tergo-coxal muscles is especially apparent.From these considerations it follows that the number of segments in this region in the vertebrate ought to be seven; that the musculature supplied by the trigeminal nerve ought to represent seven ventral or splanchnic segments, of which only the last two are likely to be conspicuous; and that the musculature supplied by the eye-muscle nerves ought to be dorso-ventral in direction, which it is, and represent seven dorsal or somatic segments.A further peculiarity of this region, both in Limulus and the scorpions, is found in the excretory organs which are known by the name of coxal glands, because they extend into the basal joint, or coxa, of certain of the prosomatic limbs. The appendages so characterized are always the four endognaths, and it follows that if these four endognaths lose their locomotor power, become reduced in size, and concentrated together to form mere tentacles, then of necessity the coxal glands will be concentrated together, and tend to form a glandular mass in the region of the mouth; in fact, take up a position corresponding to that of the pituitary body in vertebrates.Taking all these facts into consideration, it is possible to construct a drawing of a sagittal section through the head-region of Eurypterus, which will represent, with considerable probability, the arrangement of parts in that animal. This can be compared with the corresponding section through the head of Ammocœtes.Now, as pointed out in the last chapter, the early stage of Ammocœtes is remarkably different from the more advanced stage; at that time the septum between the oral and respiratory chambers has not yet broken through, and the olfactory or nasal tube, known at this stage as the tube of the hypophysis, is directed ventrally, not dorsally.The comparison of the diagram of Eurypterus with that of the early stage of Ammocœtes is remarkably close, and immediately suggests not only that the single nose of the former is derived from the corresponding organ in the palæostracan, but that the pituitary body is derived from the concentrated coxal glands, and the lower lip from the metastoma. The further working out of these homologies will be discussed in the next chapter.In addition to the evidence of segmentation afforded by the appendages, there are in this region, in Limulus and the scorpion group, three other criteria of segmentation available to us, if from any cause the evidence of appendages fails us. These are—1. The number of neuromeres are marked out in this region of the brain more or less plainly, especially in the young animal, just as they are also in the embryo of the vertebrate.2. The segmentation is represented here, just as in the mesosomatic region, by two sets of muscle-segments; the onesomatic, consisting of the segmentally arranged dorso-ventral muscles, the continuation of the group already discussed in connection with the mesosomatic segmentation, and the otherappendicularcharacterized by the tergo-coxal muscles. These latter segmental muscles are especially valuable, for in such forms as Mygale, Phrynus, etc., their presence is indicated externally by markings on the prosomatic carapace, and thus corresponding markings found on fossil carapaces or on dorsal head-shields can beinterpreted. These two sets of muscle-segments correspond in the vertebrate to the somatic and splanchnic segmentations.3. In the vertebrate the segmentation in this region is indicated by the cœlomic or head-cavities, which are cavities formed in the mesoderm of the embryo, the walls of which give origin to the striated muscles of the head. In Limulus corresponding cœlomic cavities are found, which are directly comparable with those found in the vertebrate.

In Chapters IV. and V. I have dealt with the opisthotic segments of the vertebrate, including therein the segments supplied by the facial nerve, and shown that they correspond to the mesosomatic segments of the palæostracan; consequently the facial (VII.), glossopharyngeal (IX.), and vagus (X.) nerves originally supplied the branchial and opercular appendages.

In this chapter the consideration of the pro-otic segments is commenced, that is, the segments supplied by the trigeminal (V.) and the eye-muscle nerves (III., IV., VI.). I have considered the VIth nerve with the rest of the eye-muscle nerves for convenience' sake, though in reality it belongs to the same segment as the facial. Of these, that part of the trigeminal which innervates the muscles of mastication corresponds to the splanchnic segments, while the eye-muscle nerves belong to the corresponding somatic segments; but the pro-otic segments of the vertebrate ought to correspond to the prosomatic segments of the invertebrate, just as the opisthotic correspond to the mesosomatic. Therefore the motor part of the trigeminal ought to supply muscles which originally moved the prosomatic appendages, while the eye-muscles ought to have belonged to the somatic part of the same segments.

The first question considered is the number of segments which ought to be found in this region. In Limulus, the Eurypteridæ, and the scorpions there are seven prosomatic segments which carry (1) the cheliceræ, (2, 3, 4, 5) the four first locomotor appendages—the endognaths, (6) the large special appendage—the ectognath—and (7) the appendages, which in Limulus are known as the chilaria, and are small and insignificant, but in Eurypterus and other forms grow forwards, fuse together, and form a single median lip to an accessory oral chamber, which lip is known as the metastoma. Of these appendages the cheliceræ and endognaths tend to dwindle away and become mere tentacles, while the large swimming ectognath and metastoma remain strong and vigorous.

In this, the prosomatic region, the somatic segmentation is not characterized by the presence of the longitudinal muscle segments, for they do not extend into this head-region, but only by the presence of the segmental somaticventro-dorsal muscles. Among the muscles of the appendages the system of large tergo-coxal muscles is especially apparent.

From these considerations it follows that the number of segments in this region in the vertebrate ought to be seven; that the musculature supplied by the trigeminal nerve ought to represent seven ventral or splanchnic segments, of which only the last two are likely to be conspicuous; and that the musculature supplied by the eye-muscle nerves ought to be dorso-ventral in direction, which it is, and represent seven dorsal or somatic segments.

A further peculiarity of this region, both in Limulus and the scorpions, is found in the excretory organs which are known by the name of coxal glands, because they extend into the basal joint, or coxa, of certain of the prosomatic limbs. The appendages so characterized are always the four endognaths, and it follows that if these four endognaths lose their locomotor power, become reduced in size, and concentrated together to form mere tentacles, then of necessity the coxal glands will be concentrated together, and tend to form a glandular mass in the region of the mouth; in fact, take up a position corresponding to that of the pituitary body in vertebrates.

Taking all these facts into consideration, it is possible to construct a drawing of a sagittal section through the head-region of Eurypterus, which will represent, with considerable probability, the arrangement of parts in that animal. This can be compared with the corresponding section through the head of Ammocœtes.

Now, as pointed out in the last chapter, the early stage of Ammocœtes is remarkably different from the more advanced stage; at that time the septum between the oral and respiratory chambers has not yet broken through, and the olfactory or nasal tube, known at this stage as the tube of the hypophysis, is directed ventrally, not dorsally.

The comparison of the diagram of Eurypterus with that of the early stage of Ammocœtes is remarkably close, and immediately suggests not only that the single nose of the former is derived from the corresponding organ in the palæostracan, but that the pituitary body is derived from the concentrated coxal glands, and the lower lip from the metastoma. The further working out of these homologies will be discussed in the next chapter.

In addition to the evidence of segmentation afforded by the appendages, there are in this region, in Limulus and the scorpion group, three other criteria of segmentation available to us, if from any cause the evidence of appendages fails us. These are—

1. The number of neuromeres are marked out in this region of the brain more or less plainly, especially in the young animal, just as they are also in the embryo of the vertebrate.

2. The segmentation is represented here, just as in the mesosomatic region, by two sets of muscle-segments; the onesomatic, consisting of the segmentally arranged dorso-ventral muscles, the continuation of the group already discussed in connection with the mesosomatic segmentation, and the otherappendicularcharacterized by the tergo-coxal muscles. These latter segmental muscles are especially valuable, for in such forms as Mygale, Phrynus, etc., their presence is indicated externally by markings on the prosomatic carapace, and thus corresponding markings found on fossil carapaces or on dorsal head-shields can beinterpreted. These two sets of muscle-segments correspond in the vertebrate to the somatic and splanchnic segmentations.

3. In the vertebrate the segmentation in this region is indicated by the cœlomic or head-cavities, which are cavities formed in the mesoderm of the embryo, the walls of which give origin to the striated muscles of the head. In Limulus corresponding cœlomic cavities are found, which are directly comparable with those found in the vertebrate.

CHAPTER VIII

THE SEGMENTS BELONGING TO THE TRIGEMINAL NERVE-GROUP

The prosomatic segments of the vertebrate.—Number of segments belonging to the trigeminal nerve-group.—History of cranial segments.—Eye-muscles and their nerves.—Comparison with the dorso-ventral somatic muscles of the scorpion.—Explanation of the oculomotor nerve and its group of muscles.—Explanation of the trochlearis nerve and its dorsal crossing.—Explanation of the abducens nerve.—Number of segments supplied by the trigeminal nerves.—Evidence of their motor nuclei.—Evidence of their sensory ganglia.—Summary.

The prosomatic segments of the vertebrate.—Number of segments belonging to the trigeminal nerve-group.—History of cranial segments.—Eye-muscles and their nerves.—Comparison with the dorso-ventral somatic muscles of the scorpion.—Explanation of the oculomotor nerve and its group of muscles.—Explanation of the trochlearis nerve and its dorsal crossing.—Explanation of the abducens nerve.—Number of segments supplied by the trigeminal nerves.—Evidence of their motor nuclei.—Evidence of their sensory ganglia.—Summary.

From the evidence given in the last chapter, combined with that given in Chapter IV., the probability of the theory that the trigeminal group of nerves of the vertebrate have been derived from the prosomatic group of nerves of the invertebrate can be put to the test by the answers to the following morphological and anatomical questions:—

1. Do we find in the vertebrate two segmentations in this region corresponding to the two segmentations in the branchial region,i.e.a somatic or dorsal series of segments, and a splanchnic or ventral series of segments? The latter would not be branchial, but rather of the nature of free tactile appendages; so that it is useless to look for or talk about gill-slits, although such appendages, being serially homologous with the branchial mesosomatic appendages, would readily give rise to the conception of branchial segments.

2. Is there morphological evidence that the trigeminal nerve is not the nerve belonging to a single segment, or even to two segments, but is really a concentration of at least six, probably seven, segmental nerves?

3. Is there morphological evidence that the oculomotor and trochlear nerves, which on all sides are regarded as belonging to the trigeminal segments, are not single nerves corresponding eachto a single segment, but are the somatic motor roots belonging to the same segments as those to which the trigeminal supplies the splanchnic roots?

4. Do the mesoderm segments, which give origin to the eye-muscles, and therefore do the head-cavities of this region, correspond with the trigeminal segments? Considering the concentration of parts in this region and the difficulty already presented by the want of numerical agreement between the prosomatic appendages and the prosomatic cœlomic cavities in Limulus, it may very probably be difficult to determine the actual number of the mesoderm segments.

5. Is there anatomical evidence that the ganglion of origin of the motor part of the trigeminal nerve is not a single ganglion, but a representative of many, probably seven?

6. Is there anatomical evidence that the ganglia of origin of the oculomotor and trochlear nerves represent many ganglia?

7. Is there any evidence that the organs originally supplied by the motor part of the trigeminal nerve are directly comparable with prosomatic appendages?

It is agreed on all sides that in this region of the head there is distinct evidence of double segmentation, the dorsal mesoderm segments giving origin to the eye-muscles, and the ventral segments to the musculature innervated by the trigeminal nerve. Originally, according to the scheme of van Wijhe, two segments only were recognized, the dorsal parts of which were innervated by the IIIrd and IVth nerves respectively. Since his paper, the tendency has been to increase the number of segments in this region, as is seen in the following sketch, taken from Rabl, of the history of cranial segmentation.

History of Cranial Segmentation.

The first attempt to deal with this question was made by Goethe and Oken. They considered that the cranial skeleton was composed of a series of vertebræ, but as early as 1842 Vogt pointed out that only the occipital segments could be reduced to vertebræ. In 1869, Huxley showed that vertebræ were insufficient to explain the cranial segmentation, and that the nerves must be specially considered. The olfactory and optic nerves he regarded as parts of the brain, not true segmental nerves; the rest of the cranial nerveswere segmental, with special reference to branchial arches and clefts, the facial, glossopharyngeal, and separate vagus branches supplying the walls of the various branchial pouches. In a similar manner, the supra- and infra-maxillary branches of the trigeminal were arranged on each side of the mouth, and the inner and outer twigs of the first (ophthalmic) branch of the trigeminal on each side of the orbito-nasal cleft, the trabecular and the supra-maxillary arches being those on each side of this cleft. Thus Huxley considered that there was evidence of a series of pairs of ventral arches belonging to the skull, viz. the trabecular and maxillary in front of the mouth, the mandibular, hyoid, and branchial arches behind, and that the Vth, VIIth, IXth, and Xth nerves were segmental in relation to these arches and clefts. Gegenbaur, in 1871 and 1872, considered that the branchial arches represented the lower arches of cranial vertebræ, and therefore corresponded to lower arches in the spinal region,i.e.the skull was composed of as many vertebræ as there are branchial arches. These vertebræ were confined to the notochordal part of the skull, the prechordal part having arisen secondarily from the vertebral part, while the number of vertebræ are at least nine, possibly more. The nerves which could be homologized with spinal nerves were, he thought, divisible into two great groups—(1) the trigeminal group, which included the eye-muscle nerves, the facial, and its dorsal branch, the auditory; (2) the vagus group, which included the glossopharyngeal and vagus.

Such was the outcome of the purely comparative anatomical work of Huxley and Gegenbaur—work that has profoundly influenced all the views of segmentation up to the present day.

Now came the investigations of the embryologists, of whom I will take, in the first instance, Balfour, whose observations on the embryology of the Selachians led him to the conclusion that besides the evidence of segmentation to be found in the cranial nerves and in the branchial clefts, further evidence was afforded by the existence of head-cavities, the walls of which formed muscles just as they do in the spinal region. He came to the conclusion that the first head-cavity belonged to one or more pre-oral segments, of which the nerves were the oculomotor, trochlearis, and possibly abducens; while there were seven post-oral segments, each with its head-cavity and its visceral arch, of which the trigeminal, facial, glossopharyngeal, and the four parts of the vagus were the respective nerves.

Marshall, in 1882, considered that the cranial segments were all originally respiratory, and that all the segmental nerves are arranged uniformly with respect to a series of gill-clefts which have become modified anteriorly and have been lost, to a certain extent, posteriorly. He included the olfactory nerves among the segmental nerves, and looked upon the olfactory pit, the orbito-nasal lacrymal duct, the mouth, and the spiracle as all modified gill-slits, so that he reckoned three pre-oral and oral segments belonging to the Ist, IIIrd, IVth, and Vth nerves, and eight post-oral segments belonging respectively to the VIIth and VIth nerves, and to the IXth nerve, and six segments belonging to the Xth nerve. He pointed out that muscles supplied by the oculomotor nerve develop from the outer wall of the first head-cavity; not, however, theobliquus superiorandrectus externus, the latter originating probably from the walls of the third cavity.

In the same year, 1882, came van Wijhe's well-known paper, in which he showed that the mesoderm of the head in the selachian divided into two sets of segments, dorsal and ventral; that the dorsal segments were continuous with the body-somites, and that the ventral segments formed the lateral plates of mesoblast between each of the visceral and branchial pouches. He concluded that the dorsal somites were originally nine in number, that each was supplied with a ventral nerve-root, in the same way as the somites in the trunk, and that to each one a visceral pouch corresponded, whose walls were supplied by the corresponding dorsal nerve-root; of these nine segments, the ventral nerve-roots of the first three segments were respectively the oculomotor, trochlearis, and abducens nerves. The next three segments possessed no definable ventral root or muscles, and the seventh, eighth, and ninth segments possessed as ventral roots the hypoglossal nerve, with its muscular supply. The corresponding dorsal nerve-roots were the trigeminal, facial, auditory, glossopharyngeal and vagus nerves, the difference between cranial and spinal dorsal roots being that the former contain motor fibres.

Ahlborn, in 1884, drew a sharp distinction between the segments of the mesoderm and those of the endoderm. The former segmentation he called mesomeric, the latter branchiomeric. He considered the two segmentations to be independent, and concluded that the branchiomeric was secondary to the mesomeric, and therefore not ofsegmental value. As to the segments of the mesoderm in the head, the three hindmost or occipital in Petromyzontidæ remain permanently, and correspond to the three last segments in the selachian head. Of the anterior mesoderm segments, he considered that there were originally six, and that there are six typical eye-muscles in all Craniota, which have been compressed into three segments, as in Selachia.

Froriep (1885) showed in sheep-embryos and in chicks that the hypoglossal nerve belongs to three proto-vertebræ posterior to the vagus region, which were true spinal segments. He therefore modified Gegenbaur's conceptions to this extent: that portion of the skull designated by Gegenbaur as vertebral must be divided into two parts—a hind or occipital region, which is clearly composed of modified vertebræ and is the region of the hypoglossal nerves, and a front region, extending from the oculomotor to the accessorius nerves, which is characterized segmentally by the formation of branchial arches, but in which there is no evidence that proto-vertebræ were ever formed. He therefore divides the head-skeleton into three parts—

1. Gegenbaur's evertebral part—the region of the olfactory and optic nerves—which cannot be referred to any metameric segmentation.

2. The pseudo-vertebral, pre-spinal, or branchial part, clearly shown to be segmented from the consideration of the nerves and branchial arches, but not referable to proto-vertebræ—the region of the trigeminal and vagus nerves.

3. The vertebral spinal part—the region of the hypoglossal nerves.

He further showed that the ganglia of the specially branchial nerves, the facial, glossopharyngeal, and vagus, are at one stage in connection with the epidermis, so that these parts of the epidermis represent sense-organs which do not develop; these organs probably belonged to the lateral line system. As the connection takes place at the dorsal edge of the gill-slits, they may also be called rudimentary branchial sense-organs.

Since this paper of Froriep's, it has been generally recognized, and Gegenbaur has accepted Froriep's view, that the three hindmost metameres, which distinctly show the characteristics of vertebræ, belong to the spinal and not to the cranial region, so that the metameric segmentation of the cranial region proper has becomemore and more associated with the branchial segmentation. Froriep's discovery of the rudimentary branchial sense-organs as a factor in the segmentation question has led Beard to the conclusion that the olfactory and auditory organs represent in a permanent form two of these rudimentary branchial sense-organs. He therefore includes both the olfactory and auditory nerves in his list of cranial segmental nerves, and makes eleven cranial branchial segments in front of the spinal segments represented by the hypoglossal.

A still larger number of cranial segments is supposed to exist, according to the researches of Dohrn and Killian, in the embryos ofTorpedo ocellata. The former, holding to the view that vertebrates arose from annelids, considered that the head was formed of a series of metameres, to each one of which a mesoderm-segment, a gill-arch, a gill-cleft, a segmental nerve and vessel belonged. He found in the front head-region of a Torpedo embryo, corresponding to van Wijhe's first four somites, no less than twelve to fifteen mesoderm segments, and concluded, therefore, that the eye-muscle nerves, especially the oculomotor, represented many segmental nerves, and were not the nerves of single segments; so, also, that the inferior maxillary part of the trigeminal and the hyoid nerve of the facial are probably not single nerves, but a fusion of several. Killian comes to much the same conclusion as Dohrn, for he finds seventeen to eighteen separate mesoderm segments in the head, of which twelve belong to the trigeminal and facial region.

Since Rabl's paper, a number of papers have appeared, especially from America, dealing with yet another criterion of the original segmentation of the head, viz. a series of divisions of the central nervous system itself, which are seen at a very early stage of development, and are called neuromeres; the divisions in the cranial region being known as encephalomeres, and those of the spinal region as myomeres. Locy's paper has especially brought these divisions into prominence as a factor in the question of segmentation. They are essentially segments of the epiblast and not of the mesoblast; they are conspicuous in very early stages, and appear to be in relation with the cranial nerves, according to Locy. He recognizes inSqualus acanthias, in front of the spino-occipital region, fourteen pairs of such encephalomeres and a median unsegmented termination, which may represent one more pair fused in the middle line, making at least fifteen. He distributes these fifteen segments as follows:fore-brain three and unsegmented termination, mid-brain two, and hind-brain nine.

Again, Kupffer, in his recent papers on the embryology of Ammocœtes, asserts that especial information as to the number of primitive segments is afforded by the appearance in the early stages of a series of epibranchial ganglia in connection with the cranial nerves, which remain permanently in the case of the vagus nerves, but disappear in the case of pro-otic nerves. He considers that the evidence points to the number of segments in the mid- and hind-brain region as being primitively fifteen, viz. six segments belonging to the trigeminal and abducens group, three segments belonging respectively to the facial, auditory, and glossopharyngeal, and six to the vagus.

From this sketch we see that the modern tendency is to make six segments at least out of the region of the trigeminal nerves rather than two. In this region, as already mentioned, the evidence of segmentation is based more clearly on the somatic than on the splanchnic segments. We ought, therefore, in the first place, to consider the teaching of the eye-muscles and their nerves and the cœlomic cavities in connection with them, and see whether the hypothesis that such muscles represent the original dorso-ventral somatic muscles of the palæostracan ancestor is in harmony with and explains the facts of modern research.

Eye-Muscles and their Nerves.

The only universally recognized somatic nerves belonging to these segments which exist in the adult are the nerves to the eye-muscles, of which, according to van Wijhe, the oculomotor is the nerve of the 1st segment, the trochlearis of the 2nd, and the abducens of the 3rd; while the nerves and muscles belonging to the 4th and 5th segments,i.e.the 2nd facial and glossopharyngeal segments respectively, show only the merest rudiments, and do not exist in the adult. One significant fact appears in this statement of van Wijhe, and is accepted by all those who follow him, viz. that the oculomotor nerve has equal segmental value with the trochlearis and the abducens, although it supplies a number of muscles, each of which, on the face of it, has the same anatomical value as the superior oblique or external rectus. Dohrn alone, as far as I know, as already pointed out, insists upon the multiple character of the oculomotor nerve.


Back to IndexNext