Cane-juice Clarification.

Cane-juice Clarification.ByCleve. W. Hines, M. S.,Station Superintendent.The clarification of the juice forms one of the most important operations in sugar manufacture, since the higher the purity of the juice to be concentrated, the greater the percentage of sucrose that will crystallize, and the easier it will be to make a marketable sugar. If a high-grade sugar, or even yellow clarified sugar is to be made, this work should receive still greater attention.Before considering the methods to pursue and the reagents to use, it is well to decide first upon the grade of sugar it is desirable to make. If ordinary centrifugal sugar testing 96° is desired, it will usually be practical to use only lime in the clarification, since in these Islands cane reaches full maturity, and consequently the purity of the normal juice will be quite high, sometimes as high as 90° or 92° (apparent purity). If, however, it is desired to make a white plantation sugar, or granulated sugar, it will be advisable to subject the juice to an acidifying or bleaching treatment, as well as to the lime treatment.Usuallysulphurous acid is used for this purpose, but sometimes phosphoric acid, or a form of it, is employed. It is generally best to administer the acidifying agent before the application of the lime, since this raises the acidity and permits a larger amount of the lime to be used. However, this process is reversed by some manufacturers, and very good results are often reported.In the acidifying of any cane juice, care must be exercised that too high an acidity is not reached, since acids have an inverting effect upon sucrose, thus causing a noticeable loss. This of course depends upon the degree of acidity carried, the temperature maintained, and the methods followed during the time the juice remains acid.When it is desired to make a high-grade crystal for granulated sugar, the clarification must be more complete, and a water-white thick liquor should result, without subsequent treatment by bleaching agents and other chemicals, except the neutralizing of the slightly yellowish tint, which will be mentioned later.Reagents Used in Clarification.There is a great variety of reagents at the command of the sugar manufacturer, each of which has certain merits over others, and all are valuable in their place when properly used. It will therefore be the duty of the operator to select those which best meet his individual conditions.It is the purpose of this article to give a brief survey of the more common reagents which, under certain conditions, may be used to advantage in these Islands.Lime.—This is perhaps one of the most common and most widely used of all the reagents. Since the object in view is to increase the purity of the juice, it is obvious that the purest rock obtainable should be used in the preparation of the lime. Another reason why a good lime should be employed, is that one of the main impurities of the lime rock is magnesium, which, when mixed with cane juice, becomes very troublesome in the incrusting of the evaporator tubes, thus greatly lowering the coefficient of heat transmission.Much of the lime on the market in the Philippines has been made without any attempt to select pure clean limestone or shells. This is not suitable for putting into cane juice, and will result in a great deal of trouble whenever used in modern evaporating plants. There is, however, an abundant supply of limestone found in various parts of the Philippines, which analyses show to be almost free from impurities, and which will make a most excellent lime for clarifying purposes if burned properly. At present there is no modern plant for burning this rock on a large scale and consequently much of the work is done in a very crude and unsatisfactory manner. Most of the lime for clarification, in modern sugar factories, is imported, and constitutes a very heavy expense. If a lime kiln were installed in conjunction with some of our sugar factories, fresh and well-burned lime might be made as needed. The carbon dioxide could be used in the juice clarification, as is done in Java, and thus a good grade of plantation sugar could easily be manufactured. Any excess of burned lime might very readily be sold to other factories, which now use only high-priced imported lime.The lime used should be of the unslaked type, and should be protected from the air until a short time before using. The process of preparing this consists of heating lime rock to a very high temperature, in a kiln for that purpose, whereby the limestone is broken into two component parts, expressed by the following chemical equation: CaCO3(limestone) heated to high temperature—>CaO (calcium oxide) + CO2(carbon dioxide).This calcium oxide, commonly known as “quick lime,” is the substance desired in clarification. It should be slaked by being placed in water just before it is desired for use. This milk of lime should not be used until after the high temperature caused by the violent chemical action has subsided. On account of the heat involved and the high alkalinity in local portions, it is never safe to apply crude lime to the juice without previously slaking it in water, nor is it advisable to use a quantity of juice to mix this lime, as is quite often practiced in these Islands, since in this case there may be a loss of sucrose, with a resulting dark-colored product, which will impair the color of the clarified juice. The following chemical equation will express the reaction when this lime is slaked: CaO (calcium oxide) + H2O (water)—>Ca(OH)2(calcium hydroxide).This calcium hydroxide is a substance which is very caustic, and care must be exercised in handling it. Like all bases, it has a great affinity for acid, and consequently its first action is to neutralize part of the acids present. It then coagulates albumins and albuminoids, which form a part of the impurities, and throws down insoluble salts of sulphates, carbonates and phosphates, and of the bases iron and aluminum. These act as mechanical precipitants, assisting in bringing down other impurities. The compounds of calcium are practically insoluble in cold cane juices, and may be readily filtered, or settled, and the supernatant liquor drawn off. In the addition of lime, as well as in the application of other reagents, much care must be observed that the proper amount is added. If too little is used, there will be poor clarification and settling of the precipitate, while if too much is used, so that alkalinity is reached, and the juice heated to a high temperature, there will be a darkening of the juice caused by the decomposition of the reducing sugars by the calcium, and the formation of dark-colored compounds, which are very hard to remove. If the juice is limed to three-tenths or four-tenths cubic centimeter acidity against N/10 NaOH, usingphenolphthaleinas an indicator, there will be little or no chance of trouble. With the above dangers in view, it is not safe to employ the haphazard methods of liming usually practiced here, but the milk of lime should always be made of stated density and a measured or weighed amount should be supplied to each clarifier of juice, corresponding to prevailing conditions.Sulphur dioxide.—Where a better grade of sugar than 96° test is desired, it is often advisable to subject the juice to further treatment, one reason for which is to increase the acidity so that a larger amount of lime may be added to effect the clarification.In addition to this the sulphur acts to some extent directly as a clarifying agent, by precipitating some of the impurities. It also acts as a bleaching agent by extracting the oxygen from the impurities and lastly it acts as a disinfectant. It is formed by burning crude sulphur in a stove made for that purpose. S (sulphur) + O (oxygen heat)—>SO2(sulphur dioxide).Sometimes bombs filled with liquid sulphur dioxide are purchased for this purpose. These are inconvenient to use, and this method is ordinarily more expensive than the usual one of burning the sulphur and producing the gas directly at the factory.Sulphur dioxide is a heavy gas which is very readily absorbed in water, and at a temperature of zero C. nearly 80 per cent by volume of the gas will be taken up.At 40° C. only about 18 per cent by volume of the gas will be absorbed. It may readily be seen that the percentage of gas contained in the juice when saturated will be determined by the temperature.The following equation expresses theabsorptionof sulphur dioxide in water at ordinary temperature:SO2(sulphur dioxide) + H2O (water at low temperature)—>H2SO3(sulphurous acid).Another thing of very great importance is the cooling of the gases to condense any water that may be present so that no hot gas will reach the juice to be treated or combine with water in the pipes. The equation represented when high temperatures are used is as follows:SO2(sulphur dioxide) + H2O (water) + O (high temperature)—>H2SO4(sulphuric acid).This last-named acid is very corrosive and a powerful investing agent. It therefore has the property of rapidly destroying sucrose, especially at a high temperature.In the burning of sulphur it is well that as thorough a combination as possible be obtained, else there will be a loss of sulphur, which will deposit in the tubes and choke them, and more time will be required for the process. The fumes from a well-regulated sulphur furnace should contain from 15 to 16 per cent sulphurous acid. The theoretical percentage obtainable is about 21 per cent of the acid.Carbon dioxide.—In recent years carbon dioxide gas has found a very useful application in the cane-sugar factories, where a good grade of plantation sugar is desired.Java factories have been the foremost in elaborating a system, through their eminent technologists, so that today one may find the bulk of the sugars they turn out from certain factoriesof a very satisfactory grade and color. The method they use requires a great deal of skill and attention in order to yield results that are satisfactory. It is patterned after the process used in beet-sugar factories, with some distinct modifications, which make it applicable to a juice containing glucose, as is always the case with cane juices.The object of applying any clarifying material is to effect a rise in purity, and it is especially desirable to remove, in all cases, the substance added, since this itself would tend to act as an impurity and thus give a lower coefficient, if not properly removed. The lime, which has been added previously, may be partly removed, as the original precipitate formed, and any free lime or compound which may be easily decomposed will combine with carbon dioxide, forming calcium carbonate or limestone, which is quite insoluble and may be very easily filtered off.Ca(OH)2(calcium hydroxide) + CO2—>CaCO3(calcium carbonate) + H2O (water).Whether single or double carbonation is used, the same general methods are employed, and results are expressed by the same chemical equation.As stated before, the carbon dioxide may be recovered from the kilns during the burning of lime, as is commonly done in the beet-sugar industry, or it may be purchased in the form of liquid CO2contained in heavy iron containers. It is also feasible to use flue gases for this purpose, where a good combustion is obtained, and after they have been properly treated.Phosphoric acid.—It is sometimes advisable to apply a form of phosphoric acid as a clarifying and precipitating agent after the lime. This may be used in various forms depending upon the individual desires of the operator.The compound usually found on the market may consist of one of the following (or a combination of them):H3PO4(ortho phosphoric acid).CaH4(PO4)2(mono-calcium phosphate).Ca2H2(PO4)2(dicalcium phosphate).Na2HPO4(sodium phosphate).The sodium phosphate contains very little acidity, and the main purpose of its use is based on the principle that the sodium is readily given up for any soluble calcium that may be present. This forms the insoluble calcium phosphate, which is easily removed as a precipitate or filtered off. The “Reserve Factory” in Louisiana has been using this reagent in their clarification for a long time, where a very good grade of granulated sugar is made.Besides these forms of phosphorous, various compounds maybe found on the market, under trade names, which have as their base the above acid. “Clariphos” is one of these compounds, which has found extensive use in many of the Louisiana sugar factories.Another is known as “phospho-gelose,” which is a combination of dicalcium phosphate Ca2H2(PO4)2and infusorial silica. It is a patented preparation and is made by the absorption of phosphoric acid by a powdery compound known as “Kieselguhr.” After the absorption, the compound is heated to expel the water, and then re-saturated. This work is repeated several times until the finished product, which is very hydroscopic, contains about 25 per cent of phosphoric acid.Kieselguhr.—This is a fine light powder containing a high percentage of silica. It is used purely for its mechanical effect in forming particles upon which the impurities may collect, and thus be more readily carried to the bottom. This material often prolongs the workings of the filter presses by collecting the gummy material, which would otherwise gather on the filter cloths. Kieselguhr was used in the beet-sugar industry of Europe many years ago, and is extensively used now for the same purpose in the United States.Hydrosulphites.—These are preparations of great bleaching power, found on the market under various trade names. One of these, widely used in the United States, in both the beet and cane-sugar industries, is known as “Blankit.” This is dehydrated sodium hydrosulphite with the chemical formula, Na2S2O4. It has a much greater bleaching and reducing action than sulphurous acid, and oxydizes very readily in combination with moisture, forming sulphate. On this account it is well to purchase the reagent in small parcels for this climate, and to carefully guard the stored material from moisture. This substance, which is a white powder, dissolves very easily in water, forming an alkaline liquid, although this point is sometimes hard to distinguish on account of hydrogen atoms liberated.There is a bleaching preparation made in France known as “Redo,” which is simply calcium hydrosulphite (CaS2O4). This is used in the sugar industry to some extent, but it is claimed by many that the results obtained are not as good as those obtained from the sodium compound and that it deteriorates more easily.Hydrosulphites, unlike sulphurous acid, will bleach equally as well in alkaline or neutral medium, as in an acid medium. There is therefore less danger from loss of sugar by inversion when they are used, while the permanency of their effect is about the same. In any case where juices have been bleachedby sulphites, the result may be considered as but temporary, since upon exposure to air and light the product assumes a darker color. Hydrosulphites should therefore be introduced as late in the process as possible. Where the material in the vacuum pan is to be bleached, it is well to introduce this reagent just before striking grain, thus furnishing a bright clear material which will act as film over the nucleous of sucrose in the grain.The chemical equation representing the change which takes place with this reagent is as follows:Na2S2O4(sodium hydrosulphite) + O (oxygen) + H2O (water)—>2(Na H S O3).The amount to be used will depend absolutely upon individual conditions, which may be ascertained only by experimentation. The manufacturers of this product state that the amount of the material used to that of dry sugar should be as 1 is to 10,000. In the writer’s experience, two or even three times this amount will usually be required to give maximum results. As stated before, since there is such a variance in the material to be treated, each operator will be required to judge this to a great extent from the condition of his product.In these Islands where a very low grade of open-kettle sugar is still made, which sells very cheaply, attempts are often made to bleach it and re-crystalize in order to make a centrifugal sugar.While ordinary clarifying agents help to a great extent, if the melted sugars are very dark from caramel and the decomposition products of calcium glucosate, these reagents can not be expected to give a light-colored juice. While they may improve conditions somewhat, the only solution to such a problem is the use of the boneblack process.Bluing.—In the production of plantation clarified sugars, and sometimes of refinery crystals made from low-grade sugars, there is a thin film surrounding each sugar crystal, which has a yellowish tint. It is this that gives rise to the different grades of white sugars, when color test only is considered. Since this yellowish tinge will give way to a lighter color when neutralized with the proper shade of blue, it is a very common practice to use some form of bluing—usually that known as ultramarine—for this purpose.The action of this reagent is only mechanical and great care must be exercised that the proper quantity is used. This must be determined by trials with the different amounts of the reagent, since the density of the yellowish tint is different in each case.The place of application will also depend very much upon conditions.Some operators apply it only at the centrifugals and others apply it in the pan just at the graining point. Again others use a quantity at both the pan and in the last charge of water at the centrifugals. In any case, a good grade only of the reagent should be used. This must be thoroughly dissolved in clear water, condensed steam being preferred, and passed through cloth or felt filters in order to remove any trace of lumps which would tend to produce uneven bluing, or bluish streaks.While this is an excellent reagent in its place, it must not be expected to whiten molasses sugars as was attempted by a local manufacturer.Animal charcoal or boneblack.—This material is made from bones of animals, by burning them in a kiln built for that purpose. The object of this burning is to remove the organic matter and leave the remainder in a porous condition, so that it may be crushed into particles the proper size. It is not desirable to have a great amount of char dust present, since this retards the passage of the liquors through the filters, as well as impairing the efficiency of the work.Bone char, being very porous, absorbs a great volume of gases, among which is oxygen, and it is ordinarily presumed that its bleaching power may be attributed to this fact. Extensive experiments have been made to determine definitely this point, and the char has been subjected to an atmosphere of other gases than oxygen. This proved that the char still contained great clarifying power.Char also has a great surface attraction, which causes it to collect particles of coloring matter that may be present, and thus acts as an excellent filtering agent. New char should be thoroughly washed with pure water until all the impurities are removed. With the end in view of determining when the last traces of chlorine have disappeared, chemical tests are made on the wash waters. Nitric acid and silver nitrate are employed for this purpose. After animal char has been used for some time in the filters and fails to do its work efficiently, it is reburned, or revived, as it is called. Ordinarily the best results are obtained after a char has been used several times.Reburning of the char at too high a temperature should be avoided, as it incurs an unnecessary loss of fuel, besides causing serious injury to the char by a contraction of the pores. Since, as stated previously, the main value of the char as a clarifying and filtering medium lies in the fact of its porosity, anything which reduces this will greatly impair its efficiency. One thing in connection with the bone-char process of making white sugarsis that it is expensive and should not be attempted except on a large scale, since the initial expense of installation, as well as the cost of running, is very great. The writer is sometimes asked by managers of small factories, turning out plantation yellow clarified sugars, if it would not pay them to employ bone-char filters to use in connection with the remainder of their factory, in order to be able to work up an industry with the low-grade open-kettle sugars, during the intercampaign. Most assuredly such a combination of small plantation factory and refinery would not be a paying affair. It takes men of experience and special training to carry out successfully the more detailed work in any technical line. One thing, however, can be very successfully done by these factories, and that is to make a first-class plantation white sugar which will command a ready price in the local markets, or even suffice for export, if the proper manufacturing methods are used.It is not presumed that any one planter will use all of the clarifying reagents mentioned above, but he should choose the ones to fit his individual needs, and secure his supply early, since a great deal of time is required to transport supplies from the place of manufacture to these Islands. This is especially the case when the place of manufacture happens to be in Europe, as is true with a number of the patented clarifying reagents.Then, again, a suitable place should be selected for the storage of reagents, where they may be protected from dampness. The quick-lime and sulphites are especially susceptible to moisture, while the greatest danger of loss, when phosphoric acid compounds are stored, will result from leakage. This is on account of the great oxydizing effect of the acid on the iron loops surrounding the barrels, whereby a great quantity may be lost within a very short time. The writer observed this needless waste in one of the small factories here, when twenty barrels of a high-priced acid were stored on the damp ground of the factory, and a great percentage of it wasted.There are a number of clarifying agents offered on the market under fancy names. Planters are advised to be cautious about the purchasing of such supplies until they have been thoroughly tried out and proven a success. Even then, it is better to experiment only on a small scale until it is known that they will meet their individual needs.Some of these are not only deficient in clarifying power, but actually act as an absolute detriment by introducing impurities which lower the value of the juice as well as increasing the subsequent work of boiling and after working of the sugar.La Fabricacion de Azucar Blanco en los Ingenios.ByW. H. Th. HarloffandH. Schmidt.Translated into Spanish byC. J. Bourbakis.(Reviewed byCleve. W. Hines, M. S.,Station Superintendent.)This book is edited by two of the foremost sugar producers of the world, Mr. Harloff, who is manager of a large sugar factory in Java, and Mr. Schmidt, a very able consulting chemist and engineer.The book was originally written in Dutch and was translated into English, and now the Spanish edition has been completed, which will be welcomed by Spanish readers throughout the sugar world.While dealing with a purely technical subject, this work is so simple in its diction that it may be readily comprehended even by those of little technical training.The introduction is divided into five parts as follows:Part I.—The influence of alkalies and alkaline earths on the constituents of cane juice.Mention is here made of the formation of saccharates of barium, strontium, and calcium in low concentrations. The latter is made use of in the famous Steffens process of the beet-sugar industry.Part II.—The influence of acids on the constituents of sugar cane and the hydrolizing effect of dilute acids on sucrose and the resulting constituents, laevulose and dextrose or invert sugar, are explained.Part III.—The influence of heating on the constituents of cane juice is shown.Part IV.—The coloring substances of cane and those produced in the process of manufacture.Part V.—The different fermentations that occur in the sugar factory including lactic, butyric, alcoholic and dextran are discussed.The main part of the text deals with the manufacture of white sugar by the carbonitation and sulphitation processes, and particular attention is given to the acid-thin-juice-method which has been elaborated in the Java factories with such great success during the past few years.This book may be obtained from Norman Roger, 2 St. Dunstan’s Hill, London, England. Price 7s. 6d. net (₱4 Philippine currency).Current Notes—First Quarter.NOTES BY P. J. WESTER, Horticulturist in Charge of Lamao Experiment Station.Shield Budding the Mango.The one defect in the Pound method of shield budding the mango described in Bureau of Agriculture Bulletin No. 18, The Mango, consists of the necessity of placing an apron to protect the long petiole left on the bud from the sun and the entrance of water, which work necessarily requires more time than if the bud could be wrapped as is the case in budding citrus trees. However, a possible use of scarred or nonpetioled budwood as a means of obviating the need of the apron was suggested in the above-mentioned publication. The results obtained in recent experiments conducted at the Lamao experiment station (November and December, 1914) have fully come up to the expectations of this modification, and if the work is carefully performed, the operator should have no trouble in obtaining 85 per cent of live buds by proceeding in accordance with the following directions:(1) Select budwood that is well matured, from the first, second, and third flushes from the end of a branch. This budwood is always green and smooth.(2) Three weeks or more in advance of the date when the budding is to be performed, cut off the leaf blades of the budwood selected. This causes the petioles to drop. When the scars left after the petioles have fallen are well healed the budwood is in condition for budding.(3) The buds should be cut about 4 centimeters long, with an ample wood shield, and inserted in the stock at a point where the bark is green and smooth like the budwood, not where it is rough and brownish.(4) Use waxed tape in tying and cover the entire bud.(5) When in the course of two to three weeks a good union has formed, unwind the wrapping so as to expose the leaf bud from which the growth is to issue, and cut off the top of the stock 10 to 15 centimeters above the bud.(6) Every ten days after unwrapping the buds go through the nursery and carefully rub off all stock sprouts in order to force the buds to grow.All other precautions that are taken in ordinary shield budding must, of course, also be attended to in order to insure success.Experiments in Shield Budding.After repeated attempts the shield-budding experiments at the Lamao experiment station with the camia (Averrhoa Bilimbi) and the santol (Sandoricum koetjape) have been successful, and it has also been found that the barobo (Diplodiscus paniculatus), a nut tree indigenous to the Philippines (Dillenia indica), and the sea grape (Coccoloba uvifera), may be propagated by means of shield budding. Detailed information relative to the budding of these plants will be published on the completion of the experiments.Improvement of Tropical Fruits in the Philippines.The average fruit is so poor that most foreigners never give any attention to the santol, and the fruit is a drug even in the native markets and enormous quantities annually rot on the ground. Few are aware that there are mutations among the santol trees the fruit of which in point of flavor vies with the best fruits in the Tropics, and that in this respect it is superior even to its celebrated relative, the lanzon (Lansium domesticum), the greatest defects being the large seeds and the adherence of the flesh to the seeds. If the seed in these superior santols were abortive in the same proportion as those in the mangosteen, the now despised santol, with its translucent pulp, separable from the pericarp as that of the mangosteen, subacid, juicy and of a vinous, excellent flavor, would rapidly become one of the most popular fruits in the Tropics. Its thick, tough “rind” should make the santol at least equal to the mangosteen as a shipper.What is probably the first horticultural, asexually propagated variety of the santol is now being established at the Lamao experiment station from buds obtained by Mr. F. Galang, assistant agricultural inspector, from a tree in Pampanga, the fruit of which is so highly prized locally that the fruit never retails below the relatively high price of 2 centavos apiece even when other santols are so plentiful as to be literally unsalable.Mr. B. Malvar, assistant agricultural inspector, has obtained in Batangas budwood of a sweet-fruited camia which is also being propagated. This is the first mutation of this kind coming to the attention of the writer.The collection of Philippine citrus fruits of economic value or of botanical interest has been in progress since in 1911, but no systematized selection work in the mandarin district has been attempted until December, 1914, when Mr. B. Malvar was detailed to visit the citrus region in Batangas. Mr. Malvar returnedwith sample fruits of some twenty odd trees, a number of which were found to be of very good quality. These are being propagated for future distribution. Mr. Malvar also found another “Tizon” (Citrus nobilisvar.papillaris) of excellent flavor and quality which has been added to the citrus collection at Lamao.Petioled Vs. Nonpetioled Budwood.The last three years’ experiments in shield budding tropical fruits which have been conducted by the writer at the Lamao experiment station indicate that for practical purposes in propagation work the tropical fruits may be divided into two groups: (1) Those species the budwood of which may be cut at the time of budding and the petioles cut off close to the bud—for instance, the citrus fruits, avocado, guava, and carambola; and (2) those species in which decay enters the bud from the adhering remnant of the petiole so frequently as to make impracticable budding from newly cut budwood from twigs with the leaves still adhering, such as the mango, hevi, and cacao. It has been found, however, that this trouble may be easily overcome by the simple method of cutting off the leaf blade about three weeks in advance of when the budding is to be done so as to induce the formation of a leaf scar. Then when the petioles have dropped and a well-healed scar has formed, the budwood may be cut and the buds inserted and tied as in ordinary shield budding.In the case of some species, whether or not the bud is of the same age as the stock at the point of insertion is of little or no practical importance, but in other species this condition is one of the requirements for success. Therefore, two chances of failure are insured against in experimental work with species that hitherto have not been budded—(a) by defoliating the budwood previously to the budding operation, and using what may be termed nonpetioled or scarred budwood; and (b) by inserting the buds at a point in the stock which approximately is of the same age and appearance as the budwood.NOTES BY CLEVE. W. HINES, M. S.,Station Superintendent.A New Sugar Industry.The beginning of a tropical industry in what would be considered a semitropical climate was noted in 1914, when the Southwestern Sugar Company of Arizona milled their first crop of sugar cane and made it into sugar. The factory had been used previously for the manufacture of beet sugar only. It is asingular coincidence to find a region where both cane and beets will thrive well and where sugar is made from both sources in the same factory, and the sugar world is looking forward with great interest to the results of this new venture.The World’s Sugar Supply.The world’s production of sugar amounts to nearly seventeen million tons, practically one half of which is derived from the beet root, the greater percentage of which is produced in Europe. Now that the ravages of war have devastated many of the better beet-sugar regions of Europe a greater demand will be made on the more fortunate sugar countries as soon as the present supply of storage sugar is exhausted and trade resumes its normal condition.Progress in Sugar Manufacture.The past few years have shown great progress in the method of sugar making. It used to be thought that a high grade of sugar could be made only by the use of the bone-black or animal-char process.The beet-sugar producers were the first to diverge from this method and succeeded in making a perfectly satisfactory sugar in their factories in one continuous process by the aid of the carbonitation system.Louisiana had been making a fairly good sugar known as yellow clarified for a number of years, but the great step in improvements along these lines was brought about by the acid-thin-juice process of Java. This was a combination of the carbonitation and sulphitation processes which gave a satisfactory sugar, though unfortunately the yield of resulting molasses was also quite high.The latest improvement in this work was the introduction of the “Battille Process” which has certain similarities to the Steffens process of beet-sugar manufacture. This method has given an excellent grade of sugar and the maximum rendement since practically all of the sugar is extracted in crystalized form.

Cane-juice Clarification.ByCleve. W. Hines, M. S.,Station Superintendent.The clarification of the juice forms one of the most important operations in sugar manufacture, since the higher the purity of the juice to be concentrated, the greater the percentage of sucrose that will crystallize, and the easier it will be to make a marketable sugar. If a high-grade sugar, or even yellow clarified sugar is to be made, this work should receive still greater attention.Before considering the methods to pursue and the reagents to use, it is well to decide first upon the grade of sugar it is desirable to make. If ordinary centrifugal sugar testing 96° is desired, it will usually be practical to use only lime in the clarification, since in these Islands cane reaches full maturity, and consequently the purity of the normal juice will be quite high, sometimes as high as 90° or 92° (apparent purity). If, however, it is desired to make a white plantation sugar, or granulated sugar, it will be advisable to subject the juice to an acidifying or bleaching treatment, as well as to the lime treatment.Usuallysulphurous acid is used for this purpose, but sometimes phosphoric acid, or a form of it, is employed. It is generally best to administer the acidifying agent before the application of the lime, since this raises the acidity and permits a larger amount of the lime to be used. However, this process is reversed by some manufacturers, and very good results are often reported.In the acidifying of any cane juice, care must be exercised that too high an acidity is not reached, since acids have an inverting effect upon sucrose, thus causing a noticeable loss. This of course depends upon the degree of acidity carried, the temperature maintained, and the methods followed during the time the juice remains acid.When it is desired to make a high-grade crystal for granulated sugar, the clarification must be more complete, and a water-white thick liquor should result, without subsequent treatment by bleaching agents and other chemicals, except the neutralizing of the slightly yellowish tint, which will be mentioned later.Reagents Used in Clarification.There is a great variety of reagents at the command of the sugar manufacturer, each of which has certain merits over others, and all are valuable in their place when properly used. It will therefore be the duty of the operator to select those which best meet his individual conditions.It is the purpose of this article to give a brief survey of the more common reagents which, under certain conditions, may be used to advantage in these Islands.Lime.—This is perhaps one of the most common and most widely used of all the reagents. Since the object in view is to increase the purity of the juice, it is obvious that the purest rock obtainable should be used in the preparation of the lime. Another reason why a good lime should be employed, is that one of the main impurities of the lime rock is magnesium, which, when mixed with cane juice, becomes very troublesome in the incrusting of the evaporator tubes, thus greatly lowering the coefficient of heat transmission.Much of the lime on the market in the Philippines has been made without any attempt to select pure clean limestone or shells. This is not suitable for putting into cane juice, and will result in a great deal of trouble whenever used in modern evaporating plants. There is, however, an abundant supply of limestone found in various parts of the Philippines, which analyses show to be almost free from impurities, and which will make a most excellent lime for clarifying purposes if burned properly. At present there is no modern plant for burning this rock on a large scale and consequently much of the work is done in a very crude and unsatisfactory manner. Most of the lime for clarification, in modern sugar factories, is imported, and constitutes a very heavy expense. If a lime kiln were installed in conjunction with some of our sugar factories, fresh and well-burned lime might be made as needed. The carbon dioxide could be used in the juice clarification, as is done in Java, and thus a good grade of plantation sugar could easily be manufactured. Any excess of burned lime might very readily be sold to other factories, which now use only high-priced imported lime.The lime used should be of the unslaked type, and should be protected from the air until a short time before using. The process of preparing this consists of heating lime rock to a very high temperature, in a kiln for that purpose, whereby the limestone is broken into two component parts, expressed by the following chemical equation: CaCO3(limestone) heated to high temperature—>CaO (calcium oxide) + CO2(carbon dioxide).This calcium oxide, commonly known as “quick lime,” is the substance desired in clarification. It should be slaked by being placed in water just before it is desired for use. This milk of lime should not be used until after the high temperature caused by the violent chemical action has subsided. On account of the heat involved and the high alkalinity in local portions, it is never safe to apply crude lime to the juice without previously slaking it in water, nor is it advisable to use a quantity of juice to mix this lime, as is quite often practiced in these Islands, since in this case there may be a loss of sucrose, with a resulting dark-colored product, which will impair the color of the clarified juice. The following chemical equation will express the reaction when this lime is slaked: CaO (calcium oxide) + H2O (water)—>Ca(OH)2(calcium hydroxide).This calcium hydroxide is a substance which is very caustic, and care must be exercised in handling it. Like all bases, it has a great affinity for acid, and consequently its first action is to neutralize part of the acids present. It then coagulates albumins and albuminoids, which form a part of the impurities, and throws down insoluble salts of sulphates, carbonates and phosphates, and of the bases iron and aluminum. These act as mechanical precipitants, assisting in bringing down other impurities. The compounds of calcium are practically insoluble in cold cane juices, and may be readily filtered, or settled, and the supernatant liquor drawn off. In the addition of lime, as well as in the application of other reagents, much care must be observed that the proper amount is added. If too little is used, there will be poor clarification and settling of the precipitate, while if too much is used, so that alkalinity is reached, and the juice heated to a high temperature, there will be a darkening of the juice caused by the decomposition of the reducing sugars by the calcium, and the formation of dark-colored compounds, which are very hard to remove. If the juice is limed to three-tenths or four-tenths cubic centimeter acidity against N/10 NaOH, usingphenolphthaleinas an indicator, there will be little or no chance of trouble. With the above dangers in view, it is not safe to employ the haphazard methods of liming usually practiced here, but the milk of lime should always be made of stated density and a measured or weighed amount should be supplied to each clarifier of juice, corresponding to prevailing conditions.Sulphur dioxide.—Where a better grade of sugar than 96° test is desired, it is often advisable to subject the juice to further treatment, one reason for which is to increase the acidity so that a larger amount of lime may be added to effect the clarification.In addition to this the sulphur acts to some extent directly as a clarifying agent, by precipitating some of the impurities. It also acts as a bleaching agent by extracting the oxygen from the impurities and lastly it acts as a disinfectant. It is formed by burning crude sulphur in a stove made for that purpose. S (sulphur) + O (oxygen heat)—>SO2(sulphur dioxide).Sometimes bombs filled with liquid sulphur dioxide are purchased for this purpose. These are inconvenient to use, and this method is ordinarily more expensive than the usual one of burning the sulphur and producing the gas directly at the factory.Sulphur dioxide is a heavy gas which is very readily absorbed in water, and at a temperature of zero C. nearly 80 per cent by volume of the gas will be taken up.At 40° C. only about 18 per cent by volume of the gas will be absorbed. It may readily be seen that the percentage of gas contained in the juice when saturated will be determined by the temperature.The following equation expresses theabsorptionof sulphur dioxide in water at ordinary temperature:SO2(sulphur dioxide) + H2O (water at low temperature)—>H2SO3(sulphurous acid).Another thing of very great importance is the cooling of the gases to condense any water that may be present so that no hot gas will reach the juice to be treated or combine with water in the pipes. The equation represented when high temperatures are used is as follows:SO2(sulphur dioxide) + H2O (water) + O (high temperature)—>H2SO4(sulphuric acid).This last-named acid is very corrosive and a powerful investing agent. It therefore has the property of rapidly destroying sucrose, especially at a high temperature.In the burning of sulphur it is well that as thorough a combination as possible be obtained, else there will be a loss of sulphur, which will deposit in the tubes and choke them, and more time will be required for the process. The fumes from a well-regulated sulphur furnace should contain from 15 to 16 per cent sulphurous acid. The theoretical percentage obtainable is about 21 per cent of the acid.Carbon dioxide.—In recent years carbon dioxide gas has found a very useful application in the cane-sugar factories, where a good grade of plantation sugar is desired.Java factories have been the foremost in elaborating a system, through their eminent technologists, so that today one may find the bulk of the sugars they turn out from certain factoriesof a very satisfactory grade and color. The method they use requires a great deal of skill and attention in order to yield results that are satisfactory. It is patterned after the process used in beet-sugar factories, with some distinct modifications, which make it applicable to a juice containing glucose, as is always the case with cane juices.The object of applying any clarifying material is to effect a rise in purity, and it is especially desirable to remove, in all cases, the substance added, since this itself would tend to act as an impurity and thus give a lower coefficient, if not properly removed. The lime, which has been added previously, may be partly removed, as the original precipitate formed, and any free lime or compound which may be easily decomposed will combine with carbon dioxide, forming calcium carbonate or limestone, which is quite insoluble and may be very easily filtered off.Ca(OH)2(calcium hydroxide) + CO2—>CaCO3(calcium carbonate) + H2O (water).Whether single or double carbonation is used, the same general methods are employed, and results are expressed by the same chemical equation.As stated before, the carbon dioxide may be recovered from the kilns during the burning of lime, as is commonly done in the beet-sugar industry, or it may be purchased in the form of liquid CO2contained in heavy iron containers. It is also feasible to use flue gases for this purpose, where a good combustion is obtained, and after they have been properly treated.Phosphoric acid.—It is sometimes advisable to apply a form of phosphoric acid as a clarifying and precipitating agent after the lime. This may be used in various forms depending upon the individual desires of the operator.The compound usually found on the market may consist of one of the following (or a combination of them):H3PO4(ortho phosphoric acid).CaH4(PO4)2(mono-calcium phosphate).Ca2H2(PO4)2(dicalcium phosphate).Na2HPO4(sodium phosphate).The sodium phosphate contains very little acidity, and the main purpose of its use is based on the principle that the sodium is readily given up for any soluble calcium that may be present. This forms the insoluble calcium phosphate, which is easily removed as a precipitate or filtered off. The “Reserve Factory” in Louisiana has been using this reagent in their clarification for a long time, where a very good grade of granulated sugar is made.Besides these forms of phosphorous, various compounds maybe found on the market, under trade names, which have as their base the above acid. “Clariphos” is one of these compounds, which has found extensive use in many of the Louisiana sugar factories.Another is known as “phospho-gelose,” which is a combination of dicalcium phosphate Ca2H2(PO4)2and infusorial silica. It is a patented preparation and is made by the absorption of phosphoric acid by a powdery compound known as “Kieselguhr.” After the absorption, the compound is heated to expel the water, and then re-saturated. This work is repeated several times until the finished product, which is very hydroscopic, contains about 25 per cent of phosphoric acid.Kieselguhr.—This is a fine light powder containing a high percentage of silica. It is used purely for its mechanical effect in forming particles upon which the impurities may collect, and thus be more readily carried to the bottom. This material often prolongs the workings of the filter presses by collecting the gummy material, which would otherwise gather on the filter cloths. Kieselguhr was used in the beet-sugar industry of Europe many years ago, and is extensively used now for the same purpose in the United States.Hydrosulphites.—These are preparations of great bleaching power, found on the market under various trade names. One of these, widely used in the United States, in both the beet and cane-sugar industries, is known as “Blankit.” This is dehydrated sodium hydrosulphite with the chemical formula, Na2S2O4. It has a much greater bleaching and reducing action than sulphurous acid, and oxydizes very readily in combination with moisture, forming sulphate. On this account it is well to purchase the reagent in small parcels for this climate, and to carefully guard the stored material from moisture. This substance, which is a white powder, dissolves very easily in water, forming an alkaline liquid, although this point is sometimes hard to distinguish on account of hydrogen atoms liberated.There is a bleaching preparation made in France known as “Redo,” which is simply calcium hydrosulphite (CaS2O4). This is used in the sugar industry to some extent, but it is claimed by many that the results obtained are not as good as those obtained from the sodium compound and that it deteriorates more easily.Hydrosulphites, unlike sulphurous acid, will bleach equally as well in alkaline or neutral medium, as in an acid medium. There is therefore less danger from loss of sugar by inversion when they are used, while the permanency of their effect is about the same. In any case where juices have been bleachedby sulphites, the result may be considered as but temporary, since upon exposure to air and light the product assumes a darker color. Hydrosulphites should therefore be introduced as late in the process as possible. Where the material in the vacuum pan is to be bleached, it is well to introduce this reagent just before striking grain, thus furnishing a bright clear material which will act as film over the nucleous of sucrose in the grain.The chemical equation representing the change which takes place with this reagent is as follows:Na2S2O4(sodium hydrosulphite) + O (oxygen) + H2O (water)—>2(Na H S O3).The amount to be used will depend absolutely upon individual conditions, which may be ascertained only by experimentation. The manufacturers of this product state that the amount of the material used to that of dry sugar should be as 1 is to 10,000. In the writer’s experience, two or even three times this amount will usually be required to give maximum results. As stated before, since there is such a variance in the material to be treated, each operator will be required to judge this to a great extent from the condition of his product.In these Islands where a very low grade of open-kettle sugar is still made, which sells very cheaply, attempts are often made to bleach it and re-crystalize in order to make a centrifugal sugar.While ordinary clarifying agents help to a great extent, if the melted sugars are very dark from caramel and the decomposition products of calcium glucosate, these reagents can not be expected to give a light-colored juice. While they may improve conditions somewhat, the only solution to such a problem is the use of the boneblack process.Bluing.—In the production of plantation clarified sugars, and sometimes of refinery crystals made from low-grade sugars, there is a thin film surrounding each sugar crystal, which has a yellowish tint. It is this that gives rise to the different grades of white sugars, when color test only is considered. Since this yellowish tinge will give way to a lighter color when neutralized with the proper shade of blue, it is a very common practice to use some form of bluing—usually that known as ultramarine—for this purpose.The action of this reagent is only mechanical and great care must be exercised that the proper quantity is used. This must be determined by trials with the different amounts of the reagent, since the density of the yellowish tint is different in each case.The place of application will also depend very much upon conditions.Some operators apply it only at the centrifugals and others apply it in the pan just at the graining point. Again others use a quantity at both the pan and in the last charge of water at the centrifugals. In any case, a good grade only of the reagent should be used. This must be thoroughly dissolved in clear water, condensed steam being preferred, and passed through cloth or felt filters in order to remove any trace of lumps which would tend to produce uneven bluing, or bluish streaks.While this is an excellent reagent in its place, it must not be expected to whiten molasses sugars as was attempted by a local manufacturer.Animal charcoal or boneblack.—This material is made from bones of animals, by burning them in a kiln built for that purpose. The object of this burning is to remove the organic matter and leave the remainder in a porous condition, so that it may be crushed into particles the proper size. It is not desirable to have a great amount of char dust present, since this retards the passage of the liquors through the filters, as well as impairing the efficiency of the work.Bone char, being very porous, absorbs a great volume of gases, among which is oxygen, and it is ordinarily presumed that its bleaching power may be attributed to this fact. Extensive experiments have been made to determine definitely this point, and the char has been subjected to an atmosphere of other gases than oxygen. This proved that the char still contained great clarifying power.Char also has a great surface attraction, which causes it to collect particles of coloring matter that may be present, and thus acts as an excellent filtering agent. New char should be thoroughly washed with pure water until all the impurities are removed. With the end in view of determining when the last traces of chlorine have disappeared, chemical tests are made on the wash waters. Nitric acid and silver nitrate are employed for this purpose. After animal char has been used for some time in the filters and fails to do its work efficiently, it is reburned, or revived, as it is called. Ordinarily the best results are obtained after a char has been used several times.Reburning of the char at too high a temperature should be avoided, as it incurs an unnecessary loss of fuel, besides causing serious injury to the char by a contraction of the pores. Since, as stated previously, the main value of the char as a clarifying and filtering medium lies in the fact of its porosity, anything which reduces this will greatly impair its efficiency. One thing in connection with the bone-char process of making white sugarsis that it is expensive and should not be attempted except on a large scale, since the initial expense of installation, as well as the cost of running, is very great. The writer is sometimes asked by managers of small factories, turning out plantation yellow clarified sugars, if it would not pay them to employ bone-char filters to use in connection with the remainder of their factory, in order to be able to work up an industry with the low-grade open-kettle sugars, during the intercampaign. Most assuredly such a combination of small plantation factory and refinery would not be a paying affair. It takes men of experience and special training to carry out successfully the more detailed work in any technical line. One thing, however, can be very successfully done by these factories, and that is to make a first-class plantation white sugar which will command a ready price in the local markets, or even suffice for export, if the proper manufacturing methods are used.It is not presumed that any one planter will use all of the clarifying reagents mentioned above, but he should choose the ones to fit his individual needs, and secure his supply early, since a great deal of time is required to transport supplies from the place of manufacture to these Islands. This is especially the case when the place of manufacture happens to be in Europe, as is true with a number of the patented clarifying reagents.Then, again, a suitable place should be selected for the storage of reagents, where they may be protected from dampness. The quick-lime and sulphites are especially susceptible to moisture, while the greatest danger of loss, when phosphoric acid compounds are stored, will result from leakage. This is on account of the great oxydizing effect of the acid on the iron loops surrounding the barrels, whereby a great quantity may be lost within a very short time. The writer observed this needless waste in one of the small factories here, when twenty barrels of a high-priced acid were stored on the damp ground of the factory, and a great percentage of it wasted.There are a number of clarifying agents offered on the market under fancy names. Planters are advised to be cautious about the purchasing of such supplies until they have been thoroughly tried out and proven a success. Even then, it is better to experiment only on a small scale until it is known that they will meet their individual needs.Some of these are not only deficient in clarifying power, but actually act as an absolute detriment by introducing impurities which lower the value of the juice as well as increasing the subsequent work of boiling and after working of the sugar.

Cane-juice Clarification.ByCleve. W. Hines, M. S.,Station Superintendent.

ByCleve. W. Hines, M. S.,Station Superintendent.

The clarification of the juice forms one of the most important operations in sugar manufacture, since the higher the purity of the juice to be concentrated, the greater the percentage of sucrose that will crystallize, and the easier it will be to make a marketable sugar. If a high-grade sugar, or even yellow clarified sugar is to be made, this work should receive still greater attention.Before considering the methods to pursue and the reagents to use, it is well to decide first upon the grade of sugar it is desirable to make. If ordinary centrifugal sugar testing 96° is desired, it will usually be practical to use only lime in the clarification, since in these Islands cane reaches full maturity, and consequently the purity of the normal juice will be quite high, sometimes as high as 90° or 92° (apparent purity). If, however, it is desired to make a white plantation sugar, or granulated sugar, it will be advisable to subject the juice to an acidifying or bleaching treatment, as well as to the lime treatment.Usuallysulphurous acid is used for this purpose, but sometimes phosphoric acid, or a form of it, is employed. It is generally best to administer the acidifying agent before the application of the lime, since this raises the acidity and permits a larger amount of the lime to be used. However, this process is reversed by some manufacturers, and very good results are often reported.In the acidifying of any cane juice, care must be exercised that too high an acidity is not reached, since acids have an inverting effect upon sucrose, thus causing a noticeable loss. This of course depends upon the degree of acidity carried, the temperature maintained, and the methods followed during the time the juice remains acid.When it is desired to make a high-grade crystal for granulated sugar, the clarification must be more complete, and a water-white thick liquor should result, without subsequent treatment by bleaching agents and other chemicals, except the neutralizing of the slightly yellowish tint, which will be mentioned later.Reagents Used in Clarification.There is a great variety of reagents at the command of the sugar manufacturer, each of which has certain merits over others, and all are valuable in their place when properly used. It will therefore be the duty of the operator to select those which best meet his individual conditions.It is the purpose of this article to give a brief survey of the more common reagents which, under certain conditions, may be used to advantage in these Islands.Lime.—This is perhaps one of the most common and most widely used of all the reagents. Since the object in view is to increase the purity of the juice, it is obvious that the purest rock obtainable should be used in the preparation of the lime. Another reason why a good lime should be employed, is that one of the main impurities of the lime rock is magnesium, which, when mixed with cane juice, becomes very troublesome in the incrusting of the evaporator tubes, thus greatly lowering the coefficient of heat transmission.Much of the lime on the market in the Philippines has been made without any attempt to select pure clean limestone or shells. This is not suitable for putting into cane juice, and will result in a great deal of trouble whenever used in modern evaporating plants. There is, however, an abundant supply of limestone found in various parts of the Philippines, which analyses show to be almost free from impurities, and which will make a most excellent lime for clarifying purposes if burned properly. At present there is no modern plant for burning this rock on a large scale and consequently much of the work is done in a very crude and unsatisfactory manner. Most of the lime for clarification, in modern sugar factories, is imported, and constitutes a very heavy expense. If a lime kiln were installed in conjunction with some of our sugar factories, fresh and well-burned lime might be made as needed. The carbon dioxide could be used in the juice clarification, as is done in Java, and thus a good grade of plantation sugar could easily be manufactured. Any excess of burned lime might very readily be sold to other factories, which now use only high-priced imported lime.The lime used should be of the unslaked type, and should be protected from the air until a short time before using. The process of preparing this consists of heating lime rock to a very high temperature, in a kiln for that purpose, whereby the limestone is broken into two component parts, expressed by the following chemical equation: CaCO3(limestone) heated to high temperature—>CaO (calcium oxide) + CO2(carbon dioxide).This calcium oxide, commonly known as “quick lime,” is the substance desired in clarification. It should be slaked by being placed in water just before it is desired for use. This milk of lime should not be used until after the high temperature caused by the violent chemical action has subsided. On account of the heat involved and the high alkalinity in local portions, it is never safe to apply crude lime to the juice without previously slaking it in water, nor is it advisable to use a quantity of juice to mix this lime, as is quite often practiced in these Islands, since in this case there may be a loss of sucrose, with a resulting dark-colored product, which will impair the color of the clarified juice. The following chemical equation will express the reaction when this lime is slaked: CaO (calcium oxide) + H2O (water)—>Ca(OH)2(calcium hydroxide).This calcium hydroxide is a substance which is very caustic, and care must be exercised in handling it. Like all bases, it has a great affinity for acid, and consequently its first action is to neutralize part of the acids present. It then coagulates albumins and albuminoids, which form a part of the impurities, and throws down insoluble salts of sulphates, carbonates and phosphates, and of the bases iron and aluminum. These act as mechanical precipitants, assisting in bringing down other impurities. The compounds of calcium are practically insoluble in cold cane juices, and may be readily filtered, or settled, and the supernatant liquor drawn off. In the addition of lime, as well as in the application of other reagents, much care must be observed that the proper amount is added. If too little is used, there will be poor clarification and settling of the precipitate, while if too much is used, so that alkalinity is reached, and the juice heated to a high temperature, there will be a darkening of the juice caused by the decomposition of the reducing sugars by the calcium, and the formation of dark-colored compounds, which are very hard to remove. If the juice is limed to three-tenths or four-tenths cubic centimeter acidity against N/10 NaOH, usingphenolphthaleinas an indicator, there will be little or no chance of trouble. With the above dangers in view, it is not safe to employ the haphazard methods of liming usually practiced here, but the milk of lime should always be made of stated density and a measured or weighed amount should be supplied to each clarifier of juice, corresponding to prevailing conditions.Sulphur dioxide.—Where a better grade of sugar than 96° test is desired, it is often advisable to subject the juice to further treatment, one reason for which is to increase the acidity so that a larger amount of lime may be added to effect the clarification.In addition to this the sulphur acts to some extent directly as a clarifying agent, by precipitating some of the impurities. It also acts as a bleaching agent by extracting the oxygen from the impurities and lastly it acts as a disinfectant. It is formed by burning crude sulphur in a stove made for that purpose. S (sulphur) + O (oxygen heat)—>SO2(sulphur dioxide).Sometimes bombs filled with liquid sulphur dioxide are purchased for this purpose. These are inconvenient to use, and this method is ordinarily more expensive than the usual one of burning the sulphur and producing the gas directly at the factory.Sulphur dioxide is a heavy gas which is very readily absorbed in water, and at a temperature of zero C. nearly 80 per cent by volume of the gas will be taken up.At 40° C. only about 18 per cent by volume of the gas will be absorbed. It may readily be seen that the percentage of gas contained in the juice when saturated will be determined by the temperature.The following equation expresses theabsorptionof sulphur dioxide in water at ordinary temperature:SO2(sulphur dioxide) + H2O (water at low temperature)—>H2SO3(sulphurous acid).Another thing of very great importance is the cooling of the gases to condense any water that may be present so that no hot gas will reach the juice to be treated or combine with water in the pipes. The equation represented when high temperatures are used is as follows:SO2(sulphur dioxide) + H2O (water) + O (high temperature)—>H2SO4(sulphuric acid).This last-named acid is very corrosive and a powerful investing agent. It therefore has the property of rapidly destroying sucrose, especially at a high temperature.In the burning of sulphur it is well that as thorough a combination as possible be obtained, else there will be a loss of sulphur, which will deposit in the tubes and choke them, and more time will be required for the process. The fumes from a well-regulated sulphur furnace should contain from 15 to 16 per cent sulphurous acid. The theoretical percentage obtainable is about 21 per cent of the acid.Carbon dioxide.—In recent years carbon dioxide gas has found a very useful application in the cane-sugar factories, where a good grade of plantation sugar is desired.Java factories have been the foremost in elaborating a system, through their eminent technologists, so that today one may find the bulk of the sugars they turn out from certain factoriesof a very satisfactory grade and color. The method they use requires a great deal of skill and attention in order to yield results that are satisfactory. It is patterned after the process used in beet-sugar factories, with some distinct modifications, which make it applicable to a juice containing glucose, as is always the case with cane juices.The object of applying any clarifying material is to effect a rise in purity, and it is especially desirable to remove, in all cases, the substance added, since this itself would tend to act as an impurity and thus give a lower coefficient, if not properly removed. The lime, which has been added previously, may be partly removed, as the original precipitate formed, and any free lime or compound which may be easily decomposed will combine with carbon dioxide, forming calcium carbonate or limestone, which is quite insoluble and may be very easily filtered off.Ca(OH)2(calcium hydroxide) + CO2—>CaCO3(calcium carbonate) + H2O (water).Whether single or double carbonation is used, the same general methods are employed, and results are expressed by the same chemical equation.As stated before, the carbon dioxide may be recovered from the kilns during the burning of lime, as is commonly done in the beet-sugar industry, or it may be purchased in the form of liquid CO2contained in heavy iron containers. It is also feasible to use flue gases for this purpose, where a good combustion is obtained, and after they have been properly treated.Phosphoric acid.—It is sometimes advisable to apply a form of phosphoric acid as a clarifying and precipitating agent after the lime. This may be used in various forms depending upon the individual desires of the operator.The compound usually found on the market may consist of one of the following (or a combination of them):H3PO4(ortho phosphoric acid).CaH4(PO4)2(mono-calcium phosphate).Ca2H2(PO4)2(dicalcium phosphate).Na2HPO4(sodium phosphate).The sodium phosphate contains very little acidity, and the main purpose of its use is based on the principle that the sodium is readily given up for any soluble calcium that may be present. This forms the insoluble calcium phosphate, which is easily removed as a precipitate or filtered off. The “Reserve Factory” in Louisiana has been using this reagent in their clarification for a long time, where a very good grade of granulated sugar is made.Besides these forms of phosphorous, various compounds maybe found on the market, under trade names, which have as their base the above acid. “Clariphos” is one of these compounds, which has found extensive use in many of the Louisiana sugar factories.Another is known as “phospho-gelose,” which is a combination of dicalcium phosphate Ca2H2(PO4)2and infusorial silica. It is a patented preparation and is made by the absorption of phosphoric acid by a powdery compound known as “Kieselguhr.” After the absorption, the compound is heated to expel the water, and then re-saturated. This work is repeated several times until the finished product, which is very hydroscopic, contains about 25 per cent of phosphoric acid.Kieselguhr.—This is a fine light powder containing a high percentage of silica. It is used purely for its mechanical effect in forming particles upon which the impurities may collect, and thus be more readily carried to the bottom. This material often prolongs the workings of the filter presses by collecting the gummy material, which would otherwise gather on the filter cloths. Kieselguhr was used in the beet-sugar industry of Europe many years ago, and is extensively used now for the same purpose in the United States.Hydrosulphites.—These are preparations of great bleaching power, found on the market under various trade names. One of these, widely used in the United States, in both the beet and cane-sugar industries, is known as “Blankit.” This is dehydrated sodium hydrosulphite with the chemical formula, Na2S2O4. It has a much greater bleaching and reducing action than sulphurous acid, and oxydizes very readily in combination with moisture, forming sulphate. On this account it is well to purchase the reagent in small parcels for this climate, and to carefully guard the stored material from moisture. This substance, which is a white powder, dissolves very easily in water, forming an alkaline liquid, although this point is sometimes hard to distinguish on account of hydrogen atoms liberated.There is a bleaching preparation made in France known as “Redo,” which is simply calcium hydrosulphite (CaS2O4). This is used in the sugar industry to some extent, but it is claimed by many that the results obtained are not as good as those obtained from the sodium compound and that it deteriorates more easily.Hydrosulphites, unlike sulphurous acid, will bleach equally as well in alkaline or neutral medium, as in an acid medium. There is therefore less danger from loss of sugar by inversion when they are used, while the permanency of their effect is about the same. In any case where juices have been bleachedby sulphites, the result may be considered as but temporary, since upon exposure to air and light the product assumes a darker color. Hydrosulphites should therefore be introduced as late in the process as possible. Where the material in the vacuum pan is to be bleached, it is well to introduce this reagent just before striking grain, thus furnishing a bright clear material which will act as film over the nucleous of sucrose in the grain.The chemical equation representing the change which takes place with this reagent is as follows:Na2S2O4(sodium hydrosulphite) + O (oxygen) + H2O (water)—>2(Na H S O3).The amount to be used will depend absolutely upon individual conditions, which may be ascertained only by experimentation. The manufacturers of this product state that the amount of the material used to that of dry sugar should be as 1 is to 10,000. In the writer’s experience, two or even three times this amount will usually be required to give maximum results. As stated before, since there is such a variance in the material to be treated, each operator will be required to judge this to a great extent from the condition of his product.In these Islands where a very low grade of open-kettle sugar is still made, which sells very cheaply, attempts are often made to bleach it and re-crystalize in order to make a centrifugal sugar.While ordinary clarifying agents help to a great extent, if the melted sugars are very dark from caramel and the decomposition products of calcium glucosate, these reagents can not be expected to give a light-colored juice. While they may improve conditions somewhat, the only solution to such a problem is the use of the boneblack process.Bluing.—In the production of plantation clarified sugars, and sometimes of refinery crystals made from low-grade sugars, there is a thin film surrounding each sugar crystal, which has a yellowish tint. It is this that gives rise to the different grades of white sugars, when color test only is considered. Since this yellowish tinge will give way to a lighter color when neutralized with the proper shade of blue, it is a very common practice to use some form of bluing—usually that known as ultramarine—for this purpose.The action of this reagent is only mechanical and great care must be exercised that the proper quantity is used. This must be determined by trials with the different amounts of the reagent, since the density of the yellowish tint is different in each case.The place of application will also depend very much upon conditions.Some operators apply it only at the centrifugals and others apply it in the pan just at the graining point. Again others use a quantity at both the pan and in the last charge of water at the centrifugals. In any case, a good grade only of the reagent should be used. This must be thoroughly dissolved in clear water, condensed steam being preferred, and passed through cloth or felt filters in order to remove any trace of lumps which would tend to produce uneven bluing, or bluish streaks.While this is an excellent reagent in its place, it must not be expected to whiten molasses sugars as was attempted by a local manufacturer.Animal charcoal or boneblack.—This material is made from bones of animals, by burning them in a kiln built for that purpose. The object of this burning is to remove the organic matter and leave the remainder in a porous condition, so that it may be crushed into particles the proper size. It is not desirable to have a great amount of char dust present, since this retards the passage of the liquors through the filters, as well as impairing the efficiency of the work.Bone char, being very porous, absorbs a great volume of gases, among which is oxygen, and it is ordinarily presumed that its bleaching power may be attributed to this fact. Extensive experiments have been made to determine definitely this point, and the char has been subjected to an atmosphere of other gases than oxygen. This proved that the char still contained great clarifying power.Char also has a great surface attraction, which causes it to collect particles of coloring matter that may be present, and thus acts as an excellent filtering agent. New char should be thoroughly washed with pure water until all the impurities are removed. With the end in view of determining when the last traces of chlorine have disappeared, chemical tests are made on the wash waters. Nitric acid and silver nitrate are employed for this purpose. After animal char has been used for some time in the filters and fails to do its work efficiently, it is reburned, or revived, as it is called. Ordinarily the best results are obtained after a char has been used several times.Reburning of the char at too high a temperature should be avoided, as it incurs an unnecessary loss of fuel, besides causing serious injury to the char by a contraction of the pores. Since, as stated previously, the main value of the char as a clarifying and filtering medium lies in the fact of its porosity, anything which reduces this will greatly impair its efficiency. One thing in connection with the bone-char process of making white sugarsis that it is expensive and should not be attempted except on a large scale, since the initial expense of installation, as well as the cost of running, is very great. The writer is sometimes asked by managers of small factories, turning out plantation yellow clarified sugars, if it would not pay them to employ bone-char filters to use in connection with the remainder of their factory, in order to be able to work up an industry with the low-grade open-kettle sugars, during the intercampaign. Most assuredly such a combination of small plantation factory and refinery would not be a paying affair. It takes men of experience and special training to carry out successfully the more detailed work in any technical line. One thing, however, can be very successfully done by these factories, and that is to make a first-class plantation white sugar which will command a ready price in the local markets, or even suffice for export, if the proper manufacturing methods are used.It is not presumed that any one planter will use all of the clarifying reagents mentioned above, but he should choose the ones to fit his individual needs, and secure his supply early, since a great deal of time is required to transport supplies from the place of manufacture to these Islands. This is especially the case when the place of manufacture happens to be in Europe, as is true with a number of the patented clarifying reagents.Then, again, a suitable place should be selected for the storage of reagents, where they may be protected from dampness. The quick-lime and sulphites are especially susceptible to moisture, while the greatest danger of loss, when phosphoric acid compounds are stored, will result from leakage. This is on account of the great oxydizing effect of the acid on the iron loops surrounding the barrels, whereby a great quantity may be lost within a very short time. The writer observed this needless waste in one of the small factories here, when twenty barrels of a high-priced acid were stored on the damp ground of the factory, and a great percentage of it wasted.There are a number of clarifying agents offered on the market under fancy names. Planters are advised to be cautious about the purchasing of such supplies until they have been thoroughly tried out and proven a success. Even then, it is better to experiment only on a small scale until it is known that they will meet their individual needs.Some of these are not only deficient in clarifying power, but actually act as an absolute detriment by introducing impurities which lower the value of the juice as well as increasing the subsequent work of boiling and after working of the sugar.

The clarification of the juice forms one of the most important operations in sugar manufacture, since the higher the purity of the juice to be concentrated, the greater the percentage of sucrose that will crystallize, and the easier it will be to make a marketable sugar. If a high-grade sugar, or even yellow clarified sugar is to be made, this work should receive still greater attention.

Before considering the methods to pursue and the reagents to use, it is well to decide first upon the grade of sugar it is desirable to make. If ordinary centrifugal sugar testing 96° is desired, it will usually be practical to use only lime in the clarification, since in these Islands cane reaches full maturity, and consequently the purity of the normal juice will be quite high, sometimes as high as 90° or 92° (apparent purity). If, however, it is desired to make a white plantation sugar, or granulated sugar, it will be advisable to subject the juice to an acidifying or bleaching treatment, as well as to the lime treatment.Usuallysulphurous acid is used for this purpose, but sometimes phosphoric acid, or a form of it, is employed. It is generally best to administer the acidifying agent before the application of the lime, since this raises the acidity and permits a larger amount of the lime to be used. However, this process is reversed by some manufacturers, and very good results are often reported.

In the acidifying of any cane juice, care must be exercised that too high an acidity is not reached, since acids have an inverting effect upon sucrose, thus causing a noticeable loss. This of course depends upon the degree of acidity carried, the temperature maintained, and the methods followed during the time the juice remains acid.

When it is desired to make a high-grade crystal for granulated sugar, the clarification must be more complete, and a water-white thick liquor should result, without subsequent treatment by bleaching agents and other chemicals, except the neutralizing of the slightly yellowish tint, which will be mentioned later.

Reagents Used in Clarification.There is a great variety of reagents at the command of the sugar manufacturer, each of which has certain merits over others, and all are valuable in their place when properly used. It will therefore be the duty of the operator to select those which best meet his individual conditions.It is the purpose of this article to give a brief survey of the more common reagents which, under certain conditions, may be used to advantage in these Islands.Lime.—This is perhaps one of the most common and most widely used of all the reagents. Since the object in view is to increase the purity of the juice, it is obvious that the purest rock obtainable should be used in the preparation of the lime. Another reason why a good lime should be employed, is that one of the main impurities of the lime rock is magnesium, which, when mixed with cane juice, becomes very troublesome in the incrusting of the evaporator tubes, thus greatly lowering the coefficient of heat transmission.Much of the lime on the market in the Philippines has been made without any attempt to select pure clean limestone or shells. This is not suitable for putting into cane juice, and will result in a great deal of trouble whenever used in modern evaporating plants. There is, however, an abundant supply of limestone found in various parts of the Philippines, which analyses show to be almost free from impurities, and which will make a most excellent lime for clarifying purposes if burned properly. At present there is no modern plant for burning this rock on a large scale and consequently much of the work is done in a very crude and unsatisfactory manner. Most of the lime for clarification, in modern sugar factories, is imported, and constitutes a very heavy expense. If a lime kiln were installed in conjunction with some of our sugar factories, fresh and well-burned lime might be made as needed. The carbon dioxide could be used in the juice clarification, as is done in Java, and thus a good grade of plantation sugar could easily be manufactured. Any excess of burned lime might very readily be sold to other factories, which now use only high-priced imported lime.The lime used should be of the unslaked type, and should be protected from the air until a short time before using. The process of preparing this consists of heating lime rock to a very high temperature, in a kiln for that purpose, whereby the limestone is broken into two component parts, expressed by the following chemical equation: CaCO3(limestone) heated to high temperature—>CaO (calcium oxide) + CO2(carbon dioxide).This calcium oxide, commonly known as “quick lime,” is the substance desired in clarification. It should be slaked by being placed in water just before it is desired for use. This milk of lime should not be used until after the high temperature caused by the violent chemical action has subsided. On account of the heat involved and the high alkalinity in local portions, it is never safe to apply crude lime to the juice without previously slaking it in water, nor is it advisable to use a quantity of juice to mix this lime, as is quite often practiced in these Islands, since in this case there may be a loss of sucrose, with a resulting dark-colored product, which will impair the color of the clarified juice. The following chemical equation will express the reaction when this lime is slaked: CaO (calcium oxide) + H2O (water)—>Ca(OH)2(calcium hydroxide).This calcium hydroxide is a substance which is very caustic, and care must be exercised in handling it. Like all bases, it has a great affinity for acid, and consequently its first action is to neutralize part of the acids present. It then coagulates albumins and albuminoids, which form a part of the impurities, and throws down insoluble salts of sulphates, carbonates and phosphates, and of the bases iron and aluminum. These act as mechanical precipitants, assisting in bringing down other impurities. The compounds of calcium are practically insoluble in cold cane juices, and may be readily filtered, or settled, and the supernatant liquor drawn off. In the addition of lime, as well as in the application of other reagents, much care must be observed that the proper amount is added. If too little is used, there will be poor clarification and settling of the precipitate, while if too much is used, so that alkalinity is reached, and the juice heated to a high temperature, there will be a darkening of the juice caused by the decomposition of the reducing sugars by the calcium, and the formation of dark-colored compounds, which are very hard to remove. If the juice is limed to three-tenths or four-tenths cubic centimeter acidity against N/10 NaOH, usingphenolphthaleinas an indicator, there will be little or no chance of trouble. With the above dangers in view, it is not safe to employ the haphazard methods of liming usually practiced here, but the milk of lime should always be made of stated density and a measured or weighed amount should be supplied to each clarifier of juice, corresponding to prevailing conditions.Sulphur dioxide.—Where a better grade of sugar than 96° test is desired, it is often advisable to subject the juice to further treatment, one reason for which is to increase the acidity so that a larger amount of lime may be added to effect the clarification.In addition to this the sulphur acts to some extent directly as a clarifying agent, by precipitating some of the impurities. It also acts as a bleaching agent by extracting the oxygen from the impurities and lastly it acts as a disinfectant. It is formed by burning crude sulphur in a stove made for that purpose. S (sulphur) + O (oxygen heat)—>SO2(sulphur dioxide).Sometimes bombs filled with liquid sulphur dioxide are purchased for this purpose. These are inconvenient to use, and this method is ordinarily more expensive than the usual one of burning the sulphur and producing the gas directly at the factory.Sulphur dioxide is a heavy gas which is very readily absorbed in water, and at a temperature of zero C. nearly 80 per cent by volume of the gas will be taken up.At 40° C. only about 18 per cent by volume of the gas will be absorbed. It may readily be seen that the percentage of gas contained in the juice when saturated will be determined by the temperature.The following equation expresses theabsorptionof sulphur dioxide in water at ordinary temperature:SO2(sulphur dioxide) + H2O (water at low temperature)—>H2SO3(sulphurous acid).Another thing of very great importance is the cooling of the gases to condense any water that may be present so that no hot gas will reach the juice to be treated or combine with water in the pipes. The equation represented when high temperatures are used is as follows:SO2(sulphur dioxide) + H2O (water) + O (high temperature)—>H2SO4(sulphuric acid).This last-named acid is very corrosive and a powerful investing agent. It therefore has the property of rapidly destroying sucrose, especially at a high temperature.In the burning of sulphur it is well that as thorough a combination as possible be obtained, else there will be a loss of sulphur, which will deposit in the tubes and choke them, and more time will be required for the process. The fumes from a well-regulated sulphur furnace should contain from 15 to 16 per cent sulphurous acid. The theoretical percentage obtainable is about 21 per cent of the acid.Carbon dioxide.—In recent years carbon dioxide gas has found a very useful application in the cane-sugar factories, where a good grade of plantation sugar is desired.Java factories have been the foremost in elaborating a system, through their eminent technologists, so that today one may find the bulk of the sugars they turn out from certain factoriesof a very satisfactory grade and color. The method they use requires a great deal of skill and attention in order to yield results that are satisfactory. It is patterned after the process used in beet-sugar factories, with some distinct modifications, which make it applicable to a juice containing glucose, as is always the case with cane juices.The object of applying any clarifying material is to effect a rise in purity, and it is especially desirable to remove, in all cases, the substance added, since this itself would tend to act as an impurity and thus give a lower coefficient, if not properly removed. The lime, which has been added previously, may be partly removed, as the original precipitate formed, and any free lime or compound which may be easily decomposed will combine with carbon dioxide, forming calcium carbonate or limestone, which is quite insoluble and may be very easily filtered off.Ca(OH)2(calcium hydroxide) + CO2—>CaCO3(calcium carbonate) + H2O (water).Whether single or double carbonation is used, the same general methods are employed, and results are expressed by the same chemical equation.As stated before, the carbon dioxide may be recovered from the kilns during the burning of lime, as is commonly done in the beet-sugar industry, or it may be purchased in the form of liquid CO2contained in heavy iron containers. It is also feasible to use flue gases for this purpose, where a good combustion is obtained, and after they have been properly treated.Phosphoric acid.—It is sometimes advisable to apply a form of phosphoric acid as a clarifying and precipitating agent after the lime. This may be used in various forms depending upon the individual desires of the operator.The compound usually found on the market may consist of one of the following (or a combination of them):H3PO4(ortho phosphoric acid).CaH4(PO4)2(mono-calcium phosphate).Ca2H2(PO4)2(dicalcium phosphate).Na2HPO4(sodium phosphate).The sodium phosphate contains very little acidity, and the main purpose of its use is based on the principle that the sodium is readily given up for any soluble calcium that may be present. This forms the insoluble calcium phosphate, which is easily removed as a precipitate or filtered off. The “Reserve Factory” in Louisiana has been using this reagent in their clarification for a long time, where a very good grade of granulated sugar is made.Besides these forms of phosphorous, various compounds maybe found on the market, under trade names, which have as their base the above acid. “Clariphos” is one of these compounds, which has found extensive use in many of the Louisiana sugar factories.Another is known as “phospho-gelose,” which is a combination of dicalcium phosphate Ca2H2(PO4)2and infusorial silica. It is a patented preparation and is made by the absorption of phosphoric acid by a powdery compound known as “Kieselguhr.” After the absorption, the compound is heated to expel the water, and then re-saturated. This work is repeated several times until the finished product, which is very hydroscopic, contains about 25 per cent of phosphoric acid.Kieselguhr.—This is a fine light powder containing a high percentage of silica. It is used purely for its mechanical effect in forming particles upon which the impurities may collect, and thus be more readily carried to the bottom. This material often prolongs the workings of the filter presses by collecting the gummy material, which would otherwise gather on the filter cloths. Kieselguhr was used in the beet-sugar industry of Europe many years ago, and is extensively used now for the same purpose in the United States.Hydrosulphites.—These are preparations of great bleaching power, found on the market under various trade names. One of these, widely used in the United States, in both the beet and cane-sugar industries, is known as “Blankit.” This is dehydrated sodium hydrosulphite with the chemical formula, Na2S2O4. It has a much greater bleaching and reducing action than sulphurous acid, and oxydizes very readily in combination with moisture, forming sulphate. On this account it is well to purchase the reagent in small parcels for this climate, and to carefully guard the stored material from moisture. This substance, which is a white powder, dissolves very easily in water, forming an alkaline liquid, although this point is sometimes hard to distinguish on account of hydrogen atoms liberated.There is a bleaching preparation made in France known as “Redo,” which is simply calcium hydrosulphite (CaS2O4). This is used in the sugar industry to some extent, but it is claimed by many that the results obtained are not as good as those obtained from the sodium compound and that it deteriorates more easily.Hydrosulphites, unlike sulphurous acid, will bleach equally as well in alkaline or neutral medium, as in an acid medium. There is therefore less danger from loss of sugar by inversion when they are used, while the permanency of their effect is about the same. In any case where juices have been bleachedby sulphites, the result may be considered as but temporary, since upon exposure to air and light the product assumes a darker color. Hydrosulphites should therefore be introduced as late in the process as possible. Where the material in the vacuum pan is to be bleached, it is well to introduce this reagent just before striking grain, thus furnishing a bright clear material which will act as film over the nucleous of sucrose in the grain.The chemical equation representing the change which takes place with this reagent is as follows:Na2S2O4(sodium hydrosulphite) + O (oxygen) + H2O (water)—>2(Na H S O3).The amount to be used will depend absolutely upon individual conditions, which may be ascertained only by experimentation. The manufacturers of this product state that the amount of the material used to that of dry sugar should be as 1 is to 10,000. In the writer’s experience, two or even three times this amount will usually be required to give maximum results. As stated before, since there is such a variance in the material to be treated, each operator will be required to judge this to a great extent from the condition of his product.In these Islands where a very low grade of open-kettle sugar is still made, which sells very cheaply, attempts are often made to bleach it and re-crystalize in order to make a centrifugal sugar.While ordinary clarifying agents help to a great extent, if the melted sugars are very dark from caramel and the decomposition products of calcium glucosate, these reagents can not be expected to give a light-colored juice. While they may improve conditions somewhat, the only solution to such a problem is the use of the boneblack process.Bluing.—In the production of plantation clarified sugars, and sometimes of refinery crystals made from low-grade sugars, there is a thin film surrounding each sugar crystal, which has a yellowish tint. It is this that gives rise to the different grades of white sugars, when color test only is considered. Since this yellowish tinge will give way to a lighter color when neutralized with the proper shade of blue, it is a very common practice to use some form of bluing—usually that known as ultramarine—for this purpose.The action of this reagent is only mechanical and great care must be exercised that the proper quantity is used. This must be determined by trials with the different amounts of the reagent, since the density of the yellowish tint is different in each case.The place of application will also depend very much upon conditions.Some operators apply it only at the centrifugals and others apply it in the pan just at the graining point. Again others use a quantity at both the pan and in the last charge of water at the centrifugals. In any case, a good grade only of the reagent should be used. This must be thoroughly dissolved in clear water, condensed steam being preferred, and passed through cloth or felt filters in order to remove any trace of lumps which would tend to produce uneven bluing, or bluish streaks.While this is an excellent reagent in its place, it must not be expected to whiten molasses sugars as was attempted by a local manufacturer.Animal charcoal or boneblack.—This material is made from bones of animals, by burning them in a kiln built for that purpose. The object of this burning is to remove the organic matter and leave the remainder in a porous condition, so that it may be crushed into particles the proper size. It is not desirable to have a great amount of char dust present, since this retards the passage of the liquors through the filters, as well as impairing the efficiency of the work.Bone char, being very porous, absorbs a great volume of gases, among which is oxygen, and it is ordinarily presumed that its bleaching power may be attributed to this fact. Extensive experiments have been made to determine definitely this point, and the char has been subjected to an atmosphere of other gases than oxygen. This proved that the char still contained great clarifying power.Char also has a great surface attraction, which causes it to collect particles of coloring matter that may be present, and thus acts as an excellent filtering agent. New char should be thoroughly washed with pure water until all the impurities are removed. With the end in view of determining when the last traces of chlorine have disappeared, chemical tests are made on the wash waters. Nitric acid and silver nitrate are employed for this purpose. After animal char has been used for some time in the filters and fails to do its work efficiently, it is reburned, or revived, as it is called. Ordinarily the best results are obtained after a char has been used several times.Reburning of the char at too high a temperature should be avoided, as it incurs an unnecessary loss of fuel, besides causing serious injury to the char by a contraction of the pores. Since, as stated previously, the main value of the char as a clarifying and filtering medium lies in the fact of its porosity, anything which reduces this will greatly impair its efficiency. One thing in connection with the bone-char process of making white sugarsis that it is expensive and should not be attempted except on a large scale, since the initial expense of installation, as well as the cost of running, is very great. The writer is sometimes asked by managers of small factories, turning out plantation yellow clarified sugars, if it would not pay them to employ bone-char filters to use in connection with the remainder of their factory, in order to be able to work up an industry with the low-grade open-kettle sugars, during the intercampaign. Most assuredly such a combination of small plantation factory and refinery would not be a paying affair. It takes men of experience and special training to carry out successfully the more detailed work in any technical line. One thing, however, can be very successfully done by these factories, and that is to make a first-class plantation white sugar which will command a ready price in the local markets, or even suffice for export, if the proper manufacturing methods are used.It is not presumed that any one planter will use all of the clarifying reagents mentioned above, but he should choose the ones to fit his individual needs, and secure his supply early, since a great deal of time is required to transport supplies from the place of manufacture to these Islands. This is especially the case when the place of manufacture happens to be in Europe, as is true with a number of the patented clarifying reagents.Then, again, a suitable place should be selected for the storage of reagents, where they may be protected from dampness. The quick-lime and sulphites are especially susceptible to moisture, while the greatest danger of loss, when phosphoric acid compounds are stored, will result from leakage. This is on account of the great oxydizing effect of the acid on the iron loops surrounding the barrels, whereby a great quantity may be lost within a very short time. The writer observed this needless waste in one of the small factories here, when twenty barrels of a high-priced acid were stored on the damp ground of the factory, and a great percentage of it wasted.There are a number of clarifying agents offered on the market under fancy names. Planters are advised to be cautious about the purchasing of such supplies until they have been thoroughly tried out and proven a success. Even then, it is better to experiment only on a small scale until it is known that they will meet their individual needs.Some of these are not only deficient in clarifying power, but actually act as an absolute detriment by introducing impurities which lower the value of the juice as well as increasing the subsequent work of boiling and after working of the sugar.

Reagents Used in Clarification.

There is a great variety of reagents at the command of the sugar manufacturer, each of which has certain merits over others, and all are valuable in their place when properly used. It will therefore be the duty of the operator to select those which best meet his individual conditions.It is the purpose of this article to give a brief survey of the more common reagents which, under certain conditions, may be used to advantage in these Islands.Lime.—This is perhaps one of the most common and most widely used of all the reagents. Since the object in view is to increase the purity of the juice, it is obvious that the purest rock obtainable should be used in the preparation of the lime. Another reason why a good lime should be employed, is that one of the main impurities of the lime rock is magnesium, which, when mixed with cane juice, becomes very troublesome in the incrusting of the evaporator tubes, thus greatly lowering the coefficient of heat transmission.Much of the lime on the market in the Philippines has been made without any attempt to select pure clean limestone or shells. This is not suitable for putting into cane juice, and will result in a great deal of trouble whenever used in modern evaporating plants. There is, however, an abundant supply of limestone found in various parts of the Philippines, which analyses show to be almost free from impurities, and which will make a most excellent lime for clarifying purposes if burned properly. At present there is no modern plant for burning this rock on a large scale and consequently much of the work is done in a very crude and unsatisfactory manner. Most of the lime for clarification, in modern sugar factories, is imported, and constitutes a very heavy expense. If a lime kiln were installed in conjunction with some of our sugar factories, fresh and well-burned lime might be made as needed. The carbon dioxide could be used in the juice clarification, as is done in Java, and thus a good grade of plantation sugar could easily be manufactured. Any excess of burned lime might very readily be sold to other factories, which now use only high-priced imported lime.The lime used should be of the unslaked type, and should be protected from the air until a short time before using. The process of preparing this consists of heating lime rock to a very high temperature, in a kiln for that purpose, whereby the limestone is broken into two component parts, expressed by the following chemical equation: CaCO3(limestone) heated to high temperature—>CaO (calcium oxide) + CO2(carbon dioxide).This calcium oxide, commonly known as “quick lime,” is the substance desired in clarification. It should be slaked by being placed in water just before it is desired for use. This milk of lime should not be used until after the high temperature caused by the violent chemical action has subsided. On account of the heat involved and the high alkalinity in local portions, it is never safe to apply crude lime to the juice without previously slaking it in water, nor is it advisable to use a quantity of juice to mix this lime, as is quite often practiced in these Islands, since in this case there may be a loss of sucrose, with a resulting dark-colored product, which will impair the color of the clarified juice. The following chemical equation will express the reaction when this lime is slaked: CaO (calcium oxide) + H2O (water)—>Ca(OH)2(calcium hydroxide).This calcium hydroxide is a substance which is very caustic, and care must be exercised in handling it. Like all bases, it has a great affinity for acid, and consequently its first action is to neutralize part of the acids present. It then coagulates albumins and albuminoids, which form a part of the impurities, and throws down insoluble salts of sulphates, carbonates and phosphates, and of the bases iron and aluminum. These act as mechanical precipitants, assisting in bringing down other impurities. The compounds of calcium are practically insoluble in cold cane juices, and may be readily filtered, or settled, and the supernatant liquor drawn off. In the addition of lime, as well as in the application of other reagents, much care must be observed that the proper amount is added. If too little is used, there will be poor clarification and settling of the precipitate, while if too much is used, so that alkalinity is reached, and the juice heated to a high temperature, there will be a darkening of the juice caused by the decomposition of the reducing sugars by the calcium, and the formation of dark-colored compounds, which are very hard to remove. If the juice is limed to three-tenths or four-tenths cubic centimeter acidity against N/10 NaOH, usingphenolphthaleinas an indicator, there will be little or no chance of trouble. With the above dangers in view, it is not safe to employ the haphazard methods of liming usually practiced here, but the milk of lime should always be made of stated density and a measured or weighed amount should be supplied to each clarifier of juice, corresponding to prevailing conditions.Sulphur dioxide.—Where a better grade of sugar than 96° test is desired, it is often advisable to subject the juice to further treatment, one reason for which is to increase the acidity so that a larger amount of lime may be added to effect the clarification.In addition to this the sulphur acts to some extent directly as a clarifying agent, by precipitating some of the impurities. It also acts as a bleaching agent by extracting the oxygen from the impurities and lastly it acts as a disinfectant. It is formed by burning crude sulphur in a stove made for that purpose. S (sulphur) + O (oxygen heat)—>SO2(sulphur dioxide).Sometimes bombs filled with liquid sulphur dioxide are purchased for this purpose. These are inconvenient to use, and this method is ordinarily more expensive than the usual one of burning the sulphur and producing the gas directly at the factory.Sulphur dioxide is a heavy gas which is very readily absorbed in water, and at a temperature of zero C. nearly 80 per cent by volume of the gas will be taken up.At 40° C. only about 18 per cent by volume of the gas will be absorbed. It may readily be seen that the percentage of gas contained in the juice when saturated will be determined by the temperature.The following equation expresses theabsorptionof sulphur dioxide in water at ordinary temperature:SO2(sulphur dioxide) + H2O (water at low temperature)—>H2SO3(sulphurous acid).Another thing of very great importance is the cooling of the gases to condense any water that may be present so that no hot gas will reach the juice to be treated or combine with water in the pipes. The equation represented when high temperatures are used is as follows:SO2(sulphur dioxide) + H2O (water) + O (high temperature)—>H2SO4(sulphuric acid).This last-named acid is very corrosive and a powerful investing agent. It therefore has the property of rapidly destroying sucrose, especially at a high temperature.In the burning of sulphur it is well that as thorough a combination as possible be obtained, else there will be a loss of sulphur, which will deposit in the tubes and choke them, and more time will be required for the process. The fumes from a well-regulated sulphur furnace should contain from 15 to 16 per cent sulphurous acid. The theoretical percentage obtainable is about 21 per cent of the acid.Carbon dioxide.—In recent years carbon dioxide gas has found a very useful application in the cane-sugar factories, where a good grade of plantation sugar is desired.Java factories have been the foremost in elaborating a system, through their eminent technologists, so that today one may find the bulk of the sugars they turn out from certain factoriesof a very satisfactory grade and color. The method they use requires a great deal of skill and attention in order to yield results that are satisfactory. It is patterned after the process used in beet-sugar factories, with some distinct modifications, which make it applicable to a juice containing glucose, as is always the case with cane juices.The object of applying any clarifying material is to effect a rise in purity, and it is especially desirable to remove, in all cases, the substance added, since this itself would tend to act as an impurity and thus give a lower coefficient, if not properly removed. The lime, which has been added previously, may be partly removed, as the original precipitate formed, and any free lime or compound which may be easily decomposed will combine with carbon dioxide, forming calcium carbonate or limestone, which is quite insoluble and may be very easily filtered off.Ca(OH)2(calcium hydroxide) + CO2—>CaCO3(calcium carbonate) + H2O (water).Whether single or double carbonation is used, the same general methods are employed, and results are expressed by the same chemical equation.As stated before, the carbon dioxide may be recovered from the kilns during the burning of lime, as is commonly done in the beet-sugar industry, or it may be purchased in the form of liquid CO2contained in heavy iron containers. It is also feasible to use flue gases for this purpose, where a good combustion is obtained, and after they have been properly treated.Phosphoric acid.—It is sometimes advisable to apply a form of phosphoric acid as a clarifying and precipitating agent after the lime. This may be used in various forms depending upon the individual desires of the operator.The compound usually found on the market may consist of one of the following (or a combination of them):H3PO4(ortho phosphoric acid).CaH4(PO4)2(mono-calcium phosphate).Ca2H2(PO4)2(dicalcium phosphate).Na2HPO4(sodium phosphate).The sodium phosphate contains very little acidity, and the main purpose of its use is based on the principle that the sodium is readily given up for any soluble calcium that may be present. This forms the insoluble calcium phosphate, which is easily removed as a precipitate or filtered off. The “Reserve Factory” in Louisiana has been using this reagent in their clarification for a long time, where a very good grade of granulated sugar is made.Besides these forms of phosphorous, various compounds maybe found on the market, under trade names, which have as their base the above acid. “Clariphos” is one of these compounds, which has found extensive use in many of the Louisiana sugar factories.Another is known as “phospho-gelose,” which is a combination of dicalcium phosphate Ca2H2(PO4)2and infusorial silica. It is a patented preparation and is made by the absorption of phosphoric acid by a powdery compound known as “Kieselguhr.” After the absorption, the compound is heated to expel the water, and then re-saturated. This work is repeated several times until the finished product, which is very hydroscopic, contains about 25 per cent of phosphoric acid.Kieselguhr.—This is a fine light powder containing a high percentage of silica. It is used purely for its mechanical effect in forming particles upon which the impurities may collect, and thus be more readily carried to the bottom. This material often prolongs the workings of the filter presses by collecting the gummy material, which would otherwise gather on the filter cloths. Kieselguhr was used in the beet-sugar industry of Europe many years ago, and is extensively used now for the same purpose in the United States.Hydrosulphites.—These are preparations of great bleaching power, found on the market under various trade names. One of these, widely used in the United States, in both the beet and cane-sugar industries, is known as “Blankit.” This is dehydrated sodium hydrosulphite with the chemical formula, Na2S2O4. It has a much greater bleaching and reducing action than sulphurous acid, and oxydizes very readily in combination with moisture, forming sulphate. On this account it is well to purchase the reagent in small parcels for this climate, and to carefully guard the stored material from moisture. This substance, which is a white powder, dissolves very easily in water, forming an alkaline liquid, although this point is sometimes hard to distinguish on account of hydrogen atoms liberated.There is a bleaching preparation made in France known as “Redo,” which is simply calcium hydrosulphite (CaS2O4). This is used in the sugar industry to some extent, but it is claimed by many that the results obtained are not as good as those obtained from the sodium compound and that it deteriorates more easily.Hydrosulphites, unlike sulphurous acid, will bleach equally as well in alkaline or neutral medium, as in an acid medium. There is therefore less danger from loss of sugar by inversion when they are used, while the permanency of their effect is about the same. In any case where juices have been bleachedby sulphites, the result may be considered as but temporary, since upon exposure to air and light the product assumes a darker color. Hydrosulphites should therefore be introduced as late in the process as possible. Where the material in the vacuum pan is to be bleached, it is well to introduce this reagent just before striking grain, thus furnishing a bright clear material which will act as film over the nucleous of sucrose in the grain.The chemical equation representing the change which takes place with this reagent is as follows:Na2S2O4(sodium hydrosulphite) + O (oxygen) + H2O (water)—>2(Na H S O3).The amount to be used will depend absolutely upon individual conditions, which may be ascertained only by experimentation. The manufacturers of this product state that the amount of the material used to that of dry sugar should be as 1 is to 10,000. In the writer’s experience, two or even three times this amount will usually be required to give maximum results. As stated before, since there is such a variance in the material to be treated, each operator will be required to judge this to a great extent from the condition of his product.In these Islands where a very low grade of open-kettle sugar is still made, which sells very cheaply, attempts are often made to bleach it and re-crystalize in order to make a centrifugal sugar.While ordinary clarifying agents help to a great extent, if the melted sugars are very dark from caramel and the decomposition products of calcium glucosate, these reagents can not be expected to give a light-colored juice. While they may improve conditions somewhat, the only solution to such a problem is the use of the boneblack process.Bluing.—In the production of plantation clarified sugars, and sometimes of refinery crystals made from low-grade sugars, there is a thin film surrounding each sugar crystal, which has a yellowish tint. It is this that gives rise to the different grades of white sugars, when color test only is considered. Since this yellowish tinge will give way to a lighter color when neutralized with the proper shade of blue, it is a very common practice to use some form of bluing—usually that known as ultramarine—for this purpose.The action of this reagent is only mechanical and great care must be exercised that the proper quantity is used. This must be determined by trials with the different amounts of the reagent, since the density of the yellowish tint is different in each case.The place of application will also depend very much upon conditions.Some operators apply it only at the centrifugals and others apply it in the pan just at the graining point. Again others use a quantity at both the pan and in the last charge of water at the centrifugals. In any case, a good grade only of the reagent should be used. This must be thoroughly dissolved in clear water, condensed steam being preferred, and passed through cloth or felt filters in order to remove any trace of lumps which would tend to produce uneven bluing, or bluish streaks.While this is an excellent reagent in its place, it must not be expected to whiten molasses sugars as was attempted by a local manufacturer.Animal charcoal or boneblack.—This material is made from bones of animals, by burning them in a kiln built for that purpose. The object of this burning is to remove the organic matter and leave the remainder in a porous condition, so that it may be crushed into particles the proper size. It is not desirable to have a great amount of char dust present, since this retards the passage of the liquors through the filters, as well as impairing the efficiency of the work.Bone char, being very porous, absorbs a great volume of gases, among which is oxygen, and it is ordinarily presumed that its bleaching power may be attributed to this fact. Extensive experiments have been made to determine definitely this point, and the char has been subjected to an atmosphere of other gases than oxygen. This proved that the char still contained great clarifying power.Char also has a great surface attraction, which causes it to collect particles of coloring matter that may be present, and thus acts as an excellent filtering agent. New char should be thoroughly washed with pure water until all the impurities are removed. With the end in view of determining when the last traces of chlorine have disappeared, chemical tests are made on the wash waters. Nitric acid and silver nitrate are employed for this purpose. After animal char has been used for some time in the filters and fails to do its work efficiently, it is reburned, or revived, as it is called. Ordinarily the best results are obtained after a char has been used several times.Reburning of the char at too high a temperature should be avoided, as it incurs an unnecessary loss of fuel, besides causing serious injury to the char by a contraction of the pores. Since, as stated previously, the main value of the char as a clarifying and filtering medium lies in the fact of its porosity, anything which reduces this will greatly impair its efficiency. One thing in connection with the bone-char process of making white sugarsis that it is expensive and should not be attempted except on a large scale, since the initial expense of installation, as well as the cost of running, is very great. The writer is sometimes asked by managers of small factories, turning out plantation yellow clarified sugars, if it would not pay them to employ bone-char filters to use in connection with the remainder of their factory, in order to be able to work up an industry with the low-grade open-kettle sugars, during the intercampaign. Most assuredly such a combination of small plantation factory and refinery would not be a paying affair. It takes men of experience and special training to carry out successfully the more detailed work in any technical line. One thing, however, can be very successfully done by these factories, and that is to make a first-class plantation white sugar which will command a ready price in the local markets, or even suffice for export, if the proper manufacturing methods are used.It is not presumed that any one planter will use all of the clarifying reagents mentioned above, but he should choose the ones to fit his individual needs, and secure his supply early, since a great deal of time is required to transport supplies from the place of manufacture to these Islands. This is especially the case when the place of manufacture happens to be in Europe, as is true with a number of the patented clarifying reagents.Then, again, a suitable place should be selected for the storage of reagents, where they may be protected from dampness. The quick-lime and sulphites are especially susceptible to moisture, while the greatest danger of loss, when phosphoric acid compounds are stored, will result from leakage. This is on account of the great oxydizing effect of the acid on the iron loops surrounding the barrels, whereby a great quantity may be lost within a very short time. The writer observed this needless waste in one of the small factories here, when twenty barrels of a high-priced acid were stored on the damp ground of the factory, and a great percentage of it wasted.There are a number of clarifying agents offered on the market under fancy names. Planters are advised to be cautious about the purchasing of such supplies until they have been thoroughly tried out and proven a success. Even then, it is better to experiment only on a small scale until it is known that they will meet their individual needs.Some of these are not only deficient in clarifying power, but actually act as an absolute detriment by introducing impurities which lower the value of the juice as well as increasing the subsequent work of boiling and after working of the sugar.

There is a great variety of reagents at the command of the sugar manufacturer, each of which has certain merits over others, and all are valuable in their place when properly used. It will therefore be the duty of the operator to select those which best meet his individual conditions.

It is the purpose of this article to give a brief survey of the more common reagents which, under certain conditions, may be used to advantage in these Islands.

Lime.—This is perhaps one of the most common and most widely used of all the reagents. Since the object in view is to increase the purity of the juice, it is obvious that the purest rock obtainable should be used in the preparation of the lime. Another reason why a good lime should be employed, is that one of the main impurities of the lime rock is magnesium, which, when mixed with cane juice, becomes very troublesome in the incrusting of the evaporator tubes, thus greatly lowering the coefficient of heat transmission.

Much of the lime on the market in the Philippines has been made without any attempt to select pure clean limestone or shells. This is not suitable for putting into cane juice, and will result in a great deal of trouble whenever used in modern evaporating plants. There is, however, an abundant supply of limestone found in various parts of the Philippines, which analyses show to be almost free from impurities, and which will make a most excellent lime for clarifying purposes if burned properly. At present there is no modern plant for burning this rock on a large scale and consequently much of the work is done in a very crude and unsatisfactory manner. Most of the lime for clarification, in modern sugar factories, is imported, and constitutes a very heavy expense. If a lime kiln were installed in conjunction with some of our sugar factories, fresh and well-burned lime might be made as needed. The carbon dioxide could be used in the juice clarification, as is done in Java, and thus a good grade of plantation sugar could easily be manufactured. Any excess of burned lime might very readily be sold to other factories, which now use only high-priced imported lime.

The lime used should be of the unslaked type, and should be protected from the air until a short time before using. The process of preparing this consists of heating lime rock to a very high temperature, in a kiln for that purpose, whereby the limestone is broken into two component parts, expressed by the following chemical equation: CaCO3(limestone) heated to high temperature—>CaO (calcium oxide) + CO2(carbon dioxide).This calcium oxide, commonly known as “quick lime,” is the substance desired in clarification. It should be slaked by being placed in water just before it is desired for use. This milk of lime should not be used until after the high temperature caused by the violent chemical action has subsided. On account of the heat involved and the high alkalinity in local portions, it is never safe to apply crude lime to the juice without previously slaking it in water, nor is it advisable to use a quantity of juice to mix this lime, as is quite often practiced in these Islands, since in this case there may be a loss of sucrose, with a resulting dark-colored product, which will impair the color of the clarified juice. The following chemical equation will express the reaction when this lime is slaked: CaO (calcium oxide) + H2O (water)—>Ca(OH)2(calcium hydroxide).

This calcium hydroxide is a substance which is very caustic, and care must be exercised in handling it. Like all bases, it has a great affinity for acid, and consequently its first action is to neutralize part of the acids present. It then coagulates albumins and albuminoids, which form a part of the impurities, and throws down insoluble salts of sulphates, carbonates and phosphates, and of the bases iron and aluminum. These act as mechanical precipitants, assisting in bringing down other impurities. The compounds of calcium are practically insoluble in cold cane juices, and may be readily filtered, or settled, and the supernatant liquor drawn off. In the addition of lime, as well as in the application of other reagents, much care must be observed that the proper amount is added. If too little is used, there will be poor clarification and settling of the precipitate, while if too much is used, so that alkalinity is reached, and the juice heated to a high temperature, there will be a darkening of the juice caused by the decomposition of the reducing sugars by the calcium, and the formation of dark-colored compounds, which are very hard to remove. If the juice is limed to three-tenths or four-tenths cubic centimeter acidity against N/10 NaOH, usingphenolphthaleinas an indicator, there will be little or no chance of trouble. With the above dangers in view, it is not safe to employ the haphazard methods of liming usually practiced here, but the milk of lime should always be made of stated density and a measured or weighed amount should be supplied to each clarifier of juice, corresponding to prevailing conditions.

Sulphur dioxide.—Where a better grade of sugar than 96° test is desired, it is often advisable to subject the juice to further treatment, one reason for which is to increase the acidity so that a larger amount of lime may be added to effect the clarification.In addition to this the sulphur acts to some extent directly as a clarifying agent, by precipitating some of the impurities. It also acts as a bleaching agent by extracting the oxygen from the impurities and lastly it acts as a disinfectant. It is formed by burning crude sulphur in a stove made for that purpose. S (sulphur) + O (oxygen heat)—>SO2(sulphur dioxide).

Sometimes bombs filled with liquid sulphur dioxide are purchased for this purpose. These are inconvenient to use, and this method is ordinarily more expensive than the usual one of burning the sulphur and producing the gas directly at the factory.

Sulphur dioxide is a heavy gas which is very readily absorbed in water, and at a temperature of zero C. nearly 80 per cent by volume of the gas will be taken up.

At 40° C. only about 18 per cent by volume of the gas will be absorbed. It may readily be seen that the percentage of gas contained in the juice when saturated will be determined by the temperature.

The following equation expresses theabsorptionof sulphur dioxide in water at ordinary temperature:

SO2(sulphur dioxide) + H2O (water at low temperature)—>H2SO3(sulphurous acid).

Another thing of very great importance is the cooling of the gases to condense any water that may be present so that no hot gas will reach the juice to be treated or combine with water in the pipes. The equation represented when high temperatures are used is as follows:

SO2(sulphur dioxide) + H2O (water) + O (high temperature)—>H2SO4(sulphuric acid).

This last-named acid is very corrosive and a powerful investing agent. It therefore has the property of rapidly destroying sucrose, especially at a high temperature.

In the burning of sulphur it is well that as thorough a combination as possible be obtained, else there will be a loss of sulphur, which will deposit in the tubes and choke them, and more time will be required for the process. The fumes from a well-regulated sulphur furnace should contain from 15 to 16 per cent sulphurous acid. The theoretical percentage obtainable is about 21 per cent of the acid.

Carbon dioxide.—In recent years carbon dioxide gas has found a very useful application in the cane-sugar factories, where a good grade of plantation sugar is desired.

Java factories have been the foremost in elaborating a system, through their eminent technologists, so that today one may find the bulk of the sugars they turn out from certain factoriesof a very satisfactory grade and color. The method they use requires a great deal of skill and attention in order to yield results that are satisfactory. It is patterned after the process used in beet-sugar factories, with some distinct modifications, which make it applicable to a juice containing glucose, as is always the case with cane juices.

The object of applying any clarifying material is to effect a rise in purity, and it is especially desirable to remove, in all cases, the substance added, since this itself would tend to act as an impurity and thus give a lower coefficient, if not properly removed. The lime, which has been added previously, may be partly removed, as the original precipitate formed, and any free lime or compound which may be easily decomposed will combine with carbon dioxide, forming calcium carbonate or limestone, which is quite insoluble and may be very easily filtered off.

Ca(OH)2(calcium hydroxide) + CO2—>CaCO3(calcium carbonate) + H2O (water).

Whether single or double carbonation is used, the same general methods are employed, and results are expressed by the same chemical equation.

As stated before, the carbon dioxide may be recovered from the kilns during the burning of lime, as is commonly done in the beet-sugar industry, or it may be purchased in the form of liquid CO2contained in heavy iron containers. It is also feasible to use flue gases for this purpose, where a good combustion is obtained, and after they have been properly treated.

Phosphoric acid.—It is sometimes advisable to apply a form of phosphoric acid as a clarifying and precipitating agent after the lime. This may be used in various forms depending upon the individual desires of the operator.

The compound usually found on the market may consist of one of the following (or a combination of them):

The sodium phosphate contains very little acidity, and the main purpose of its use is based on the principle that the sodium is readily given up for any soluble calcium that may be present. This forms the insoluble calcium phosphate, which is easily removed as a precipitate or filtered off. The “Reserve Factory” in Louisiana has been using this reagent in their clarification for a long time, where a very good grade of granulated sugar is made.

Besides these forms of phosphorous, various compounds maybe found on the market, under trade names, which have as their base the above acid. “Clariphos” is one of these compounds, which has found extensive use in many of the Louisiana sugar factories.

Another is known as “phospho-gelose,” which is a combination of dicalcium phosphate Ca2H2(PO4)2and infusorial silica. It is a patented preparation and is made by the absorption of phosphoric acid by a powdery compound known as “Kieselguhr.” After the absorption, the compound is heated to expel the water, and then re-saturated. This work is repeated several times until the finished product, which is very hydroscopic, contains about 25 per cent of phosphoric acid.

Kieselguhr.—This is a fine light powder containing a high percentage of silica. It is used purely for its mechanical effect in forming particles upon which the impurities may collect, and thus be more readily carried to the bottom. This material often prolongs the workings of the filter presses by collecting the gummy material, which would otherwise gather on the filter cloths. Kieselguhr was used in the beet-sugar industry of Europe many years ago, and is extensively used now for the same purpose in the United States.

Hydrosulphites.—These are preparations of great bleaching power, found on the market under various trade names. One of these, widely used in the United States, in both the beet and cane-sugar industries, is known as “Blankit.” This is dehydrated sodium hydrosulphite with the chemical formula, Na2S2O4. It has a much greater bleaching and reducing action than sulphurous acid, and oxydizes very readily in combination with moisture, forming sulphate. On this account it is well to purchase the reagent in small parcels for this climate, and to carefully guard the stored material from moisture. This substance, which is a white powder, dissolves very easily in water, forming an alkaline liquid, although this point is sometimes hard to distinguish on account of hydrogen atoms liberated.

There is a bleaching preparation made in France known as “Redo,” which is simply calcium hydrosulphite (CaS2O4). This is used in the sugar industry to some extent, but it is claimed by many that the results obtained are not as good as those obtained from the sodium compound and that it deteriorates more easily.

Hydrosulphites, unlike sulphurous acid, will bleach equally as well in alkaline or neutral medium, as in an acid medium. There is therefore less danger from loss of sugar by inversion when they are used, while the permanency of their effect is about the same. In any case where juices have been bleachedby sulphites, the result may be considered as but temporary, since upon exposure to air and light the product assumes a darker color. Hydrosulphites should therefore be introduced as late in the process as possible. Where the material in the vacuum pan is to be bleached, it is well to introduce this reagent just before striking grain, thus furnishing a bright clear material which will act as film over the nucleous of sucrose in the grain.

The chemical equation representing the change which takes place with this reagent is as follows:

Na2S2O4(sodium hydrosulphite) + O (oxygen) + H2O (water)—>2(Na H S O3).

The amount to be used will depend absolutely upon individual conditions, which may be ascertained only by experimentation. The manufacturers of this product state that the amount of the material used to that of dry sugar should be as 1 is to 10,000. In the writer’s experience, two or even three times this amount will usually be required to give maximum results. As stated before, since there is such a variance in the material to be treated, each operator will be required to judge this to a great extent from the condition of his product.

In these Islands where a very low grade of open-kettle sugar is still made, which sells very cheaply, attempts are often made to bleach it and re-crystalize in order to make a centrifugal sugar.

While ordinary clarifying agents help to a great extent, if the melted sugars are very dark from caramel and the decomposition products of calcium glucosate, these reagents can not be expected to give a light-colored juice. While they may improve conditions somewhat, the only solution to such a problem is the use of the boneblack process.

Bluing.—In the production of plantation clarified sugars, and sometimes of refinery crystals made from low-grade sugars, there is a thin film surrounding each sugar crystal, which has a yellowish tint. It is this that gives rise to the different grades of white sugars, when color test only is considered. Since this yellowish tinge will give way to a lighter color when neutralized with the proper shade of blue, it is a very common practice to use some form of bluing—usually that known as ultramarine—for this purpose.

The action of this reagent is only mechanical and great care must be exercised that the proper quantity is used. This must be determined by trials with the different amounts of the reagent, since the density of the yellowish tint is different in each case.

The place of application will also depend very much upon conditions.Some operators apply it only at the centrifugals and others apply it in the pan just at the graining point. Again others use a quantity at both the pan and in the last charge of water at the centrifugals. In any case, a good grade only of the reagent should be used. This must be thoroughly dissolved in clear water, condensed steam being preferred, and passed through cloth or felt filters in order to remove any trace of lumps which would tend to produce uneven bluing, or bluish streaks.

While this is an excellent reagent in its place, it must not be expected to whiten molasses sugars as was attempted by a local manufacturer.

Animal charcoal or boneblack.—This material is made from bones of animals, by burning them in a kiln built for that purpose. The object of this burning is to remove the organic matter and leave the remainder in a porous condition, so that it may be crushed into particles the proper size. It is not desirable to have a great amount of char dust present, since this retards the passage of the liquors through the filters, as well as impairing the efficiency of the work.

Bone char, being very porous, absorbs a great volume of gases, among which is oxygen, and it is ordinarily presumed that its bleaching power may be attributed to this fact. Extensive experiments have been made to determine definitely this point, and the char has been subjected to an atmosphere of other gases than oxygen. This proved that the char still contained great clarifying power.

Char also has a great surface attraction, which causes it to collect particles of coloring matter that may be present, and thus acts as an excellent filtering agent. New char should be thoroughly washed with pure water until all the impurities are removed. With the end in view of determining when the last traces of chlorine have disappeared, chemical tests are made on the wash waters. Nitric acid and silver nitrate are employed for this purpose. After animal char has been used for some time in the filters and fails to do its work efficiently, it is reburned, or revived, as it is called. Ordinarily the best results are obtained after a char has been used several times.

Reburning of the char at too high a temperature should be avoided, as it incurs an unnecessary loss of fuel, besides causing serious injury to the char by a contraction of the pores. Since, as stated previously, the main value of the char as a clarifying and filtering medium lies in the fact of its porosity, anything which reduces this will greatly impair its efficiency. One thing in connection with the bone-char process of making white sugarsis that it is expensive and should not be attempted except on a large scale, since the initial expense of installation, as well as the cost of running, is very great. The writer is sometimes asked by managers of small factories, turning out plantation yellow clarified sugars, if it would not pay them to employ bone-char filters to use in connection with the remainder of their factory, in order to be able to work up an industry with the low-grade open-kettle sugars, during the intercampaign. Most assuredly such a combination of small plantation factory and refinery would not be a paying affair. It takes men of experience and special training to carry out successfully the more detailed work in any technical line. One thing, however, can be very successfully done by these factories, and that is to make a first-class plantation white sugar which will command a ready price in the local markets, or even suffice for export, if the proper manufacturing methods are used.

It is not presumed that any one planter will use all of the clarifying reagents mentioned above, but he should choose the ones to fit his individual needs, and secure his supply early, since a great deal of time is required to transport supplies from the place of manufacture to these Islands. This is especially the case when the place of manufacture happens to be in Europe, as is true with a number of the patented clarifying reagents.

Then, again, a suitable place should be selected for the storage of reagents, where they may be protected from dampness. The quick-lime and sulphites are especially susceptible to moisture, while the greatest danger of loss, when phosphoric acid compounds are stored, will result from leakage. This is on account of the great oxydizing effect of the acid on the iron loops surrounding the barrels, whereby a great quantity may be lost within a very short time. The writer observed this needless waste in one of the small factories here, when twenty barrels of a high-priced acid were stored on the damp ground of the factory, and a great percentage of it wasted.

There are a number of clarifying agents offered on the market under fancy names. Planters are advised to be cautious about the purchasing of such supplies until they have been thoroughly tried out and proven a success. Even then, it is better to experiment only on a small scale until it is known that they will meet their individual needs.

Some of these are not only deficient in clarifying power, but actually act as an absolute detriment by introducing impurities which lower the value of the juice as well as increasing the subsequent work of boiling and after working of the sugar.

La Fabricacion de Azucar Blanco en los Ingenios.ByW. H. Th. HarloffandH. Schmidt.Translated into Spanish byC. J. Bourbakis.(Reviewed byCleve. W. Hines, M. S.,Station Superintendent.)This book is edited by two of the foremost sugar producers of the world, Mr. Harloff, who is manager of a large sugar factory in Java, and Mr. Schmidt, a very able consulting chemist and engineer.The book was originally written in Dutch and was translated into English, and now the Spanish edition has been completed, which will be welcomed by Spanish readers throughout the sugar world.While dealing with a purely technical subject, this work is so simple in its diction that it may be readily comprehended even by those of little technical training.The introduction is divided into five parts as follows:Part I.—The influence of alkalies and alkaline earths on the constituents of cane juice.Mention is here made of the formation of saccharates of barium, strontium, and calcium in low concentrations. The latter is made use of in the famous Steffens process of the beet-sugar industry.Part II.—The influence of acids on the constituents of sugar cane and the hydrolizing effect of dilute acids on sucrose and the resulting constituents, laevulose and dextrose or invert sugar, are explained.Part III.—The influence of heating on the constituents of cane juice is shown.Part IV.—The coloring substances of cane and those produced in the process of manufacture.Part V.—The different fermentations that occur in the sugar factory including lactic, butyric, alcoholic and dextran are discussed.The main part of the text deals with the manufacture of white sugar by the carbonitation and sulphitation processes, and particular attention is given to the acid-thin-juice-method which has been elaborated in the Java factories with such great success during the past few years.This book may be obtained from Norman Roger, 2 St. Dunstan’s Hill, London, England. Price 7s. 6d. net (₱4 Philippine currency).

La Fabricacion de Azucar Blanco en los Ingenios.ByW. H. Th. HarloffandH. Schmidt.

ByW. H. Th. HarloffandH. Schmidt.

Translated into Spanish byC. J. Bourbakis.(Reviewed byCleve. W. Hines, M. S.,Station Superintendent.)This book is edited by two of the foremost sugar producers of the world, Mr. Harloff, who is manager of a large sugar factory in Java, and Mr. Schmidt, a very able consulting chemist and engineer.The book was originally written in Dutch and was translated into English, and now the Spanish edition has been completed, which will be welcomed by Spanish readers throughout the sugar world.While dealing with a purely technical subject, this work is so simple in its diction that it may be readily comprehended even by those of little technical training.The introduction is divided into five parts as follows:Part I.—The influence of alkalies and alkaline earths on the constituents of cane juice.Mention is here made of the formation of saccharates of barium, strontium, and calcium in low concentrations. The latter is made use of in the famous Steffens process of the beet-sugar industry.Part II.—The influence of acids on the constituents of sugar cane and the hydrolizing effect of dilute acids on sucrose and the resulting constituents, laevulose and dextrose or invert sugar, are explained.Part III.—The influence of heating on the constituents of cane juice is shown.Part IV.—The coloring substances of cane and those produced in the process of manufacture.Part V.—The different fermentations that occur in the sugar factory including lactic, butyric, alcoholic and dextran are discussed.The main part of the text deals with the manufacture of white sugar by the carbonitation and sulphitation processes, and particular attention is given to the acid-thin-juice-method which has been elaborated in the Java factories with such great success during the past few years.This book may be obtained from Norman Roger, 2 St. Dunstan’s Hill, London, England. Price 7s. 6d. net (₱4 Philippine currency).

Translated into Spanish byC. J. Bourbakis.

(Reviewed byCleve. W. Hines, M. S.,Station Superintendent.)

This book is edited by two of the foremost sugar producers of the world, Mr. Harloff, who is manager of a large sugar factory in Java, and Mr. Schmidt, a very able consulting chemist and engineer.

The book was originally written in Dutch and was translated into English, and now the Spanish edition has been completed, which will be welcomed by Spanish readers throughout the sugar world.

While dealing with a purely technical subject, this work is so simple in its diction that it may be readily comprehended even by those of little technical training.

The introduction is divided into five parts as follows:

Part I.—The influence of alkalies and alkaline earths on the constituents of cane juice.

Mention is here made of the formation of saccharates of barium, strontium, and calcium in low concentrations. The latter is made use of in the famous Steffens process of the beet-sugar industry.

Part II.—The influence of acids on the constituents of sugar cane and the hydrolizing effect of dilute acids on sucrose and the resulting constituents, laevulose and dextrose or invert sugar, are explained.

Part III.—The influence of heating on the constituents of cane juice is shown.

Part IV.—The coloring substances of cane and those produced in the process of manufacture.

Part V.—The different fermentations that occur in the sugar factory including lactic, butyric, alcoholic and dextran are discussed.

The main part of the text deals with the manufacture of white sugar by the carbonitation and sulphitation processes, and particular attention is given to the acid-thin-juice-method which has been elaborated in the Java factories with such great success during the past few years.

This book may be obtained from Norman Roger, 2 St. Dunstan’s Hill, London, England. Price 7s. 6d. net (₱4 Philippine currency).

Current Notes—First Quarter.NOTES BY P. J. WESTER, Horticulturist in Charge of Lamao Experiment Station.Shield Budding the Mango.The one defect in the Pound method of shield budding the mango described in Bureau of Agriculture Bulletin No. 18, The Mango, consists of the necessity of placing an apron to protect the long petiole left on the bud from the sun and the entrance of water, which work necessarily requires more time than if the bud could be wrapped as is the case in budding citrus trees. However, a possible use of scarred or nonpetioled budwood as a means of obviating the need of the apron was suggested in the above-mentioned publication. The results obtained in recent experiments conducted at the Lamao experiment station (November and December, 1914) have fully come up to the expectations of this modification, and if the work is carefully performed, the operator should have no trouble in obtaining 85 per cent of live buds by proceeding in accordance with the following directions:(1) Select budwood that is well matured, from the first, second, and third flushes from the end of a branch. This budwood is always green and smooth.(2) Three weeks or more in advance of the date when the budding is to be performed, cut off the leaf blades of the budwood selected. This causes the petioles to drop. When the scars left after the petioles have fallen are well healed the budwood is in condition for budding.(3) The buds should be cut about 4 centimeters long, with an ample wood shield, and inserted in the stock at a point where the bark is green and smooth like the budwood, not where it is rough and brownish.(4) Use waxed tape in tying and cover the entire bud.(5) When in the course of two to three weeks a good union has formed, unwind the wrapping so as to expose the leaf bud from which the growth is to issue, and cut off the top of the stock 10 to 15 centimeters above the bud.(6) Every ten days after unwrapping the buds go through the nursery and carefully rub off all stock sprouts in order to force the buds to grow.All other precautions that are taken in ordinary shield budding must, of course, also be attended to in order to insure success.Experiments in Shield Budding.After repeated attempts the shield-budding experiments at the Lamao experiment station with the camia (Averrhoa Bilimbi) and the santol (Sandoricum koetjape) have been successful, and it has also been found that the barobo (Diplodiscus paniculatus), a nut tree indigenous to the Philippines (Dillenia indica), and the sea grape (Coccoloba uvifera), may be propagated by means of shield budding. Detailed information relative to the budding of these plants will be published on the completion of the experiments.Improvement of Tropical Fruits in the Philippines.The average fruit is so poor that most foreigners never give any attention to the santol, and the fruit is a drug even in the native markets and enormous quantities annually rot on the ground. Few are aware that there are mutations among the santol trees the fruit of which in point of flavor vies with the best fruits in the Tropics, and that in this respect it is superior even to its celebrated relative, the lanzon (Lansium domesticum), the greatest defects being the large seeds and the adherence of the flesh to the seeds. If the seed in these superior santols were abortive in the same proportion as those in the mangosteen, the now despised santol, with its translucent pulp, separable from the pericarp as that of the mangosteen, subacid, juicy and of a vinous, excellent flavor, would rapidly become one of the most popular fruits in the Tropics. Its thick, tough “rind” should make the santol at least equal to the mangosteen as a shipper.What is probably the first horticultural, asexually propagated variety of the santol is now being established at the Lamao experiment station from buds obtained by Mr. F. Galang, assistant agricultural inspector, from a tree in Pampanga, the fruit of which is so highly prized locally that the fruit never retails below the relatively high price of 2 centavos apiece even when other santols are so plentiful as to be literally unsalable.Mr. B. Malvar, assistant agricultural inspector, has obtained in Batangas budwood of a sweet-fruited camia which is also being propagated. This is the first mutation of this kind coming to the attention of the writer.The collection of Philippine citrus fruits of economic value or of botanical interest has been in progress since in 1911, but no systematized selection work in the mandarin district has been attempted until December, 1914, when Mr. B. Malvar was detailed to visit the citrus region in Batangas. Mr. Malvar returnedwith sample fruits of some twenty odd trees, a number of which were found to be of very good quality. These are being propagated for future distribution. Mr. Malvar also found another “Tizon” (Citrus nobilisvar.papillaris) of excellent flavor and quality which has been added to the citrus collection at Lamao.Petioled Vs. Nonpetioled Budwood.The last three years’ experiments in shield budding tropical fruits which have been conducted by the writer at the Lamao experiment station indicate that for practical purposes in propagation work the tropical fruits may be divided into two groups: (1) Those species the budwood of which may be cut at the time of budding and the petioles cut off close to the bud—for instance, the citrus fruits, avocado, guava, and carambola; and (2) those species in which decay enters the bud from the adhering remnant of the petiole so frequently as to make impracticable budding from newly cut budwood from twigs with the leaves still adhering, such as the mango, hevi, and cacao. It has been found, however, that this trouble may be easily overcome by the simple method of cutting off the leaf blade about three weeks in advance of when the budding is to be done so as to induce the formation of a leaf scar. Then when the petioles have dropped and a well-healed scar has formed, the budwood may be cut and the buds inserted and tied as in ordinary shield budding.In the case of some species, whether or not the bud is of the same age as the stock at the point of insertion is of little or no practical importance, but in other species this condition is one of the requirements for success. Therefore, two chances of failure are insured against in experimental work with species that hitherto have not been budded—(a) by defoliating the budwood previously to the budding operation, and using what may be termed nonpetioled or scarred budwood; and (b) by inserting the buds at a point in the stock which approximately is of the same age and appearance as the budwood.NOTES BY CLEVE. W. HINES, M. S.,Station Superintendent.A New Sugar Industry.The beginning of a tropical industry in what would be considered a semitropical climate was noted in 1914, when the Southwestern Sugar Company of Arizona milled their first crop of sugar cane and made it into sugar. The factory had been used previously for the manufacture of beet sugar only. It is asingular coincidence to find a region where both cane and beets will thrive well and where sugar is made from both sources in the same factory, and the sugar world is looking forward with great interest to the results of this new venture.The World’s Sugar Supply.The world’s production of sugar amounts to nearly seventeen million tons, practically one half of which is derived from the beet root, the greater percentage of which is produced in Europe. Now that the ravages of war have devastated many of the better beet-sugar regions of Europe a greater demand will be made on the more fortunate sugar countries as soon as the present supply of storage sugar is exhausted and trade resumes its normal condition.Progress in Sugar Manufacture.The past few years have shown great progress in the method of sugar making. It used to be thought that a high grade of sugar could be made only by the use of the bone-black or animal-char process.The beet-sugar producers were the first to diverge from this method and succeeded in making a perfectly satisfactory sugar in their factories in one continuous process by the aid of the carbonitation system.Louisiana had been making a fairly good sugar known as yellow clarified for a number of years, but the great step in improvements along these lines was brought about by the acid-thin-juice process of Java. This was a combination of the carbonitation and sulphitation processes which gave a satisfactory sugar, though unfortunately the yield of resulting molasses was also quite high.The latest improvement in this work was the introduction of the “Battille Process” which has certain similarities to the Steffens process of beet-sugar manufacture. This method has given an excellent grade of sugar and the maximum rendement since practically all of the sugar is extracted in crystalized form.

Current Notes—First Quarter.

NOTES BY P. J. WESTER, Horticulturist in Charge of Lamao Experiment Station.Shield Budding the Mango.The one defect in the Pound method of shield budding the mango described in Bureau of Agriculture Bulletin No. 18, The Mango, consists of the necessity of placing an apron to protect the long petiole left on the bud from the sun and the entrance of water, which work necessarily requires more time than if the bud could be wrapped as is the case in budding citrus trees. However, a possible use of scarred or nonpetioled budwood as a means of obviating the need of the apron was suggested in the above-mentioned publication. The results obtained in recent experiments conducted at the Lamao experiment station (November and December, 1914) have fully come up to the expectations of this modification, and if the work is carefully performed, the operator should have no trouble in obtaining 85 per cent of live buds by proceeding in accordance with the following directions:(1) Select budwood that is well matured, from the first, second, and third flushes from the end of a branch. This budwood is always green and smooth.(2) Three weeks or more in advance of the date when the budding is to be performed, cut off the leaf blades of the budwood selected. This causes the petioles to drop. When the scars left after the petioles have fallen are well healed the budwood is in condition for budding.(3) The buds should be cut about 4 centimeters long, with an ample wood shield, and inserted in the stock at a point where the bark is green and smooth like the budwood, not where it is rough and brownish.(4) Use waxed tape in tying and cover the entire bud.(5) When in the course of two to three weeks a good union has formed, unwind the wrapping so as to expose the leaf bud from which the growth is to issue, and cut off the top of the stock 10 to 15 centimeters above the bud.(6) Every ten days after unwrapping the buds go through the nursery and carefully rub off all stock sprouts in order to force the buds to grow.All other precautions that are taken in ordinary shield budding must, of course, also be attended to in order to insure success.Experiments in Shield Budding.After repeated attempts the shield-budding experiments at the Lamao experiment station with the camia (Averrhoa Bilimbi) and the santol (Sandoricum koetjape) have been successful, and it has also been found that the barobo (Diplodiscus paniculatus), a nut tree indigenous to the Philippines (Dillenia indica), and the sea grape (Coccoloba uvifera), may be propagated by means of shield budding. Detailed information relative to the budding of these plants will be published on the completion of the experiments.Improvement of Tropical Fruits in the Philippines.The average fruit is so poor that most foreigners never give any attention to the santol, and the fruit is a drug even in the native markets and enormous quantities annually rot on the ground. Few are aware that there are mutations among the santol trees the fruit of which in point of flavor vies with the best fruits in the Tropics, and that in this respect it is superior even to its celebrated relative, the lanzon (Lansium domesticum), the greatest defects being the large seeds and the adherence of the flesh to the seeds. If the seed in these superior santols were abortive in the same proportion as those in the mangosteen, the now despised santol, with its translucent pulp, separable from the pericarp as that of the mangosteen, subacid, juicy and of a vinous, excellent flavor, would rapidly become one of the most popular fruits in the Tropics. Its thick, tough “rind” should make the santol at least equal to the mangosteen as a shipper.What is probably the first horticultural, asexually propagated variety of the santol is now being established at the Lamao experiment station from buds obtained by Mr. F. Galang, assistant agricultural inspector, from a tree in Pampanga, the fruit of which is so highly prized locally that the fruit never retails below the relatively high price of 2 centavos apiece even when other santols are so plentiful as to be literally unsalable.Mr. B. Malvar, assistant agricultural inspector, has obtained in Batangas budwood of a sweet-fruited camia which is also being propagated. This is the first mutation of this kind coming to the attention of the writer.The collection of Philippine citrus fruits of economic value or of botanical interest has been in progress since in 1911, but no systematized selection work in the mandarin district has been attempted until December, 1914, when Mr. B. Malvar was detailed to visit the citrus region in Batangas. Mr. Malvar returnedwith sample fruits of some twenty odd trees, a number of which were found to be of very good quality. These are being propagated for future distribution. Mr. Malvar also found another “Tizon” (Citrus nobilisvar.papillaris) of excellent flavor and quality which has been added to the citrus collection at Lamao.Petioled Vs. Nonpetioled Budwood.The last three years’ experiments in shield budding tropical fruits which have been conducted by the writer at the Lamao experiment station indicate that for practical purposes in propagation work the tropical fruits may be divided into two groups: (1) Those species the budwood of which may be cut at the time of budding and the petioles cut off close to the bud—for instance, the citrus fruits, avocado, guava, and carambola; and (2) those species in which decay enters the bud from the adhering remnant of the petiole so frequently as to make impracticable budding from newly cut budwood from twigs with the leaves still adhering, such as the mango, hevi, and cacao. It has been found, however, that this trouble may be easily overcome by the simple method of cutting off the leaf blade about three weeks in advance of when the budding is to be done so as to induce the formation of a leaf scar. Then when the petioles have dropped and a well-healed scar has formed, the budwood may be cut and the buds inserted and tied as in ordinary shield budding.In the case of some species, whether or not the bud is of the same age as the stock at the point of insertion is of little or no practical importance, but in other species this condition is one of the requirements for success. Therefore, two chances of failure are insured against in experimental work with species that hitherto have not been budded—(a) by defoliating the budwood previously to the budding operation, and using what may be termed nonpetioled or scarred budwood; and (b) by inserting the buds at a point in the stock which approximately is of the same age and appearance as the budwood.NOTES BY CLEVE. W. HINES, M. S.,Station Superintendent.A New Sugar Industry.The beginning of a tropical industry in what would be considered a semitropical climate was noted in 1914, when the Southwestern Sugar Company of Arizona milled their first crop of sugar cane and made it into sugar. The factory had been used previously for the manufacture of beet sugar only. It is asingular coincidence to find a region where both cane and beets will thrive well and where sugar is made from both sources in the same factory, and the sugar world is looking forward with great interest to the results of this new venture.The World’s Sugar Supply.The world’s production of sugar amounts to nearly seventeen million tons, practically one half of which is derived from the beet root, the greater percentage of which is produced in Europe. Now that the ravages of war have devastated many of the better beet-sugar regions of Europe a greater demand will be made on the more fortunate sugar countries as soon as the present supply of storage sugar is exhausted and trade resumes its normal condition.Progress in Sugar Manufacture.The past few years have shown great progress in the method of sugar making. It used to be thought that a high grade of sugar could be made only by the use of the bone-black or animal-char process.The beet-sugar producers were the first to diverge from this method and succeeded in making a perfectly satisfactory sugar in their factories in one continuous process by the aid of the carbonitation system.Louisiana had been making a fairly good sugar known as yellow clarified for a number of years, but the great step in improvements along these lines was brought about by the acid-thin-juice process of Java. This was a combination of the carbonitation and sulphitation processes which gave a satisfactory sugar, though unfortunately the yield of resulting molasses was also quite high.The latest improvement in this work was the introduction of the “Battille Process” which has certain similarities to the Steffens process of beet-sugar manufacture. This method has given an excellent grade of sugar and the maximum rendement since practically all of the sugar is extracted in crystalized form.

NOTES BY P. J. WESTER, Horticulturist in Charge of Lamao Experiment Station.

Shield Budding the Mango.The one defect in the Pound method of shield budding the mango described in Bureau of Agriculture Bulletin No. 18, The Mango, consists of the necessity of placing an apron to protect the long petiole left on the bud from the sun and the entrance of water, which work necessarily requires more time than if the bud could be wrapped as is the case in budding citrus trees. However, a possible use of scarred or nonpetioled budwood as a means of obviating the need of the apron was suggested in the above-mentioned publication. The results obtained in recent experiments conducted at the Lamao experiment station (November and December, 1914) have fully come up to the expectations of this modification, and if the work is carefully performed, the operator should have no trouble in obtaining 85 per cent of live buds by proceeding in accordance with the following directions:(1) Select budwood that is well matured, from the first, second, and third flushes from the end of a branch. This budwood is always green and smooth.(2) Three weeks or more in advance of the date when the budding is to be performed, cut off the leaf blades of the budwood selected. This causes the petioles to drop. When the scars left after the petioles have fallen are well healed the budwood is in condition for budding.(3) The buds should be cut about 4 centimeters long, with an ample wood shield, and inserted in the stock at a point where the bark is green and smooth like the budwood, not where it is rough and brownish.(4) Use waxed tape in tying and cover the entire bud.(5) When in the course of two to three weeks a good union has formed, unwind the wrapping so as to expose the leaf bud from which the growth is to issue, and cut off the top of the stock 10 to 15 centimeters above the bud.(6) Every ten days after unwrapping the buds go through the nursery and carefully rub off all stock sprouts in order to force the buds to grow.All other precautions that are taken in ordinary shield budding must, of course, also be attended to in order to insure success.

Shield Budding the Mango.

The one defect in the Pound method of shield budding the mango described in Bureau of Agriculture Bulletin No. 18, The Mango, consists of the necessity of placing an apron to protect the long petiole left on the bud from the sun and the entrance of water, which work necessarily requires more time than if the bud could be wrapped as is the case in budding citrus trees. However, a possible use of scarred or nonpetioled budwood as a means of obviating the need of the apron was suggested in the above-mentioned publication. The results obtained in recent experiments conducted at the Lamao experiment station (November and December, 1914) have fully come up to the expectations of this modification, and if the work is carefully performed, the operator should have no trouble in obtaining 85 per cent of live buds by proceeding in accordance with the following directions:(1) Select budwood that is well matured, from the first, second, and third flushes from the end of a branch. This budwood is always green and smooth.(2) Three weeks or more in advance of the date when the budding is to be performed, cut off the leaf blades of the budwood selected. This causes the petioles to drop. When the scars left after the petioles have fallen are well healed the budwood is in condition for budding.(3) The buds should be cut about 4 centimeters long, with an ample wood shield, and inserted in the stock at a point where the bark is green and smooth like the budwood, not where it is rough and brownish.(4) Use waxed tape in tying and cover the entire bud.(5) When in the course of two to three weeks a good union has formed, unwind the wrapping so as to expose the leaf bud from which the growth is to issue, and cut off the top of the stock 10 to 15 centimeters above the bud.(6) Every ten days after unwrapping the buds go through the nursery and carefully rub off all stock sprouts in order to force the buds to grow.All other precautions that are taken in ordinary shield budding must, of course, also be attended to in order to insure success.

The one defect in the Pound method of shield budding the mango described in Bureau of Agriculture Bulletin No. 18, The Mango, consists of the necessity of placing an apron to protect the long petiole left on the bud from the sun and the entrance of water, which work necessarily requires more time than if the bud could be wrapped as is the case in budding citrus trees. However, a possible use of scarred or nonpetioled budwood as a means of obviating the need of the apron was suggested in the above-mentioned publication. The results obtained in recent experiments conducted at the Lamao experiment station (November and December, 1914) have fully come up to the expectations of this modification, and if the work is carefully performed, the operator should have no trouble in obtaining 85 per cent of live buds by proceeding in accordance with the following directions:

(1) Select budwood that is well matured, from the first, second, and third flushes from the end of a branch. This budwood is always green and smooth.

(2) Three weeks or more in advance of the date when the budding is to be performed, cut off the leaf blades of the budwood selected. This causes the petioles to drop. When the scars left after the petioles have fallen are well healed the budwood is in condition for budding.

(3) The buds should be cut about 4 centimeters long, with an ample wood shield, and inserted in the stock at a point where the bark is green and smooth like the budwood, not where it is rough and brownish.

(4) Use waxed tape in tying and cover the entire bud.

(5) When in the course of two to three weeks a good union has formed, unwind the wrapping so as to expose the leaf bud from which the growth is to issue, and cut off the top of the stock 10 to 15 centimeters above the bud.

(6) Every ten days after unwrapping the buds go through the nursery and carefully rub off all stock sprouts in order to force the buds to grow.

All other precautions that are taken in ordinary shield budding must, of course, also be attended to in order to insure success.

Experiments in Shield Budding.After repeated attempts the shield-budding experiments at the Lamao experiment station with the camia (Averrhoa Bilimbi) and the santol (Sandoricum koetjape) have been successful, and it has also been found that the barobo (Diplodiscus paniculatus), a nut tree indigenous to the Philippines (Dillenia indica), and the sea grape (Coccoloba uvifera), may be propagated by means of shield budding. Detailed information relative to the budding of these plants will be published on the completion of the experiments.

Experiments in Shield Budding.

After repeated attempts the shield-budding experiments at the Lamao experiment station with the camia (Averrhoa Bilimbi) and the santol (Sandoricum koetjape) have been successful, and it has also been found that the barobo (Diplodiscus paniculatus), a nut tree indigenous to the Philippines (Dillenia indica), and the sea grape (Coccoloba uvifera), may be propagated by means of shield budding. Detailed information relative to the budding of these plants will be published on the completion of the experiments.

After repeated attempts the shield-budding experiments at the Lamao experiment station with the camia (Averrhoa Bilimbi) and the santol (Sandoricum koetjape) have been successful, and it has also been found that the barobo (Diplodiscus paniculatus), a nut tree indigenous to the Philippines (Dillenia indica), and the sea grape (Coccoloba uvifera), may be propagated by means of shield budding. Detailed information relative to the budding of these plants will be published on the completion of the experiments.

Improvement of Tropical Fruits in the Philippines.The average fruit is so poor that most foreigners never give any attention to the santol, and the fruit is a drug even in the native markets and enormous quantities annually rot on the ground. Few are aware that there are mutations among the santol trees the fruit of which in point of flavor vies with the best fruits in the Tropics, and that in this respect it is superior even to its celebrated relative, the lanzon (Lansium domesticum), the greatest defects being the large seeds and the adherence of the flesh to the seeds. If the seed in these superior santols were abortive in the same proportion as those in the mangosteen, the now despised santol, with its translucent pulp, separable from the pericarp as that of the mangosteen, subacid, juicy and of a vinous, excellent flavor, would rapidly become one of the most popular fruits in the Tropics. Its thick, tough “rind” should make the santol at least equal to the mangosteen as a shipper.What is probably the first horticultural, asexually propagated variety of the santol is now being established at the Lamao experiment station from buds obtained by Mr. F. Galang, assistant agricultural inspector, from a tree in Pampanga, the fruit of which is so highly prized locally that the fruit never retails below the relatively high price of 2 centavos apiece even when other santols are so plentiful as to be literally unsalable.Mr. B. Malvar, assistant agricultural inspector, has obtained in Batangas budwood of a sweet-fruited camia which is also being propagated. This is the first mutation of this kind coming to the attention of the writer.The collection of Philippine citrus fruits of economic value or of botanical interest has been in progress since in 1911, but no systematized selection work in the mandarin district has been attempted until December, 1914, when Mr. B. Malvar was detailed to visit the citrus region in Batangas. Mr. Malvar returnedwith sample fruits of some twenty odd trees, a number of which were found to be of very good quality. These are being propagated for future distribution. Mr. Malvar also found another “Tizon” (Citrus nobilisvar.papillaris) of excellent flavor and quality which has been added to the citrus collection at Lamao.

Improvement of Tropical Fruits in the Philippines.

The average fruit is so poor that most foreigners never give any attention to the santol, and the fruit is a drug even in the native markets and enormous quantities annually rot on the ground. Few are aware that there are mutations among the santol trees the fruit of which in point of flavor vies with the best fruits in the Tropics, and that in this respect it is superior even to its celebrated relative, the lanzon (Lansium domesticum), the greatest defects being the large seeds and the adherence of the flesh to the seeds. If the seed in these superior santols were abortive in the same proportion as those in the mangosteen, the now despised santol, with its translucent pulp, separable from the pericarp as that of the mangosteen, subacid, juicy and of a vinous, excellent flavor, would rapidly become one of the most popular fruits in the Tropics. Its thick, tough “rind” should make the santol at least equal to the mangosteen as a shipper.What is probably the first horticultural, asexually propagated variety of the santol is now being established at the Lamao experiment station from buds obtained by Mr. F. Galang, assistant agricultural inspector, from a tree in Pampanga, the fruit of which is so highly prized locally that the fruit never retails below the relatively high price of 2 centavos apiece even when other santols are so plentiful as to be literally unsalable.Mr. B. Malvar, assistant agricultural inspector, has obtained in Batangas budwood of a sweet-fruited camia which is also being propagated. This is the first mutation of this kind coming to the attention of the writer.The collection of Philippine citrus fruits of economic value or of botanical interest has been in progress since in 1911, but no systematized selection work in the mandarin district has been attempted until December, 1914, when Mr. B. Malvar was detailed to visit the citrus region in Batangas. Mr. Malvar returnedwith sample fruits of some twenty odd trees, a number of which were found to be of very good quality. These are being propagated for future distribution. Mr. Malvar also found another “Tizon” (Citrus nobilisvar.papillaris) of excellent flavor and quality which has been added to the citrus collection at Lamao.

The average fruit is so poor that most foreigners never give any attention to the santol, and the fruit is a drug even in the native markets and enormous quantities annually rot on the ground. Few are aware that there are mutations among the santol trees the fruit of which in point of flavor vies with the best fruits in the Tropics, and that in this respect it is superior even to its celebrated relative, the lanzon (Lansium domesticum), the greatest defects being the large seeds and the adherence of the flesh to the seeds. If the seed in these superior santols were abortive in the same proportion as those in the mangosteen, the now despised santol, with its translucent pulp, separable from the pericarp as that of the mangosteen, subacid, juicy and of a vinous, excellent flavor, would rapidly become one of the most popular fruits in the Tropics. Its thick, tough “rind” should make the santol at least equal to the mangosteen as a shipper.

What is probably the first horticultural, asexually propagated variety of the santol is now being established at the Lamao experiment station from buds obtained by Mr. F. Galang, assistant agricultural inspector, from a tree in Pampanga, the fruit of which is so highly prized locally that the fruit never retails below the relatively high price of 2 centavos apiece even when other santols are so plentiful as to be literally unsalable.

Mr. B. Malvar, assistant agricultural inspector, has obtained in Batangas budwood of a sweet-fruited camia which is also being propagated. This is the first mutation of this kind coming to the attention of the writer.

The collection of Philippine citrus fruits of economic value or of botanical interest has been in progress since in 1911, but no systematized selection work in the mandarin district has been attempted until December, 1914, when Mr. B. Malvar was detailed to visit the citrus region in Batangas. Mr. Malvar returnedwith sample fruits of some twenty odd trees, a number of which were found to be of very good quality. These are being propagated for future distribution. Mr. Malvar also found another “Tizon” (Citrus nobilisvar.papillaris) of excellent flavor and quality which has been added to the citrus collection at Lamao.

Petioled Vs. Nonpetioled Budwood.The last three years’ experiments in shield budding tropical fruits which have been conducted by the writer at the Lamao experiment station indicate that for practical purposes in propagation work the tropical fruits may be divided into two groups: (1) Those species the budwood of which may be cut at the time of budding and the petioles cut off close to the bud—for instance, the citrus fruits, avocado, guava, and carambola; and (2) those species in which decay enters the bud from the adhering remnant of the petiole so frequently as to make impracticable budding from newly cut budwood from twigs with the leaves still adhering, such as the mango, hevi, and cacao. It has been found, however, that this trouble may be easily overcome by the simple method of cutting off the leaf blade about three weeks in advance of when the budding is to be done so as to induce the formation of a leaf scar. Then when the petioles have dropped and a well-healed scar has formed, the budwood may be cut and the buds inserted and tied as in ordinary shield budding.In the case of some species, whether or not the bud is of the same age as the stock at the point of insertion is of little or no practical importance, but in other species this condition is one of the requirements for success. Therefore, two chances of failure are insured against in experimental work with species that hitherto have not been budded—(a) by defoliating the budwood previously to the budding operation, and using what may be termed nonpetioled or scarred budwood; and (b) by inserting the buds at a point in the stock which approximately is of the same age and appearance as the budwood.NOTES BY CLEVE. W. HINES, M. S.,Station Superintendent.

Petioled Vs. Nonpetioled Budwood.

The last three years’ experiments in shield budding tropical fruits which have been conducted by the writer at the Lamao experiment station indicate that for practical purposes in propagation work the tropical fruits may be divided into two groups: (1) Those species the budwood of which may be cut at the time of budding and the petioles cut off close to the bud—for instance, the citrus fruits, avocado, guava, and carambola; and (2) those species in which decay enters the bud from the adhering remnant of the petiole so frequently as to make impracticable budding from newly cut budwood from twigs with the leaves still adhering, such as the mango, hevi, and cacao. It has been found, however, that this trouble may be easily overcome by the simple method of cutting off the leaf blade about three weeks in advance of when the budding is to be done so as to induce the formation of a leaf scar. Then when the petioles have dropped and a well-healed scar has formed, the budwood may be cut and the buds inserted and tied as in ordinary shield budding.In the case of some species, whether or not the bud is of the same age as the stock at the point of insertion is of little or no practical importance, but in other species this condition is one of the requirements for success. Therefore, two chances of failure are insured against in experimental work with species that hitherto have not been budded—(a) by defoliating the budwood previously to the budding operation, and using what may be termed nonpetioled or scarred budwood; and (b) by inserting the buds at a point in the stock which approximately is of the same age and appearance as the budwood.NOTES BY CLEVE. W. HINES, M. S.,Station Superintendent.

The last three years’ experiments in shield budding tropical fruits which have been conducted by the writer at the Lamao experiment station indicate that for practical purposes in propagation work the tropical fruits may be divided into two groups: (1) Those species the budwood of which may be cut at the time of budding and the petioles cut off close to the bud—for instance, the citrus fruits, avocado, guava, and carambola; and (2) those species in which decay enters the bud from the adhering remnant of the petiole so frequently as to make impracticable budding from newly cut budwood from twigs with the leaves still adhering, such as the mango, hevi, and cacao. It has been found, however, that this trouble may be easily overcome by the simple method of cutting off the leaf blade about three weeks in advance of when the budding is to be done so as to induce the formation of a leaf scar. Then when the petioles have dropped and a well-healed scar has formed, the budwood may be cut and the buds inserted and tied as in ordinary shield budding.

In the case of some species, whether or not the bud is of the same age as the stock at the point of insertion is of little or no practical importance, but in other species this condition is one of the requirements for success. Therefore, two chances of failure are insured against in experimental work with species that hitherto have not been budded—(a) by defoliating the budwood previously to the budding operation, and using what may be termed nonpetioled or scarred budwood; and (b) by inserting the buds at a point in the stock which approximately is of the same age and appearance as the budwood.

NOTES BY CLEVE. W. HINES, M. S.,Station Superintendent.

A New Sugar Industry.The beginning of a tropical industry in what would be considered a semitropical climate was noted in 1914, when the Southwestern Sugar Company of Arizona milled their first crop of sugar cane and made it into sugar. The factory had been used previously for the manufacture of beet sugar only. It is asingular coincidence to find a region where both cane and beets will thrive well and where sugar is made from both sources in the same factory, and the sugar world is looking forward with great interest to the results of this new venture.

A New Sugar Industry.

The beginning of a tropical industry in what would be considered a semitropical climate was noted in 1914, when the Southwestern Sugar Company of Arizona milled their first crop of sugar cane and made it into sugar. The factory had been used previously for the manufacture of beet sugar only. It is asingular coincidence to find a region where both cane and beets will thrive well and where sugar is made from both sources in the same factory, and the sugar world is looking forward with great interest to the results of this new venture.

The beginning of a tropical industry in what would be considered a semitropical climate was noted in 1914, when the Southwestern Sugar Company of Arizona milled their first crop of sugar cane and made it into sugar. The factory had been used previously for the manufacture of beet sugar only. It is asingular coincidence to find a region where both cane and beets will thrive well and where sugar is made from both sources in the same factory, and the sugar world is looking forward with great interest to the results of this new venture.

The World’s Sugar Supply.The world’s production of sugar amounts to nearly seventeen million tons, practically one half of which is derived from the beet root, the greater percentage of which is produced in Europe. Now that the ravages of war have devastated many of the better beet-sugar regions of Europe a greater demand will be made on the more fortunate sugar countries as soon as the present supply of storage sugar is exhausted and trade resumes its normal condition.

The World’s Sugar Supply.

The world’s production of sugar amounts to nearly seventeen million tons, practically one half of which is derived from the beet root, the greater percentage of which is produced in Europe. Now that the ravages of war have devastated many of the better beet-sugar regions of Europe a greater demand will be made on the more fortunate sugar countries as soon as the present supply of storage sugar is exhausted and trade resumes its normal condition.

The world’s production of sugar amounts to nearly seventeen million tons, practically one half of which is derived from the beet root, the greater percentage of which is produced in Europe. Now that the ravages of war have devastated many of the better beet-sugar regions of Europe a greater demand will be made on the more fortunate sugar countries as soon as the present supply of storage sugar is exhausted and trade resumes its normal condition.

Progress in Sugar Manufacture.The past few years have shown great progress in the method of sugar making. It used to be thought that a high grade of sugar could be made only by the use of the bone-black or animal-char process.The beet-sugar producers were the first to diverge from this method and succeeded in making a perfectly satisfactory sugar in their factories in one continuous process by the aid of the carbonitation system.Louisiana had been making a fairly good sugar known as yellow clarified for a number of years, but the great step in improvements along these lines was brought about by the acid-thin-juice process of Java. This was a combination of the carbonitation and sulphitation processes which gave a satisfactory sugar, though unfortunately the yield of resulting molasses was also quite high.The latest improvement in this work was the introduction of the “Battille Process” which has certain similarities to the Steffens process of beet-sugar manufacture. This method has given an excellent grade of sugar and the maximum rendement since practically all of the sugar is extracted in crystalized form.

Progress in Sugar Manufacture.

The past few years have shown great progress in the method of sugar making. It used to be thought that a high grade of sugar could be made only by the use of the bone-black or animal-char process.The beet-sugar producers were the first to diverge from this method and succeeded in making a perfectly satisfactory sugar in their factories in one continuous process by the aid of the carbonitation system.Louisiana had been making a fairly good sugar known as yellow clarified for a number of years, but the great step in improvements along these lines was brought about by the acid-thin-juice process of Java. This was a combination of the carbonitation and sulphitation processes which gave a satisfactory sugar, though unfortunately the yield of resulting molasses was also quite high.The latest improvement in this work was the introduction of the “Battille Process” which has certain similarities to the Steffens process of beet-sugar manufacture. This method has given an excellent grade of sugar and the maximum rendement since practically all of the sugar is extracted in crystalized form.

The past few years have shown great progress in the method of sugar making. It used to be thought that a high grade of sugar could be made only by the use of the bone-black or animal-char process.

The beet-sugar producers were the first to diverge from this method and succeeded in making a perfectly satisfactory sugar in their factories in one continuous process by the aid of the carbonitation system.

Louisiana had been making a fairly good sugar known as yellow clarified for a number of years, but the great step in improvements along these lines was brought about by the acid-thin-juice process of Java. This was a combination of the carbonitation and sulphitation processes which gave a satisfactory sugar, though unfortunately the yield of resulting molasses was also quite high.

The latest improvement in this work was the introduction of the “Battille Process” which has certain similarities to the Steffens process of beet-sugar manufacture. This method has given an excellent grade of sugar and the maximum rendement since practically all of the sugar is extracted in crystalized form.


Back to IndexNext