FOOTNOTES:

FOOTNOTES:[1]More recently, at the meeting of the British Association in September, 1853, Professor Phillips has declared, that astronomers can discern the shape of a spot on the Moon's surface, which is a few hundred feet in breadth.[2]A person visiting the Eifel, a region of extinct volcanoes, west of the Rhine, can hardly fail to be struck with the resemblance of the craters there, to those seen in the moon through a telescope.[3]Bessel has discussed and refuted (it was hardly necessary) the conjecture of some persons (he describes them as "the feeling hearts who would find sympathy even in the Moon") that there may be in the Moon's valleys air enough to support life, though it does not rise above the hills.—Populäre Vorlesungen, p. 78.[4]The doctrine that the interior nucleus of the Earth is fluid, whether accepted or rejected, does not materially affect this argument. It appears, that in some cases, at least, the melting of substances is prevented, by their being subjected to extreme pressure; but the density, the element from which we reason, is measured by methods quite independent of such questions.[5]Herschel, 512. Bessel, however, holds that the oblateness of Jupiter proves that his interior is somewhat denser than his exterior.Pop. Vorles.p. 91.[6]Herschel, 513.[7]A difficulty may be raised, founded on what we may suppose to be the fact, as to the extreme cold of those regions of the Solar System. It may be supposed that water under such a temperature could exist in no other form than ice. And that the cold must there be intense, according to our notion, there is strong reason to believe. Even in the outer regions of our atmosphere, the cold is probably very many degrees below freezing, and in the blank and airless void beyond, it may be colder still. It has been calculated by physical philosophers, on grounds which seem to be solid, that the cold of the space beyond our atmosphere is 100° below zero. The space near to Jupiter, if an absolute vacuum, in which there is no matter to receive and retain heat emitted from the Sun, may, perhaps, be no colder than it is nearer the Sun. And as to the effect the great cold would produce on Jupiter's watery material, we may remark, that if there be a free surface, there will be vapor produced by the Sun's heat; and if there be air, there will be clouds. We may add, that so far as we have reason to believe, below the freezing point, no accession of cold produces any material change in ice. Even in the expeditions of our Arctic navigators, a cold of 40° below zero was experienced, and ice was still but ice, and there were vapors and clouds as in our climate. It is quite an arbitrary assumption, to suppose that any cold which may exist in Jupiter would prevent the state of things which we suppose.[8]Herschel, 508.[9]It may be thought fanciful to suppose that because there is little or no solid matter (of any kind known to us) in Jupiter, his animals are not likely to have solid skeletons. The analogy is not very strong; but also, the weight assigned to it in the argument is small.Valeat quantum valere debet.[10]Herschel, 522.[11]Herschel, 510.[12]According to Bessel, Schroeteroncesaw one bright point on the dark ground, near the boundary of light in Venus. This was taken as proving a mountain, estimated at 60,000 feet high.Pop. Vorles.p. 86.[13]Herschel, 509.

[1]More recently, at the meeting of the British Association in September, 1853, Professor Phillips has declared, that astronomers can discern the shape of a spot on the Moon's surface, which is a few hundred feet in breadth.

[1]More recently, at the meeting of the British Association in September, 1853, Professor Phillips has declared, that astronomers can discern the shape of a spot on the Moon's surface, which is a few hundred feet in breadth.

[2]A person visiting the Eifel, a region of extinct volcanoes, west of the Rhine, can hardly fail to be struck with the resemblance of the craters there, to those seen in the moon through a telescope.

[2]A person visiting the Eifel, a region of extinct volcanoes, west of the Rhine, can hardly fail to be struck with the resemblance of the craters there, to those seen in the moon through a telescope.

[3]Bessel has discussed and refuted (it was hardly necessary) the conjecture of some persons (he describes them as "the feeling hearts who would find sympathy even in the Moon") that there may be in the Moon's valleys air enough to support life, though it does not rise above the hills.—Populäre Vorlesungen, p. 78.

[3]Bessel has discussed and refuted (it was hardly necessary) the conjecture of some persons (he describes them as "the feeling hearts who would find sympathy even in the Moon") that there may be in the Moon's valleys air enough to support life, though it does not rise above the hills.—Populäre Vorlesungen, p. 78.

[4]The doctrine that the interior nucleus of the Earth is fluid, whether accepted or rejected, does not materially affect this argument. It appears, that in some cases, at least, the melting of substances is prevented, by their being subjected to extreme pressure; but the density, the element from which we reason, is measured by methods quite independent of such questions.

[4]The doctrine that the interior nucleus of the Earth is fluid, whether accepted or rejected, does not materially affect this argument. It appears, that in some cases, at least, the melting of substances is prevented, by their being subjected to extreme pressure; but the density, the element from which we reason, is measured by methods quite independent of such questions.

[5]Herschel, 512. Bessel, however, holds that the oblateness of Jupiter proves that his interior is somewhat denser than his exterior.Pop. Vorles.p. 91.

[5]Herschel, 512. Bessel, however, holds that the oblateness of Jupiter proves that his interior is somewhat denser than his exterior.Pop. Vorles.p. 91.

[6]Herschel, 513.

[6]Herschel, 513.

[7]A difficulty may be raised, founded on what we may suppose to be the fact, as to the extreme cold of those regions of the Solar System. It may be supposed that water under such a temperature could exist in no other form than ice. And that the cold must there be intense, according to our notion, there is strong reason to believe. Even in the outer regions of our atmosphere, the cold is probably very many degrees below freezing, and in the blank and airless void beyond, it may be colder still. It has been calculated by physical philosophers, on grounds which seem to be solid, that the cold of the space beyond our atmosphere is 100° below zero. The space near to Jupiter, if an absolute vacuum, in which there is no matter to receive and retain heat emitted from the Sun, may, perhaps, be no colder than it is nearer the Sun. And as to the effect the great cold would produce on Jupiter's watery material, we may remark, that if there be a free surface, there will be vapor produced by the Sun's heat; and if there be air, there will be clouds. We may add, that so far as we have reason to believe, below the freezing point, no accession of cold produces any material change in ice. Even in the expeditions of our Arctic navigators, a cold of 40° below zero was experienced, and ice was still but ice, and there were vapors and clouds as in our climate. It is quite an arbitrary assumption, to suppose that any cold which may exist in Jupiter would prevent the state of things which we suppose.

[7]A difficulty may be raised, founded on what we may suppose to be the fact, as to the extreme cold of those regions of the Solar System. It may be supposed that water under such a temperature could exist in no other form than ice. And that the cold must there be intense, according to our notion, there is strong reason to believe. Even in the outer regions of our atmosphere, the cold is probably very many degrees below freezing, and in the blank and airless void beyond, it may be colder still. It has been calculated by physical philosophers, on grounds which seem to be solid, that the cold of the space beyond our atmosphere is 100° below zero. The space near to Jupiter, if an absolute vacuum, in which there is no matter to receive and retain heat emitted from the Sun, may, perhaps, be no colder than it is nearer the Sun. And as to the effect the great cold would produce on Jupiter's watery material, we may remark, that if there be a free surface, there will be vapor produced by the Sun's heat; and if there be air, there will be clouds. We may add, that so far as we have reason to believe, below the freezing point, no accession of cold produces any material change in ice. Even in the expeditions of our Arctic navigators, a cold of 40° below zero was experienced, and ice was still but ice, and there were vapors and clouds as in our climate. It is quite an arbitrary assumption, to suppose that any cold which may exist in Jupiter would prevent the state of things which we suppose.

[8]Herschel, 508.

[8]Herschel, 508.

[9]It may be thought fanciful to suppose that because there is little or no solid matter (of any kind known to us) in Jupiter, his animals are not likely to have solid skeletons. The analogy is not very strong; but also, the weight assigned to it in the argument is small.Valeat quantum valere debet.

[9]It may be thought fanciful to suppose that because there is little or no solid matter (of any kind known to us) in Jupiter, his animals are not likely to have solid skeletons. The analogy is not very strong; but also, the weight assigned to it in the argument is small.Valeat quantum valere debet.

[10]Herschel, 522.

[10]Herschel, 522.

[11]Herschel, 510.

[11]Herschel, 510.

[12]According to Bessel, Schroeteroncesaw one bright point on the dark ground, near the boundary of light in Venus. This was taken as proving a mountain, estimated at 60,000 feet high.Pop. Vorles.p. 86.

[12]According to Bessel, Schroeteroncesaw one bright point on the dark ground, near the boundary of light in Venus. This was taken as proving a mountain, estimated at 60,000 feet high.Pop. Vorles.p. 86.

[13]Herschel, 509.

[13]Herschel, 509.

THEORY OF THE SOLAR SYSTEM.

1. We have given our views respecting the various planets which constitute the Solar System;—views established, it would seem, by all that we know, of the laws of heat and moisture, density and attraction, organization and life. We have examined and reasoned upon the cases of the different planets separately. But it may serve to confirm this view, and to establish it in the reader's mind, if we give a description of the system which shall combine and connect the views which we have presented, of the constitution and peculiarities, as to physical circumstances, of each of the planets. It will help us in our speculations, if we can regard the planets not only as a collection, but as a scheme;—if we can give, not an enumeration only, but a theory. Now such a scheme, such a theory, appears to offer itself to us.

2. The planets exterior to Mars, Jupiter, and Saturn especially, as the best known of them, appear, by the best judgment which we can form, to be spheres of water, and of aqueous vapor, combined, it may be, with atmospheric air, in which their cloudy belts float over their deep oceans. Mars seems to have some portion at least of aqueous atmosphere; the earth, we know, has a considerable atmosphere of air, andof vapor; but the Moon, so near to her mistress, has none. On Venus and Mercury, we see nothing of a gaseous or aqueous atmosphere; and they, and Mars, do not differ much in their density from the Earth. Now, does not this look as if the water and the vapor, which belong to the solar system, were driven off into the outer regions of its vast circuit; while the solid masses which are nearest to the focus of heat, are all approximately of the same nature? And if this be so, what is the peculiar physical condition which we are led to ascribe to the Earth? Plainly this: that she is situated just in that region of the system, where the existence of matter, both in a solid, a fluid, and a gaseous condition, is possible. Outside the Earth's orbit, or at least outside Mars and the small Planetoids, there is, in the planets, apparently, no solid matter; or rather, if there be, there is a vast preponderance of watery and vaporous matter. Inside the Earth's orbit, we see, in the planets, no traces of water or vapor, or gas; but solid matter, about the density of terrestrial matter. The Earth, alone, is placed at the border where the conditions of life are combined; ground to stand upon; air to breathe; water to nourish vegetables, and thus, animals; and solid matter to supply the materials for their more solid parts; and with this, a due supply of light and heat, a due energy of the force of weight. All these conditions are, in our conception, requisite for life: that all these conditions meet, elsewhere than in the neighborhood of the Earth's orbit, we see strong reasons to disbelieve. The Earth, then, it would seem, is the abode of life, not because all the globes which revolve round the Sun may be assumed to be the abodes of life; but because the Earth is fitted to be so, by a curious and complex combination of properties and relations, which do not at all apply to the others. That the Earth is inhabited, is not a reason forbelieving that the other Planets are so, but for believing that they are not so.

3. Can we see any physical reason, for the fact which appears to us so probable, that all the water and vapor of the system is gathered in its outward parts? It would seem that we can. Water and aqueous vapor are driven from the Sun to the outer parts of the solar system, or are allowed to be permanent there only, as they are driven off and retained at a distance by any other source of heat;—to use a homely illustration, as they are driven from wet objects placed near the kitchen-fire: as they are driven from the hot sands of Egypt into the upper air: as they are driven from the tropics to the poles. In this latter case, and generally, in all cases, in which vapor is thus driven from a hotter region, when it comes into a colder, it may again be condensed in water, and fall in rain. So the cold of the air in the temperate zone condenses the aqueous vapors which flow from the tropics; and so, we have our clouds and our showers. And as there is this rainy region, indistinctly defined, between the torrid and the frigid zones on the earth; so is there a region of clouds and rain, of air and water, much more precisely defined, in the solar system, between the central torrid zone and the external frigid zone which surrounds the Sun at a greater distance.

4.The Earth's Orbit is the Temperate Zone of the Solar System.In that Zone only is the play of Hot and Cold, of Moist and Dry, possible. The Torrid Zone of the Earth is not free from moisture; it has its rains, for it has its upper colder atmosphere. But how much hotter are Venus and Mercury than the Torrid Zone? There, no vapors can linger; they are expelled by the fierce solar energy; and there is no cool stratum to catch them and return them. If they were there, they must fly to the outer regions; to the cold abodes of Jupiterand Saturn, if on their way, the Earth did not with cold and airy finger outstretched afar, catch a few drops of their treasures, for the use of plant, and beast, and man. The solid stone only, and the metallic ore which can be fused and solidified with little loss of substance, can bear the continual force of the near solar fire, and be the material of permanent solid planets in that region. But the lava pavement of the Inner Planets bears no superstructure of life; for all life would be scorched away along with water, its first element. On the Earth first, can this superstructure be raised; and there, through we know not what graduation of forms, the waters were made to bring forth abundantly things that had life; plants, and animals nourished by plants, and conspiring with them, to feed on their respective appointed elements, in the air which surrounded them. And so, nourished by the influences of air and water, plants and animals lived and died, and were entombed in the scourings of the land, which the descending streams carried to the bottom of the waters. And then, these beds of dead generations were raised into mountain ranges; perhaps by the yet unextinguished forces of subterraneous fires. And then a new creation of plants and animals succeeded; still living under the fostering influence of the united pair, Air and Water, which never ceased to brood over the World of Life, their Nurseling; and then, perhaps, a new change of the limits of land and water, and a new creation again: till at last, Man was placed upon the Earth; with far higher powers, and far different purposes, from any of the preceding tribes of creatures: and with this, for one of his offices;—that there might be an intelligent being to learn how wonderfully the scheme of creation had been carried on, and to admire, and to worship the Creator.

5. But we have a few more remarks to make on the structureof the Solar System, in this point of view. When we say that the water and vapor of the System were driven to the outer parts, or retained there, by the central heat of the Sun, perhaps it might be supposed to be most simple and natural, that the aqueous vapor, and the water, should assume its place in a distinct circle, or rather a spherical shell, of which the Sun was the centre; thus making an elemental sphere about the centre, such as the ancients imagined in their schemes of the Universe. Nor will we venture to say that such an arrangement of elements might not be; though perhaps it might be shown that no stable equilibrium of the system would be, in this way, mechanically possible. But this at least we may say; that a rotatory motion of all the parts of the universe appears to be a universal law prevalent in it, so far as our observation can reach: and that, by such rotation of the separate masses, the whole is put in a condition which is everywhere one of stable equilibrium. It was, then, agreeable to the general scheme, that the excess of water and vapor, which must necessarily be carried away, or stored up, in the outer regions of the System, should be put into shapes in which it should have a permanent place and form. And thus, it is suitable to the general economy of creation, that this water and vapor should be packed into rotating masses, such as are Jupiter and Saturn, Uranus and Neptune. When once collected in such rotating masses, the attraction of its parts would gather it into spheroidal forms; oblate by the effect of rotation, as Jupiter, or perhaps into annular forms, like the Ring of Saturn;[1]for such also is a mechanically possible form of equilibrium, for a fluid mass. And these spheroids once formed, the water would form a central nucleus, over which would hang a cover of vapor,raised by the evaporating power of the Sun, and forming clouds, where the rarity of the upper strata of vapor allowed the cold of the external space to act; and these clouds, spun into belts by the rotation of the sphere. And thus, the vapor, which would otherwise have wandered loose about the atmosphere, was neatly wound into balls; which, again, were kept in their due place, by being made to revolve in nearly circular orbits about the Sun.

6. And thus, according to our view, water and gases, clouds and vapors, form mainly the planets in the outer part of the solar system; while masses such as result from the fusion of the most solid materials, lie nearer the sun, and are found principally within the orbit of Jupiter.[2]To conceive planetary systems as formed by the gradual contraction of a nebular mass, and by the solidification of some of its parts, is a favorite notion of several speculators. If we adopt this notion, we shall, I think, find additional proofs in favor of our view of the system. For, in the first place, we have the zodiacal light, a nebulous appendage to the Sun, as Herschel conceives, extending beyond the orbits of Mercury and Venus. These planets, then, have not yet fully emerged from the atmosphere in which they had their origin:—themother-lightandmother-fire, in which they began to crystallize, as crystals do in their mother-water. Though they are already opaque, they are still immersed in luminous vapor: and bearing such traces of their chaotic state being not yet ended, we need not wonder, if we find no evidence of their having inhabitants, and some evidence to the contrary. They are within a nebular region, which mayeasily be conceived to be uninhabitable. And where this nebular region, marked by the zodiacal light, terminates, the world of life begins, namely at the Earth.

7. But further, outside this region of the Earth, what do we find in the solar system? Of solid matter, if our views are right, we find nothing but an immense number of small bodies; namely, first, Mars, who, as we have said, is only about one-eighth the earth in mass: the twenty-six small planetoids, (or whatever number may have been discovered when these pages meet the reader's eye,[3]) between Mars and Jupiter; the four satellites of Jupiter; the eight satellites of Saturn; the six (if that be the true number,) satellites of Uranus; and the one satellite of Neptune, already detected. It is very remarkable, that all this array of small bodies begins to be found just outside the Earth's orbit. Supposing, as we have found so much reason to suppose, that Jupiter, and the other exterior planets, are not solid bodies, but masses of water and of vapor; the existence of great solid planetary masses, such as exist in the region of the Earth's orbit, is succeeded externally by the existence of a vast number of smaller bodies. The real quantity of matter in these smaller bodies we cannot in general determine. Perhaps the largest of them, (after Mars,) may be Jupiter's third satellite; which[4]is reckoned, by Laplace, to have a mass less than 1-10,000th of that of Jupiter himself; and thus, since Jupiter, as we have seen, has a mass 333 times that of the Earth, the satellite would be above 1-30th of the Earth's mass.[5]That none but masses of this size, and many far below this, are foundoutside of Mars, appears to indicate, that theplanet-makingpowers which were efficacious to this distance from the sun, and which produced the great globe of the Earth, were, beyond this point, feebler; so that they could only give birth to smaller masses; to planetoids, to satellites, and to meteoric stones. Perhaps we may describe this want of energy in the planet-making power, by saying, that at so great a distance from the central fire, there was not heat enough to melt together these smaller fragments into a larger globe;[6]or rather, when they existed in a nebular, perhaps in a gaseous state, that there was not heat enough to keep them in that state, till the attraction of the parts of all of them had drawn them into one mass, which might afterwards solidify into a single globe. The tendency of nebular matter to separate into distinct portions, which may afterwards be more and more detached from each other, so as to break the nebulous light into patches and specks, appears to be seen in the structure of the resolvable nebulæ, as we have already had occasion to notice. And according to the view we are now taking, we may conceive such patches, by further cooling and concentration, to remain luminous as comets, and perhaps shooting stars; or to become opaque as planets, planetoids, satellites, or meteoric stones. And here we may call to mind what we have already said, that the meteoric stones consist of the same elements as those of the earth, combined by the same laws; and thus appear to bring us a message from the other solid planets, that they also have the same elements and the same chemical forces as the earth has.

8. It has already been supposed, by many astronomers, that shooting stars, and meteoric stones, are bodies of connected nature and origin; and that they are cosmical, not terrestrial bodies;—parts of the solar system, not merely appendages to the earth. It has been conceived, that the luminous masses, which appear as shooting stars, when they are without the sphere of terrestrial influences, may, when they reach our atmosphere, collapse into such solid lumps as have from time to time fallen upon the earth's surface: many of them, with such sudden manifestations of light and heat, as implied some rapid change taking place in their chemical constitution and consistence. If shooting stars are of this nature, then, in those cases in which a great number of them appear in close succession, we have evidence that there is a region in which there is a large collection of matter of a nebulous kind, collected already into small clouds, and ready, by any additional touch of the powers that hover round the earth, to be further consolidated into planetary matter. That the earth's orbit carries her through such regions, in her annual course, we have evidence, in the curious fact, now so repeatedly observed, of showers of shooting stars, seen at particular seasons of every year; especially about the 13th of November, and the 10th of August. This phenomenon has been held, most reasonably, to imply that at those periods of the year, the earth passes through a crowd of such meteor-planets, which form a ring round the sun; and revolving round him, like the other planets, retain their place in the system from year to year.[7]It may be that the orbits of these meteor-planets are very elliptical. That they are to a certain extent elliptical, appears to be shown, by our falling in with them only once a year, not every half year, as we should do, if their orbit, being nearly circular,met the earth's orbit in two opposite points. That the shooting stars, thus seen in great numbers when the earth is at certain points of her orbit, are really planetoidal bodies, appears to be further proved by this;—that they all seem to move nearly in the same direction.[8]They are, each of them, visible for a short time only, (indeed commonly only for a few seconds), while they are nearest the earth; much in the same way in which a comet is visible only for a small portion of its path: and this portion is described in a short time, because they move near the earth. They are so small that a little change of distance removes them beyond our vision.

9. Perhaps these revolving specks of nebulæ are the outriders of the zodiacal light; portions of it, which, being external to the permanently nebulous central mass, have broken into patches, and are seen as stars for the moment that we are near to them. And if this be true, we have to correct, in a certain way, what we have previously said of the zodiacal light;—that no one had thought of resolving it into stars: for it would thus appear, that in its outer region, it resolves itself into stars, visible, though but for a moment, to the naked eye.

10. And thus, all these phenomena concur in making it appear probable, that the Earth is placed in that region of the solar system in which the planet-forming powers are most vigorous and potent;—between the region of permanent nebulous vapor, and the region of mere shreds and specks of planetary matter, such as are the satellites and the planetoidal group. And from these views, finally it follows, that the Earth is really the largest planetary body in the Solar System. The vast globes of Jupiter and Saturn, Uranus and Neptune, which roll far above her, are still only huge masses of cloud and vapor, water and air; which, from their enormoussize, are ponderous enough to retain round them a body of small satellites, perhaps, in some degree at least, solid; and which have perhaps a small lump, or a few similar lumps, of planetary matter at the centre of their watery globe. The Earth is really the domestic hearth of this Solar System; adjusted between the hot and fiery haze on one side, the cold and watery vapor on the other. This region only is fit to be a domestic hearth, a seat of habitation; and in this region is placed the largest solid globe of our system; and on this globe, by a series of creative operations, entirely different from any of those which separated the solid from the vaporous, the cold from the hot, the moist from the dry, have been established, in succession, plants, and animals, and man. So that the habitation has been occupied; the domestic hearth has been surrounded by its family; the fitnesses so wonderfully combined have been employed; and the Earth alone, of all the parts of the frame which revolves round the Sun, has become a World.

11. Perhaps it may tend still further to illustrate, and to fix in the reader's mind, the view of the constitution of the solar system here given, if we remark an analogy which exists, in this respect, between the Earth in particular, and the Solar System in general. The earth, like the central parts of the system, is warmed by the sun; and hence, drives off watery vapors into the circumambient space, where they are condensed by the cold. The upper regions of the atmosphere, like the outer regions of the solar system, form the vapors thus raised into clouds, which are really only water in minute drops; while in the solar system, the cold of the outer regions, and the rotation of the masses themselves, maintain the water, and the vapor, in immense spheres. But Jupiter and Saturn may be regarded as, in many respects, immense clouds; the continuouswater being collected at their centres, while the more airy and looser parts circulate above. They are the permanent receptacles of the superfluous water and air of the system. What is not wanted on the Earth, is stored up there, and hangs above us, far removed from our atmosphere; but yet, like the clouds in our atmosphere, an example, what glorious objects accumulations of vapor and water, illuminated by the rays of the sun, may become in our eyes.

12. These views are so different from those hitherto generally entertained, and considered as having a sort of religious dignity belonging to them, that we may fear, at first at least, they will appear to many, rash and fanciful, and almost, as we have said, irreverent. On the question of reverence we may hereafter say a few words; but as to the rashness of these views, we would beg the reader, calmly and dispassionately, to consider the very extraordinary number of points in the solar system, hitherto unexplained, which they account for, or, at least reduce into consistency and connection, in a manner which seems wonderful. The Theory, as we may perhaps venture to call it, brings together all these known phenomena;—the great size and small density of the exterior planets;—their belts and streaks;—Saturn's ring;—Jupiter's oblateness;—the great number of satellites of the exterior planets;—the numerous group of planetoid bodies between Jupiter and Mars;—the appearance of definite shapes of land and water on Mars;—the showers of shooting stars which appear at certain periods of the year;—the Zodiacal Light;—the appearance of Venus as different from Mars;—and finally, the material composition of meteoric stones.

13. Perhaps there are other phenomena which more readily find an explanation in this theory, than in any other: for instance, the recent discovery of a dim half-transparent ring, asan appendage to the luminous ring of Saturn, which has hitherto alone been observed. Perhaps this is the ring of vapor which may naturally be expected to accompany the ring of water. It is the annular atmosphere of the aqueous annulus. But, the discovery of this faint ring being so new, and hitherto not fully unfolded, we shall not further press the argument, which, hereafter, perhaps, may be more confidently derived from its existence.

14. There are some other facts in the Solar System, which, we can hardly doubt, must have a bearing upon the views which we have urged; though we cannot yet undertake to explain that bearing fully. Not only do all the planetary bodies of the solar system, as well as the Sun himself, revolve upon their axes; but there is a very curious fact relative to these revolutions, which appears to point out a further connection among them. So far as has yet been ascertained, all those which we, in our theory, regard as solid bodies, Mercury, Venus, the Earth, and Mars, revolve in very nearly the same time: namely, in about twenty-four hours. All those larger masses, on the other hand, which we, in our theory, hold to be watery planets, Jupiter, Saturn, Uranus, revolve, not in a longer time, as would perhaps have been expected, from their greater size, but in a shorter time; in less than half the time; in about ten hours. The near agreement of the times of revolution in each of these two groups, is an extremely curious fact; and cannot fail to lead our thoughts to the probability of some common original cause of these motions. But no such common cause has been suggested, by any speculator on these subjects. If, in this blank, even of hypotheses, one might be admitted, as at least a mode of connecting the facts, we might say, that the compound collection of solid materials, water, and air, of which the solar system consists, and ofwhich our earth alone, perhaps, retains the combination, being, by whatever means, set a spinning round an axis, at the rate of one revolution in 24 hours, the solid masses which were detached from it, not being liable to much contraction, retained their rate of revolution; while the vaporous masses which were detached from the fluid and airy part, contracting much, when they came into a colder region, increased their rate of revolution on account of their contraction. That such an acceleration of the rate of revolution would be the result of contraction, is known from mechanical principles; and indeed, is evident: for the contraction of a circular ring of such matter into a narrower compass, would not diminish the linear velocity of its elements, while it would give them a smaller path to describe in their revolutions. Such an hypothesis would account, therefore, both for the nearly equal times of revolution of all the solid planets, and for the smaller period of rotation, which the larger planets show.

15. In what manner, however, portions are to be detached from such a rotating mass, so as to form solid planets on the one side, and watery planets on the other, and how these planets, so detached, are to be made to revolve round the Sun, in orbits nearly circular, we have no hypothesis ready to explain. And perhaps we may say, that no satisfactory, or even plausible, hypothesis to explain these facts, has been proposed: for the Nebular Hypothesis, the only one which is likely to be considered as worthy any notice on this subject, is too imperfectly worked out, as yet, to enable us to know, what it will or will not account for. According to that hypothesis, the nebular matter of a system, having originally a rotatory motion, gradually contracts; and separating, at various distances from the centre, forms rings; which again, breaking at some point of their circumference, are, by the mutual attraction oftheir parts, gathered up into one mass; which, when cooled down, so as to be opaque, becomes a planet; still revolving round the luminous mass which remains at the centre. That such a process, if we suppose the consistency, and other properties, of the nebulous matter to be such as to render it possible, would produce planetary masses revolving round a sun in nearly circular orbits, and rotating about their own axes, seems most likely; though it does not appear that it has been very clearly shown.[9]But no successful attempt has been made to deduce any laws of the distances from the centre, times of rotation, or other properties of such planets; and therefore,we cannot say that the nebular hypothesis is yet in any degree confirmed.

16. The Theory which we have ventured to propose, of the Solar System, agrees with the Nebular Hypothesis, so far as that hypothesis goes; if we suppose that there is, at the centre of the exterior planets, Jupiter, Saturn, Uranus, and Neptune, a solid nucleus, probably small, of the same nature as the other planets. Such an addition to our theory is, perhaps, on all accounts, probable: for that circumstance would seem to determine, to particular points, the accumulation of water and vapors, to which we hold that those planets owe the greater part of their bulk. Those planets then, Jupiter, Saturn, and the others, are really small solid planets, with enormous oceans and atmospheres. The Nebular Hypothesis, in that case, is that part of our Hypothesis, which relates to the condensation of luminous nebular matter; whileweconsider, further, the causes which, scorching the inner planets, and driving the vapors to the outer orbs, would make the region of the earth the only habitable part of the system.

17. The belief that other planets, as well as our own, are the seats of habitation of living things, has been entertained, in general, not in consequence of physical reasons, but in spite of physical reasons; and because there were conceived to be other reasons, of another kind, theological or philosophical, for such a belief. It was held that Venus, or that Saturn, was inhabited, not because any one could devise, with any degree of probability, any organized structure which would be suitable to animal existence on the surfaces of those planets; but because it was conceived that the greatness or goodness of the Creator, or His wisdom, or some other of His attributes, would be manifestly imperfect, if these planets were not tenanted by living creatures. The evidences of design, ofwhich we can trace so many, and such striking examples, in our own sphere, the sphere of life, must, it was assumed, exist, in the like form, in every other part of the universe. The disposition to regard the Universe in this point of view, is very general; the disinclination to accept any change in our belief which seems, for a time, to interfere with this view, is very strong; and the attempt to establish the necessity of new views discrepant from these has, in many eyes, an appearance as if it were unfriendly to the best established doctrines of Natural Theology. All these apprehensions will, we trust, be shown, in the sequel, to be utterly unfounded: and in order that any such repugnance to the doctrines here urged, may not linger in the reader's mind, we shall next proceed to contemplate the phenomena of the universe in their bearing upon such speculations.

FOOTNOTES:[1]Other speculators also have regarded Saturn's Ring as a ring of cloud or water. SeeCosmos,iii. 527 and 553.[2]Humboldt has already remarked(Cosmos,i. 95, andiii. 427), that the inner planets as far as Mars, and the outer ones beginning with Jupiter, form two groups having different properties. Also Encke. (See Humboldt's Note.)[3]Printed Oct. 19, 1853.[4]Herschel, 540.[5]It is probable, from the small density of Jupiter's satellites, that they also consist in a great measure of water and vapor. Only one of them is denser than Jupiter himself.—Cosmos.[6]It has, in our own day, even in the present year, been regarded as a great achievement of man to direct the fiery influences which he can command, so as to cast a colossal statue in a single piece, instead of casting it in several portions.[7]Herschel, 900-905.[8]Herschel, 901.[9]Besides the curious relation of the times of rotation of the planets, just noticed, there is another curious relation, of their distance from the Sun, which any one, wishing to frame an hypothesis on the origin of our Solar System, ought by all means to try to account for.The distances from the Sun, of the planets, Mercury, Venus, Earth, Mars, the Planetoids, Jupiter, Saturn, Uranus, are nearly as the numbers,4, 7, 10, 16, 28, 52, 100, 196:now the excesses of each of these numbers above the first are,3, 3, 6, 12, 24, 48, 96:a series in which each term (after the first,) is double of the preceding one. Hence, the distances of the planets conform to a series following this law, (Bode's law, as it is termed.) And though the law is by no means exact, yet it was so far considered a probable expression of a general fact, that the deviation from this law, in the interval between Mars and Jupiter, was the principal cause which led first to the suspicion of a planet interposed in the seemingly vacant space; and thus led to the discovery of the planetoids, which really occupy that region. It is true, that the law is found not to hold, in the case of the newly-discovered planet Neptune; for his distance from the Sun, which according to this law, should be 388, is really only 300, 30 times the Earth's distance, instead of 39 times. Still, Bode's law has a comprehensive approximate reality in the Solar System, sufficient to make it a strong recommendation of any hypothesis of the origin of the system, that it shall account for this law. This, however, the nebular hypothesis does not.

[1]Other speculators also have regarded Saturn's Ring as a ring of cloud or water. SeeCosmos,iii. 527 and 553.

[1]Other speculators also have regarded Saturn's Ring as a ring of cloud or water. SeeCosmos,iii. 527 and 553.

[2]Humboldt has already remarked(Cosmos,i. 95, andiii. 427), that the inner planets as far as Mars, and the outer ones beginning with Jupiter, form two groups having different properties. Also Encke. (See Humboldt's Note.)

[2]Humboldt has already remarked(Cosmos,i. 95, andiii. 427), that the inner planets as far as Mars, and the outer ones beginning with Jupiter, form two groups having different properties. Also Encke. (See Humboldt's Note.)

[3]Printed Oct. 19, 1853.

[3]Printed Oct. 19, 1853.

[4]Herschel, 540.

[4]Herschel, 540.

[5]It is probable, from the small density of Jupiter's satellites, that they also consist in a great measure of water and vapor. Only one of them is denser than Jupiter himself.—Cosmos.

[5]It is probable, from the small density of Jupiter's satellites, that they also consist in a great measure of water and vapor. Only one of them is denser than Jupiter himself.—Cosmos.

[6]It has, in our own day, even in the present year, been regarded as a great achievement of man to direct the fiery influences which he can command, so as to cast a colossal statue in a single piece, instead of casting it in several portions.

[6]It has, in our own day, even in the present year, been regarded as a great achievement of man to direct the fiery influences which he can command, so as to cast a colossal statue in a single piece, instead of casting it in several portions.

[7]Herschel, 900-905.

[7]Herschel, 900-905.

[8]Herschel, 901.

[8]Herschel, 901.

[9]Besides the curious relation of the times of rotation of the planets, just noticed, there is another curious relation, of their distance from the Sun, which any one, wishing to frame an hypothesis on the origin of our Solar System, ought by all means to try to account for.The distances from the Sun, of the planets, Mercury, Venus, Earth, Mars, the Planetoids, Jupiter, Saturn, Uranus, are nearly as the numbers,4, 7, 10, 16, 28, 52, 100, 196:now the excesses of each of these numbers above the first are,3, 3, 6, 12, 24, 48, 96:a series in which each term (after the first,) is double of the preceding one. Hence, the distances of the planets conform to a series following this law, (Bode's law, as it is termed.) And though the law is by no means exact, yet it was so far considered a probable expression of a general fact, that the deviation from this law, in the interval between Mars and Jupiter, was the principal cause which led first to the suspicion of a planet interposed in the seemingly vacant space; and thus led to the discovery of the planetoids, which really occupy that region. It is true, that the law is found not to hold, in the case of the newly-discovered planet Neptune; for his distance from the Sun, which according to this law, should be 388, is really only 300, 30 times the Earth's distance, instead of 39 times. Still, Bode's law has a comprehensive approximate reality in the Solar System, sufficient to make it a strong recommendation of any hypothesis of the origin of the system, that it shall account for this law. This, however, the nebular hypothesis does not.

[9]Besides the curious relation of the times of rotation of the planets, just noticed, there is another curious relation, of their distance from the Sun, which any one, wishing to frame an hypothesis on the origin of our Solar System, ought by all means to try to account for.

The distances from the Sun, of the planets, Mercury, Venus, Earth, Mars, the Planetoids, Jupiter, Saturn, Uranus, are nearly as the numbers,

4, 7, 10, 16, 28, 52, 100, 196:

now the excesses of each of these numbers above the first are,

3, 3, 6, 12, 24, 48, 96:

a series in which each term (after the first,) is double of the preceding one. Hence, the distances of the planets conform to a series following this law, (Bode's law, as it is termed.) And though the law is by no means exact, yet it was so far considered a probable expression of a general fact, that the deviation from this law, in the interval between Mars and Jupiter, was the principal cause which led first to the suspicion of a planet interposed in the seemingly vacant space; and thus led to the discovery of the planetoids, which really occupy that region. It is true, that the law is found not to hold, in the case of the newly-discovered planet Neptune; for his distance from the Sun, which according to this law, should be 388, is really only 300, 30 times the Earth's distance, instead of 39 times. Still, Bode's law has a comprehensive approximate reality in the Solar System, sufficient to make it a strong recommendation of any hypothesis of the origin of the system, that it shall account for this law. This, however, the nebular hypothesis does not.

THE ARGUMENT FROM DESIGN.

1. There is no more worthy or suitable employment of the human mind, than to trace the evidences of Design and Purpose in the Creator, which are visible in many parts of the Creation. The conviction thus obtained, that man was formed by the wisdom, and is governed by the providence, of an intelligent and benevolent Being, is the basis of Natural Religion, and thus, of all Religion. We trust that some new lights will be thrown upon the traces of Design which the Universe offers, even in the work now before the reader; and as our views, regarding the plan of such Design, are different, in some respects, and especially as relates to the Planets and Stars, from those which have of late been generally entertained, it will be proper to make some general remarks, mainly tending to show, that the argument remains undisturbed, though the physical theory is changed.

2. It cannot surprise any one who has attended to the history of science, to find that the views, even of the most philosophical minds, with regard to the plan of the universe, alter, as man advances from falsehood to truth: or rather, from very imperfect truth to truth less imperfect. But yet such a one will not be disposed to look, with any other feeling than profoundrespect, upon the reasonings by which the wisest men of former times ascended from their erroneous views of nature to the truth of Natural Religion. It cannot seem strange to us that man at any point, and perhaps at every point, of his intellectual progress, should have an imperfect insight into the plan of the Universe; but, in the most imperfect condition of such knowledge, he has light enough from it, to see vestiges of the Wisdom and Benevolence of the Creating Deity; and at the highest point of his scientific progress, he can probably discover little more, by the light which physical science supplies. We can hardly hope, therefore, that any new truths with regard to the material universe, which may now be attainable, will add very much to the evidence of creative design; but we may be confident, also, that they will not, when rightly understood, shake or weaken such evidence. It has indeed happened, in the history of mankind, that new views of the constitution of the universe, brought to the light by scientific researches, and established beyond doubt, in the conviction of impartial persons, have disturbed the thoughts of religious men; because they did not fall in with the view then entertained, of the mode in which God effects his purpose in the universe. But in these cases, it soon came to be seen, after a season of controversy, reproach, and alarm, that the old argument for design was capable of being translated into the language of the new theory, with no loss of force; and the minds of men were gradually tranquillized and pacified. It may be hoped that the world is now so much wiser than it was two or three centuries ago, that if any modification of the current arguments for the Divine Attributes, drawn from the aspect of the universe, become necessary, in consequence of the rectification of received errors, it will take place without producingpain, fear, or anger. To promote this purpose, we proceed to make a few remarks.

3. The proof of Design, as shown in the works of Creation, is seen most clearly, not in mere physical arrangement, but in the structure of organized things;—in the constitution of plants and animals. In those parts of nature, the evidences of intelligent purpose, of wise adaptation, of skilful selection of means to ends, of provident contrivance, are, in many instances, of the most striking kind. Such, for example, are the structure of the human eye, so curiously adapted for its office of seeing; the muscles, cords, and pullies by which the limbs of animals are moved, exceeding far the mechanical ingenuity shown in human inventions; the provisions which exist, before the birth of offspring, for its sustenance and well-being when it shall have been born;—these are lucid and convincing proofs of an intelligent Creator, to which no ordinary mind can refuse its conviction. Nor is the evidence, which we here recognize, deprived of its force, when we see that many parts of the structure of animals, though adapted for particular purposes, are yet framed as a portion of a system which does not seem, in its general form, to have any bearing on such purposes.[1]The beautiful contrivances which exist in the skeleton of man, and the contrivances, possessing the same kind of beauty, in the skeleton of a sparrow, do not appear to any reasonable person less beautiful, because the skeleton of a man, and of a sparrow, have an agreement, bone for bone, for which we see no reason, and which appears to us to answer no purpose. The way in which the human hand and arm are made capable of their infinitevariety of use, by the play of the radius and ulna, the bones of the wrist and the fingers, is not the less admirable, because we can trace the representatives and rudiments of each of these bones, in cases where they answer no such ends;—in the foreleg of the pig, the ox, the horse, or the seal. The provision for feeding the young creature, which is made, with such bounteous liberality, and such opportune punctuality, by the breasts of the mother, has not any doubt thrown upon its reality, by the teats of male animals and the paps of man, which answer no such purpose. That in these cases there is manifested a wider plan, which does not show any reference to the needs of particular cases; as well as peculiar contrivances for the particular cases, does not disturb our impression of design in each case. Why should so large a portion of the animal kingdom, intended, as it seems, for such different fields of life and modes of living;—beasts, birds, fishes;—still have a skeleton of the same plan, and even of the same parts, bone for bone; though many of the parts, in special cases, appear to be altogether useless (namely, the vertebrate plan)? We cannot tell. Our naturalists and comparative anatomists, it would seem, cannot point out any definite end, which is answered by making so many classes of animals on this one vertebrate plan. And since they cannot do this, and since we cannot tell why animals are so made, we must be content to say that we do not know; and therefore, to leave this feature in the structure of animals out of our argument for design. Hence we do not say that the making of beasts, birds, and fishes, on the same vertebrate plan, proves design in the Creator, in any way in which we can understand design. That plan is not of itself a proof of design; it is something in addition to the proofs of design; a general law of the animal creation, established, it may be, for some other reason. Butthis common plan being given, we can discern and admire, in every kind of animal, the manner in which the common plan is adapted to the particular purpose which the animal's kind of life involves.[2]The general law is not all; there is also, in every instance, a special care for the species. The general law may seem, in many cases, to remove further from us the proof of providential care; by showing that the elements of the benevolent contrivance are not provided in the cases alone where they are needed, but in others also. But yet this seeming, this obscuration of the evidence of design, by interposing the form of general law, cannot last long. If the general law supplies the elements, still a special adaptation is needed to make the elements answer such a purpose; and what is this adaptation, but design? The radius and ulna, the carpal and metacarpal bones, are all in the general type of the vertebrate skeleton. But does this fact make it the less wonderful, that man's arm and hand and fingers should be constructed so that he can make and use the spade, the plow, the loom, the pen, the pencil, the chisel, the lute, the telescope, the microscope, and all other instruments? Is it not, rather, very wonderful that the bones which are to be found rudimentally, in the leg-bone of a horse, or the hoof of an ox, should be capable of such a curious and fertile development and modification? And is not such development and modification a work, and a proof, of design and intention in the Creator? And so in other cases. The teats of male animals, the nipples of man, may arise from this, that the general plan of the animal frame includes paps, as portions of it; and that the frame is so far moulded in the embryo, before the sex of the offspring is determined. Be it so. Yet still this provision of paps in the animal form in general,has reference to offspring; and the development of that part of the frame, when the sex is determined, is evidence of design, as clear as it is possible to conceive in the works of nature. The general law is moulded to the special purpose, at the proper stage; and this play of general laws, and special contrivances, into each other's provinces, though it may make the phenomena a little more complex, and modify our notion as to the mode of the Creator's working, will not, in philosophical minds, disturb the conviction that there is design in the special adaptations: besides which, some other feature of the operation of the Creative Mind may be suggested by the prevalence of general laws in the Creation.

4. There is, however, one caution suggested by this view. Since, besides, and mixed with the examples of Design which the creation offers, there are also results of General Laws, in which we cannot trace the purpose and object of the law; we may fall into error, if we fasten upon something which is a result of such mere general laws, and imagine that we can discern its object and purpose. Thus, for instance, we might possibly persuade ourselves that we had discovered the use and purpose of the teats of male animals; or of the trace of separation into parts which the leg-bone of a horse offers; or of the false toes of a pig: all which are, as we have seen, the rudiments of a plan more general than is developed in the particular case. And if, when we had made such a fancied discovery, it were found that the uses and purposes which we had imagined to belong to these parts or features, were not really served by them; at first, perhaps, we might be somewhat disturbed, as having lost one of the evidences of the design of the Creator, all which are, precious to a reverent mind. But it is not likely that any disturbance of a reverent mind on such grounds as this, would continue long, or go far. Weshould soon come to recollect, how light and precarious, perhaps how arbitrary and ill-supported by our real knowledge, were the grounds on which we had assigned such uses to such parts. We should turn back from them to the more solid and certain evidences, not shaken, nor likely to be shaken, by any change in prevalent zoological or anatomical doctrines, which those who love to contemplate such subjects habitually dwell upon; and, holding ourselves ready to entertain any speculations by which the bearing of those general Laws upon Natural Religion could be shown, in such a way as to convince our reason, we should rest in the confident and tranquil persuasion that no success or failure in such speculations could vitally affect our belief in a wise and benevolent Deity:—that though additional illustrations of his attributes might be interesting and welcome, no change of our scientific point of view could make his being or action doubtful.

5. This is, it would seem, the manner in which a reasonable and reverent man would regard the proof of a Supreme Creator and Governor, which is derived from Design, as seen in the organic creation; and the mode in which such proof would be affected by changes in the knowledge which we may acquire of the general laws by which the organic creation is constituted and governed. And hence, if it should be found to be established by the researches of the most comprehensive and exact philosophy, that there are, in any province of the universe, resemblances, gradations, general laws, indications of the mode in which one form approaches to another, and seems to pass into and generate another, which tend to obliterate distinctions which at first appeared broad and conspicuous; still the argument, from the design which appears in the parts of which we most clearly see the purpose, would not lose its force. If, for instance, it should be made apparent, by geologicalinvestigations of the extinct fossil creation, that the animal forms which have inhabited the earth, have gradually approached to that type in which the human form is included, passing from the rudest and most imperfect animal organizations, mollusks, or even organic monads, to vertebrate animals, to warm-blooded animals, to monkeys, and to men; still, the evidences of design in the anatomy of man are not less striking than they were, when no such gradation was thought of. And what is more to the purpose of our argument, the evidences of the peculiar nature and destination of man, as shown in other characters than his anatomy,—his moral and intellectual nature, his history and capacities,—stand where they stood before; nor is the vast chasm which separates man, as a being with such characters as these latter, from all other animals, at all filled up or bridged over.

6. The evidence of design in the inorganic world,—in the relation of earth, air, water, heat and light,—is, to most persons, less striking and impressive, than it is in the organic creation. But even among these mere physical elements of the world, when we consider them with reference to living things, we find many arrangements which, on a reflective view, excite our admiration, by the beneficial effect, and seemingly beneficent purpose. Our condition is furnished with the solid earth, on which we stand, and in which we find the materials of man's handiworks; stone and metal, clay and sand;—with the atmosphere which we breathe, and which is the vehicle of oral intercourse between man and man;—with revolutions of the sun, by which are brought round the successions of day and night, through all their varying lengths, and of summer and winter;—with the clouds above us, which pour upon the earth their fertilizing showers. All this furniture of the earth, so marvellously adapting it for the abode of living creatures,and especially of man, may well be regarded as a collection of provisions for his benefit:—asintendedto do him the good, which they do. Nor would this impression be removed, or even weakened, if we were to discover that some of these arrangements, instead of being produced by a machinery confined to that single purpose, were only partial results of a more general plan. For instance; we learn that the varying lengths of days and nights through the year, and the varying declination of the sun, are produced, not, as was at first supposed, by the sun moving round the earth, in a complex diurnal and annual path, but by the earth revolving in an annual orbit round the sun; while at the same time she has a diurnal rotation about her own axis, which axis, by the laws of mechanics, remains always parallel to itself. When we learn that this is so, we see that the effect is produced by a mechanical arrangement far more simple than any which the imagination of man had devised; but in this case, the effect is plainly rather an increased admiration at the simplicity of the mechanism, than a wavering belief in the reality of the purpose. In like manner when, instead of supposing water to exist in a continuous reservoir in a firmament above the earth, and to fall in the earlier and in the latter rain, by some special agency for that purpose; men learnt to see that the water in the upper regions of the air must exist in clouds and in vapors only, and must fall in showers by the condensing influence of cold currents of air; they needed not to cease to admire the kindness of the Creator, in providing the rain to water the earth, and the wind to dry it; although the mechanism by which the effect was produced was of a larger kind than they had before imagined. And even if this mechanism extend through the solar system: if the arrangement by which the Earth's atmosphere is the special region in which there arewinds hot and cold, clouds compact or dissolving,—be an arrangement which extends its influence to other planets, as well as to ours;—if this mixed atmosphere be placed, not only at the meeting point of clear aqueous vapor above, and warmer airs below, but also at the meeting point of a hot central region surrounding the Sun, and a cold exterior zone in which water and vapor can exist in immense collected masses, such as are Jupiter and Saturn;—still it would not appear, to a reasonable view, that this larger expansion of the machinery by which the effect is produced, makes the machinery less remarkable; or can at all tend to diminish the belief that it wasintendedto produce the effect which it does produce. Hot and cold, moist and dry, are constantly mixed together for the support of vegetable and animal life; and not the less so, if we believe that, though elements of this kind pervade the whole solar system, it is only at the Earth that they are combined so as to foster and nourish living things.

7. But it will perhaps be said, that to suppose the whole Solar System to be a machine merely operating for the benefit of the Earth and its population, is to give to the Earth and its population an importance in the scheme of creation which is quite extravagant and improbable:—it is to make the greater orbs, Jupiter and Saturn, minister to the less; instead of having their own purpose, and their own population, which their size naturally leads us to expect. To this we reply, that, in the first place, we have shown good reason for believing that the Earth is really the largest dense solid globe which exists in the solar system, and that the size of Jupiter and Saturn arises from their being composed mainly of water and vapor. And with regard to the difficulty of the greater ministering to the less;—if bygreater, mere size and extent be understood, it appears to be the universal law of creation, that the greater, inthat sense,shouldminister to the less, when the less includes living things. Even if the planets be all inhabited, the sun, which is greater far than all of them together, ministers light and heat to all of them. Even on this supposition, the vast spaces by which the planets are separated have no use, that we can discern, except to place them at suitable distances from the sun. Even on this supposition, their solid globes within, their atmospheres without are all merely subservient to the benefit of a thin and scattered population on the surface. The space occupied by men and animals on the earth's surface, even taking into account the highest buildings and the deepest seas, is only a few hundreds, or a thousand feet. The benefit of this minute shell, interrupted in many places for vast distances, everywhere loosely and sparsely filled, is ministered to by the solidity and attraction of a mass below it 20 millions of feet deep; by the influence of an atmosphere above it 200 thousand feet high at least, and it may be, much more. And this being so, if we increase the depth of the centre 20 thousand times; if we carry the extreme verge of air and vapor to thirty times the radius of the earth's orbit from us, how does the construction of the machine become more improbable, or the disproportion of its size to its purpose more incongruous? Is mere size,—extent of brute matter or blank space,—so majestic a thing? Is not infinite space large enough to admit of machines of any size without grudging? But if we thus move the centre of the Earth's peopled surface 20 thousand times further off, we reach the Sun. If we carry the limit of air and vapor to the distance of 30 times the radius of the Earth's orbit we arrive at Neptune. Are these new numbers monstrous, while the old ones were accepted without scruple? Is number such an alarming feature in the description of the Universe? Does not the description of every part and every aspect of it, presentus with numbers so large, that wonder and repugnance, on that ground are long ago exhausted? Surely this is so: and if the evidence really tend to prove to us that all the solar system ministers to the earth's population; the mere size of the system, compared with the space occupied by the population, will not long stand in the way of the reception of such a doctrine.

8. But the objection will perhaps be urged in another form. It will be said that the other Planets have so many points of resemblance with the Earth, that we must suppose their nature and purpose the same. They, like the Earth, revolve in circles round the sun, rotate on their own axes, have, several of them, satellites, are opaque bodies, deriving light and probably heat from the sun. To an external spectator of the Solar System, they would not be distinguishable from the Earth. Such a spectator would never be tempted to guess that the Earth alone, of all these, neither the greatest nor the least, neither the one with the most satellites, nor the fewest, neither the innermost nor the outermost of the planets, is the only one inhabited; or at any rate the only one inhabited by an intelligent population. And to this we reply; that the largest of the other planets, if we judge rightly, arenotlike the Earth in one most essential respect, their density; and none of them, in having a surface consisting of land and water; except perhaps Mars: that if the supposed external spectator could see that this was so, he might see that the earth was different from the rest; and he might be able to see the vaporous nature of the outer planets, so that he would no more think of peopling them, than we do, of peopling the grand Alpine ridges and vallies which we see in the clouds of a summer-sky.

9. But even if the supposed spectator attended only to the obvious and superficial resemblances between one of the planets and another, he might still, if he were acquainted with thegeneral economy of the Universe, have great hesitation in inferring that, if one of them were inhabited, the others also must be inhabited. For, as we have said, in the plan of creation, we have a profusion of examples, where similar visible structures do not answer a similar purpose; where, so far as we can see, the structure answers no purpose in many cases; but exists, as we may say, for the sake of similarity: the similarity being a general Law, the result, it would seem, of a creative energy, which is wider in its operation than the particular purpose. Such examples are, as we have said, the finger-bones which are packed into the hoofs of a horse, or the paps and nipples of a male animal. Now the spectator, recollecting such cases might say: I know that the earth is inhabited; no doubt Mars and Jupiter are a good deal like the Earth; but are they inhabited? They look like the terrestrial breast of Nature: but are they really nursing breasts? Do they, like that, give food to living offspring? Or are they mere images of such breasts? male teats, dry of all nutritive power? sports, or rather overworks of nature; marks of a wider law than the needs of Mother Earth require? many sketches of a design, of which only one was to be executed? many specimens of the preparatory process of making a Planet, of which only one was to be carried out into the making of a World? Such questions might naturally occur to a person acquainted with the course of creation in general; even before he remarked the features which tend to show that Jupiter and Saturn, that Venus and Mercury, have not been developed into peopled worlds, like our Earth.

10. Perhaps it may be said, that to hold this, is to make Nature work in vain; to waste her powers; to suppose her to produce the frame work, and not to build; to make the skeleton, and not to clothe it with living flesh; to delude us withappearances of analogy and promises of fertility, which are fallacious. What can we reply to this?

11. We reply, that to work in vain, in the sense of producing means of life which are not used, embryos which are never vivified, germs which are not developed; is so far from being contrary to the usual proceedings of nature, that it is an operation which is constantly going on, in every part of nature. Of the vegetable seeds which are produced, what an infinitely small proportion ever grow into plants! Of animal ova, how exceedingly few become animals, in proportion to those that do not; and that are wasted, if this be waste! It is an old calculation, which used to be repeated as a wonderful thing, that a single female fish contains in its body 200 millions of ova, and thus, might, of itself alone, replenish the seas, if all these were fostered into life. But in truth, this, though it may excite wonder, cannot excite wonder as anything uncommon. It is only one example of what occurs everywhere. Every tree, every plant, produces innumerable flowers, the flowers innumerable seeds, which drop to the earth, or are carried abroad by the winds, and perish, without having their powers unfolded. When we see a field of thistles shed its downy seeds upon the wind, so that they roll away like a cloud, what a vast host of possible thistles are there! Yet very probably none of them become actual thistles. Few are able to take hold of the ground at all; and those that do, die for lack of congenial nutriment, or are crushed by external causes before they are grown. The like is the case with every tribe of plants.[3]Thelike with every tribe of animals. The possible fertility of some kinds of insects is as portentous as anything of this kind can be. If allowed to proceed unchecked, if the possible life were not perpetually extinguished, the multiplying energies perpetually frustrated, they would gain dominion over the largest animals, and occupy the earth. And the same is the case, in different degrees, in the larger animals. The female is stocked with innumerable ovules, capable of becoming living things: of which incomparably the greatest number end as they began, mere ovules;—marks of mere possibility, of vitality frustrated. The universe is so full of such rudiments of things, that they far outnumber the things which outgrow their rudiments. The marks of possibility are much more numerous than the tale of actuality. The vitality which is frustrated is far more copious than the vitality which is consummated. So far, then, as this analogy goes, if the earth alone, of all the planetary harvest, has been a fertile seed of creation;—if the terrestrial embryo have alone been evolved into life, while all the other masses have remained barren and dead:—we have, in this, nothing which we need regard as an unprecedented waste, an improbable prodigality, an unusual failure in the operations of nature: but on the contrary, such a single case of success among many of failure, is exactly the order of nature in the production of life. It is quite agreeable to analogy, that the Solar System, of which theflowersare not many, should have borne but onefertileflower. One in eight, or in twice eight, reared into such wondrous fertility as belongs to the Earth, is an abundant produce, compared with the result in the most fertile provinces of Nature. And even if any numberof the Fixed Stars were also found to be barren flowers of the sky; objects, however beautiful, yet not sources of life or development, we need not think the powers of creation wasted or frustrated, thrown away or perverted. One such fertile result as the Earth, with all its hosts of plants and animals, and especially with Man, an intelligent being, to stand at the head of those hosts, is a worthy and sufficient produce, so far as we can judge of the Creator's ways by analogy, of all the Universal Scheme.

12. But when we follow this analogy, so far as to speak of the mere material mass of a planet as anembryo world;—a barren flower;—a seed which has never been developed into a plant;—we are in danger of allowing the analogy to mislead us. For a planet, as to its brute mass, has really nothing in common with a seed or an embryo. It has no organization, or tendency to organization; no principle of life, however obscure. So far as we can judge, no progress of time, or operation of mere natural influence, would clothe a brute mass with vegetables, or stock it with animals. No species of living thing would have its place upon the surface; by the mere order of unintelligent nature. So much is this so, according to all that our best knowledge teaches, that those geologists who must most have desired, for the sake of giving completeness and consistency to their systems, to make the production of vegetable and animal species from brute matter, a part of the order of nature, (inasmuch as they have explained everything else by the order of nature,) have not ventured to do so. They allow, generally at least, each separate species to require a special act of creative power, to bring it into being. They make the peopling of the earth, with its successive races of inhabitants, a series of events altogether different from the operation of physical laws in the sustentation of existing species.The creation of life is, they allow, something out of the range of the ordinary laws of nature. And therefore, when we speak of uninhabited planets, as cases in which vital tendencies have been defeated; in which their apparent destiny, as worlds of life, has been frustrated; we really do injustice to our argument. The planets had no vital tendencies: they could have had such given, only by an additional act, or a series of additional acts, of Creative power. As mere inert globes, they had no settled destiny to be seats of life: they could have such a destiny, only by the appointment of Him who creates living things, and puts them in the places which he chooses for them. If, when a planetary mass had come into being, (in virtue of the same general physical law, suppose, which produced the earth,) the Creator placed a host of living things upon the earth, and none upon the other planet; there was still no violation of analogy, no seeming change of purpose, no unfinished plan. In the solar system, we can see what seem to be good reasons why he did this; but if we could not see such reasons, still we should be yet further from being able to see reasons why he necessarily must place inhabitants upon the other planet.

13. It is sometimes said, that it is agreeable to the goodness of God, that all parts of the creation should swarm with life; that life is enjoyment; and that the benevolence of the Supreme Being is shown in the diffusion of such enjoyment into every quarter of the universe. To leave a planet without inhabitants, would, it is thought, be to throw away an opportunity of producing happiness. Now we shall not here dwell upon the consideration, that the enjoyment thus spoken of, is, in a great degree, the enjoyment which the mere life of the lower tribes of animals implies;—the enjoyment of madrepores and oysters, cuttle-fish and sharks, tortoises and serpents; but we reply more broadly, that it is not the rule followed by theCreator, to fill all places with living things. To say nothing of the vast intervals between planet and planet, which, it is presumed, no one supposes to be occupied by living things; how large a portion of the surface of the earth is uninhabited, or inhabited only in the scantiest manner. Vast desert tracts exist in Africa and in Asia, where the barren sand nourishes neither animal nor vegetable life. The highest regions of mountain-ranges, clothed with perpetual snow, and with far-reaching sheets of glacier ice, are untenanted, except by the chamois at their outskirts. There are many uninhabited islands; and were formerly many more. The ocean, covering nearly three-fourths of the globe, is no seat of habitation for land animals or for man; and though it has a large population of the fishy tribes, is probably peopled in smaller numbers than if it were land, as well as by inferior orders. We see, in the Earth then, which is the only seat of life of which we really know anything, nothing to support the belief that every field in the material universe is tenanted by living inhabitants.

14. That vegetables and animals, being once placed upon the earth, have multiplied or are multiplying, so as to occupy every part of the land and water which is suited for their habitation, we can see much reason to believe. Philosophical natural-historians have been generally led to the conviction that each species has had an original centre of dispersion, where it was first native, and that from this centre it has been diffused in all directions, as far as the circumstances of climate and soil were favorable to its production. But we can see also much reason to believe that this general diffusion of vegetable and animal life from centres, is a part of the order of nature which may often be made to give way to other and higher purposes;—to the diffusion, over the whole surface of the earth, of a race of intelligent, moral agents. This process may often interferewith the general law of diffusion: as for instance, when man exterminates noxious animals. And whatever may be the laws which tend to replenish the earth, on which such centres of the diffusion of life exist for animals and plants; according to all analogy, these laws can have no force on any other planet, till such origins and centres of life are established on their surfaces. And even if any of the species which have ever tenanted the earth were so established on any other planet, we have the strongest reason to believe that they could not survive to a second generation.

15. Perhaps it may be said that we unjustifiably limit the power and skill of the Supreme Creator, if we deny that he could frame creatures fitted to live on any of the other planets, as well as in the Earth:—that the wonderful variety, and unexpected resource, of the ways in which animals are adapted for all kinds of climates, habitations, and conditions, upon the earth, may give us confidence that, under conditions still more extended, in habitations still further removed, in climates going beyond the terrestrial extremes, still the same wisdom and skill may well be supposed to have devised possible modes of animal life.


Back to IndexNext