The ‘Biological Lectures from the Marine Laboratory of Woods Holl, 1899,’ make up a volume of about three hundred pages which represent fairly the present tendencies of biological investigation in this country. The most striking things about the lectures are the wide range of topics which they treat, and the first-hand quality of the subject matter in each case. This is most clearly seen by a careful reading of the text, but a mere enumeration of a few of the sixteen titles and lectures makes it fairly obvious. Thus, D. P. Penhallow writes on ‘The Nature of the Evidence Exhibited by Fossil Plants, and its bearing upon our Knowledge of the History of Plant Life;’ D. T. MacDougal writes on the ‘Significance of Mycorrhizas,’ Edward Thorndike on ‘Instinct,’ Herbert S. Jennings on ‘The Behavior of Unicellular Organisms,’ Alpheus Hyatt on ‘Some Governing Factors usually neglected in Biological Investigations,’ T. H. Morgan on ‘Regeneration,’ C. B. Davenport on ‘The Aims of the Quantitative Study of Variation,’ Jacques Loeb on ‘The Nature of the Process of Fertilization.’
To the professed scientist these lectures will furnish expert opinion on certain important topics; the generalreader will find in them a presentation not too technical or detailed. Professor Loeb’s lecture, for example, is for such readers the best account yet given of his experiments in artificial fertilization.
The range and originality which characterize these lectures are really characteristic of the general work and spirit of the Woods Holl Laboratory. Few people realize the amount of research work which is done there from summer to summer. Yet last year there were seventy-one investigators there. Moreover, these represent a superior selection from among the instructors and students of the various colleges.
It is a symptom of a healthy, vigorous condition in biological science that the best workers of the country are glad to devote their vacation season to research, and it is highly creditable to the Woods Holl management that it offers them such attractive facilities. Similar summer laboratories are now being established in other parts of the country, and are to be reckoned with as very important factors in the progress of biology.
It is a somewhat surprising fact that among educated people of scientific training there prevails generally the greatest ignorance as to some of the most important problems of biology. We refer to those problems connected with the structure and functions of the animal and plant cell. Men who can understand and appreciate recent discoveries in astronomy, physics, chemistry and geology are usually wholly lost in cytology. In fact, in general writing or speech it is not safe to use this name without at once defining it, since it is commonly supposed to be a mispronunciation or a stupid misspelling of ‘psychology,’ while to most peoplenuclei,chromosomes,centrosomesandmitotic spindlesare words without meaning, signifying nothing.
The reason for this is twofold: First, cytology is one of the newest of the biological sciences and it has but recently found its way into college curricula, and second, there have been few text-books or general works on this subject to which an intelligent layman could turn for information.
And yet, in spite of this fact, there are few fields of scientific work possessing more general interest than that of cytology. At the present day the greatest problems of biology are centered in the cell. Assimilation, growth, metabolism, reproduction, differentiation, inheritance and variation—these are at bottom cellular phenomena, the result of the structure and functions of cells. It is not surprising, therefore, that “all the searchlights of science have been turned upon the cell,†and that cell studies during the past ten years have received an amount of attention which is comparable only to that devoted to evolution under the stimulus of Darwin’s work.
Professor Wilson’s book on thecell,Fthe second edition of which has just appeared, is a work of more than ordinary interest, not only to the biologist, but to all persons who are interested in the general advance of science. Although there are several other good text-books of cytology which have appeared during the past five or six years, Professor Wilson’s book, in thoroughness of treatment, in philosophical insight, in clearness and forcefulness of style and in wealth and beauty of illustrations, easily surpasses them all.
FThe Cell in Development and Inheritance. Edmund B. Wilson. Second Edition Revised and Enlarged. Columbia University Biological Series IV. New York and London, The Macmillan Co., 1900. Pp. xxi, 483 with 194 Figures in the Text. $3.50
FThe Cell in Development and Inheritance. Edmund B. Wilson. Second Edition Revised and Enlarged. Columbia University Biological Series IV. New York and London, The Macmillan Co., 1900. Pp. xxi, 483 with 194 Figures in the Text. $3.50
It is impossible in this brief note to give any adequate summary of the volume or of the position of the author on questions of general interest; the subjects of the chapters, however, may serve to give some idea as to the scope of the work. After an introduction which gives a brief historical sketch of the cell theory and its relation to theevolution theory, there are taken up in successive chapters a general sketch of cell structure, cell division, the germ cells, fertilization of the ovum, the formation of the germ cells and the halving of their nuclei preparatory to fertilization, cell organs and their relations to each other and to the life of the cell, cell chemistry and cell physiology, cell division in its relation to the development of the egg, and finally, some theories of inheritance and development. In addition, there is appended an excellent glossary and a list of all the most important literature on the subject up to the current year.
While the work is undoubtedly intended as a reference book for investigators and advanced students in biology, being marked by the thoroughness of treatment of an original communication, it is yet so well written and so copiously illustrated as to make it not only intelligible but also intensely interesting to the general reader.
The most important recent book on education is undoubtedly ‘Education in the United States,’ a book prepared in connection with the educational exhibit of this country at the Paris Exposition. It consists of a series of monographs which cover all the important phases of educational endeavor in the United States. The two volumes include nearly a thousand pages, almost all of which present definite and reliable facts. Only rarely is there any indulgence in expressions of private opinion, and still more rarely is such opinion questionable. The editor is justified in his statement that the book is ‘a cross-section view of education in the United States in 1900.’ It will be of great value to the student of American institutions or of education in general, and should be of interest to any citizen who desires to be well informed about his country. The quality of the monographs will be evident from the list of the author’s names. For instance, those writing on higher education are Prof. A. F. West, of Princeton; Prof. E. D. Perry, of Columbia; President Thomas, of Bryn Mawr; Director Parsons, of the University of the State of New York; President Mendenhall, of the Worcester Polytechnic Institute, and Prof. H. B. Adams, of Johns Hopkins.
The conditions in the United States have been favorable to the development of geology. The varied forms of the land have offered abundant opportunities for research, whereas the practical value of the work has led to the establishment of surveys, the magnitude of whose contribution to geology is only known to special students. The Geological Society of America has about two hundred and fifty members, nearly all of whom are actively engaged in geological research, perhaps a larger number than in any other science. The U. S. Geological Survey is the center of this movement, and its great efficiency is in large measure due to Mr. G. K. Gilbert, now president of the American Association for the Advancement of Science. He was born in Rochester, N. Y., in 1843, and after graduating from the university in that city, acted for five years as assistant in the Ward Museum, where a number of eminent naturalists have been trained. He then became geologist in the Ohio Survey under Newberry, was engaged in the Wheeler and Powell Surveys, and has been geologist in the U. S. Geological Survey since its establishment in 1879. In the arid west, where the face of the earth is bare, Mr. Gilbert made the observations and discoveries in dynamical and physical geology which have done so much toward the making of the science of physiography. His monographs on the Henry Mountains and on Lake Bonneville, the name he gave to the ancient lake that once filled the Utah basin, are models, both in regard to their original discoveries and the methods of presentation. He has extended his studies to the basins of the Laurentian Lakes and to other regions, always with important results. Mr. Gilbert has been president of the American Society of Naturalists, the Geological Society of America and the Philosophical Society of Washington, and has received the Wollaston Medal of the Geological Society of London. His presidential address before the American Association will be given at the American Museum of Natural History, New York City, on the evening of June 26, his subject being ‘Geological Rhythm.’
*****
The meeting of the American Association in New York City, opening as this issue of theMonthlyis published, promises to be of more than usual importance. The preliminary programs of the different sections show long lists of valuable papers and promise the attendance of leading men of science from all parts of the country. A movement of interest is the increasing tendency of special scientific societies to meet in conjunction with the Association. No less than fifteen societies will this year hold their sessions at Columbia University, some of them joining with the sections of the Association, and others holding independent meetings. The members of these different societies have the advantage of the reduced railway rates and other arrangements which can be made once for all, and the still greater advantage of meeting scientific men in other departments. As science grows in details and in range, there is on the one hand an increased specialization, making it desirable for small groups of experts to meet together to discuss their special problems, while, on the other hand, almost every scientific question has ramifications extending to many sciences. Hence, the need of many separate societies and at the same time of a common meeting ground. When the American Association was organized, in 1848, its members could meet in one body; later theydivided into two sections, one for the exact sciences and one for natural history. In 1882 nine sections were organized, but it was not until 1892 that botany was separated from zoölogy. At present the sections no longer suffice, and there must be either a further sub-division and a more efficient organization of the sections, or the American Association must become an administrative body, that will arrange for the simultaneous meetings of independent societies and the union of these societies in support of their common interests.
*****
The obvious advantages of meeting together have now led nearly all the national scientific societies to select either the time of the American Association or Christmas week for joint meetings. It is unfortunate that they should be divided into two groups, and it must be admitted that neither midsummer nor the Christmas holidays are altogether suitable for the meetings. The American Association has this year made the experiment of selecting the end of June, immediately after the close of the college sessions, instead of a week in August. This has some advantages, but even at the beginning of the summer many men of science are either abroad or are engaged in scientific expeditions. The heat is apt to be excessive, interfering not only with the meetings, but also requiring some self-sacrifice on the part of scientific men when they leave their comfortable summer homes to travel through heat and dust to a hot and dusty city. Christmas week, divided by Sunday, is too short for a series of scientific meetings, especially for those who must travel from a distance. This led to the organization last winter of the Cordillerean Geological Society, the Western Society of Naturalists and the Western Philosophical Association. Local associations are, of course, valuable, but they should not interfere with one central meeting in the course of the year. The plan has been suggested of taking one week, either immediately after the New Year or in the early spring, for a general scientific gathering, which would include not only the exact and natural sciences, but also philology, history, etc. The plan would be to secure an adjournment of exercises or leave of absence in the case of universities, colleges, museums, Government departments, etc., with the understanding that it would be the duty of all those who were released from their regular work to attend the meetings.
*****
The American Association last met in New York City in 1887, though there was a meeting in Brooklyn in 1894. The past thirteen and even the past six years have witnessed an extraordinary development in the educational and scientific institutions of the city. Columbia College and New York University have developed into great universities, each having found a new site and erected upon it buildings which might have been expected to come only as the growth of a century. The American Museum of Natural History has become one of the great museums of the world, millions of dollars having been spent on buildings. A botanical garden and a zoölogical park have been established, which promise to rival those of any of the European capitals. A well-equipped aquarium has been opened under the auspices of the city; the Metropolitan Museum of Art has been entirely rebuilt to accommodate its increasing collections; a magnificent building is in course of erection for the Public Library to contain its great assemblage of books, which with its endowment is largely the result of recent years. While Boston and Philadelphia have made great advances within the last few years, and Washington has become the chief scientific center of the United States, it is especially noteworthy that New York City has enjoyed an educational and scientific development commensurate with its material resources.
*****
Jonas G. Clark, who ten years ago established at Worcester a universityand christened it with his name, has died and left to the university several hundred thousand dollars, and on certain conditions practically the whole of his estate, which is said to be between five and ten million dollars. The will is a complicated document with numerous codicils, somewhat difficult to interpret and likely to give rise to legal complications. The history of Clark University has been curious and interesting. As in the case of the Johns Hopkins University, there was a difference of opinion between the founder and the president as to the scope of the institution. In both cases the founder had in view a more or less local college, while the president believed that we had colleges in sufficient number, but needed in the United States universities on German models, but going even further than Germany in making research rather than instruction the primary object of the institution. Johns Hopkins died very soon after the establishment of his university, and though there was for a while a good deal of difference of opinion in the board of trustees, the university idea triumphed. A college was, however, established in connection with it. At Clark University the founder lived for ten years, and appears to have altered several times his point of view. He withdrew his support, and the university work which began brilliantly was much reduced in range and quality. The greater part of the faculty removed in a body to the University of Chicago. It appears that at this time Mr. Clark bequeathed his money to the university only on condition that the president should resign, but later devised a compromise by which the university should continue as at present, while a partly independent college should be established in conjunction with it. The interpretation of the will, the value of the estate and the development of the university open problems that will only be settled in the course of time.
*****
Europeans who look upon the United States as a material and commercial nation must find it difficult to interpret the great gifts that are continually made for the cause of higher education. Twenty-five years ago there were in America no universities in the sense in which the term is most properly employed. During this comparatively brief period the older institutions have become universities, and the great increase in expenditure has been met chiefly by voluntary contributions. The annual expenditure, for example, at Harvard and Columbia Universities is about a half million dollars beyond the tuition fees, and the money invested in grounds and buildings, is in the case of either university many millions. Then this period has witnessed the establishment of new universities, rivaling in endowment the older institutions. The Johns Hopkins University and Clark University have been mentioned above, but the most noteworthy instances are the University of Chicago, to which one benefactor still living has given eight million dollars, and Leland Stanford Junior University, the endowment of which reaches the enormous sum of thirty-five million dollars. At the same time, the State universities, directly supported by the people, are beginning to rival privately endowed institutions. It may be confidently asserted that no nation has ever so liberally supported higher education, and the wisdom of this liberality is now demonstrated, even from the most mercenary point of view, by the place the United States has taken in the world’s commerce. It will be still further demonstrated in the course of the next twenty-five years. It is possible that existing conditions are not favorable to literature and to art, but the future of science in the United States is assured beyond question.
*****
It is sometimes said that Government control and individual initiative can not be united, but there is no justification for this view in the development of the educational and scientific institutions of the United States. Institutionsestablished by private initiative have been assisted by the State, and State institutions have received large sums from private individuals. The New York institutions referred to above—the American Museum of Natural History, the Metropolitan Museum of Art, the Public Library, the Botanical Gardens and the Zoölogical Park—are in almost equal measure supported by the city and by citizens of the city. Johns Hopkins University, the University of Pennsylvania, Cornell University and other privately endowed institutions have received assistance from the State, without any decrease in private gifts, while the State universities, California for example, are receiving large private endowments in addition to their support from the State. These conditions may not last, but at all events they obtain at the present time, and we find the country in which the largest gifts from private individuals are made for education and science to be the country in which they are most liberally supported by the Government.
*****
Never before has any government made such great appropriations for the development of the resources of the country or for the advance of science as the Congress which has just adjourned. We may take for example the Department of Agriculture, for which the appropriation is $4,023,500, an increase of more than $280,000 over the appropriation for the preceding year. Every one familiar with the conditions at Washington and throughout the country will know that this large sum of money is expended with the utmost economy, and there is no doubt but what the money invested by the nation is returned to the people many fold in the course of every year. Some of the items of the bill deserve special notice. Thus, a new agricultural experiment station is to be established in the Hawaiian Islands, and the work of the Weather Bureau is to be extended to them. The agricultural resources and capabilities of Porto Rico are to be investigated, and bulletins of information in English and in Spanish are to be distributed to the inhabitants. The division of chemistry is to investigate the use of food preservatives and coloring matter, determine their relations to health and establish the principles which should guide their use. The division of forestry receives an increase of $40,000 and the Weather Bureau an increase of over $35,000. Other items of the appropriation act are as follows: Biological Survey, $30,300, an increase of $2,740; Division of Botany, $43,080, an increase of $14,280; Nutrition Investigation, $17,500, an increase of $2,500; Division of Pomology, $18,400; Public Road Inquiry, $14,000, an increase of $6,000; Division of Statistics, $146,160; Library, $14,000; and Museum, $2,260.
*****
While American men of wealth have given freely of their means for the promotion of education and science, they have not so often devoted their own time to its service. This is natural, as the wealth has in most cases been acquired by the present generation, and it is in succeeding generations, when families have been established, that leisure and wealth will give a class similar to that which has accomplished so much for Great Britain and to a lesser extent for Germany and France. Still, it is the case that the heads of two of our chief universities are men of great wealth, who have devoted not only their means, but also their services to the cause of education, and there are in our universities and other institutions many who hold their positions purely out of interest in their work, not as a means for their support. In the next generation there will probably be more representatives of a class to which belonged the Duke of Argyll, whose death we were compelled to record last month. Another man has since died of a somewhat similar type. When Colonel Lane-Fox somewhat unexpectedly succeeded to large estates in Wiltshire and Dorsetshire and assumed thename Pitt-Rivers, his chief interest seemed to be in the earth works and tumuli of Cranbourne Chase, and the extensive memoirs he has published and the museum he has established show what good use he made of the excavations. Some of the results of his earlier work will be found at Oxford, but he built at Farnham, in Dorsetshire, a museum which contains collections of the greatest possible value.
*****
Thecommunicationin this issue signed ‘Physicist’ is worthy of note. If what its writer says is true, it is evident that a reputation as a brilliant inventor does not insure that its possessor is a safe writer about general physics. Our correspondent, who represents fairly the opinion of scientific men in general, finds fault with Mr. Tesla’s article in the JuneCenturyin many important particulars. During the years since Mr. Tesla’s notable invention of the polyphase alternate current transformer, he seems to have become less definite and exact in his thinking, and less productive as an inventor. The speculation and rhetoric of theCenturyarticle are certainly disappointing to every one who is trying to bring about an intelligent and sound view of science on the part of non-scientific people. Men of science everywhere should certainly make it their business to instruct people in general about the progress, and even the prospects, of science through the press, but it takes wisdom on the part of both writers and editors to know what is instructive and what is misleading. Honest criticism such as that of our correspondent is therefore highly desirable.
*****
It is generally agreed that the most important advance of last year in the science of medicine was the discovery that the parasite causing malaria was transmitted from person to person by mosquitoes. Dr. Manson describes this discovery fully inthis numberof thePopular Science Monthly. This summer a crucial experiment is being made of a somewhat dramatic character. A mosquito-proof tent has been constructed, which is located in Italy, in the Campagna. In this Dr. Luigi Sambon, lecturer of the London Tropical School of Medicine, and Dr. G. C. Low will live until October, taking the utmost care not to be bitten by mosquitoes. If they escape malaria it will serve as corroborative evidence that the mosquito is the means of infection. On the other hand, several Englishmen, including Dr. Manson’s son, have offered themselves as subjects for the complementary experiment. They will live in a healthy district, but will definitely allow themselves to be bitten by mosquitoes which are known to be infected. These experiments will probably be particularly useful in demonstrating to the public at large the validity of the hypothesis derived last year from technical bacteriological evidence.
Transcribers’ NotesPunctuation, hyphenation, and spelling were made consistent when a predominant preference was found in this book; otherwise they were not changed. Inconsistent spacing in abbreviations was not changed.Simple typographical errors were corrected; occasional unbalanced quotation marks retained.Ambiguous hyphens at the ends of lines were retained.Page230: “spectrograph†was misprinted as “spectographâ€; corrected here.Page315: “sporozooites†was printed that way.Page322: “uranium oxids†was printed that way.Page329: “‘Plant Geography of North American,’†may be a misprint for “Americaâ€.
Punctuation, hyphenation, and spelling were made consistent when a predominant preference was found in this book; otherwise they were not changed. Inconsistent spacing in abbreviations was not changed.
Simple typographical errors were corrected; occasional unbalanced quotation marks retained.
Ambiguous hyphens at the ends of lines were retained.
Page230: “spectrograph†was misprinted as “spectographâ€; corrected here.
Page315: “sporozooites†was printed that way.
Page322: “uranium oxids†was printed that way.
Page329: “‘Plant Geography of North American,’†may be a misprint for “Americaâ€.