CHAPTER VI.

figure 80.

figure 80.

The glasses of this telescope are all plano-convex, with their convex-sides towards the object—except the lens D, which is double convex, but flattest on the side next the eye, and they are all very accurately finished. The two lenses C and D form an astronomical eye-piece nearly similar to that formed by the lenses A and B. The focus of the telescope is adjusted by a screw, the threads of which are formed upon the outside of a tube into which the eye-piece slides. The eye-piece and apparatus connected with it, is screwed into the inside of the main tube, when not in use, when the instrument forms a compact brass cylinder 6 inches long, which is enclosed in a fish-skin case, lined with silk velvet, which opens with hinges.

The lenses in the eye-pieces formerly described, though stated to be plano-convexes, are for themost partcrossed glasses, that is ground on tools of a long focus on the one side, and to a short focus on the other. The construction of the eye-piece of the Dutch telescope above described, is one which might be adopted with a good effect in most of our achromatic telescopes; and I am persuaded, from the application I have made of it to various telescopes, that it is even superior, in distinctness and accuracy, and in theflatness of fieldwhich it produces to the eye-piece in common use. The two astronomical eye-pieces of which it consists, when applied to large achromatic telescopes, perform with great accuracy, and are excellently adapted for celestial observations.

From what we have stated, when describing the common terrestrial eye-piece now applied to achromatic instruments, (p. 349, fig. 79.), it appears obvious, that any variety of magnifying powers, within certain limits, may be obtained by removing the set of lenses CD, fig. 79, nearer to or farther from the tube which contains the lenses A and B, on the same principle as the magnifying power of a compound microscope is increased by removing the eye-glasses to a greater distance from the object-lens. If then, the pair of eye-lenses CD be attached to an inner tube that will draw out and increase their distance from the inner pair of lenses, as the tubea b c d, the magnifying power may be indefinitely increased or diminished, by pushing in or drawing out the sliding tube, and a scale might be placed on this tube, which, if divided into equal intervals, will be a scale ofmagnifying powers, by which the power of the telescope will be seen at every division, when the lowest power is once determined.

Sir David Brewster, in his ‘Treatise on New Philosophical instruments,’ Book i. chap. vii. page 59, published in 1813, has adverted to this circumstance, in his description of an ‘Eye-piece wire micrometer,’ and complains of Mr. Ezekiel Walker, having in the ‘Philosophical Magazine’ for August, 1811, described such an instrument as an invention of his own. Dr. Kitchener some years afterwards, described what he called a Pancratic or omnipotent eye-piece, and got one made by Dollond, with a few modifications different from that suggested by Brewster and Walker, which were little else than cutting the single tube into several parts, and giving it theappearanceof a new invention. In fact, none of these gentlemen had a right to claim it as his peculiar invention, as the principle was known and recognised long before. I had increased the magnifying powers of telescopes, on the same principle, several years before any of these gentlemen communicated their views on the subject, although I never formally constructed a scale of powers. Mr. B. Martin, who died in 1782, proposed many years before, such a moveable interior tube as that alluded to, for varying the magnifying power.

In order to give the reader a more specific idea of this contrivance, I shall present him with a figure and description of one of Dr. Kitchener’s Pancratic eye-pieces, copied from one lately in my possession. The following are the exact dimensions of this instrument, with the focal distances, &c. of the glasses, &c. of which it is composed.

From the figure and description, the reader will be at no loss to perceive how the magnifying power is ascertained by this eye-piece. If the lowest power for a 44 inch telescope be found to be 100, when the three sliding tubes are shut into the larger one, then by drawing out the tube next the eye 4 divisions, a power of 140 is produced; by drawing out the tube next the eye its whole length, and the second tube to the division marked 220, a power of 220 times is produced, and drawing out all the tubes to their utmost extent, as represented in the figure, a power of 400 is obtained. These powers are by far too high for such a telescope, as the powers between 300 and 400 can seldom or never be used. Were the scale to begin at 50, and terminate at 200, it would bemuch better adapted to a 3½ feet telescope. Each alteration of the magnifying power requires a new adjustment of the eye-piece for distinct vision. As the magnifying power is increased, the distance between the eye-glass and the object-glass must be diminished. Dr. Kitchener says, that ‘the pancratic eye tube gives a better defined image of a fixed star, and shows double stars decidedly more distinct and perfectly separated than any other eye tube, and that such tubes will probably enable us to determine the distances of these objects from each other, in a more perfect manner than has been possible heretofore.’ These tubes are made by Dollond, London, and are sold for two guineas each. But I do not think they excel, in distinctness, those which are occasionally made by Mr. Tulley and other opticians.

The following remarks, chiefly in regard to the manner of using telescopes, may perhaps be useful to young observers, who are not much accustomed to the mode of managing these instruments.

1.Adjustments requisite to be attended to in the use of telescopes.When near objects are viewed with a considerable magnifying power, the eye-tube requires to be removed farther from the object-glass than when very distant objects are contemplated. When the telescope is adjusted for an object, 6, 8, or 10 miles distant, a very considerable alteration in the adjustment is requisite in order to see distinctly an object at the distance of two or three hundred yards, especially if the instrument is furnished with a high magnifying power. In this last case, the eye-tube requires to be drawn out to a considerable distance beyond the focus for parallel rays. I have found that, in a telescope which magnifies 70 times, when adjusted for an object at the distance of two miles, the adjustment requires to be altered fully one inch in order to perceive distinctly an object at the distance of two or three hundred yards;that is, the tube must be drawn, in this case, an inch farther from the object-glass, and pushed in the same extent, when we wish to view an object at the distance of two or three miles. These adjustments are made, in pocket perspectives, by gently sliding the eye-tube in or out, by giving it a gentle circular or spiral motion till the object appear distinct. In using telescopes which are held in the hand, the best plan is to draw all the tubes out to their full length, and then, looking at the object, with the left hand supporting the main tube near the object-glass, and the right supporting the eye-tube—gently and gradually push in the eye-piece till distinct vision be obtained. In Gregorian reflecting telescopes this adjustment is made by means of a screw connected with the small speculum; and in large achromatics, by means of a rack and pinion connected with the eye-tube. When the magnifying power of a telescope is comparatively small, the eye-tube requires to be altered only a very little.

There is another adjustment requisite to be attended to, in order to adapt the telescope to the eyes of different persons. Those whose eyes are too convex, or who are short-sighted, require the eye-tube to be pushed in, and those whose eyes are somewhat flattened, as old people, require the tube to be drawn out. Indeed there are scarcely two persons whose eyes do not require different adjustments in a slight degree. In some cases I have found that the difference of adjustment for two individuals, in order to produce distinct vision in each, amounted to nearly half an inch. Hence the difficulty of exhibiting the sun, moon, and planets through telescopes, and even terrestrial objects, to a company of persons who are unacquainted with the mode of using or adjusting suchinstruments—not one half of whom generally see the object distinctly—for, upon the proper adjustment of a telescope to the eye, the accuracy of vision, in all cases, depends; and no one except the individual actually looking through the instrument, can be certain that it is accurately adjusted to his eye, and even the individual himself, from not being accustomed to the view of certain objects, may be uncertain whether or not the adjustment be correct. I have found by experience that when the magnifying powers are high, as 150 or 200, the difference of adjustment required for different eyes is very slight; but when low powers are used, as 20, 30, or 40, the difference of the requisite adjustments is sometimes very considerable, amounting to ¼ or ½ of an inch.

2.State of the Atmosphere most proper for observing terrestrial and celestial objects.The atmosphere which is thrown around the globe—while it is essentially requisite to the physical constitution of our world, and the comfort of its inhabitants—is found in many instances a serious obstruction to the accurate performance of telescopes. Sometimes it is obscured by mists and exhalations, sometimes it is thrown into violent undulations by the heat of the sun and the process of evaporation, and even, in certain cases, where there appears a pure unclouded azure, there is an agitation among its particles and the substances incorporated with them, which prevents the telescope from producing distinct vision either of terrestrial or celestial objects. For viewing distant terrestrial objects, especially with high powers, the best time is early in the morning, a little after sun-rise, and, from that period till about 9 o’clock A.M., in summer; and, in the evening about two or three hours before sun-set. From about 10o’clockA.M.till 4 or 5 in the afternoon, in summer, if the sky be clear and the sun shining, there is generally a considerable undulation in the atmosphere, occasioned by the solar rays and the rapid evaporation, which prevents high powers from being used with distinctness on any telescope, however excellent. The objects at such times, when powers of 50, 70, or 100 are applied, appear to undulate like the waves of the sea, and, notwithstanding every effort to adjust the telescope, they appear confused and indistinct. Even with very moderate magnifying powers this imperfection is perceptible. In such circumstances, I have sometimes used a power of 200 times on distant land objects, with good effect, a little before sun-set, when, in the forenoon of the same day, I could not have applied a power of 50 with any degree of distinctness. On days when the air is clear, and the atmosphere covered with clouds, terrestrial objects may be viewed with considerably high powers. When there has been a long-continued drought, the atmosphere is then in a very unfit state for enjoying distinct vision with high magnifying powers, on account of the quantity of vapours with which the atmosphere is then surcharged, and the undulations they produce. But, after copious showers of rain, especially if accompanied with high winds, the air is purified, and distant objects appear with greater brilliancy and distinctness than at any other seasons. In using telescopes, the objects at which we look should, if possible, be nearly in a direction opposite to that of the sun. When they are viewed nearly in the direction of the sun, their shadows are turned towards us, and they consequently appear dim and obscure. By not attending to this circumstance, some persons, in trying telescopes, have pronounceda good instrument to be imperfect, which, had it been tried on objects properly illuminated, would have been found to be excellent. In our variable northerly climate the atmosphere is not so clear and serene for telescopic observation as in Italy, the South of France, and in many of the countries which lie within the tropics. The undulations of the air, owing to the causes alluded to above, constitute one of the principal reasons why a telescope magnifying above a hundred times can seldom be used with any good effect in viewing terrestrial objects—though I have sometimes used a power of nearly 200 with considerable distinctness, in the stillness of a summer or autumnal evening, when the rays of the declining sun strongly illuminated distant objects.

The atmosphere is likewise frequently a great obstruction to the distinct perception ofcelestialobjects. It is scarcely possible for one who has not been accustomed to astronomical observations, to form a conception of the very great difference there is in the appearance of some of the heavenly bodies in different states of the atmosphere. There are certain conditions of the atmosphere essentially requisite for making accurate observations with powerful telescopes, and it is but seldom, especially in our climate, that all the favourable circumstances concur. The nights must be very clear and serene—the moon absent—no twilight—no haziness—no violent wind—no sudden change of temperature, as from thaw to frost—and no surcharge of the atmosphere with aqueous vapour. I have frequently found that, on the first and second nights after a thaw, when a strong frost had set in, and when the heavens appeared very brilliant, and the stars vivid and sparkling—the planets, when viewed withhigh powers, appeared remarkably undefined and indistinct; their margins appeared waving and jagged, and the belts of Jupiter, which at other times were remarkably distinct, were so obscured and ill-defined, that they could with difficulty be traced. This is probably owing to the quantity of aqueous vapour, and perhaps icy particles, then floating in the air, and to the undulations thereby produced. When a hard frost has continued a considerable time, this impediment to distinct observation is in a great measure removed. But I have never enjoyed more accurate and distinct views of the heavenly bodies than in fresh serene evenings, when there was no frost and no wind, and only a few fleecy clouds occasionally hovering around. On such evenings, and on such alone, the highest powers may be applied. I have used magnifying powers on such occasions with good effect, which could not have been applied, so as to ensure distinct vision, more frequently than two or three days in the course of a year.

Sir William Herschel has observed, in reference to this point, ‘In beautiful nights, when the outside of our telescopes is dropping with moisture, discharged from the atmosphere, there are now and then favourablehoursin which it is hardly possible to put a limit to the magnifying powers. But such valuable opportunities are extremely scarce, and with large instruments it will always be lost labour to observe at other times. In order therefore, to calculate how long a time it must take to sweep the heavens, as far as they are within the reach of my forty-feet telescope, charged with a magnifying power of 1000, I have had recourse to my journals to find how many favourable hours we may annually hope for in this climate. And, under all favourable circumstances,it appears, that a year which will afford ninety, or at most, one hundredhoursis to be called very productive.’ ‘In the equator, with my twenty feet telescope, I have swept over zones of two degrees with a power of 157, but an allowance of ten minutes in Polar distance must be made for lapping the sweeps over one another where they join. As the breadth of the zones may be increased towards the poles, the northern hemisphere may be swept in about 40 zones; to these we must add 19 southern zones; then 59 zones which, on account of the sweeps lapping over one another, about 5 minutes of time in right ascension, we must reckon of 25 hours each, will give 1475 hours. And allowing 100 hours per year, we find that with the 20 feet telescope, the heavens may be swept in about 14 years and three quarters. Now the time of sweeping with different magnifying powers will be as the squares of the powers; and puttingpandtfor the power and time in the 20 feet telescope, and P = 1000 for the power in the 40 feet instrument, we shall have p2: t :: P2:tP2/p2= 59840. Then making the same allowance for 100 hours per year, it appears that it will require not less than 598 years, to look with the 40 feet reflector, charged with the above-mentioned power, only one single moment into each point of space; and even then, so much of the southern hemisphere will remain unexplored, as will take up 213 years more to examine.’28

From the above remarks of so eminent an observer, the reader will perceive how difficult it is to explore the heavens with minuteness and accuracy, and with how many disappointments,arising from the state of the atmosphere, the astronomer must lay his account, when employed in planetary or sidereal investigation. Besides the circumstances now stated, it ought to be noticed that a star or a planet is only in a situation for a high magnifying power, about half the time it is above the horizon. The density of the atmosphere, and the quantity of vapours with which it is charged near the horizon, prevent distinct vision of celestial objects with high powers, till they have risen to at least 15 or 20 degrees in altitude, and the highest magnifiers can scarcely be applied with good effect, unless the object is near the meridian, and at a considerable elevation above the horizon. If the moon be viewed a little after her rising, and afterwards when she comes to her highest elevation in autumn, the difference in her appearance and distinctness will be strikingly perceptible. It is impossible to guess whether a night be well adapted for celestial observations, till we actually make the experiment, and instruments are frequently condemned, when tried at improper seasons, when the atmosphere only is in fault. A certain observer remarks,—‘I have never seen the face of Saturn more distinctly than in a night when the air has been so hazy, that with my naked eye, I could hardly discern a star of less than the third magnitude.’ The degree of the transparency of the air is likewise varying almost in the course of every minute, so that even in the course of the same half hour, planets and stars will appear perfectly defined, and the reverse. The vapours moving and undulating the atmosphere, even when the sky appears clear to the naked eye, will in a few instants destroy the distinctness of vision, and in a few seconds more,the object will resume its clear and well-defined aspect.29

3.On the magnifying powers requisite for observing the phenomena of the different planets—comets—double stars, &c.

There are some objects connected with astronomy which cannot be perceived without having recourse to instruments and to powers of great magnitude. But it is a vulgar error to imagine that very large and very expensive telescopes are absolutely necessary for viewing the greater part of the more interesting scenery of the heavens. Most of the phenomena of the planets, comets and double stars and other objects, are visible with instruments of moderate dimensions, so that every one who has a relish for celestial investigations, may, at a comparatively small expense, procure a telescope, for occasional observations, which will show the principal objects and phenomena described in books on astronomy. Many persons have been misled by some occasional remarks which Sir W. Herschel made, in reference to certain very high powers which he sometimes put, by way of experiment, on some of his telescopes, as if these were the powers requisite for viewing the objects to which he refers. For example, it is stated that he once put a power of 6450 times on his 7 feet Newtonian telescope of 63/10inches aperture; but this was only for the purpose of an experiment, and could be of nouse whatever when applied to the moon, the planets and most objects in the heavens. Herschel, through the whole course of his writings, mentions his only having used ittwice, namely on the stars α Lyræ, and γ Leonis, which stars can be seen more distinctly and sharply defined with a power of 420. To produce a power of 6450 on such a telescope, would require a lens of only1/77th of an inch in focal distance, and it is questioned by some whether Herschel had lenses of so small a size in his possession, or whether it is possible to form them with accuracy.

Powers requisite for observing the phenomena of the planets.—The planet Mercury requires a considerable magnifying power, in order to perceive its phases with distinctness. I have seldom viewed this planet with a less power than 100 and 150, with which powers its half moon, its gibbous, and its crescent phase, may be distinctly perceived. With a power of 40, 50, or even 60 times, these phases can with difficulty be seen, especially as it is generally at a low altitude, when such observations are made. The phases ofVenusare much more easily distinguished, especially thecrescentphase, which is seen to the greatest advantage about a month before and after the inferior conjunction. With a power not exceeding 25 or 30 times, this phase, at such periods, may be easily perceived. It requires, however, much higher powers to perceive distinctly the variations of the gibbous phase; and if this planet be not viewed at a considerably high altitude when in a half-moon or gibbous phase, the obscurity and undulations of the atmosphere near the horizon, prevent such phases from being accurately distinguished, even when high powers are applied. Although certain phenomena of the planets may be seen with such low powers as I have now stated, yet, in every instance, thehighest magnifying powers, consistent with distinctness, should be preferred, as the eye is not then strained, and the object appears with a greater degree of magnitude and splendour. The planetMarsrequires a considerable degree of magnifying power, even when at its nearest distance from the earth, in order to discern its spots and its gibbous phase. I have never obtained a satisfactory view of the spots which mark the surface, and their relative position, with a less power than 130, 160, or 200 times; and even with such powers, persons not much accustomed to look through telescopes, find a difficulty in distinguishing them.

The strongest and most prominentbelts of Jupiter, may be seen with a power of about 45; which power may be put upon a 20-inch achromatic, or a 1 foot reflector. But a satisfactory view of all the belts, and the relative positions they occupy, cannot be obtained with much lower powers than 80, 100, or 140. The most common positions of these belts are—one dark and well-defined belt to the south of Jupiter’s equator; another of nearly the same description to the north of it, and one about his north and his south polar circles. These polar belts are much more faint, and consequently not so easily distinguished as the equatorial belts. Themoonsof this planet, in a very clear night, may sometimes be seen with a pocket 1 foot achromatic glass, magnifying about 15 or 16 times. Some people have pretended that they could see some of these satellites with their naked eye; but this is very doubtful, and it is probable that such persons mistook certain fixed stars which happened to be near Jupiter for his satellites. But, in order to have a clear and interesting view of these, powers of at least 80 or 100 times should be used. In order to perceivetheir immersions into the shadow of Jupiter, and the exact moment of their emersions from it, a telescope not less than a 44 inch achromatic, with a power of 150 should be employed. When these satellites are viewed through large telescopes with high magnifying powers, they appear with well defined disks, like small planets. The planet Jupiter has generally been considered as a good test by which to try telescopes for celestial purposes. When it is near the meridian and at a high altitude, if its general surface, its belts, and its margin appear distinct and well-defined, it forms a strong presumptive evidence that the instrument is a good one.

The planetSaturnforms one of the most interesting objects for telescopic observation. Theringof Saturn may beseenwith a power of 45; but it can only be contemplated with advantage when powers of 100, 150, and 200 are applied to a 3 or a 5 feet achromatic. Thebelts of Saturnare not to be seen distinctly with an achromatic of less than 2¾ inches aperture, or a Gregorian reflector of less than 4 inches aperture, nor with a less magnifying power than 100 times. Sir W. Herschel has drawn this planet with five belts across its disk; but it is seldom that above one or two of them can be seen by moderate-sized telescopes and common observers. Thedivisionof the double ring, when the planet is in a favorable position for observation, and in a high altitude, may sometimes be perceived with a 44-inch achromatic, with an aperture of 2¾ inches, and with powers of 150 or 180, but higher powers and larger instruments are generally requisite to perceive this phenomenon distinctly; and even when a portion of it is seen at the extremities of theansæ, the division cannot, in every case, betraced along the whole of the half-circumference of the ring which is presented to our eye. Mr. Hadley’s engraving of Saturn, in the ‘Philosophical Transactions’ for 1723, though taken with a Newtonian reflector with a power of 228, represents the division of the ring as seen only on the ansæ or extremities of the elliptic figure in which the ring appears. The best period for observing this division is when the ring appears at its utmost width. In this position it was seen in 1840, and it will appear nearly in the same position in 1855. When the ring appears like a very narrow ellipse, a short time previous to its disappearance, the division, or dark space between the rings, cannot be seen by ordinary instruments.

Sir W. Herschel very properly observes, ‘There is not perhaps another object in the heavens that presents us with such a variety of extraordinary phenomena as the planet Saturn; a magnificent globe, encompassed by a stupendous double ring; attended by seven satellites; ornamented with equatorial belts; compressed at the poles; turning upon its axis; mutually eclipsing its ring and satellites, and eclipsed by them; the most distant of the rings also turning upon its axis, and the same taking place with the farthest of the satellites; all the parts of the system of Saturn occasionally reflecting light on each other; the rings and moons illuminating the nights of the Saturnian, the globe and satellites enlightening the dark parts of the ring; and the planet and rings throwing back the sun’s beams upon the moons, when they are deprived of them at the time of their conjunctions.’ This illustrious astronomer states, that with a new 7 feet mirror of extraordinary distinctness he examined this planet, and found that the ring reflects more light than the body, and witha power of 570 the colour of the body becomes yellowish, while that of the ring remains more white. On March 11, 1780, he tried the powers of 222, 332, and 440 successively, and found the light of Saturn less intense than that of the ring; the colour of the body turning, with the high powers, to a kind of yellow white, while that of the ring still remained white.

Most of thesatellitesof Saturn are difficult to be perceived with ordinary telescopes, excepting the 4th, which may be seen with powers of from 60 to 100 times. It was discovered by Huygens in 1655, by means of a common refracting telescope 12 feet long, which might magnify about 70 times. The next in brightness to this is the 5th satellite, which Cassini discovered in 1671, by means of a 17 feet refractor, which might carry a power of above 80 times. The 3rd was discovered by the same astronomer in 1672, by a longer telescope; and the 1st and 2nd, in 1684, by means of two excellent object-glasses of 100 and 136 feet, which might have magnified from 200 to 230 times. They were afterwards seen by two other glasses of 70 and 90 feet, made by Campani, and sent from Rome to the Royal Observatory at Paris, by the King’s order, after the discovery of the 3rd and 5th satellites. It is asserted, however, that all those 5 satellites were afterwards seen with a telescope of 34 feet, with an aperture of 33/10inches, which would magnify about 120 times. These satellites, on the whole, except the 4th and 5th, are not easily detected. Dr. Derham, who frequently viewed Saturn through Huygens’ glass of 126 feet focal length, declares, in the preface to his ‘Astro-Theology,’ that he could never perceive above 3 of the satellites. Sir W. Herschel observes, that the visibility of theseminute and extremely faint objects, depends more on thepenetratingthan upon themagnifyingpower of our telescopes; and that with a 10 feet Newtonian, charged with a magnifying power of only 60, he saw all the 5 old satellites; but the 6th and 7th, which were discovered and were easily seen with his 40-feet telescope, and were also visible in his 20-feet instrument, were not discernible in the 7 or the 10-feet telescopes, though all thatmagnifying powercan do may be done as well with the 7-feet as with any larger instrument. Speaking of the 7th satellite, he says, ‘Even in my 40-feet reflector it appears no bigger than a very small lucid point. I see it, however, very well in the 20-feet reflector; to which the exquisite figure of the speculum not a little contributes.’ A late observer asserts, that in 1825, with a 12-feet achromatic, of 7 inches aperture, made by Tulley, with a power of 150, the 7 satellites were easily visible, but not so easily with a power of 200; and that the planet appeared as bright as brilliantly burnished silver, and the division in the ring and a belt were very plainly distinguished, with a power of 200.

The planetUranus, being generally invisible to the naked eye, is seldom an object of attention to common observers. A considerable magnifying power is requisite to make it appear in a planetary form with a well-defined disk. The best periods for detecting it are, when it is near its opposition to the sun, or when it happens to approximate to any of the other planets, or to a well-known fixed star. When none of these circumstances occur, its position requires to be pointed out by an Equatorial Telescope. On the morning of the 25th January, 1841, this planet happened to be in conjunction with Venus, atwhich time it was only 4 minutes north of that planet. Several days before this conjunction, I made observations on Uranus. On the evening of the 24th, about 8 hours before the conjunction, the two planets appeared in the same field of the telescope, the one exceedingly splendid, and the other more obscure, but distinct and well-defined. Uranus could not be perceived, either with the naked eye, or with an opera glass; but could be distinguished as a very small star by means of a pocket achromatic telescope magnifying about 14 times. It is questionable whether, under the most favourable circumstances, this planet can ever be distinguished by the naked eye. With magnifying powers of 30 and 70, it appeared as a moderately large star with a steady light, but without any sensible disk. With powers of 120, 180, and 250, it presented a round and pretty well-defined disk, but not so luminous and distinct as it would have done in a higher altitude.

TheDouble Starsrequire a greatvarietyof powers, in order to distinguish the small stars that accompany the larger. Some of them are distinguished with moderate powers, while others require pretty large instruments, furnished with high magnifying eye-pieces. I shall therefore select only a few as a specimen. The starCastor, or α Geminorum, may be easily seen to be double with powers of from 70 to 100. I have sometimes seen these stars, which are nearly equal in size and colour, with a terrestrial power of 44 on a 44-inch achromatic. The appearance of this star with such powers is somewhat similar to that of η Coronæ in a 7 feet achromatic, of 5 inches aperture, with a power of 500. γ Andromedæ may be seen with a moderate power. In a 30-inch achromatic of 2 inches aperture, and a powerof 80, it appears like ε Bootis, when seen in a 5-feet achromatic, with a power of 460. This star is said to be visible even in a 1-foot achromatic with a power of 35. εLyræ, which is a quintuple star, but appears to the naked eye as a single star,—may be seen to be double with a power of from 6 to 12 time. γLeonisis visible in a 44-inch achromatic, with a power of 180 or 200.Rigelin a 3½-feet achromatic, may be seen with powers varying from 130 to 200. The small star, however, which accompanies Rigel, is sometimes difficult to be perceived, even with such powers. εBootisis seldom distinctly defined with an achromatic of less aperture than 3¼ inches, or a reflector of less than 5 inches, with a power of at least 250.

These and similar stars are not to be expected to be seen equally well at all times, even when the magnifying and illuminating powers are properly proportioned; as much depends upon the state of the weather, and the pureness of the atmosphere. In order to perceive the closest of the double stars, Sir W. Herschel recommends, that the power of the telescope should be adjusted upon a star known to be single, of nearly the same altitude, magnitude, and colour with the double star which is to be observed, or upon one star above and another below it. Thus, the late Mr. Aubert, the astronomer, could not see the two stars of γ Leonis, when the focus was adjusted upon that star itself; but he soon observed the small star, after he had adjusted the focus upon Regulus. An exact adjustment of the focus of the instrument is indispensably requisite, in order to perceive such minute objects.

In viewing theNebulæ, and the very small and immensely distant fixed stars, which require muchlight to render them visible, a large aperture of the object-glass or speculum, which admits of a great quantity of light, is of more importance than high magnifying powers. It is light chiefly, accompanied with a moderate magnifying power, that enables us topenetrateinto the distant regions of space. Sir W. Herschel, when sweeping the profundities of the Milky way, and the Hand and Club of Orion, used a telescope of the Newtonian form, 20-feet focal length, and 187/10inches diameter, with a power of only 157. On applying this telescope and power to a part of theVia Lactea, he found that it completely resolved the whole whitish appearance into stars, which his former telescopes had not light enough to effect; and which smaller instruments with much higher magnifying powers would not have effected. He tells us, that with this power, ‘the glorious multitude of stars,’ in the vicinity of Orion, ‘of all possible sizes, that presented themselves to view, was truly astonishing, and that he had fields which contained 70, 90 and 110 stars, so that a belt of 15 degrees long, and 2 degrees broad, which passed through the field of the telescope in an hour, could not contain less than fifty thousand stars that were large enough to be distinctly numbered.’ In viewing the Milky way, the Nebulæ, and small clusters of stars, such asPræsepein Cancer, I generally use a power of 55 times, on an achromatic telescope 6 feet 6 inches in focal length, and 4 inches diameter. The eye-piece, which produces this power—which I formed for the purpose—consists of two convex lenses, the one next the eye 3 inches focal length, and 12/10inch diameter, and that next the object 3½ inches focus, and 14/10inch diameter, the deepest convex surfaces being next each other, and their distance ¼ inch. With thiseye-piece a very large and brilliant field of view is obtained; and I find it preferable to any higher powers in viewing the nebulosities, and clusters of stars. In certain spaces of the heavens, it sometimes presents in one field, nearly a hundred stars. It likewise serves to exhibit a very clear and interesting view of the full moon.

In observingComets, a very small power should generally be used, even on large instruments. These bodies possess so small a quantity of light, and they are so frequently enveloped in a veil of dense atmosphere, thatmagnifyingpower sometimes renders them more obscure; and therefore theilluminatingpower of a large telescope, with a small power, is in all cases to be preferred. A comet eye-piece should be constructed with a very large and uniformly distinct field, and should magnify only from 15 to 30 or 40 times, and the lenses of such an eye-tube should be nearly two inches in diameter. The late Rev. F. Wollaston recommended for observing comets, ‘a telescope with an achromatic object-glass of 16 inches focal length, and 2 inches aperture, with a Ramsden’s eye-glass magnifying about 25 times, mounted on a very firm equatorial stand, the field of view taking in 2 degrees of a great circle.’

In viewing themoon, various powers may be applied according to circumstances. The best periods of the moon for inspecting the inequalities on its surface, are either when it assumes a crescent or a half-moon phase, or two or three days after the period of half-moon. Several days after full-moon, and particularly about the third quarter, when this orb is waning, and when the shadows of its mountains and vales are thrown in a different direction from what they are when on the increase,—the most prominent and interestingviews may be obtained. The most convenient season for obtaining such views is during the autumnal months, when the moon, about the third quarter, sometimes rises as early as 8 o’clockP.M., and may be viewed at a considerably high altitude by ten or eleven. When in the positions now alluded to, and at a high altitude, very high magnifying powers may sometimes be applied with good effect, especially if the atmosphere be clear and serene. I have sometimes applied a power, in such cases, of 350 times, on a 46-inch achromatic, with considerable distinctness; but it is only two or three times in a year, and when the atmosphere is remarkably favourable, that such a power can be used. The autumnal evenings are generally best fitted for such observations. Thefull moonis an object which is never seen to advantage with high powers, as no shadows or inequalities on its surface can then be perceived. It forms, however, a very beautiful object, when magnifying powers not higher than 40, 50, or 60 times are used. A power of 45 times, if properly constructed, will show thewhole of the moonwith a margin around it, when the darker and brighter parts of its surface will present a variegated aspect, and appear somewhat like a map to the eye of the observer.

4.Mode of exhibiting the Solar spots.

The solar spots may be contemplated with advantage by magnifying powers varying from 60 to 180 times; about 90 times is a good medium power, though they may sometimes be distinguished with very low powers, such as those usually adapted to a one-foot telescope, or even by means of a common opera-glass. The common astronomical eye-pieces given along with achromatic telescopes, and the sun-glasses connectedwith them, are generally ill-adapted for taking a pleasant and comprehensive view of the solar spots. In the higher magnifying powers, the first eye-glass is generally at too great a distance from the eye, and the sun-glass which is screwed over it, removes it to a still greater distance from the point to which the eye is applied, so that not above one third of the field of view can be taken in. This circumstance renders it difficult to point the instrument to any particular small spot on the solar disk which we wish minutely to inspect; and besides, it prevents us from taking a comprehensive view of therelative positionsof all the spots that may at any time be traversing the disk. To obviate this inconvenience, the sun-glass would require to be placed so near to the glass next the eye as almost to touch it. But this is sometimes difficult to be attained, and, in high powers, even the thickness of the sun-glass itself is sufficient to prevent the eye from taking in the whole field of view. For preventing the inconveniences to which I now allude, I generally make use of aterrestrialeye-piece of a considerable power, with a large field, the sun-glass is fixed at the end of a short tube which slides on the eye-piece, and permits the coloured glass to approach within a line or two of the lens next the eye, so that the whole field of the telescope is completely secured. The eye-piece alluded to carries a magnifying power of 95 times for a 46-inch telescope, and takes in about three fourths of the surface of the sun, so that the relative positions of all the spots may generally be perceived at one view. Such a power is, in most cases, quite sufficient for ordinary observations; and I have seldom found any good effect to arise from attempting very high powers, when minutely examining the solar spots.

But, the most pleasant mode of viewing the solar spots—especially when we wish to exhibit them to others—is to throw the image of the sun upon a white screen, placed in a room which is considerably darkened. It is difficult, however, when the sun is at a high altitude, to put this method into practice, on account of the great obliquity with which his rays then fall, which prevents a screen from being placed at any considerable distance from the eye-end of the telescope. The following plan, therefore, is that which I uniformly adopt as being both the easiest and the most satisfactory. A telescope is placed in a convenient position, so as to be directed to the sun. This telescope is furnished with adiagonal eye-piece, such as that represented, fig. 77, (p. 344.) The window-shutters of the apartment are all closed, excepting a space sufficient to admit the solar rays; and, when the telescope is properly adjusted, a beautiful image of the sun, with all the spots which then happen to diversify his surface, is thrown upon theceilingof the room. This image may be from 12 to 20, or 30 inches or more in diameter, according to the distance of the ceiling from the diagonal eye-piece. The greater this distance is, the larger the image. If the sun is at a very high altitude, the image will be elliptical; if he be at no great distance from the horizon, the image will appear circular or nearly so; but in either case the spots will be distinctly depicted, provided the focus of the telescope be accurately adjusted. In this exhibition, the apparent motion of the sun, produced by the rotation of the earth, and the passage of thin fleeces of clouds across the solar disk, exhibit a very pleasing appearance.

By this mode of viewing the solar spots we mayeasily ascertain their diameter and magnitude, at least to a near approximation. We have only to take a scale of inches, and measure the diameter of any well-defined and remarkable spot, and then the diameter of the solar image; and, comparing the one with the other, we can ascertain the number of miles either lineal or square, comprehended in the dimensions of the spot. For example, suppose a spot to measure one half-inch in diameter, and the whole image of the sun 25 inches, the proportion between the diameter of the spot and that of the sun will be as 1 to 50, in other words, theone fiftiethpart of the sun’s diameter. Now, this diameter being 880,000 miles, this number, divided by 50, produces a quotient of 17,600 = the number of miles which its diameter measures. Such a spot will therefore contain an area of 243,285,504, or more than two hundred and forty-three millions of square miles, which is 46 millions of miles more than the whole superficies of the terraquous globe. Again, suppose the diameter of a spot measures3/10inch, and the solar image 23 inches, the proportion of the diameter of the spot to that of the sun is as 3 to 230 = the number of tenths in 23 inches. The number of miles in the spot’s diameter will therefore be found by the following proportion: 230 : 880,000 :: 3 : 11,478; that is, the diameter of such a spot measures eleven thousand four hundred and seventy-eight miles. Spots of such sizes are not unfrequently seen to transit the solar disk.

By this mode of viewing the image of the sun, his spots may be exhibited to twenty or thirty individuals at once without the least straining or injury to the eyes; and as no separate screen is requisite, and as the ceilings of rooms are generally white, the experiment may be performed in halfa minute without any previous preparation, except screwing on and adjusting the eye-piece. The manner of exhibiting the solar spots, in this way, is represented in fig. 82.


Back to IndexNext