CHAPTER IV.[14]

Associated with the peripheral ends of the nerves of touch are certain small bodies—corpuscula tactus—each of which, when disturbed by something in contact with the skin, presses on the adjacent fibre more strongly than soft tissue would do, and thus multiplies the force producing sensation. While serving the further purpose of touching at a distance, thevibrissæor whiskers of a feline animal achieve a like end in a more effectual way. The external portion of each bristle acts as the long arm of a lever, and the internal portion as the short arm. The result is that a slight touch at the outer end of the bristle produces a considerable pressure of the inner end on the nerve-terminal: so intensifying the impression. In the hearing organs of various inferior types of animals, the otolites in contact with the auditory nerves, when they are struck by sound-waves, give to the nerves much stronger impressions than these would have were they simply immersed in loose tissue; and in the ears of developed creatures there exist more elaborate appliances for augmenting the effects of aerial vibrations. From this multiplication of molar actions let us pass to the multiplication of molecular actions. The retina is made up of minute rods and cones, so packed together side by side that they can be separately affected by the separate parts of the images of objects. As each of them is but1⁄10,000th of an inch in diameter, the ethereal undulations falling upon it can produce an amount of change almost infinitesimal—an amount probably incapable of exciting a nerve-centre, or indeed of overcoming the molecular inertia of the nerve leading to it. But in close proximity are layers of granules into which the rods and cones send fibres, and beyond these, about1⁄100th of an inch from the retinal layer, lie ganglion-cells, in each of which a minute disturbance may readily evolve a larger disturbance; so that by multiplication, single or perhaps double, there is produced a force sufficient to excite the fibre connected with the centre of vision. Such, at least, judging from the requirement and the structure, seems to methe probable interpretation of the visual process; though whether it is the accepted one I do not know.

But now, carrying with us the conception made clear by the first cases and suggested by the last, we shall appreciate the extent to which this general physiological method, as we may call it, is employed. The convulsive action caused by tickling shows it conspicuously. An extremely small amount of molecular change in the nerve-endings produces an immense amount of molecular change, and resulting molar motion, in the muscles. Especially is this seen in one whose spinal cord has been so injured that it no longer conveys sensations from the lower limbs to the brain; and in whom, nevertheless, tickling of the feet produces convulsive actions of the legs more violent even than result when sensation exists: clearly proving that since the minute molecular change produced by the tickling in the nerve-terminals cannot be equivalent in quantity to the amount implied by the muscular contraction, there must be a multiplication of it in those parts of the spinal cord whence issue the reflex stimuli to the muscles.

Returning now to the question of metabolism, we may see that the processes of multiplication above supposed to take place in muscle, are analogous in their general nature to various other physiological processes. Carrying somewhat further the simile used in§ 15and going back to the days when detonators, though used for small arms, were not used for artillery, we may compare the metabolic process in muscle to that which would take place if a pistol were fired against the touch-hole of a loaded cannon: the cap exploding the pistol and the pistol the cannon. For in the case of the muscle, the implication is that a nervous discharge works in certain unstable proteids through which the nerve-endings are distributed, a small amount of molecular change; that the shock of this causes a much larger amount of molecular change in the inter-diffused carbo-hydrate, with accompanying oxidation of its carbon; and that the heat liberated sets up a transformation, probably isomeric, in the contractile substanceof the muscular fibre: an interpretation supported by cases in which small rises and falls of temperature cause alternating isomeric changes; as instance Mensel's salt.

Ending here this exposition, somewhat too speculative and running into details inappropriate to a work of this kind, it suffices to note the most general facts concerning metabolism. Regarded as a whole it includes, in the first place, those anabolic or building-up processes specially characterizing plants, during which the impacts of ethereal undulations are stored up in compound molecules of unstable kinds; and it includes, in the second place, those katabolic or tumbling-down changes specially characterizing animals, during which this accumulated molecular motion (contained in the food directly or indirectly supplied by plants), is in large measure changed into those molar motions constituting animal activities. There are multitudinous metabolic changes of minor kinds which are ancillary to these—many katabolic changes in plants and many anabolic changes in animals—but these are the essential ones.[13]

PROXIMATE CONCEPTION OF LIFE.

§ 24. To those who accept the general doctrine of Evolution, it need scarcely be pointed out that classifications are subjective conceptions, which have no absolute demarcations in Nature corresponding to them. They are appliances by which we limit and arrange the matters under investigation; and so facilitate our thinking. Consequently, when we attempt to define anything complex, or make a generalization of facts other than the most simple, we can scarcely ever avoid including more than we intended, or leaving out something which should be taken in. Thus it happens that on seeking a definite idea of Life, we have great difficulty in finding one that is neither more nor less than sufficient. Let us look at a few of the most tenable definitions that have been given. While recognizing the respects in which they are defective, we shall see what requirements a more satisfactory one must fulfil.

Schelling said that Life is the tendency to individuation. This formula, until studied, conveys little meaning. But we need only consider it as illustrated by the facts of development, or by the contrast between lower and higher forms oflife, to recognize its significance; especially in respect of comprehensiveness. As before shown, however (First Principles, § 56), it is objectionable; partly on the ground that it refers not so much to the functional changes constituting Life, as to the structural changes of those aggregates of matter which manifest Life; and partly on the ground that it includes under the idea Life, much that we usually exclude from it: for instance—crystallization.

The definition of Richerand,—"Life is a collection of phenomena which succeed each other during a limited time in an organized body,"—is liable to the fatal criticism, that it equally applies to the decay which goes on after death. For this, too, is "a collection of phenomena which succeed each other during a limited time in an organized body."

"Life," according to De Blainville, "is the two-fold internal movement of composition and decomposition, at once general and continuous." This conception is in some respects too narrow, and in other respects too wide. On the one hand, while it expresses what physiologists distinguish as vegetative life, it does not indicate those nervous and muscular functions which form the most conspicuous and distinctive classes of vital phenomena. On the other hand, it describes not only the integrating and disintegrating process going on in a living body, but it equally well describes those going on in a galvanic battery; which also exhibits a "two-fold internal movement of composition and decomposition, at once general and continuous."

Elsewhere, I have myself proposed to define Life as "the co-ordination of actions."[15]This definition has some advantages. It includes all organic changes, alike of the viscera, the limbs, and the brain. It excludes the great mass of inorganic changes; which display little or no co-ordination. By making co-ordination the specific character of vitality, it involves the truths, that an arrest of co-ordination is death,and that imperfect co-ordination is disease. Moreover, it harmonizes with our ordinary ideas of life in its different grades; seeing that the organisms which we rank as low in their degrees of life, are those which display but little co-ordination of actions; and seeing that from these up to man, the recognized increase in degree of life corresponds with an increase in the extent and complexity of co-ordinations. But, like the others, this definition includes too much. It may be said of the Solar System, with its regularly-recurring movements and its self-balancing perturbations, that it, also, exhibits co-ordination of actions. And however plausibly it may be argued that, in the abstract, the motions of the planets and satellites are as properly comprehended in the idea of life as the changes going on in a motionless, unsensitive seed: yet, it must be admitted that they are foreign to that idea as commonly received, and as here to be formulated.

It remains to add the definition since suggested by Mr. G. H. Lewes—"Life is a series of definite and successive changes, both of structure and composition, which take place within an individual without destroying its identity." The last fact which this statement brings into view—the persistence of a living organism as a whole, in spite of the continuous removal and replacement of its parts—is important. But otherwise it may be argued that, since changes of structure and composition, though concomitants of muscular and nervous actions, are not the muscular and nervous actions themselves, the definite excludes the more visible movements with which our idea of life is most associated; and further that, in describing vital changes asa series, it scarcely includes the fact that many of them, as Nutrition, Circulation, Respiration, and Secretion, in their many subdivisions, go on simultaneously.

Thus, however well each of these definitions expresses the phenomena of life under some of its aspects, no one of them is more than approximately true. It may turn out that to find a formula which will bear every test is impossible.Meanwhile, it is possible to frame a more adequate formula than any of the foregoing. As we shall presently find, these all omit an essential peculiarity of vital changes in general—a peculiarity which, perhaps more than any other, distinguishes them from non-vital changes. Before specifying this peculiarity, however, it will be well to trace our way, step by step, to as complete an idea of Life as may be reached from our present stand-point; by doing which we shall both see the necessity for each limitation as it is made, and ultimately be led to feel the need for a further limitation.

And here, as the best mode of determining what are the traits which distinguish vitality from non-vitality, we shall do well to compare the two most unlike kinds of vitality, and see in what they agree. Manifestly, that which is essential to Life must be that which is common to Life of all orders. And manifestly, that which is common to all forms of Life, will most readily be seen on contrasting those forms of Life which have the least in common, or are the most unlike.[16]

§ 25. Choosing assimilation, then, for our example of bodily life, and reasoning for our example of that life known as intelligence; it is first to be observed, that they are both processes of change. Without change, food cannot be taken into the blood nor transformed into tissue; without change, there can be no getting from premisses to conclusion. And it is this conspicuous display of changes which forms the substratum of our idea of Life in general. Doubtless we see innumerable changes to which no notion of vitality attaches. Inorganic bodies are ever undergoing changes of temperature, changes of colour, changes of aggregation; and decaying organic bodies also. But it will be admitted that the greatmajority of the phenomena displayed by inanimate bodies, are statical and not dynamical; that the modifications of inanimate bodies are mostly slow and unobtrusive; that on the one hand, when we see sudden movements in inanimate bodies, we are apt to assume living agency, and on the other hand, when we see no movements in living bodies, we are apt to assume death. Manifestly then, be the requisite qualifications what they may, a true idea of Life must be an idea of some kind of change or changes.

On further comparing assimilation and reasoning, with a view of seeing in what respect the changes displayed in both differs from non-vital changes, we find that they differ in being not simple changes; in each case there aresuccessivechanges. The transformation of food into tissue involves mastication, deglutition, chymification, chylification, absorption, and those various actions gone through after the lacteal ducts have poured their contents into the blood. Carrying on an argument necessitates a long chain of states of consciousness; each implying a change of the preceding state. Inorganic changes, however, do not in any considerable degree exhibit this peculiarity. It is true that from meteorologic causes, inanimate objects are daily, sometimes hourly, undergoing modifications of temperature, of bulk, of hygrometric and electric condition. Not only, however, do these modifications lack that conspicuousness and that rapidity of succession which vital ones possess, but vital ones form anadditionalseries. Living as well as not-living bodies are affected by atmospheric influences; and beyond the changes which these produce, living bodies exhibit other changes, more numerous and more marked. So that though organic change is not rigorously distinguished from inorganic change by presenting successive phases; yet vital change so greatly exceeds other change in this respect, that we may consider it as a distinctive character. Life, then, as thus roughly differentiated, may be regarded as change presenting successive phases; or otherwise, as a series of changes. And itshould be observed, as a fact in harmony with this conception, that the higher the life the more conspicuous the variations. On comparing inferior with superior organisms, these last will be seen to display more rapid changes, or a more lengthened series of them, or both.

On contemplating afresh our two typical phenomena, we may see that vital change is further distinguished from non-vital change, by being made up of manysimultaneouschanges. Nutrition is not simply a series of actions, but includes many actions going on together. During mastication the stomach is busy with food already swallowed, on which it is pouring out solvent fluids and expending muscular efforts. While the stomach is still active, the intestines are performing their secretive, contractile, and absorbent functions; and at the same time that one meal is being digested, the nutriment obtained from a previous meal is undergoing transformation into tissue. So too is it, in a certain sense, with mental changes. Though the states of consciousness which make up an argument occur in series, yet, as each of them is complex, a number of simultaneous changes have taken place in establishing it. Here as before, however, it must be admitted that the distinction between animate and inanimate is not precise. No mass of dead matter can have its temperature altered, without at the same time undergoing an alteration in bulk, and sometimes also in hygrometric state. An inorganic body cannot be compressed, without being at the same time changed in form, atomic arrangement, temperature, and electric condition. And in a vast and mobile aggregate like the sea, the simultaneous as well as the successive changes outnumber those going on in an animal. Nevertheless, speaking generally, a living thing is distinguished from a dead thing by the multiplicity of the changes at any moment taking place in it. Moreover, by this peculiarity, as by the previous one, not only is the vital more or less clearly marked off from the non-vital; but creatures possessing high vitality are marked off from those possessinglow vitality. It needs but to contrast the many organs cooperating in a mammal, with the few in a polype, to see that the actions which are progressing together in the body of the first, as much exceed in number the actions progressing together in the body of the last, as these do those in a stone. As at present conceived, then, Life consists of simultaneous and successive changes.

Continuance of the comparison shows that vital changes, both visceral and cerebral, differ from other changes in theirheterogeneity. Neither the simultaneous acts nor the serial acts, which together constitute the process of digestion, are alike. The states of consciousness comprised in any ratiocination are not repetitions one of another, either in composition or in modes of dependence. Inorganic processes, on the other hand, even when like organic ones in the number of the simultaneous and successive changes they involve, are unlike them in the relative homogeneity of these changes. In the case of the sea, just referred to, it is observable that countless as are the actions at any moment going on, they are mostly mechanical actions that are to a great degree similar; and in this respect differ widely from the actions at any moment taking place in an organism. Even where life is nearly simulated, as by the working of a steam-engine, we see that considerable as is the number of simultaneous changes, and rapid as are the successive ones, the regularity with which they soon recur in the same order and degree, renders them unlike those varied changes exhibited by a living creature. Still, this peculiarity, like the foregoing ones, does not divide the two classes of changes with precision; since there are inanimate things presenting considerable heterogeneity of change: for instance, a cloud. The variations of state which this undergoes, both simultaneous and successive, are many and quick; and they differ widely from one another both in quality and quantity. At the same instant there may occur change of position, change of form, change of size, change of density, change of colour,change of temperature, change of electric state; and these several kinds of change are continuously displayed in different degrees and combinations. Yet when we observe that very few inorganic objects manifest heterogeneity of change comparable to that manifested by organic objects, and further, that in ascending from low to high forms of life, we meet with an increasing variety in the kinds of changes displayed; we see that there is here a further leading distinction between vital and non-vital actions. According to this modified conception, then, Life is made up of heterogeneous changes both simultaneous and successive.

If, now, we look for some trait common to the nutritive and logical processes, by which they are distinguished from those inorganic processes that are most like them in the heterogeneity of the simultaneous and successive changes they comprise, we discover that they are distinguished by thecombinationamong their constituent changes. The acts which make up digestion are mutually dependent. Those composing a train of reasoning are in close connection. And, generally, it is to be remarked of vital changes, that each is made possible by all, and all are affected by each. Respiration, circulation, absorption, secretion, in their many sub-divisions, are bound up together. Muscular contraction involves chemical change, change of temperature, and change in the excretions. Active thought influences the operations of the stomach, of the heart, of the kidneys. But we miss this union among non-vital activities. Life-like as may seem the action of a volcano in respect of the heterogeneity of its many simultaneous and successive changes, it is not life-like in respect of their combination. Though the chemical, mechanical, thermal, and electric phenomena exhibited have some inter-dependence, yet the emissions of stones, mud, lava, flame, ashes, smoke, steam, take place irregularly in quantity, order, intervals, and mode of conjunction. Even here, however, it cannot be said that inanimate things present no parallels to animate ones. A glacier may be instanced asshowing nearly as much combination in its change as a plant of the lowest organization. It is ever growing and ever decaying; and the rates of its composition and decomposition preserve a tolerably constant ratio. It moves; and its motion is in immediate dependence on its thawing. It emits a torrent of water, which, in common with its motion, undergoes annual variations as plants do. During part of the year the surface melts and freezes alternately; and on these changes depend the variations in movement, and in efflux of water. Thus we have growth, decay, changes of temperature, changes of consistence, changes of velocity, changes of excretion, all going on in connexion; and it may be as truly said of a glacier as of an animal, that by ceaseless integration and disintegration it gradually undergoes an entire change of substance without losing its individuality. This exceptional instance, however, will scarcely be held to obscure that broad distinction from inorganic processes which organic processes derive from the combination among their constituent changes. And the reality of this distinction becomes yet more manifest when we find that, in common with previous ones, it not only marks off the living from the not-living, but also things which live little from things which live much. For while the changes going on in a plant or a zoophyte are so imperfectly combined that they can continue after it has been divided into two or more pieces, the combination among the changes going on in a mammal is so close that no part cut off from the rest can live, and any considerable disturbance of one chief function causes a cessation of the others. Hence, as we now regard it, Life is a combination of heterogeneous changes, both simultaneous and successive.

When we once more look for a character common to these two kinds of vital action, we perceive that the combinations of heterogeneous changes which constitute them, differ from the few combinations which they otherwise resemble, inrespect ofdefiniteness. The associated changes going on in a glacier, admit of indefinite variation. Under a conceivable alteration of climate, its thawing and its progression may be stopped for a million years, without disabling it from again displaying these phenomena under appropriate conditions. By a geological convulsion, its motion may be arrested without an arrest of its thawing; or by an increase in the inclination of the surface it slides over, its motion may be accelerated without accelerating its rate of dissolution. Other things remaining the same, a more rapid deposit of snow may cause great increase of bulk; or, conversely, the accretion may entirely cease, and yet all the other actions continue until the mass disappears. Here, then, the combination has none of that definiteness which, in a plant, marks the mutual dependence of respiration, assimilation, and circulation; much less has it that definiteness seen in the mutual dependence of the chief animal functions; no one of which can be varied without varying the rest; no one of which can go on unless the rest go on. Moreover, this definiteness of combination distinguishes the changes occurring in a living body from those occurring in a dead one. Decomposition exhibits both simultaneous and successive changes, which are to some extent heterogeneous, and in a sense combined; but they are not combined in a definite manner. They vary according as the surrounding medium is air, water, or earth. They alter in nature with the temperature. If the local conditions are unlike, they progress differently in different parts of the mass, without mutual influence. They may end in producing gases, or adipocire, or the dry substance of which mummies consist. They may occupy a few days or thousands of years. Thus, neither in their simultaneous nor in their successive changes, do dead bodies display that definiteness of combination which characterizes living ones. It is true that in some inferior creatures the cycle of successive changes admits of a certainindefiniteness—that it may be suspended for a long period by desiccation or freezing, and may afterwards go on as though there had been no breach in its continuity. But the circumstance that only a low order of life can have its changes thus modified, serves but to suggest that, like the previous characteristics, this characteristic of definiteness in its combined changes, distinguishes high vitality from low vitality, as it distinguishes low vitality from inorganic processes. Hence, our formula as further amended reads thus:—Life is a definite combination of heterogenous changes, both simultaneous and successive.

Finally, we shall still better express the facts if, instead of sayingadefinite combination of heterogeneous changes, we saythedefinite combination of heterogeneous changes. As it at present stands, the definition is defective both in allowing that there may beotherdefinite combinations of heterogeneous changes, and in directing attention to the heterogeneous changes rather than to the definiteness of their combination. Just as it is not so much its chemical elements which constitute an organism, as it is the arrangement of them into special tissues and organs; so it is not so much its heterogeneous changes which constitute Life, as it is the co-ordination of them. Observe what it is that ceases when life ceases. In a dead body there are going on heterogeneous changes, both simultaneous and successive. What then has disappeared? The definite combination has disappeared. Mark, too, that however heterogeneous the simultaneous and successive changes exhibited by such an inorganic object as a volcano, we much less tend to think of it as living than we do a watch or a steam-engine, which, though displaying changes that, serially contemplated, are largely homogeneous, displays them definitely combined. So dominant an element is this in our idea of Life, that even when an object is motionless, yet, if its parts be definitely combined, we conclude either that it has had life, or has been made by something having life. Thus, then, we conclude that Life is—thedefinite combination of heterogeneous changes, both simultaneous and successive.

§ 26. Such is the conception at which we arrive without changing our stand-point. It is, however, an incomplete conception. This ultimate formula (which is to a considerable extent identical with one above given—"the co-ordination of actions;" seeing that "definite combination" is synonymous with "co-ordination," and "changes both simultaneous and successive" are comprehended under the term "actions;" but which differs from it in specifying the fact, that the actions or changes are "heterogeneous")—this ultimate formula, I say, is after all but a rude approximation. It is true that it does not fail by including the growth of a crystal; for the successive changes this implies cannot be called heterogeneous. It is true that the action of a galvanic battery is not comprised in it; since here, too, heterogeneity is not exhibited by the successive changes. It is true that by this same qualification the motions of the Solar System are excluded, as are also those of a watch and a steam-engine. It is true, moreover, that while, in virtue of their heterogeneity, the actions going on in a cloud, in a volcano, in a glacier, fulfil the definition; they fall short of it in lacking definiteness of combination. It is further true that this definiteness of combination distinguishes the changes taking place in an organism during life from those which commence at death. And beyond all this it is true that, as well as serving to mark off, more or less clearly, organic actions from inorganic actions, each member of the definition serves to mark off the actions constituting high vitality from those constituting low vitality; seeing that life is high in proportion to the number of successive changes occurring between birth and death; in proportion to the number of simultaneous changes; in proportion to the heterogeneity of the changes; in proportion to the combination subsisting among the changes; and in proportion to the definiteness of theircombination. Nevertheless, answering though it does to so many requirements, this definition is essentially defective.The definite combination of heterogeneous changes, both simultaneous and successive, is a formula which fails to call up an adequate conception. And it fails from omitting the most distinctive peculiarity—the peculiarity of which we have the most familiar experience, and with which our notion of Life is, more than with any other, associated. It remains now to supplement the conception by the addition of this peculiarity.

THE CORRESPONDENCE BETWEEN LIFE AND ITS CIRCUMSTANCES.

§ 27. We habitually distinguish between a live object and a dead one, by observing whether a change which we make in the surrounding conditions, or one which Nature makes in them, is or is not followed by some perceptible change in the object. By discovering that certain things shrink when touched, or fly away when approached, or start when a noise is made, the child first roughly discriminates between the living and the not-living; and the man when in doubt whether an animal he is looking at is dead or not, stirs it with his stick; or if it be at a distance, shouts, or throws a stone at it. Vegetal and animal life are alike primarily recognized by this process. The tree that puts out leaves when the spring brings increase of temperature, the flower which opens and closes with the rising and setting of the sun, the plant that droops when the soil is dry and re-erects itself when watered, are considered alive because of these induced changes; in common with the acorn-shell which contracts when a shadow suddenly falls on it, the worm that comes to the surface when the ground is continuously shaken, and the hedgehog that rolls itself up when attacked.

Not only, however, do we look for some response when an external stimulus is applied to a living organism, but we expect a fitness in the response. Dead as well as living things display changes under certain changes of condition: instance, a lump of carbonate of soda that effervesces when dropped into sulphuric acid; a cord that contracts when wetted; a piece of bread that turns brown when held nearthe fire. But in these cases, we do not see a connexion between the changes undergone and the preservation of the things that undergo them; or, to avoid any teleological implication—the changes have no apparent relations to future events which are sure or likely to take place. In vital changes, however, such relations are manifest. Light being necessary to vegetal life, we see in the action of a plant which, when much shaded, grows towards the unshaded side, an appropriateness which we should not see did it grow otherwise. Evidently the proceedings of a spider which rushes out when its web is gently shaken and stays within when the shaking is violent, conduce better to the obtainment of food and the avoidance of danger than were they reversed. The fact that we feel surprise when, as in the case of a bird fascinated by a snake, the conduct tends towards self-destruction, at once shows how generally we have observed an adaptation of living changes to changes in surrounding circumstances.

A kindred truth, rendered so familiar by infinite repetition that we forget its significance, must be named. There is invariably, and necessarily, a conformity between the vital functions of any organism and the conditions in which it is placed—between the processes going on inside of it and the processes going on outside of it. We know that a fish cannot live long in air, or a man under water. An oak growing in the ocean and a seaweed on the top of a hill, are incredible combinations of ideas. We find that each kind of animal is limited to a certain range of climate; each kind of plant to certain zones of latitude and elevation. Of the marine flora and fauna, each species is found only between such and such depths. Some blind creatures flourish in dark caves; the limpet where it is alternately covered and uncovered by the tide; the red-snow alga rarely elsewhere than in the arctic regions or among alpine peaks.

Grouping together the cases first named, in which a particular change in the circumstances of an organism is followedby a particular change in it, and the cases last named, in which the constant actions occurring within an organism imply some constant actions occurring without it; we see that in both, the changes or processes displayed by a living body are specially related to the changes or processes in its environment. And here we have the needful supplement to our conception of Life. Adding this all-important characteristic, our conception of Life becomes—The definite combination of heterogeneous changes, both simultaneous and successive,in correspondence with external co-existences and sequences. That the full significance of this addition may be seen, it will be necessary to glance at the correspondence under some of its leading aspects.[17]

§ 28. Neglecting minor requirements, the actions goingon in a plant pre-suppose a surrounding medium containing at least carbonic acid and water, together with a due supply of light and a certain temperature. Within the leaves carbon is being appropriated and oxygen given off; without them, is the gas from which the carbon is taken, and the imponderable agents that aid the abstraction. Be the nature of the process what it may, it is clear that there are external elements prone to undergo special re-arrangements under special conditions. It is clear that the plant in sunshine presents these conditions and so effects these re-arrangements. And thus it is clear that the changes which primarily constitute the plant's life, are in correspondence with co-existences in its environment.

If, again, we ask respecting the lowest protozoon how it lives; the answer is, that while on the one hand its substance is undergoing disintegration, it is on the other hand absorbing nutriment; and that it may continue to exist, the one process must keep pace with, or exceed, the other. If further we ask under what circumstances these combined changes are possible, there is the reply that the medium in which the protozoon is placed, must contain oxygen and food—oxygen in such quantity as to produce some disintegration; food in such quantity as to permit that disintegration to be made good. In other words—the two antagonistic processes taking place internally, imply the presence externally of materials having affinities that can give rise to them.

Leaving those lowest animal forms which simply take in through their surfaces the nutriment and oxygenated fluids coming in contact with them, we pass to those somewhat higher forms which have their tissues slightly specialized. In these we see a correspondence between certain actions in the digestive sac, and the properties of certain surrounding bodies. That a creature of this order may continue to live, it is necessary not only that there be masses of substance in the environment capable of transformation into its own tissue, but also that the introduction of these masses into itsstomach, shall be followed by the secretion of a solvent fluid which will reduce them to a fit state for absorption. Special outer properties must be met by special inner properties.

When, from the process by which food is digested, we turn to the process by which it is seized, the same general truth faces us. The stinging and contractile power of a polype's tentacle, correspond to the sensitiveness and strength of the creatures serving it for prey. Unless that external change which brings one of these creatures in contact with the tentacle, were quickly followed by those internal changes which result in the coiling and drawing up of the tentacle, the polype would die of inanition. The fundamental processes of integration and disintegration within it, would get out of correspondence with the agencies and processes without it, and the life would cease.

Similarly, when the creature becomes so large that its tissue cannot be efficiently supplied with nutriment by mere absorption through its lining membrane, or duly oxygenated by contact with the fluid bathing its surface, there arises a need for a distributing system by which nutriment and oxygen may be carried throughout the mass; and the functions of this system, being subsidiary to the two primary functions, form links in the correspondence between internal and external actions. The like is obviously true of all those subordinate functions, secretory and excretory, that facilitate oxidation and assimilation.

Ascending from visceral actions to muscular and nervous actions, we find the correspondence displayed in a manner still more obvious. Every act of locomotion implies the expenditure of certain internal forces, adapted in amounts and directions to balance or out-balance certain external forces. The recognition of an object is impossible without a harmony between the changes constituting perception, and particular properties co-existing in the environment. Escape from enemies implies motions within the organism, related in kind and rapidity to motions without it. Destruction ofprey requires a special combination of subjective actions, fitted in degree and succession to overcome a group of objective ones. And so with those countless automatic processes constituting instincts.

In the highest order of vital changes the same fact is equally manifest. The empirical generalization that guides the farmer in his rotation of crops, serves to bring his actions into concord with certain of the actions going on in plants and soil. The rational deductions of the educated navigator who calculates his position at sea, form a series of mental acts by which his proceedings are conformed to surrounding circumstances. Alike in the simplest inferences of the child and the most complex ones of the man of science, we find a correspondence between simultaneous and successive changes in the organism, and co-existences and sequences in its environment.

§ 29. This general formula which thus includes the lowest vegetal processes along with the highest manifestations of human intelligence, will perhaps call forth some criticisms which it is desirable here to meet.

It may be thought that there are still a few inorganic actions included in the definition; as, for example, that displayed by the mis-named storm-glass. The feathery crystallization which, on a certain change of temperature, takes place in its contained solution, and which afterwards dissolves to reappear in new forms under new conditions, may be held to present simultaneous and successive changes that are to some extent heterogeneous, that occur with some definiteness of combination, and, above all, occur in apparent correspondence with external changes. In this case vegetal life is simulated to a considerable extent; but it ismerelysimulated. The relation between the phenomena occurring in the storm-glass and in the atmosphere respectively, is not a correspondence at all, in the proper sense of the word. Outside there is a thermal change; inside there is a changeof atomic arrangement. Outside there is another thermal change; inside there is another change of atomic arrangement. But subtle as is the dependence of each internal upon each external change, the connexion between them does not, in the abstract, differ from the connexion between the motion of a straw and the motion of the wind that disturbs it. In either case a change produces a change, and there it ends. The alteration wrought by some environing agency on this or any other inanimate object, does not tend to induce in it a secondary alteration which anticipates some secondary alteration in the environment. But in every living body there is a tendency towards secondary alterations of this nature; and it is in their production that the correspondence consists. The difference may be best expressed by symbols. Let A be a change in the environment, and B some resulting change in an inorganic mass. Then A having produced B, the action ceases. Though the change A in the environment is followed by some consequent changeain it; no parallel sequence in the inorganic mass simultaneously generates in it some changebthat has reference to the changea. But if we take a living body of the requisite organization, and let the change A impress on it some change C; then, while in the environment A is occasioninga, in the living body C will be occasioningc; of whichaandcwill show a certain concord in time, place, or intensity. And while it isinthe continuous production of such concords or correspondences that Life consists, it isbythe continuous production of them that Life is maintained.

The further criticism to be expected concerns certain verbal imperfections in the definition, which it seems impossible to avoid. It may fairly be urged that the wordcorrespondencewill not include, without straining, the various relations to be expressed by it. It may be asked:—How can the continuousprocessesof assimilation and respiration correspond with theco-existenceof food and oxygen in the environment? or again:—How can the act of secreting somedefensive fluid correspond with some external danger which may never occur? or again:—How can thedynamicalphenomena constituting perception correspond with thestaticalphenomena of the solid body perceived? The only reply is, that we have no word sufficiently general to comprehend all forms of this relation between the organism and its medium, and yet sufficiently specific to convey an adequate idea of the relation; and that the wordcorrespondenceseems the least objectionable. The fact to be expressed in all cases is that certain changes, continuous or discontinuous, in the organism, are connected after such a manner that in their amounts, or variations, or periods of occurrence, or modes of succession, they have a reference to external actions, constant or serial, actual or potential—a reference such that a definite relation among any members of the one group, implies a definite relation among certain members of the other group.

§ 30. The presentation of the phenomena under this general form, suggests that our conception of Life may be reduced to its most abstract shape by regarding its elements as relations only. If a creature's rate of assimilation is increased in consequence of a decrease of temperature in the environment, it is that the relation between the food consumed and the heat produced, is so re-adjusted by multiplying both its members, that the altered relation in the environment between the quantity of heat absorbed from, and radiated to, bodies of a given temperature, is counterbalanced. If a sound or a scent wafted to it on the breeze prompts the stag to dart away from the deer-stalker, it is that there exists in its neighbourhood a relation between a certain sensible property and certain actions dangerous to the stag, while in its body there exists an adapted relation between the impression this sensible property produces, and the actions by which danger may be escaped. If inquiry has led the chemist to a law, enabling him to tell how much of any one element will combine with so much of another, it is that there has been established inhim specific mental relations, which accord with specific chemical relations in the things around. Seeing, then, that in all cases we may consider the external phenomena as simply in relation, and the internal phenomena also as simply in relation; our conception of Life under its most abstract aspect will be—The continuous adjustment of internal relations to external relations.[18]

While it is simpler, this formula has the further advantage of being somewhat more comprehensive. To say that it includes not only those definite combinations of simultaneous and successive changes in an organism, which correspond to co-existences and sequences in the environment, but also those structural arrangements whichenablethe organism to adapt its actions to actions in the environment, is going too far; for though these structural arrangements present internal relations adjusted to external relations, yet thecontinuous adjustmentof relations cannot be held to include afixed adjustmentalready made. Life, which is made up ofdynamicalphenomena, cannot be described in terms that shall at the same time describe the apparatus manifesting it, which presents onlystaticalphenomena. But while this antithesis serves to remind us that the distinction between the organism and its actions is as wide as that between Matter and Motion, it at the same time draws attention to the fact that, if the structural arrangements of the adult are not properly included in the definition, yet the developmental processes by which those arrangements were established, are included. For that process of evolution during which the organs of the embryo are fitted to their prospective functions, is the gradual or continuous adjustment of internal relations to external relations. Moreover, those structural modifications of the adult organism which, under change of climate, change of occupation, change of food, bring about some re-arrangement in the organic balance, may similarlybe regarded as progressive or continuous adjustments of internal relations to external relations. So that not only does the definition, as thus expressed, comprehend all those activities, bodily and mental, which constitute our ordinary idea of Life; but it also comprehends both those processes of development by which the organism is brought into general fitness for such activities, and those after-processes of adaptation by which it is specially fitted to its special activities.

Nevertheless, so abstract a formula as this is scarcely fitted for our present purpose. Reserving it for use where specially appropriate, it will be best commonly to employ its more concrete equivalent—to consider the internal relations as "definite combinations of simultaneous and successive changes;" the external relations as "co-existences and sequences;" and the connexion between them as a "correspondence."


Back to IndexNext