Chapter 27

"We have, however, to deal with the transmission of parts which arevariableand this necessitates the assumption that just as many independent and variable parts exist in the germ-plasm as are present in the fully formed organism."[126]

"We have, however, to deal with the transmission of parts which arevariableand this necessitates the assumption that just as many independent and variable parts exist in the germ-plasm as are present in the fully formed organism."[126]

Consequently to produce simultaneously these many variations of parts, adjusted in their sizes and shapes, there must have simultaneously arisen a set of corresponding variations in the "determinants" composing the germ-plasm. What made them simultaneously vary in the requisite ways? Professor Weismann will not say that there was somewhere a foregone intention. This would imply supernatural agency. He makes no attempt to assign a physical cause for these simultaneous appropriate variations in the determinants: an adequate physical cause being inconceivable. What, then, remains as the only possible interpretation? Nothing buta fortuitous concourse of variations; reminding us of the old "fortuitous concourse of atoms." Nay, indeed, it is the very same thing. For each of the "determinants," made up of "biophors," and these again of protein-molecules, and these again of simpler chemical molecules, must have had its molecular constitution changed in the required way; and the molecular constitutions of all the "determinants," severally modified differently, but in adjustment to one another, must have beenthus modified by "a fortuitous concourse of atoms." Now if this is an allowable supposition in respect of the "determinants," and the varying organs arising from them, why is it not an allowable supposition in respect of the organism as a whole? Why not assume "a fortuitous concourse of atoms" in its broad, simple form? Nay, indeed, would not this be much the easier? For observe, this co-adaptation of numerous co-operative parts is not achieved by one set of variations, but is achieved gradually by a series of such sets. That is to say, the "fortuitous concourse of atoms" must have occurred time after time in appropriate ways. We have not one miracle, but a series of miracles!

*****

Of the two remaining points in Professor Weismann's first article which demand notice, one concerns his reply to my argument drawn from the distribution of tactual discriminativeness. In what way does he treat this argument? He meets it by an argument derived from hypothetical evidence—not actual evidence. Taking the case of the tongue-tip, I have carefully inquired whether its extreme power of tactual discrimination can give any life-saving advantage in moving about the food during mastication, in detecting foreign bodies in it, or for purposes of speech; and have, I think, shown that the ability to distinguish between points one twenty-fourth of an inch apart is useless for such purposes. Professor Weismann thinks he disposes of this by observing that among the apes the tongue is used as an organ of touch. But surely a counter-argument equivalent in weight to mine should have given a case in which power to discriminate between points one twenty-fourth of an inch apart instead of one-twentieth of an inch apart (a variation of one-sixth) had a life-saving efficacy; or, at any rate, should have suggested such a case. Nothing of the kind is done or even attempted. But now note that his reply, accepted even as it stands, is suicidal. For what has the trusted process of panmixia been doing ever since the human being began to evolve from the ape? Why during thousands of generations has not the nervous structure giving this extreme discriminativeness dwindled away? Even supposing it had been proved of life-saving efficacy to our simian ancestors, it ought, according to Professor Weismann's own hypothesis, to have disappeared in us. Either there was none of the assumed special capacity in the ape's tongue, in which case his reply fails, or panmixia has not operated, in which case his theory of degeneracy fails.

All this, however, is but preface to the chief answer. The argument drawn from the case of the tongue-tip, with which alone Professor Weismann deals, is but a small part of my argument, the remainder of which he does not attempt totouch—does not even mention. Had I never referred to the tongue-tip at all, the various contrasts in discriminativeness which I have named, between the one extreme of the forefinger-tip and the other extreme of the middle of the back, would have abundantly sufficed to establish my case—would have sufficed to show the inadequacy of natural selection as a key and the adequacy of the inheritance of acquired characters.

It seems to me, then, that judgment must go against him by default. Practically he leaves the matter standing just where it did.[127]

The other remaining point concerns the vexed question of panmixia. Confirming the statement of Dr. Romanes, Professor Weismann says that I have misunderstood him. Already (Contemporary Review, May, 1893, p. 758, and Reprint, p. 66) I have quoted passages which appeared to justify my interpretation, arrived at after much seeking.[128]Already, too, in this review (July, 1893, p. 54) I have said why I did not hit upon the interpretation now said to be the true one: I never supposed that any one would assume, without assigned cause, that (apart from the excluded influence of disuse) theminusvariations of a disused organ are greater than theplusvariations. This was a tacit challenge to produce reasons for the assumption. Professor Weismann does not accept the challenge, but simply says:—"In my opinion all organs are maintained at the height of their development only through uninterrupted selection" (p. 332): in the absence of which they decline. Now it is doubtless true that as a naturalist he may claim for his "opinion" a relatively great weight. Still, in pursuance of the methods of science, it seems to me that something more than an opinion is required as the basis of a far-reaching theory.[129]

Though the counter-opinion of one who is not a naturalist (as Professor Weismann points out) may be of relatively small value, yet I must here again give it, along with a final reason for it. And this reason shall be exhibited, not in a qualitative form, but in a quantitative form. Let us quantify the terms of the hypothesis by weights; and let us take as our test case the rudimentary hind-limbs of the whale. Zoologists are agreed that the whale has been evolved from a mammal which took to aquatic habits, and that its disused hind-limbs have gradually disappeared. When they ceased to be used in swimming, natural selection played a part—probably an important part—in decreasing them; since, being then impediments to movement through the water, they diminished the attainable speed. It may be, too, that for a period after disappearance of the limbs beneath the skin, survival of the fittest had still some effect. But during the latter stages of the process it had no effect; since the rudiments caused no inconvenience and entailed no appreciable cost. Here, therefore, the cause, if Professor Weismann is right, must have been panmixia. Dr. Struthers, Professor of Anatomy at Aberdeen, whose various publications show him to be a high, if not the highest, authority on the anatomy of these great cetaceans, has kindly taken much trouble in furnishing me with the needful data, based upon direct weighing and measuring and estimation of specific gravity. In the Black Whale (Balænoptera borealis) there are no rudiments of hind-limbs whatever: rudiments of the pelvic bones only remain. A sample of the Greenland Right Whale, estimated to weigh 44,800 lbs., had femurs weighing together 3½ ozs.; while a sample of the Razor-back Whale (Balænoptera musculus), 50 feet long, and estimated to weigh 56,000 lbs., had rudimentary femurs weighing together one ounce; so that these vanishing remnants of hind-limbs weighed but one-896,000th part of the animal. Now in considering the alleged degeneration by panmixia, we have first to ask why these femurs must be supposed to have varied in the direction of decrease rather than in the direction of increase. During its evolution from the original land-mammal, the whale has grown enormously, implying habitual excess of nutrition. Alike in the embryo and in the growing animal, there must have been a chronic plethora. Why, then, should we suppose these rudiments to have become smaller? Why should they not have enlarged by deposit in them of superfluous materials? But let us grant the unwarranted assumption of predominantminusvariations. Let us say that the last variation was a reduction of one-half—that in some individuals the joint weight of the femurs was suddenly reduced from two ounces to one ounce—a reduction of one-900,000th of the creature's weight. By inter-crossing with those inheritingthe variation, the reduction, or a part of the reduction, was made a trait of the species. Now, in the first place, a necessary implication is that thisminusvariation was maintained in posterity. So far from having reason to suppose this, we have reason to suppose the contrary. As before quoted, Mr. Darwin says that "unless carefully preserved by man," "any particular variation would generally be lost by crossing, reversion, and the accidental destruction of the varying individuals."[130]And Mr. Galton, in his essay on "Regression towards Mediocrity,"[131]contends that not only do deviations of the whole organism from the mean size tend to thus disappear, but that deviations in its components do so. Hence the chances are against suchminusvariation being so preserved as to affect the species by panmixia. In the second place, supposing it to be preserved, may we reasonably assume that, by inter-crossing, this decrease, amounting to about a millionth part of the creature's weight, will gradually affect the constitutions of all Razor-back Whales distributed over the Arctic seas and the North Atlantic Ocean, from Greenland to the Equator? Is this a credible conclusion? For three reasons, then, the hypothesis must be rejected.

Thus, the only reasonable interpretation is the inheritance of acquired characters. If the effects of use and disuse, which are known causes of change in each individual, influence succeeding individuals—if functionally-produced modifications of structure are transmissible, as well as modifications of structure otherwise arising—then this reduction of the whale's hind limbs to minute rudiments is accounted for. The cause has been unceasingly operative on all individuals of the species ever since the transformation began.

In one case see all. If this cause has thus operated on the limbs of the whale, it has thus operated in all creatures on all parts having active functions.

*****

At the outset I intimated that I must limit my replies to those arguments of Professor Weismann which are contained in his first article. That those contained in his second might be dealt with no less effectually, did time and space permit, is manifest to me; but about the probability of this the reader must form his own judgment. My replies thus far may be summed up as follows:—

Professor Weismann says he has disproved the conclusion that degeneration of the little toe has resulted from inheritance of acquired characters. But his reasoning fails against an interpretation he overlooks. A profound modification of the hind limbsand their appendages must have taken place during the transition from arboreal habits to terrestrial habits; and dwindling of the little toe is an obvious consequence of disuse, at the same time that enlargement of the great toe is an obvious consequence of increased use.

The entire argument based on the unlike forms and instincts presented by castes of social insects is invalidated by an omission. Until probable conclusions are reached respecting the characters which such insects brought with them into the organized social state, no valid inferences can be drawn respecting characters developed during that state.

A further large error of interpretation is involved in the assumption that the different caste-characters are transmitted to them in the eggs laid by the mother insect. While we have evidence that the unlike structures of the sexes are determined by nutrition of the germ before egg-laying, we have evidence that the unlike structures of classes are caused by unlikenesses of nutrition of the larvæ. That these varieties of forms do not result from varieties of germ-plasms, is demonstrated by the fact that where there are varieties of germ-plasms, as in varieties of the same species of mammal, no deviations in feeding prevent display of their structural results.

For such caste-modifications as those of the Amazon-ants, which are unable to feed themselves, there is a feasible explanation other than Professor Weismann's. The relation of common ants to their domestic animals—aphides and coccids—which yield them food on solicitation, does not differ widely from this relation between these Amazon-ants and their domestic animals—the slave-ants. And the habit of being fed, contracted during the first stages of their parasitic life, when there were perfect males and females, may, during that stage, have become established by inheritance. Meanwhile the opposed interpretation—that this incapacity has resulted from the selection of those ant-communities the queens of which laid eggs that had so varied as to entail this incapacity—implies that a scarcely appreciable economy of nerve-matter advantaged the stirp so greatly as to cause it to spread more than other stirps: an incredible supposition.

As the outcome of these alternative interpretations we saw that the argument respecting the co-adaptation of co-operative parts, which Professor Weismann thinks is furnished to him by the Amazon-ants, disappears. The ancestral ants were conquering ants. These founded the communities; and hence those members of the present communities which are most like them are the Amazon-ants. If so, the co-adaptation of the co-operative parts was effected by inheritance during the solitary and semi-social stages. Even were there no such solution, the opposed solutionwill be unacceptable. These simultaneous appropriate variations of the co-operative parts in sizes, shapes, and proportions, are supposed to be effected by simultaneous variations in the "determinants" of the germ-plasms; and in the absence of an assigned physical cause, this implies a fortuitous concourse of appropriate variations, which carries us back to a "fortuitous concourse of atoms." This may just as well be extended to the entire organism. The old hypothesis of special creations is more consistent and comprehensible.

To rebut my inference drawn from the distribution of discriminativeness, Professor Weismann uses not an argument but the blank form of an argument. The ability to discriminate one twenty-fourth of an inch by the tongue-tipmayhave been useful to the ape: no conceivable use being even suggested. And then the great body of my argument derived from the distribution of discriminativeness over the skin, which amply suffices, is wholly ignored.

The tacit challenge I gave to name some facts in support of the hypothesis of panmixia—or even a solitary fact—is passed by. It remains a pure speculation having no basis but Professor Weismann's "opinion." When from the abstract statement of it we pass to a concrete test, in the case of the whale, we find that it necessitates an unproved and improbable assumption respectingplusandminusvariations; that it ignores the unceasing tendency to reversion; and that it implies an effect out of all proportion to the cause.

It is curious what entirely opposite conclusions men may draw from the same evidence. Professor Weismann thinks he has shown that the "last bulwark of the Lamarckian principle is untenable." Most readers will hold with me that he is, to use the mildest word, premature in so thinking. Contrariwise my impression is that he has not shown either this bulwark or any other bulwark to be untenable; but rather that while his assault has failed it has furnished opportunity for strengthening sundry of the bulwarks.

IV.

Among those who follow a controversy to its close, not one in a hundred turns back to its beginning to see whether its chief theses have been dealt with. Very often the leading arguments of one disputant, seen by the other to be unanswerable, are quietly ignored, and attention is concentrated on subordinate arguments to which replies, actually or seemingly valid, can be made. The original issue is thus commonly lost sight of.

More than once I have pointed out that, as influencing men's views about Education, Ethics, Sociology, and Politics, the question whether acquired characters are inherited is the most important question before the scientific world. Hence I cannot allow the discussion with Professor Weismann to end in so futile a way as it will do if no summary of results is made. Here, therefore, I propose to recapitulate the whole case in brief. Primarily my purpose is to recall certain leading propositions which, having been passed by unnoticed, remain outstanding. I will turn, in the second place, to such propositions as have been dealt with; hoping to show that the replies given are invalid, and consequently that these propositions also remain outstanding.

But something beyond a summing-up is intended. A few pages at the close will be devoted to setting forth new evidence which has come to light since the controversy commenced—evidence which many will think sufficient in itself to warrant a positive conclusion.

*****

The fact that the tip of the fore finger has thirty times the power of discrimination possessed by the middle of the back, and that various intermediate degrees of discriminative power are possessed by various parts of the skin, was set down as a datum for my first argument. The causes which might be assigned for these remarkable contrasts were carefully examined under all their aspects. I showed in detail that the contrasts could not in any way be accounted for by natural selection. I further showed that no interpretation of them is afforded by the alleged process of panmixia: this has nolocus standiin the case. Having proved experimentally, that ability of the fingers to discriminate is increased by practice, and having pointed out that gradations of discriminativeness in different parts correspond with gradations in the activities of the parts as used for tactual exploration, I argued that these contrasts have arisen from the organized and inherited effects of tactual converse with surrounding things, varying in its degrees according to the positions of the parts—in other words, that they are due to the inheritance of acquired characters. As a crowning proof I instanced the case of the tongue-tip, which has twice the discriminativeness of the forefinger-tip: pointing out that consciously, or semi-consciously, or unconsciously, the tongue-tip is perpetually exploring the inner surfaces of the teeth.

Singling out this last case, Professor Weismann made, or rather adopted from Dr. Romanes, what professed to be a reply but was nothing more than the blank form of a reply. It was said that though this extreme discriminativeness of the tongue-tip is of no use to mankind, it may have been of use to certainancestralprimates. No evidence of any such use was given; no imaginable use was assigned. It was simply suggested that there perhaps was a use.

In my rejoinder, after indicating the illusory nature of this proceeding (which is much like offering a cheque on a bank where no assets have been deposited to meet it), I pointed out that had the evidence furnished by the tongue tip never been mentioned, the evidence otherwise furnished amply sufficed. I then drew attention to the fact that this evidence had been passed over, and tacitly inquired why.

No reply.[132]

*****

In his essay on "The All-Sufficiency of Natural Selection," Professor Weismann set out, not by answering one of the arguments I had used, but by importing into the discussion an argument used by another writer, which it was easy to meet. It had been contended that the smallness and deformity of the little toe are consequent upon the effects of boot-pressure, inherited from generation to generation. To this Professor Weismann made the sufficient reply that the fusion of the phalanges and otherwise degraded structure of the little toe, exist among peoples who go barefoot.

In my "Rejoinder" I said that though the inheritance of acquired characters does not explain this degradation in the way alleged, it explains it in a way which Professor Weismann overlooks. The cause is one which has been operating ever since the earliest anthropoid creatures began to decrease their life in trees and increase their life on the earth's surface. The mechanics of walking and running, in so far as they concern the question at issue, were analyzed; and it was shown that effort is economized and efficiency increased in proportion as the stress is thrown more and more on the inner digits of the foot and less and less on the outer digits. So that thus the foot furnishes us simultaneously with an instance of increase from use and of decrease from disuse; a further disproof being yielded of the allegation that co-operative parts vary together, since we have here co-operative parts of which one grows while the other dwindles.

I ended by pointing out that, so far from strengthening his own case, Professor Weismann had, by bringing into thecontroversy this changed structure of the foot, given occasion for strengthening the opposite case.

No reply.

*****

We come now to Professor Weismann's endeavour to disprove my second thesis—that it is impossible to explain by natural selection alone the co-adaptation of co-operative parts. It is thirty years since this was set forth inThe Principles of Biology. In§ 166I instanced the enormous horns of the extinct Irish elk, and contended that in this, and in kindred cases, where for the efficient use of some one enlarged part many other parts have to be simultaneously enlarged, it is out of the question to suppose that they can have all spontaneously varied in the required proportions. In "The Factors of Organic Evolution," by way of enforcing this argument, which had, so far as I know, never been met, I dwelt upon the aberrant structure of the giraffe. And then, in the essay which initiated this controversy, I brought forward yet a third case—that of an animal which, previously accustomed only to walking, acquires the power of leaping.

In the first of his articles in theContemporary Review(September, 1893), Professor Weismann made no direct reply, but he made an indirect reply. He did not attempt to show how there could have taken place in the stag the "harmonious variation of the different parts that co-operate to produce one physiological result" (p. 311); but he contended that such harmonious variationmusthave taken place, because the like has taken place in "the neuters of state-forming insects"—"animal forms which do not reproduce themselves, but are always propagated anew by parents which are unlike them" (p. 313), and which therefore cannot have transmitted acquired characters. Singling out those soldier-neuters which exist among certain kinds of ants, he described (p. 318) the many co-ordinated parts required to make their fighting organs efficient. He then argued that the required simultaneous changes can "only have arisen by a selection of the parent-ants dependent on the fact that those parents which produced the best workers had always the best prospect of the persistence of their colony. No other explanation is conceivable;and it is just because no other explanation is conceivable, that it is necessary for us to accept the principle of natural selection" (pp. 318-9).

[This passage initiated a collateral controversy, which, as continually happens, has greatly obscured the primary controversy. It became a question whether these forms of neuter insects have arisen as Professor Weismann assumes, or whether they have arisen from arrested development consequent upon innutrition. To avoid entanglements I must for the present pass over thiscollateral controversy, intending to resume it presently, when the original issues have been dealt with.]

No one will suspect me of thinking that the inconceivability of the negation is not a valid criterion, since, in "The Universal Postulate," published in theWestminster Reviewin 1852 and afterwards inThe Principles of Psychology, I contended that it is the ultimate test of truth. But then in every case there has to be determined the question—Is the negation inconceivable; and in assuming that it is so in the case named, lies the fallacy of the above-quoted passage. The three separate ways in which I dealt with this position of Professor Weismann are as follows:—

If we admit the assumption that the form of the soldier-ant has been developed since the establishment of the organized ant-community in which it exists, Professor Weismann's assertion that no other process than that which he alleges is conceivable, is true. But I pointed out that this assumption is inadmissible; and that no valid conclusion respecting the genesis of the soldier-ant can be drawn without postulating either the ascertained, or the probable, structure of those pre-social, or semi-social, ants from which the organized social ants have descended. I went on to contend that the pre-social type must have been a conquering type, and that therefore in all probability the soldier-ants represent most nearly the structures of those ancestral ants which existed when the society had perfect males and females and could transmit acquired characters, while the other members of the existing communities are degraded forms of the type.

No reply.

A further argument I used was that where there exist different castes among the neuter-ants, as those seen in the soldiers and workers of the Driver ants of West Africa, "they graduate insensibly into each other" alike in their sizes and in their structures; and that Professor Weismann's hypothesis implies a special set of "determinants" for each intermediate form. Or if he should say that the intermediate forms result from mixtures of the determinants of the two extreme forms, there still remains the further difficulty that natural selection has maintained, for innumerable generations, these intermediate forms which are injurious deviations from the useful extreme forms.

No reply.

One further reason—fatal it seems to me—was urged in bar of his interpretation. No physical cause has been, or can be, assigned, why in the germ-plasm of any particular queen-ant, the "determinants" initiating these various co-operative organs, all simultaneously vary in fitting ways and degrees, and still less why there occur such co-ordinated variations generation after generation, until by their accumulated results these efficientco-operative structures have been evolved. I pointed out that in the absence of any assigned or assignable physical cause, it is necessary to assume a fortuitous concurrence of favourable variations, which means "a fortuitous concourse of atoms;" and that it would be just as rational, and much more consistent, to assume that the structure of the entire organism thus resulted.

No reply.

*****

It is reasonable to suspect that Professor Weismann recognized these difficulties as insuperable, for, in his Romanes Lecture on "The Effect of External Influences upon Development," instead of his previous indirect reply, he makes a direct reply. Reverting to the stag and its enlarging horns, he alleges a process by which, as he thinks, we may understand how, by variation and selection, all the bones and muscles of the neck, of the thorax, and of the fore-legs, are step by step adjusted in their sizes to the increasing sizes of the horns. He ascribes this harmonization to the internal struggle for nutriment, and that survival of the fittest which takes place among the parts of an organism: a process which he calls "intra-individual-selection, or more briefly—intra-selection" (p. 12).

"Wilhelm Roux has given an explanation of the cause of these wonderfully fine adaptations by applying the principle of selection to the parts of the organism. Just as there is a struggle for survival among the individuals of a species, and the fittest are victorious, so also do even the smallest living particles contend with one another, and those that succeed best in securing food and place grow and multiply rapidly, and so displace those that are less suitably equipped" (p. 12).[133]

"Wilhelm Roux has given an explanation of the cause of these wonderfully fine adaptations by applying the principle of selection to the parts of the organism. Just as there is a struggle for survival among the individuals of a species, and the fittest are victorious, so also do even the smallest living particles contend with one another, and those that succeed best in securing food and place grow and multiply rapidly, and so displace those that are less suitably equipped" (p. 12).[133]

That I do not explain as he does the co-adaptation of co-operative parts, Professor Weismann ascribes to my having overlooked this "principle of intra-selection"—an unlucky supposition, as we see. But I do not think that when recognizing it a generation ago, I should have seen its relevancy to the questionat issue, had that issue then been raised, and I certainly do not see it now. Full reproduction of Professor Weismann's explanation is impracticable, for it occupies several pages, but here are the essential sentences from it:—

"The great significance of intra-selection appears to me not to depend on its producing structures that are directly transmissible,—it cannot do that,—but rather consists in its causing a development of the germ-structure, acquired by the selection of individuals, which will be suitable to varying conditions.... We may therefore say that intra-selection effects the adaptation of the individual to its chance developmental conditions,—the suiting of the hereditary primary constituents to fresh circumstances" (p. 16).... "But as the primary variations in the phyletic metamorphosis occurred little by little, the secondary adaptations would probably as a rule be able to keep pace with them. Time would thus be gained till, in the course of generations, by constant selection of those germs the primary constituents of which are best suited to one another, the greatest possible degree of harmony may be reached, and consequently a definitive metamorphosis of the species involving all the parts of the individual may occur" (p. 19).

"The great significance of intra-selection appears to me not to depend on its producing structures that are directly transmissible,—it cannot do that,—but rather consists in its causing a development of the germ-structure, acquired by the selection of individuals, which will be suitable to varying conditions.... We may therefore say that intra-selection effects the adaptation of the individual to its chance developmental conditions,—the suiting of the hereditary primary constituents to fresh circumstances" (p. 16).... "But as the primary variations in the phyletic metamorphosis occurred little by little, the secondary adaptations would probably as a rule be able to keep pace with them. Time would thus be gained till, in the course of generations, by constant selection of those germs the primary constituents of which are best suited to one another, the greatest possible degree of harmony may be reached, and consequently a definitive metamorphosis of the species involving all the parts of the individual may occur" (p. 19).

The connecting sentences, along with those which precede and succeed, would not, if quoted, give to the reader clearer conceptions than these by themselves give. But when disentangled from Professor Weismann's involved statements, the essential issues are, I think, clear enough. In the case of the stag, that daily working together of the numerous nerves, muscles, and bones concerned, by which they are adjusted to the carrying and using of somewhat heavier horns, produces on them effects which, as I hold, are inheritable, but which, as Professor Weismann holds, are not inheritable. If they are not inheritable, what must happen? A fawn of the next generation is born with no such adjustment of nerves, muscles and bones as had been produced by greater exercise in the parent, and with no tendency to such adjustment. Consequently if, in successive generations, the horns go on enlarging, all these nerves, muscles, and bones, remaining of the original sizes, become utterly inadequate. The result is loss of life: the process of adaptation fails. "No," says Professor Weismann, "we must conclude that the germ-plasm has varied in the needful manner." How so? The process of "intra-individual selection," as he calls it, can have had no effect, since the cells of the soma cannot influence the reproductive cells. In what way, then, has the germ-plasm gained the characters required for producing simultaneously all these modified co-operative parts. Well, Professor Weismann tells us merely that we must suppose that the germ-plasm acquires a certain sensitiveness such as gives it a proclivity to development in the requisite ways. How is such proclivity obtainable? Only by having a multitude of its "determinants" simultaneously changed in fit modes. Emphasizing the fact that even a small failure in anyone of the co-operative parts may be fatal, as the sprain of an over-taxed muscle shows us, I alleged that the chances are infinity to one against the needful variations taking place at the same time. Divested of its elaboration, its abstract words and technical phrases, the outcome of Professor Weismann's explanation is that he accepts this, and asserts that the infinitely improbable thing takes place!

Either his argument is a disguised admission of the inheritableness of acquired characters (the effects of "intra-selection") or else it is, as before, the assumption of a fortuitous concourse of favourable variations in the determinants—"a fortuitous concourse of atoms."

*****

Leaving here this main issue, I return now to that collateral issue named on a preceding page as being postponed—whether the neuters among social insects result from specially modified germ-plasms or whether they result from the treatment received during their larval stages.

For the substantiation of his doctrine Professor Weismann is obliged to adopt the first of these alternatives; and in his Romanes Lecture he found it needful to deal with the evidence I brought in support of the second alternative. He says that "poor feeding is not thecausa efficiensof sterility among bees, but is merely the stimulus whichnot only results in the formation of rudimentary ovaries, but at the same time calls forth all the other distinctive characters of the workers" (pp. 29-30); and he says this although he has in preceding lines admitted that it is "true of all animals that they reproduce only feebly or not at all when badly and insufficiently nourished:" a known cause being thus displaced by a supposed cause. But Professor Weismann proceeds to justify his interpretation by experimentally-obtained evidence.

He "reared large numbers of the eggs of a female blow-fly"; the larvæ of some he fed abundantly, but the larvæ of others sparingly; and eventually he obtained, from the one set flies of full size, and from the other small flies. Nevertheless the small flies were fertile, as well as the others. Here, then, was proof that innutrition had not produced infertility; and he contends that therefore among the neuter social insects, infertility has not resulted from innutrition. The argument seems strong, and to many will appear conclusive; but there are two differences which entirely vitiate the comparison Professor Weismann institutes.

One of them has been pointed out by Mr. Cunningham. In the case of the blow-fly the food supplied to the larvæ though different in quantity was the same in quality; in the case of the social insects the food supplied, whether or not different inquantity, differs in quality. Among bees, wasps, ants, &c., the larvæ of the reproductive forms are fed upon a more nitrogenous food than are the larvæ of the workers; whereas the two sets of larvæ of the blow-fly, as fed by Professor Weismann, were alike supplied with highly nitrogenous food. Hence there did not exist the same cause for non-development of the reproductive organs. Here, then, is one vitiation of the supposed parallel. There is a second.

While the development of an embryo follows in a rude way the phyletic metamorphoses passed through by its ancestry, the order of development of organs is often gradually modified by the needs of particular species: the structures being developed in such order as conduces to self-sustentation and the welfare of offspring. Among other results there arise differences in the relative dates of maturity of the reproductive system and of the other systems. It is clear,à priori, that it must be fatal to a species if offspring are habitually produced before the conditions requisite for their survival are fulfilled. And hence, if the life is a complex one, and the care taken of offspring is great, reproduction must be much longer delayed than where the life is simple and the care of offspring absent or easy. The contrast between men and oxen sufficiently illustrates this truth. Now the subordination of the order of development of parts to the needs of the species, is conspicuously shown in the contrast between these two kinds of insects which Professor Weismann compares as though their requirements were similar. What happens with the blow fly? If it is able to suck up some nutriment, to fly tolerably, and to scent out dead flesh, various of its minor organs may be more or less imperfect without appreciable detriment to the species: the eggs can be laid in a fit place, and that is all that is wanted. Hence it profits the species to have the reproductive system developed comparatively early—in advance, even, of various less essential parts. Quite otherwise is it with social insects, which take such remarkable care of their young; or rather to make the case parallel—quite otherwise is it with those types from which the social insects have descended, bringing into the social state their inherited instincts and constitutions. Consider the doings of the mason-wasp, or mason-bee, or those of the carpenter-bee. What, in these cases, must the female do that she may rear members of the next generation? There is a fit place for building or burrowing to be chosen; there is the collecting together of grains of sand and cementing them into a strong and water-proof cell, or there is the burrowing into wood and there building several cells; there is the collecting of food to place along with the eggs deposited in these cells, solitary or associated, including that intelligent choice of small caterpillars which,discovered and carried home, are carefully packed away and hypnotized by a sting, so that they may live until the growing larva has need of them. For all these proceedings there have to be provided the fit external organs—cutting instruments, &c., and the fit internal organs—complicated nerve-centres in which are located these various remarkable instincts, and ganglia by which these delicate operations have to be guided. And these special structures have, some if not all of them, to be made perfect and brought into efficient action before egg-laying takes place. Ask what would happen if the reproductive system were active in advance of these ancillary appliances. The eggs would have to be laid without protection or food, and the species would forthwith disappear. And if that full development of the reproductive organs which is marked by their activity, is not needful until these ancillary organs have come into play, the implication, in conformity with the general law above indicated, is that the perfect development of the reproductive organs will take place later than that of these ancillary organs, and that if innutrition checks the general development, the reproductive organs will be those which chiefly suffer. Hence, in the social types which have descended from these solitary types, this order of evolution of parts will be inherited, and will entail the results I have inferred.

If only deductively reached, this conclusion would, I think, be fully justified. But now observe that it is more than deductively reached. It is established by observation. Professor Riley, Ph.D., late Government Entomologist of the United States, in his annual address as President of the Biological Society of Washington,[134]on January 29, 1894, said:—

"Among the more curious facts connected with these Termites, because of their exceptional nature, is the late development of the internal sexual organs in the reproductive forms." (p. 34.)

"Among the more curious facts connected with these Termites, because of their exceptional nature, is the late development of the internal sexual organs in the reproductive forms." (p. 34.)

Though what has been shown of the Termites has not been shown of the other social insects, which belong to a different order, yet, considering the analogies between their social states and between their constitutional requirements, it is a fair inference that what holds in the one case holds partially, if not fully, in the other. Should it be said that the larval forms do not pass into the pupa state in the one case as they do in the other, the answer is that this does not affect the principle. The larva carries into the pupa state a fixed quantity of tissue-forming material for the production of the imago. If the material is sufficient, then a complete imago is formed. If it is not sufficient, then, while the earlier formed organs are not affected by the deficiency, the deficiency is felt when the latest formed organs come to be developed, and they are consequently imperfect.

Even if left without reply, Professor Weismann's interpretation commits him to some insuperable difficulties, which I must now point out. Unquestionably he has "the courage of his opinions;" and it is shown throughout this collateral discussion as elsewhere. He is compelled by accumulated evidence to admit "that there is onlyonekind of egg from which queens and workers as well as males arise."[135]But if the production of one or other form from the same germ does not result from speciality of feeding, what does it result from? Here is his reply:—

"We must rather suppose that the primary constituents of two distinct reproductive systems—e. g.those of the queen and worker—are contained in the germ-plasm of the egg."[136]

"We must rather suppose that the primary constituents of two distinct reproductive systems—e. g.those of the queen and worker—are contained in the germ-plasm of the egg."[136]

"The courage of his opinions," which Professor Weismann shows in this assumption, is, however, quite insufficient. For since he himself has just admitted that there is only one kind of egg for queens, workers, and males, he must at any rate assume three sets of "determinants." (I find that on a subsequent page he does so.) But this is not enough, for there are, in many cases, two if not more kinds of workers, which implies that four sets of determinants must co-exist in the same egg. Even now we have not got to the extent of the assumption required. In the address above referred to on "Social Insects from Psychical and Evolutional Points of View," Professor Riley gives us (p. 33) the—

Forms in a Termes Colony under Normal Conditions.

Hence as, in this family tree, the royal pair includes male and female, it results that there arefivedifferent adult forms (Grassi says there are two others) arising from like eggs or larvæ; and Professor Weismann's hypothesis becomes proportionately complicated. Let us observe what the complications are.

It often happens in controversy—metaphysical controversy more than any other—that propositions are accepted without their terms having been mentally represented. In public proceedings documents are often "taken as read," sometimes with mischievous results; and in discussions propositions are oftentaken as thought when they have not been thought and cannot be thought. It sufficiently taxes imagination to assume, as Professor Weismann does, that two sets of "ids" or of "determinants" in the same egg are, throughout all the cell-divisions which end in the formation of themorula, kept separate, so that they may subsequently energize independently; or that if they are not thus kept separate, they have the power of segregating in the required ways. But what are we to say when three, four, and even five sets of "ids" or bundles of "determinants" are present? How is dichotomous division to keep these sets distinct; or if they are not kept distinct, what shall we say to the chaos which must arise after many fissions, when each set in conflict with the others strives to produce its particular structure? And how are the conquering determinants to find they ways out of themêléeto the places where they are to fulfil their organizing functions? Even were they all intelligent beings and each had a map by which to guide his movements, the problem would be sufficiently puzzling. Can we assume it to be solved by unconscious units?

Thus even had Professor Weismann shown that the special structures of the different individuals in an insect-community are not due to differences in the nurtures they receive, which he has failed to do, he would still be met by this difficulty in the way of his own view, in addition to the three other insuperable difficulties grouped together in a preceding section.

*****

The collateral issue, which has occupied the largest space in the controversy, has, as commonly happens, begotten a second generation of collateral issues. Some of these are embodied in the form of questions put to me, which I must here answer, lest it should be supposed that they are unanswerable and my view therefore untenable.

In the notes he appends to his Romanes Lecture, Professor Weismann writes:—


Back to IndexNext