Chapter 31

Such seems to me a not unfair series of deductions from the known habitudes of colloids in general and the organic colloids in particular. And I think that the implied nature and properties of nerve correspond better with the observed phenomena than do the nature and properties implied by other hypotheses. Of course the speculation as it here stands is but tentative, and leaves much unexplained. It gives no obvious reply to the questions—what causes the formation of nerves in directions adapted to the needs? what determines their appropriate connexions?—questions, however, to which, when we come to deal with physiological integration, we may find not unsatisfactory answers. Moreover it says nothing about the genesis of ganglia. A ganglion, it is clear, must consist of a colloidal matter equally unstable, or still more unstable, which, when disturbed, falls into some different molecular arrangement, perhaps chemically simpler, and gives out in so doing a large amount of molecular motion—serves as a reservoir of molecular motion which may be suddenlydischarged along an efferent nerve or nerves, when excitement of an afferent nerve has disengaged it. How such a structure as this results, the hypothesis does not show. But admitting these shortcomings it may still be held that we are, in the way pointed out, enabled to form some idea of the actions by which nervous tissue is differentiated.

§ 303. A speculation akin to, and continuous with, the last, is suggested by an inquiry into the origin of muscular tissue. Contractility as well as irritability is a property of protoplasm or sarcode; and, as before suggested (§ 22), is not improbably due to isomeric change in one or more of its component colloids. It is a feasible supposition that of the several isomeric changes simultaneously set up among these component colloids, some may be accompanied by change of bulk and some not. Clearly the isomeric change undergone by the colloid which we suppose to form nerve, must be one not accompanied by appreciable change of bulk; since change of bulk implies “internal work,” as physicists term it, and therefore expenditure of force. Conversely, the colloid out of which muscle originates, may be one that readily passes into an isomeric state in which it occupies less space: the molecular disturbance causing this contraction being communicated to it from adjacent portions of nerve-substance that are molecularly disturbed; or being otherwise communicated to it by direct mechanical or chemical stimuli: as happens where nerves do not exist, or where their influence has been cut off. This interpretation seems, indeed, to be directly at variance with the fact that muscle does not diminish in bulk during contraction but merely changes its shape. That which we see take place with the muscle as a whole, is said also to take place with each fibre—while it shortens it also broadens. There is, however, a possible solution of this difficulty. A contracting colloid yields up its water; and the contracted colloidplusthe free water, may have the same bulk as before though the colloid has less. If it be replied that in thiscase the water should become visible between the substance of the fibre and its sarcolemma or sheath, it may be rejoined that this is not necessary—it may be deposited interstitially. Possibly the striated structure is one that facilitates its exudation and subsequent re-absorption; and to this may be due the superiority of striated muscle in rapidity of contraction. Granting the speculative character of this interpretation, let us see how far it agrees with the facts. If the actions are as here supposed, the contracted or more integrated state of the muscular colloid will be that which it tends continually to assume—that into which it has an increasing aptitude to pass when artificial paralysis has been produced, as shown by Dr. Norris—that into which it lapses completely inrigor mortis. The sensible motion generated by the contraction can arise only from the transformation of insensible motion. This insensible motion suddenly yielded up by a contracting mass, implies the fall of its component molecules into more stable arrangements. And there can be no such fall unless the previous arrangement is unstable. From this point of view, too, it is possible to see how the hydro-carbons and carbo-hydrates consumed in muscular action, may produce their effects. For these non-nitrogenous elements of food, when consumed in the tissues, give out large amounts of molecular motion. They do this in presence of the muscular colloids which have lost molecular motion during their fall in the stable or contracted state. From the molecular motion they give out, may be restored the molecular motion lost by the contracted colloids; and these contracted colloids may thus have their molecules raised to that unstable state from which, again falling, they can again generate mechanical motion.

This conception of the nature and mode of action of muscle, while it is suggested by known properties of colloidal matter and conforms to the recent conclusions of organic chemistry and molecular physics, establishes a comprehensible relation between the vital actions of the lower and the higheranimals. If we contemplate the movements of cilia, of a Rhizopod’s pseudopodia, of a Polype’s body, or of the long pendant tentacles of aMedusa, we shall see great congruity between them and this hypothesis. Bearing in mind that the contractile substance of developed muscle is affected not by nervous influence only, but, where nervous influence is destroyed, is made to contract by mechanical disturbance and chemical action, we may infer that it does not differ intrinsically from the primordial contractile substance which, in the lowest animals, changes its bulk under other stimuli than the nervous. We shall see significance in the fact ascertained by Dr. Ransom, that various agents which excite and arrest nervo-muscular movements in developed animals, excite and arrest the protoplasmic movements in ova. We shall understand how tissues not yet differentiated into muscle and nerve, have this joint irritability and contractility; how muscle and nerve may arise by the segregation of their mingled colloids, the one of which, not appreciably altering its bulk during isomeric change, readily propagates molecular disturbance, while the other, contracting when isomerically changed, less readily passes on the molecular disturbance; and how, by this differentiation and integration of the conducting and the contracting colloids, the one ramifying through the other, it becomes possible for a whole mass to contract suddenly, instead of contracting gradually, as it does when undifferentiated.

The question remaining to be asked is—What causes the specialization of contractile substance?—What causes the growth of colloid masses which monopolize this contractility, and leave kindred colloids to monopolize other properties? Has natural selection gradually localized and increased the primordial muscular substance? or has the frequent recurrence of irritations and consequent contractions at particular parts done it? We have, I think, reason to conclude that direct equilibration rather than indirect equilibration has been chiefly operative. The reasoning that was used in the caseof nerve applies equally in the case of muscle. A portion of undifferentiated tissue containing a predominance of the colloid that contracts in changing, will, during each change, tend to form new molecules of its own type from the other colloids diffused through it: the tendency of these entangled colloids to fall into unity with those around them, will be aided by every shock of isomeric transformation. Hence, repeated contractions will further the growth of the contracting mass, and advance its differentiation and integration. If, too, we remember that the muscular colloid is made to contract by mechanical disturbance, and that among mechanical disturbances one which will most readily affect it simultaneously throughout its mass is caused by stretching, we shall be considerably helped towards understanding how the contractile tissues are developed. If extension of a muscular colloid previously at rest, produces in it that molecular disturbance which leads to isomeric change and decrease of bulk, then there is no difficulty in explaining the movements of cilia; the formation of a contractile layer in the vascular system becomes comprehensible; each dilatation of a blood-vessel caused by a gush of blood, will be followed by a constriction; the heart will pulsate violently in proportion as it is violently distended; arteries will develop in power as the stress upon them becomes greater; and we shall similarly have an explanation of the increased muscularity of the alimentary canal which is brought about by increased distension of it.

That the production of contractile tissue in certain localities, is due to the more frequent excitement in those localities of the contractility possessed by undifferentiated tissue in general, is a view harmonizing with traits which the differentiated contractile tissue exhibits. These are the relations between muscular exercise, muscular power, and muscular structure; and it is the more needful for us here to notice them because of certain anomalies they present, which, at first sight, seem inconsistent with the belief thatthe functionally-determined modifications of muscle are inheritable.

Muscles disagree greatly in their tints: all gradations between white and deep red being observable. Contrasts are visible between the muscles of different animals, between the muscles of the same animal at different ages, and between different muscles of the same animal at the same age. We will glance at the facts under these heads: noting under each of them the connexion which here chiefly concerns us—that between the activity of muscle and its depth of colour. The cold-bloodedVertebrataare, taken as a group, distinguished from the warmblooded by the whiteness of their flesh; and they are also distinguished by their comparative inertness. Though a fish or a reptile can exert considerable force for a short time, it is not capable of prolonged exertion. Birds and mammals show greater endurance along with the darker-coloured muscles. If among birds themselves or mammals themselves we make comparisons, we meet with kindred contrasts—especially between wild and domestic creatures of allied kinds. Barn-door fowls are lighter-fleshed than most untamed gallinaceous birds; and among these last the pheasant, moving about but little, is lighter-fleshed than the partridge and the grouse which are more nomadic. The muscles of the sheep are not on the average so dark as those of the deer; and it is said that the flesh of the wild-boar is darker than that of the pig. Perhaps, however, the contrast between the hare and the rabbit affords, among familiar animals, the best example of the alleged relation: the dark-fleshed hare having no retreat and making wide excursions, while the white-fleshed rabbit, passing a great part of its time in its burrow, rarely wanders far from home. The parallel contrast between young and old animals has a parallel meaning. Veal is much whiter than beef, and lamb is of lighter colour than mutton. Though at first sight these facts may not seem to furnish confirmatory evidence, since lambs in their play appear toexpend more muscular force than their sedate dams; yet the meaning of the contrast is really as alleged. For in consequence of the law that the strains which animals have to overcome, increase as the cubes of the dimensions, while their powers of overcoming them increase only as the squares (§ 46), the movements of an adult animal cost much more in muscular effort than do those of a young animal: the result being that the sheep and the cow exercise their muscles more vigorously in their quiet movements, than the lamb and the calf in their lively movements. It may be added as significant, that the domestic animal in which no very marked darkening of the flesh takes place along with increasing age, namely the pig, is one which, ordinarily kept in a sty, leads so quiescent a life that the assigned cause of darkening does not come into action. But perhaps the most conclusive evidences are the contrasts which exist between the active and inactive muscles of the same animal. Between the leg-muscles of fowls and their pectoral muscles, the difference of colour is familiar; and we know that fowls exercise their leg-muscles much more than the muscles which move their wings. Similarly in the turkey, in the guinea fowl, in the pheasant. And then, adding much to the force of this evidence, we see that in partridges and grouse, which belong to the same order as our domestic fowls but use their wings as constantly as their legs, little or no difference is visible between the colour of these two groups of muscles. Special contrasts like these do not, however, exhaust the proofs; for there is a still more significant general contrast. The muscle of the heart, which is the most active of all muscles, is the darkest of all muscles.

The connexion of phenomena thus shown in so many ways, implies that the bulk of a muscle is by no means the sole measure of the quantity of force it can evolve. It would seem that, other things equal, the depth of colour varies with the constancy of action; while, other things equal, the bulk varies with the amount of force that has to be put forth upon occasion.These of course are approximate relations. More correctly we may say that the actions of pale muscles are either relatively feeble though frequent (as in the massive flanks of a fish), or relatively infrequent though strong (as in the pectoral muscles of a common fowl); while the actions of dark muscles are both frequent and strong. Some such differentiation may be anticipated by inference from the respective physiological requirements. A muscle which has upon occasion to evolve considerable force, but which has thereafter a long period of rest during which repair may restore it to efficiency, requires neither a large reserve of the contractile substance that is in some way deteriorated by action, nor highly developed appliances for bringing it nutritive materials and removing effete products. Where, contrariwise, an exerted muscle which has undergone much molecular change in evolving much mechanical force, has soon again to evolve much mechanical force, and so on continually; it is clear that either the quantity of contractile substance present must be great, or the apparatus for nutrition and depuration must be very efficient, or both. Hence we may look for marked unlikenesses of minute structure between muscles which are markedly contrasted in activity. And we may suspect that these conspicuous contrasts of colour between active and inactive muscles, are due to these implied differences of minute structure: partly differences between the numbers of blood-vessels and partly differences between the quantities or qualities of sarcous matter.

Here, then, we have a key to the apparent anomaly above hinted at—the maintenance of bulk by certain muscles which have been rendered comparatively inactive by changed habits of life. That the pectoral muscles of those domestic birds which fly but little, have not dwindled to any great extent, has been thought a fact at variance with the conclusion that functionally-produced adaptations are inheritable. It has been argued that if parts which are exercised increase, not only in the individual but in the race, while parts whichbecome less active decrease; then a notable difference of size should exist between the muscles used for flight in birds that fly much, and those in birds of an allied kind that fly little. But, as we here see, this is not the true implication. The change in such cases must be chiefly in vascularity and abundance of contractile substance; and cannot be, to any great extent, in bulk. For a bird to fly at all, its pectoral muscles, bones of attachment, and all accompanying appliances, must be kept up to a certain level of power. If the parts dwindle much, the creature will be unable to lift itself from the ground. Bearing in mind that the force which a bird expends to sustain itself in the air during each successive instant of a short flight is, other things equal, the same as it expends in each successive instant of a long flight, we shall see that the muscles employed in the two cases must have something like equal intensities of contractile power; and that the structural differences between them must have relation mainly to the lengths of time during which they can continue to repeat contractions of like intensity. That is to say, while the power of flight is retained at all, the muscles and bones cannot greatly dwindle; but the dwindling, in birds whose flights are short or infrequent or both, will be in the reserve stock of the substance that is incapacitated by action, or in the appliances that keep the apparatus in repair, or in both. Only where, as in the struthious birds, the habit of flight is lost, can we expect atrophy of all the parts concerned in flight; and here we find it.

Are such differentiations among the muscles functionally-produced? or are they produced by the natural selection of variations distinguished as spontaneous? We have, I think, good grounds for concluding that they are functionally-produced. We know that in individual men and animals, the power of sustained action in muscles is rapidly adaptable to the amount of sustained action required. We know that being “out of condition,” is usually less shown by the inability to put out a violent effort than by the inability to continuemaking violent efforts; and we know that the result of training for prize-fights and races, is more shown in the prolongation of energy than in the intensification of energy. At the same time, experience has taught us that the structural change which accompanies this functional change, is not so much a change in the bulk of the muscles as a change in their internal state: instead of being soft and flabby they become hard. We have inductive proof, then, that exercise of a muscle causes some interstitial growth along with the power of more sustained action; and there can be no doubt that the one is a condition to the other. What is this interstitial growth? There is reason to suspect that it is in part an increased deposit of the sarcous substance and in part a development of blood-vessels. Microscopic observation tends to confirm the conclusions before drawn, that repetition of contractions furthers the formation of the matter which contracts, and that greater draughts of blood determine greater vascularity. And if the contrasts of molecular structure and the contrasts of vascularity, directly caused in muscles by contrasts in their activities, are to any degree inheritable; there results an explanation of those constitutional differences in the colours and textures of muscles, which accompany constitutional differences in their degrees of activity.

It may be added that if we are warranted in so ascribing the differentiations of muscles from one another to direct equilibration, then we have the more reason for thinking that the differentiation of muscles in general from other structures is also due to direct equilibration. That unlikenesses between parts of the contractile tissues having unlike functions, are caused by the unlikenesses of their functions, renders it the more probable that the unlikenesses between contractile tissue and other tissues, have been caused by analogous unlikenesses.

§ 304. These interpretations, which have already occupied too large a space, must here be closed. Of course out ofphenomena so multitudinous and varied, it has been impracticable to deal with any but the most important; and it has been practicable to deal with these only in a general way. Much, however, as remains to be explained, I think the possibility of tracing, in so many cases, the actions to which these internal differentiations may rationally be ascribed, makes it likely that the remaining internal differentiations are due to kindred actions. We find evidence that, in more cases than seemed probable, these actions produce their effects directly on the individual; and that the unlikenesses are produced by accumulation of such effects from generation to generation. While for all the other unlikenesses, we have, as an adequate cause, the indirect effects wrought by the survival, generation after generation, of the individuals in which favourable variations have occurred—variations such as those of which human anatomy furnishes endless instances. Thus accounting for so much, we may not unreasonably presume that these co-operative processes of direct and indirect equilibration will account for what remains.

[Note.—After having dismissed this revised chapter as done with, and sent it to the printer, further thought concerning those differentiations which produce bone, has reminded me of a fact of extreme and varied significance named in the first volume. I refer to the formation of adaptive structures round the ends of dislocated bones, and to the formation of “false joints.”

These are ontogenetic changes of which phylogeny yields no explanation. They do not repeat the traits of ancestral organisms, and they cannot be ascribed to either of the recognized evolutionary factors. If a humerus be broken across and, failing to set, presently comes to have its two loose ends so modified as in a measure to simulate the parts of a normal joint—the ends becoming smooth, covered with periosteum and supplied with fibrous tissue, and attached by ligaments in such ways as to allow of restrained movements—itis impossible to think that natural selection has had anything to do with the power of adjustment thus shown. No survival of individuals in which adaptations of this kind, now in one place and now in another, were better and better effected, could account for acquirement of the ability. Nor can it be supposed that the ability might result from a functionally-produced habit; since it is scarcely conceivable that the number of cases in which individuals profited by it (at first a little and gradually more) could be such (even did they survive) as to affect the constitution of the species. Both of the alleged causes of structural modifications are out of court. It is manifest, too, that the foregoing hypothesis respecting bone-formation yields us not the slightest help.

But on carefully considering the facts, certain phenomena of profound meaning may strike us. Here, in a part of the body where no such tissues ordinarily exist and to which no such structures are ordinarily appropriate, there arise tissues and structures adapted to the physical circumstances imposed on that part. Out of what do these abnormal but appropriate tissues arise? The substances around—osseous, cartilaginous, membranous—consist of differentiated elements too far specialized to allow of transformation. These new tissues, then, must originate from the undifferentiated protoplasm pervading the part. The units of this protoplasm, subject to the actions proper to an articulation, begin to assume the appropriate histological traits—are determined by local stimuli to form tissues ordinarily associated with such stimuli. What is the inevitable implication? These units—physiological or constitutional, as we may call them—must have possessed latent potentialities of falling into these special arrangements under stress of such conditions. At one point there arises periosteum and at another ligamentous tissue, while for the shaping of the ends of the bones—here into a rude hinged form and there into a rude ball-and-socket form, according to the habitual movements—there goes on some appropriate depositof bone. Hence we must conclude that in the units of protoplasm which have not yet been organized into special tissues, there resides the ability to take on one or other type of histological structure according to circumstances; and, further, that there resides in each of them the still more marvellous ability to co-operate with kindred units dispersed around in developing that arrangement of the parts required to constitute a “false joint.” So that while these units have a general proclivity towards the structure of the organism as a whole, they have also proclivities towards structures proper to the local conditions into which they fall. There is latent in each unit the constitution of the entire organism and by implication the constitution of every organ; and each unit while co-operating with the aggregate is ready to take part in that particular arrangement proper to the position it has fallen into. If the reader will refer back to§§ 97d, 97e, in which it is shown that each member of a human society possesses a combination of potentialities like these, he will be the better enabled to believe that this thingmay beso while he is unable to conceive how itisso.

And here, indeed, let it be pointed out how completely irrelevant is the test of conceivableness as applied to these ultimate physiological actions. For as here, from the un-united ends of the broken bone, there presently arises a rude joint with fit membranes, ligaments, and even synovial fluid, though we are absolutely unable to imagine the process by which the adjacent tissues produce this structure; so there may be from an organ enlarged by function, such reactive effect upon the system at large as eventually to influence the reproductive cells, though we may be absolutely unable to imagine how this can be done.]


Back to IndexNext