THE END.
FOOTNOTES:[1]It seems needful here to say, that allusion is made in this paragraph to a proposition respecting the ultimate natures of Evolution and Dissolution, which is contained in an essay onThe Classification of the Sciences, published in March, 1864. When the opportunity comes, I hope to make the definition there arrived at, the basis of a re-organization of the second part ofFirst Principles: giving to that work a higher development, and a greater cohesion, than it at present possesses. [The intention here indicated was duly carried out in 1867.][2]Let me here refer those who are interested in this question, to Prof. Huxley’s criticism on the cell-doctrine, published in theMedico-Chirurgical Reviewin 1853.A critic who thinks the above statements are “rather misleading” admits that the lowest types of organisms yield them support, saying that “there are certainly masses of protoplasm containing many nuclei, but no trace of cellular structure, in both animals and plants. Such non-cellular masses may exist during development and later become separated up into cells, but there are certain low organisms in which such masses exist in the adult state. They are called by some botanists non-cellular, by others multi-nucleate cells. Clearly the difference lies in the criteria of a cell. There are also someProtozoa, and theBacteria, in which no nucleus has certainly been demonstrated. But it is usual to consider the bodies of such organisms as cells nevertheless, and it is supposed that such cells represent a stage of development in which the nucleus has not yet been evolved, though the chemical substance ‘nuclein’ has been formed in some of them.”Perhaps it will be most correct to say that, excluding the minute, non-nucleated organisms, all the higher organisms—MetazoaandMetaphyta—are composed throughout of cells, or of tissues originally cellular, or of materials which have in the course of development been derived from cells. It must, however, be borne in mind that, according to sundry leading biologists, cells in the strict sense are not the immediate products either of the primitive fissions or of subsequent fissions; but that the multiplying so-called cells are nucleated masses of protoplasm which remain connected by strands of protoplasm, and which acquire limiting membranes by a secondary process. So that, in the view of Mr. Adam Sedgwick and others, the substance of an organism is in fact a continuous mass of vacuolated protoplasm.[3]In further illustration, Mr. Tansley names the fact that in the genusCaulerpawe have extremely complicated forms often of considerable size produced in the same way. The various species simulate very perfectly the members of different groups among the higher plants, such as Horse-tails, Mosses, Cactuses, Conifers and the like.[4]It may be objected that inCladophorathe separate compartments of the thallus severally contain many nuclei, making it doubtful whether they descend from uni-nucleate cells. If, however, they do not they simply illustrate another form of integration.[5]The great mass of early ancestral types—plant and animal—consisting of soft tissues, have left no remains whatever, and we have no reason to suppose that those which left remains fell within the direct ancestral lines of any existing forms. Contrariwise, we have reason to suppose that they fell within lines of evolution out of which the lines ending in existing forms diverged. We must therefore infer that the difficulties of affiliation which arise if we contemplate divergent types now existing, would not arise if we had before us all the early intermediate types. The Mammalia differ in sundry respects from all other kinds of Vertebrata—Fishes, Reptiles, Birds; and if the absence of hair, mammæ, and two occipital condyles, in these other vertebrates were taken to imply a fundamental distinction, it might, in the absence of any known fossil links, be inferred that the Mammalia belonged to a separate phylum. But these differences are not held to negative the assumed relationship. Similarly among plants. We must not reject an hypothesis respecting a certain supposed type, because the existing types it must have been akin to present traits which it could not have had. We are justified in assuming, within limits, a hypothetical type, unlike existing types in traits of some importance. Hence results the answer to a criticism passed on the above argument, that it implies relations between the undeveloped and developed forms of theJungermanniaceæsuch as the facts do not show us. This objection is met on remembering that the types in which the supposed transition took place disappeared myriads of years ago.[6]There is much force in the criticism passed on the above paragraph, and by implication on some preceding paragraphs, that though in plants which tend to produce compound leaves the production is largely dependent on the supply of nutriment, yet the unqualified statement of this relation as a general one, is negatived by the existence of plants which bear only simple leaves, however much high nutrition causes growth. But mostly valid though this objection is, it is probably not universally valid. I am led to say this by what occasionally occurs in flowers. The flowering stem of the Hyacinth is single; but I have seen a cultivated Hyacinth in which one of the flowers had developed into a lateral spike. Still more striking evidence was once supplied to me by Agrimony. All samples of this plant previously seen had single flowering spikes, but some years ago I met with one, extremely luxuriant, in which some flowers of the primitive spike were replaced by lateral spikes; and I am not sure that some of these, again, did not bear lateral spikes. Now if in plants which, in probably millions of cases, have their flowering stems single, excessive nutrition changes certain of their flowers into new spikes, it is a reasonable supposition that in like manner plants which are thought invariably to bear only single leaves, will, under kindred conditions, bear compound leaves.[7]SeeBritish and Foreign Medico-Chirurgical Reviewfor January, 1862.[8]Schleiden, who chooses to regard as an axis that which Mr. Berkeley, with more obvious truth, calls a mid-rib, says:—“The flat stem of the Liverworts presents many varieties, consisting frequently of one simple layer of thin-walled cells, or it exhibits in its axis the elements of the ordinary stem.” This passage exemplifies the wholly gratuitous hypotheses which men will sometimes espouse, to escape hypotheses they dislike. Schleiden, with the positiveness characteristic of him, asserts the primordial distinction between axial organs and foliar organs. In the higher Archegoniates he sees an undeniable stem. In the lower Archegoniates, clearly allied to them by their fructification, there is no structure having the remotest resemblance to a stem. But to save his hypothesis, Schleiden calls that “a flat stem,” which is obviously a structure in which stem and leaf are not differentiated. He is the more to be blamed for this unphilosophical assumption, since he is merciless in his strictures on the unphilosophical assumptions of other botanists.[9]To this interpretation it is objected that “the more-developedJungermanniaceæ” do not appear to have arisen from the lower forms ofJungermanniaceæ—that is to say, from such lower forms as are now existing. It may, however, be contended that this fact does not exclude the interpretation given; since the higher forms may well have been evolved, not from any of the lower forms we now know, but from lower forms which have become extinct. This, indeed, is the implication of the evolutionary process as pointed out in the note to Chap. I. If then we assume some early type of intermediate structure, the explanation may not improbably hold.[10]I am indebted to Dr. Hooker for pointing out further facts supporting this view. In hisFlora Antarctica, he describes the genusLessonia(see Fig.37), and especiallyL. ovata, as having a mode of growth simulating that of the dicotyledonous trees, not only in general form but in internal structure. The tall vertical stem thickens as it grows, by the periodical addition of layers to its periphery. That even Thallophytes should thus, under certain conditions, present a transversely-increasing axis, shows that there is nothing absolutely characteristic of Phanerogams in their habit of stem-thickening. Mr. Tansley gives me further verification by the statement that “it is also now certain that members of theEquisetineæandLycopodineæ, as well as some Ferns which flourished in Carboniferous times, had secondary thickening in their stems quite comparable to that of modern Dicotyledonous trees.”[11]See note at the end of the chapter.[12]Since this paragraph was put in type [this refers to the first edition], I have observed that in some varieties ofCineraria, as probably in other plants, a single individual furnishes all these forms of leaves—all gradations between unstipulated leaves on long petioles, and leaves that embrace the axis. It may be added that the distribution of these various forms is quite in harmony with the rationale above given.[13]Since these figures were put on the block, it has occurred to me that the relations would be still clearer, were the primary frond represented as not taking part in these processes of modification, which have been described as giving rise to the erect form; as, indeed, the rooting of its under surface will prevent it from doing in any considerable degree. In such case, each of the Figs.111 to 117, should have a horizontal rooted frond at its base, homologous with the pro-embryo among Acrogens. This primary frond would then more manifestly stand in the same relation to the rest, as the cotyledon does to the plumule—both by position, and as a supplier of nutriment. Fig.117a, which I am enabled to add, shows that this would complete the interpretation. Of the dicotyledonous series, it is needful to add no further explanation than that the difference in habit of growth, will permit the second frond to root itself as well as the first; and so to become an additional source of nutriment, similarly circumstanced to the first and equal with it.[14]How the element of time modifies the result, is shown by the familiar fact that crystals rapidly formed are small, and become relatively large when left to form more slowly. If the quantity of molecules contained in a solution is relatively great, so that the mutual polarities of the molecules crowded together in every place throughout the solution are intense, there arises a crystalline aggregation around local axes; whereas, in proportion as the local action of molecules on one another is rendered less intense by their wider dispersion, they become relatively more subordinate to the forces exerted on them by the larger aggregates of molecules that are at greater distances, and thus are left to arrange themselves round fewer axes into larger crystals.[15]It is objected that these transformations should be much commoner than they are, were they caused solely by the variations of nutrition described. The reply is that they are comparatively rare in uncultivated plants, where such variations are not frequent. The occurrence of them is chiefly among cultivated plants which, being artificially manured, are specially liable to immense accessions of nutriment, caused now by sudden supplies of fertilizing matters, and now by sudden arrival of the roots at such matters already deposited in the soil. It is to these greatchangesof nutrition, especially apt to take place in gardens, that these monstrosities are ascribed; and it seems to me that they are as frequent as may be expected.[16]Since this paragraph was published in 1865, much has been learned concerning cell-structure, as is shown in Chapter VIAof Part I. While some assert that there exist portions of living protoplasm without nuclei, others assert that a nucleus is in every case present, and that where it does not exist in a definite aggregated form it exists in a dispersed form. As remarked in the chapter named, “the evidence is somewhat strained to justify this dogma.” Words are taken in their non-natural senses, if one which connotes an individualized body is applied to the widely-diffused components of such a body; and this perverting of proper meanings leads to obscuration of what may perhaps be an essential truth. As argued in the chapter named (§§ 74e, 74f), nuclear matter is, as shown by its chemical character, an extremely unstable substance, the molecular changes of which, perpetually going on, initiate shocks, producing changes all around. In the earlier stages of cell-evolution this unstable substance is dispersed throughout the cytoplasm; whereas in the more advanced stages it is gathered together in one mass. If so, instead of saying there is a dispersed nucleus we should say there are the materials of a nucleus not yet integrated.[17]This statement seems at variance with the figure; but the figure is very inaccurate. Its inaccuracy curiously illustrates the vitiation of evidence. When I saw the drawing on the block, I pointed out to the draughtsman, that he had made the surrounding curves much more obviously related to the contained bodies, than they were in the original (in Dr. Carpenter’sForaminifera); and having looked on while he in great measure remedied this defect, thought no further care was needed. Now, however, on seeing the figure in the printer’s proof, I find that the engraver, swayed by the same supposition as the draughtsman that such a relation was meant to be shown, has made his lines represent it still more decidedly than those of the draughtsman before they were corrected. Thus, vague linear representations, like vague verbal ones, are apt to grow more definite when repeated. Hypothesis warps perceptions as it warps thoughts.[18]Though the subdivision into chambers of the shell does not correspond to the subdivision into cell-units it may still be held that since in the solitary types the subdivision of the nucleus is followed by formation of new individuals which separate, and since in the compound types the subdivision of the nucleus is followed by growth and formation of new chambers, the compound type must be regarded as an aggregate of the second order.[19]A critic says the question is “what are the forces internal or external which produce union or separation.” A proximate reply is—degree of nutrition. As in a plant new individuals or rudiments of them are cast off where nutrition is failing, so in a compound animal. The connecting part dwindles if it ceases to carry nutriment.[20]It has been pointed out that I have here understated the evidence of physiological integration. An instance of it amongHydrozoais shown in Fig.151, but by a strange oversight I have forgotten to name the various cases furnished by theSiphonophorain which the individual polypes of a compound aggregate are greatly specialized in adaptation to different functions.[21]Recently Mr. T. H. Morgan has made elaborate experiments which show thatPlanaria Maculatamay be cut into many pieces from various parts and of various shapes—even a slice out of the side—and each, if not too small, will produce a perfect animal.[22]Since this was written in 1865 there has come to light evidence more completely to the point than any at that time known. In the subdivision ofPlatyhelminthesknown asTurbellaria, there are some, theMicrostomidawhich, by a process of segmentation form “chains of 4, then 8, then 16, and sometimes even 32 individuals.” “Each forms a mouth [lateral] and for some time the chain persists, but the individuals ultimately become sexually matured and then separate.” (Shipley,Zoology of the Invertebrata, p. 92.) Here it should be remarked that the lateral mouths enable the members of a string to feed separately, and that nutrition not being interfered with they doubtless gain some advantage by temporary maintenance of their union—probably in creeping.[23]I find that the reasons for regarding the segment of aTæniaas answering to an individual of the second order of aggregation, are much stronger than I supposed when writing the above. Van Beneden says:—“Le Proglottis (segment) ayant acquis tout son développement, se détache ordinairement de la colonie et continue encore à croître dans l’intestin du même animal; il change même souvent de forme et semble doué d’une nouvelle vie; ses angles s’effacent, tout le corps s’arrondit, et il nage comme une Planaire au milieu des muscosités intestinales.”[24]Though this was doubtful in 1865 it is no longer doubtful. In an individualCtenodrilus monostylus, which multiplies by dividing and subdividing itself, “parts arise which are destitute of both head and anus and at times consist of only a single segment.” In another species,C. pardalis, there is separation into many segments; and each segment before separating forms a budding zone out of which other segments are afterwards produced, completing the animal (Korschelt and Heider,Embryology, i, 301–2).[25]In place of those originally here instanced about which there are disputes, I may give an undoubted one described by McIntosh, theSyllis ramosa, a species of chætopod living in hexactinellid sponges from the Arafura Sea, which branches laterally repeatedly so as to extend in all directions through the canals of the sponge. In most cases the buds terminate in oval segments with two long cirri each. But male and female buds were found, provided each with a head, and containing ovaries and testes. Sometimes these sexual buds had become separate from the branched stock.[26]The nameAnnulosa, once used to embrace theAnnelidaandArthropoda, has of late ceased to be used. It seems to me better thanAppendiculata, both as being more obviously descriptive and as being more exclusive.[27]The fusion of the segments forming the Arthropod head and the extreme changes, or perhaps in some cases disappearances, of their appendages, put great difficulties in the way of identification; so that there are differences of opinion respecting the number of included segments. Prof. MacBride writes:—“It is highly probable that a primary head (præoral lobe or præstomium) has been derived from annelid ancestors, but the secondary fusion of body-segments with this head, in other words the formation of a secondary head, has gone on independently in the different classes of the phylumArthropoda, viz.,Arachnida,Crustacea, andTracheata(including Insects and Myriapods). Judged by the number of appendages (which gives an inferior limit) the head of a malacostracous Crustacean consists of præstomium and 8 segments; the head of an insect of præstomium and 4 segments; the head of a Myriapod of præstomium and 3 segments; and the head of an Arachnid of præstomium and 3 segments.” Again, the comment of Mr. J. T. Cunningham is:—“According to Claus and most modern authorities there are only 5 segments in the head of an Arthropod, the eyes not counting as appendages; and further it should be noted that the second pair of antennæ are wanting in Insects.”Of course difference of opinion respecting the number of somites in the head involves difference of opinion respecting the number constituting the entire body, which, in the higher Arthropods, is said by some to be 19 and by others 20. But those who thus differ in detail, agree in regarding all the segments of head and body as homologous, and this is the essential point with which we are here concerned.[28]Prof. MacBride corrects this statement by saying that “The ctenidia or gills (which inMolluscagenerally are represented only by a single pair) are here represented by a large number of pairs; they do not, however, correspond in either number or position to the shell plates.” It may, I think, be contended that if these had any morphological significance, they would not differ in arrangement from the shell plates, and would not be limited to this special type of Mollusc.[29]Though it is alleged that at a later stage the posterior part of the skull is formed by fusion of divisions which are assumed to represent vertebræ, yet it is admitted that the anterior part of the skull never shows any signs of such division. Moreover in both parts the bones show no trace of primitive segmentation.[30]See note at the end of the chapter.[31]A qualifying fact should be named. When the production of vertebral segments has become constitutionally established, so that there is an innate tendency to form them, there arises a liability to form supernumerary ones; and this, from time to time recurring, may lengthen the series, as in the body of a snake or the neck of a swan. This qualification, however, affects equally the hypothesis of an ideal type and the hypothesis of mechanical genesis.[32]Here and throughout, the wordradialis applied equally to the spiral and the whorled structures. These, as being alike on all sides, are similarly distinguished from arrangements that are alike on two sides only.[33]It should be added that this change of distribution is not due to change in the relative positions of the insertions of the leaves but to their twistings.[34]We may note that some of these leaves, as those of the Lime, furnish indications of the ratio which exists between the effects of individual circumstances and those of typical tendencies. On the one hand, the leaves borne by these drooping branches of the Lime are with hardly an exception unsymmetrical more or less decidedly, even in positions where the causes of unsymmetry are not in action: a fact showing us the repetition of the type irrespective of the conditions. On the other hand, the degree of deviation from symmetry is extremely variable, even on the same shoot: a fact proving that the circumstances of the individual leaf are influential in modifying its form. But the most striking evidence of this direct modification is afforded by the suckers of the Lime. Growing, as these do, in approximately upright attitudes, the leaves they bear do not stand to one another in the way above described, and the causes of unsymmetry are not in action; and here, though there is a general leaning to the unsymmetrical form, a large proportion of the leaves become quite symmetrical.[35]It was by an observation on the forms of leaves, that I was first led to the views set forth in the preceding and succeeding chapters on the morphological differentiation of plants and animals. In the year 1851, during a country ramble in which the structures of plants had been a topic of conversation with a friend—Mr. G. H. Lewes—I happened to pick up the leaf of a buttercup, and, drawing it by its foot-stalk through my fingers so as to thrust together its deeply-cleft divisions, observed that its palmate and almost radial form was changed into a bilateral one; and that were the divisions to grow together in this new position, an ordinary bilateral leaf would result. Joining this observation with the familiar fact that leaves, in common with the larger members of plants, habitually turn themselves to the light, it occurred to me that a natural change in the circumstances of the leaf might readily cause such a modification of form as that which I had produced artificially. If, as they often do with plants, soil and climate were greatly to change the habit of the buttercup, making it branched and shrub-like; and if these palmate leaves were thus much overshadowed by one another; would not the inner segments of the leaves grow towards the periphery of the plant where the light was greatest, and so change the palmate form into a more decidedly bilateral form? Immediately I began to look round for evidence of the relation between the forms of leaves and the general characters of the plants they belong to; and soon found some signs of connexion. Certain anomalies, or seeming anomalies, however, prevented me from then pursuing the inquiry much further. But consideration cleared up these difficulties; and the idea afterwards widened into the general doctrine here elaborated. Occupation with other things prevented me from giving expression to this general doctrine until Jan. 1859; when I published an outline of it in theMedico-Chirugical Review.[36]It is objected to the above interpretation that “many flowers of sizes intermediate between the Hollyhock and the Agrimony are radially symmetrical and yet grow sideways. I may mention variousLiliaceæ, e.g.Chlorophytum,Eucomis,Muscari,Anthericum.Sagittaria, also, has many of its flowers in this position. Further, if the higher insects alight on flowers in a definite way, as they do, the parts of the flower must bear different relations to the visiting insect, however large, so that flowers unvisited ought all to be zygomorphic.” My reply is that in the sense which here concerns us, the different petals of the Hollyhock-flower do not bear different relations to the visiting insect; since, practically, the upper and lateral petals bear no physical relations at all: in so far as the visiting bee is concerned they are non-existent. The argument implies that change in the form of a flower from the radial to the bilateral is likely to take place only when the contact-relations of the petals to the visiting insect, are such as to make some forms facilitate its action more than others; and the large petals of the Hollyhock cannot facilitate its action at all. In respect of theLiliaceæinstanced, it is needful to inquire whether the structures are such that this alleged cause of bilateral symmetry can come into play.[37]I had intended here to insert a figure exhibiting these differences; but as the Cow-parsnip does not flower till July, and as I can find no drawing of the umbel which adequately represents its details, I am obliged to take another instance.[38]It has been pointed out to me that “the extreme development of the corolla so often found in the outer flowers or on the outer side of the outer flowers in closely-packed inflorescences, associated as it often is with disappearance of stamens or carpels or both, is usually put down to specialization of these outer flowers for attractive purposes. Since the whole inflorescence is increased in conspicuousness by such a modification, it is supposed that natural selection favoured those plants which sacrificed a portion of their seed-bearing capacity for the supposed greater advantage of securing more insect visits.” But granting this interpretation, it may still be held that increase of attractiveness due to increase of area must be achieved by florets at the periphery, and that their ability to achieve it depends on their having an outer, unoccupied, space which the inner florets have not; so that, though in a more indirect way, their different development is determined by different exposure to conditions.[39]One of my critics writes:—“This chapter might of course be enormously extended, not only as in the preceding ones by citation of quite similar cases, but by the introduction of fresh groups of cases.”[40]Natural selection may have operated in establishing a constitutional tendency to other sudden abridgments. Mr. Tansley alleges that this is a part-cause of the varying distribution of leaves. He says:—“I have myself made some observations on the length of internodes in the Beech, and am satisfied that it follows quite other laws, connected with the suitable disposition of the leaves on the branch. Although I have not had the opportunity of following up this line of work so as in any way to generalize the results, I suspect that ‘indirect equilibration’ is a widespread cause of such variation.”[41]It is but just to the memory of Wolff, here to point out that he was immensely in advance of Goethe in his rationale of these metamorphoses. Whatever greater elaboration Goethe gave to the theory considered as an induction, seems to me more than counter-balanced by the irrationality of his deductive interpretation; which unites mediæval physiology with Platonic philosophy. A dominant idea with him is that leaves exist for the purpose of carrying off crude juices—that “as long as there are crude juices to be carried off, the plant must be provided with organs competent to effect the task”; that while “the less pure fluids are got rid of, purer ones are introduced” and that “if nourishment is withheld, that operation of nature (flowering) is facilitated and hastened; the organs of the nodes (leaves) become more refined in texture, the action of the purified juices becomes stronger, and the transformation of parts having now become possible, takes place without delay.” This being the proximate explanation, the ultimate explanation is, that Nature wishes to form flowers—that when a plant flowers it “attains the end prescribed to it by nature”; and that so “Nature at length attains her object.” Instead of vitiating his induction by a teleology that is as unwarranted in its assigned object as in its assigned means, Wolff ascribes the phenomena to a cause which, whether sufficient or not, is strictly scientific in its character. Variation of nutrition is unquestionably a “true cause” of variation in plant-structure. We have here no imaginary action of a fictitious agency; but an ascertained action of a known agency.[42]TheNatural History Reviewfor July, 1865, contained an article on the doctrine of morphological composition set forth in the foregoing Chaps. I. to III. In this article, which unites exposition and criticism in a way that is unhappily not common with reviewers, it is suggested that the spiral structure may be caused by natural selection. When this article appeared, the foregoing five pages were standing over in type, as surplus from No. 14, issued in June, 1865.[43]A verifying comment on this paragraph runs as follows:—“In the Hypotricha Infusoria, which creep over solid surfaces, there is a differentiation between ventral and dorsal surface and an approach to bilateral symmetry. The ventral surface is provided with movable cilia, the dorsal with immobile setæ.”[44]Criticisms on the above passage have shown the need for naming sundry complications. These complications chiefly, if not wholly, arise from changes in modes of life—changes from the locomotive to the stationary, and from the stationary to the locomotive. Referring to my statement that (ignoring the spherical) the radial type is the lowest and must be taken as antecedent to the bilateral type, it is alleged that all existing “radial animals above Protozoa are probably derived from free-swimming, bilaterally-symmetrical animals.” If this is intended to include the planulæ of the hydroid polyps, then it seems rather a straining of the evidence. These locomotive embryos, described as severally having the structure of a gastrula with a closed mouth, can be said to show bilateralness only because the first two tentacles make their appearance on opposite sides of the mouth—a bilateralness which lasts only till two other tentacles make their appearance in a plane at right angles, so giving the radial structure. I think the criticism applies only to cases furnished by Echinoderms. The larvæ of these creatures have bilaterally-symmetrical structures, which they retain as long as they swim about and which such of them as fix themselves lose by becoming similarly related to conditions all round: the radial structure being retained by those types which, becoming subsequently detached, move about miscellaneously. But, as happens in some of the Sea-urchins and still more among the Holothurians, the structure is again made bilaterally-symmetrical by a locomotive life pursued with one end foremost. Should it be contended that the conditions and the forms are reciprocally influential—that either may initiate the other, it still remains unquestionable that ordinarily the conditions are the antecedents, as is so abundantly shown by plants.[45]Should it be proved that the Ascidian is a degraded vertebrate, then the argument will be strengthened; since loss of bilateral symmetry has gone along with change to asymmetrical conditions.[46]A critical comment made on this sentence runs as follows:—“The aërial roots of most epiphytic orchids contain chlorophyll in their cortex throughout their length, but the cortex being covered by a ‘velamen’ of air-containing cells which break up and reflect incident light, the green colour is not visible through this opaque coat. When moistened the cells of the velamen take up water and the green colour immediately shows through. Such roots do not however possess stomata. The roots of certain species ofAngræcum, however, contain the whole of the assimilating tissue of the plant.”[47]The current doctrine that chlorophyll isthespecial substance concerned in vegetal assimilation, either as an agent or as an incidental product, must be taken with considerable qualification. Besides the fact that among theAlgæthere are many red and brown kinds which thrive; and besides the fact that among the lower Archegoniates there are species which are purple or chocolate-coloured; there is the fact that Phænogams are not all green. We have the Copper-Beech, we have the black-purpleColeus Verschaffeltii, and we have the red variety of Cabbage, which seems to flourish as well as the other varieties. Chlorophyll, then, must be regarded simply as the most general of the colouring matters found in those parts of plants in which assimilation is being effected by the agency of light. Though it is always presentalong withthe red and brown pigments, yet there is much evidence to show that these are the actual assimilative pigments.[48]This seems as fit a place as any for noting the fact, that the greater part of what we call beauty in the organic world, is in some way dependent on the sexual relation. It is not only so with the colours and odours of flowers. It is so, too, with the brilliant plumage of birds; and it is probable that the colours of the more conspicuous insects are in part similarly determined. The remarkable circumstance is, that these characteristics, which have originated by furthering the production of the best offspring, while they are naturally those which render the organisms possessing them attractive to one another, directly or indirectly, should also be those which are so generally attractive to us—those without which the fields and woods would lose half their charm. It is interesting, too, to observe how the conception of human beauty is in a considerable degree thus originated. And the trite observation that the element of beauty which grows out of the sexual relation is so predominant in æsthetic products—in music, in the drama, in fiction, in poetry—gains a new meaning when we see how deep down in organic nature this connexion extends.[49]Students of vegetal physiology, familiar with the controversies respecting sundry points dealt with in this chapter, will probably be surprised to find taken for granted in it, propositions which they have habitually regarded as open to doubt. Hence it seems needful to say that the conclusions here set forth, have resulted from investigations undertaken for the purpose of forming opinions on several unsettled questions which I had to treat, but which I could find in books no adequate data for treating. The details of these investigations, and the entire argument of which this chapter is partly an abstract, will be found in Appendix C.[50]To this implied inference it is objected that “excess of nutritive material does not necessarily lead to correspondingly increased growth.” My reply is that a concomitant factor is activity of the tissue, and that in its absence growth is not to be expected.[51]In recent years (since 1890) Prof. Wilhelm Roux, in essays on functional adaptation, has set forth some views akin to the foregoing in respect to the general belief they imply, though differing in respect of the physiological processes he indicates. The following relevant passage has been translated for me from an article of his in theReal-Encyclopädie der gesammten Heilkunde:—“A more complete theory of functional adaptation by the author is founded on the assumption that the ‘functional’ stimulus, or ‘the act of exercising the function’ (in muscles and glands), and especially, in the case of bones, the concussion and tension caused by stress and strain, exert a ‘trophic’ stimulus on the cells, in consequence of which, and along with an increased absorption of nutriment, they grow and eventually increase (or the osteoblasts at the point of greater stimulus form more bone); while, conversely, with continued inactivity, by absence of these stimuli the nourishment of the cell declines so that the waste is insufficiently replaced (or otherwise that the bone-substance gradually loses its power of resistance to the osteoblasts formed as a result of inactivity”).[52]An outline of the doctrine set forth in the following chapters, was originally published in theWestminster Reviewfor April, 1852, under the title—A Theory of Population deduced from the General Law of Animal Fertility; and was shortly afterwards republished with a prefatory note stating that it must be accepted as a sketch which I hoped at some future time to elaborate. In now revising and completing it, I have omitted a non-essential part of the argument, while I have expanded the remainder by adding to the number of facts put in evidence, by meeting objections which want of space before obliged me to pass over, and by drawing various secondary conclusions. The original paper, with omissions, will be found in Appendix A to Volume I of this work.[53]I was here thinking only of the cases which are general among insects, but it seems that vertebrate animals, too, furnish cases. Mr. Cunningham writes:—“There is a curious instance of this in the Conger: the female grows to 6 or 7 feet long and a weight of 60 lbs. and upwards and then ceases to feed for 6 months while the eggs develop, and when the eggs are shed dies.”[54]I say “normal” for the purpose of excluding not only morbid growths but excess of fat.[55]To meet a possible criticism it should be remarked that this calculation assumes that the power of asexual reproduction is not exhausted by the end of the month. It has been found that “the successive fissions ofParamœciumcannot continue indefinitely. After some hundreds of generations the products of fission are small, have no mouth, and die unless before this they have been allowed to conjugate with individuals of another brood.” It may, however, be fairly taken for granted that “some hundreds of generations” would take longer than a month.[56]Even this number is far exceeded. Dr. Edward Klein, in a lecture he gave at the Royal Institution on June 2, 1898, asserted that 246 bacteria in a cubic centimetre of nutritive liquid would multiply to 20,000,000 in the course of twenty-four hours: a rate which, at the end of thethirdday, would give, as the offspring of one individual, 537,367,797,000,000.[57]It has since been shown that inMyrianida fasciataas many as 29 attached groups exist. SeeCambridge Natural History, Vol. II,Worms, Rotifers and Polyzoa, p. 280.[58]To this passage Prof. MacBride appends the remark:—“This is quite proven now, and the statement as it stands is quite correct; but far better and more minutely worked out cases are to be found amongst theInfusoria. InParamœciumfor example, there are normally present a large macronucleus and a small micronucleus lying alongside of it. When two individuals adhere preparatory to conjugation, the macronucleus breaks up into fragments which are absorbed: the micronucleus—which has some time previously divided into two—begins to break up further and eventually forms eight bodies; all of these except one disappear; this last piece then divides into two; of these two one represents a male genital cell, for it passes over into the body of the otherParamœciumand fuses with one of the two corresponding nuclei there; thus each of the two individuals which adhere fertilizes the other. The two individuals then separate and the nucleus (result of fusion of male and female nuclei) in each divides into four. Of these, two move to one end of the animal and two to the other. The animal then divides into two transversely—each of the products thus having two nuclei which form the micro-and macronucleus of it. Thus it appears that the function of sexual union is simply to give increased vigour to all the vital processesincluding fission. Since as mentioned above (p. 443) if it is prevented, the products of fission are eventually unable to feed themselves.”[59]A passage translated for me from the German may be here given in verification. Dr. Dionys Hellin in an essay on the origin of Multiparity and Twin-births, refers to the thesis above set forth, and says that “the fact that it is generally women of small growth who bear twins is in complete agreement with it.” He adds that “Puech is right in his opinion that twin pregnancies are a direct result of relatively large ovaries (i.e., in comparison with the whole body). He has observed that for the same size of body the ovarium of a pluriparous animal is always of greater volume than that of a uniparous animal ... a sow has ovaries as large as a cow’s; but while the latter bears only one calf [at a time], the sow brings forth 6–15 at each litter. Even in animals of the same species but belonging to different races these relations may be verified,”e.g., Barbary sheep and ordinary sheep.[60]When, after having held for some years the general doctrine elaborated in these chapters, I agreed, early in 1852, to prepare an outline of it for theWestminster Review, I consulted, among other works, the just-issued third edition of Dr. Carpenter’sPrinciples of Physiology, General and Comparative—seeking in it for facts illustrating the different degrees of fertility of different organisms, I met with a passage, quoted above in§ 339, which seemed tacitly to assert that individual aggrandizement is at variance with the propagation of the race; but nowhere found a distinct enunciation of this truth. I did not then read the Chapter entitled “General View of the Functions,” which held out no promise of such evidence as I was looking for. But on since referring to this chapter, I discovered in it the definite statement that—“there is a certain degree of antagonism between the Nutritive and Reproductive functions, the one being executed at the expense of the other. The reproductive apparatus derives the materials of its operations through the nutritive system, and is entirely dependent upon it for the continuance of its function. If, therefore, it be in a state of excessive activity, it will necessarily draw off from the individual fabric some portion of the aliment destined for its maintenance. It may be universally observed that, when the nutritive functions are particularly active in supporting theindividual, the reproductive system is in a corresponding degree undeveloped,—andvice versâ.” P. 592.[61]The climate, the locality, and the kind of food, are of course all factors; and hence, probably, the differences between the statements of different authorities concerning these several cases. Prof. MacBride writes:—“According to Flower (Mammals, Living and Extinct) the Ferret is a domesticated variety of the common polecat, which has 3 to 8 young. Darwin (Animals and Plants) says that the wild sow often breeds twice a year and produces a litter of 4 to 8, and sometimes even 12. The domestic sow breeds twice and would breed oftener if permitted, and if any good at all produces 8 in litter.”[62]It is worth while inquiring whether unfitness of the food given to them, is not the chief cause of that sterility which, as Mr. Darwin says, “is the great bar to the domestication of animals.” He remarks that “when animals and plants are removed from their natural conditions, they are extremely liable to have their reproductive systems seriously affected.” Possibly the relative or absolute arrest of genesis, is less due to a direct effect on the reproductive system, than to a changed nutrition of which the reproductive system most clearly shows the results. The matters required for forming an embryo are in a greater proportion nitrogenous than are the matters required for maintaining an adult. Hence, an animal forced to live on insufficiently-nitrogenized food, may have its surplus for reproduction cut off, but still have a sufficiency to keep its own tissues in repair, and appear to be in good health—meanwhile increasing in bulk from excess of the non-nitrogenous matters it eats.[63]Huxley,Anatomy of Invertebrated Animals, p. 274.[64]Shipley,Zoology of Invertebrata, p. 112.[65]I am told that “Wagner, who described the larva, found that it bored into the bark of trees. It attacks also the wheat plant, and is a most destructive parasite.” Apparently this statement is at variance with the foregoing inference. It is clear, however, that since these heaps of nitrogenous refuse in which it has been found are artificial and recent, they cannot be its natural habitats; and it seems not improbable that these larvæ, suddenly supplied with a more nutritive food in unlimited amount, may have as a consequence acquired this habit of agamogenetic multiplication which did not characterize the species under its natural conditions and relatively low nutrition.[66]This is exactly the reverse of Mr. Doubleday’s doctrine; which is that throughout both the animal and vegetable kingdoms, “over-feeding checks increase; whilst, on the other hand, a limited or deficient nutriment stimulates and adds to it.” Or, as he elsewhere says—“Be the range of the natural power to increase in any species what it may, theplethoricstate invariably checks it, and thedeplethoricstate invariably develops it; and this happens in the exact ratio of the intensity and completeness of each state, until each state be carried so far as to bring about the actual death of the animal or plant itself.”I have space here only to indicate the misinterpretations on which Mr. Doubleday has based his argument.In the first place, he has confounded normal plethora with what I have, in§ 355, distinguished as abnormal plethora. The cases of infertility accompanying fatness, which he cites in proof that over-feeding checks increase, are not cases of high nutrition properly so-called; but cases of such defective absorption or assimilation as constitutes low nutrition. In Chap. IX, abundant proof was given that a truly plethoric state is an unusually fertile state. It may be added that much of the evidence by which Mr. Doubleday seeks to show that among men, highly-fed classes are infertile classes, may be out-balanced by counter-evidence. Many years ago Mr. G. H. Lewes pointed this out: extracting from a book on the peerage, the names of 16 peers who had, at that time, 186 children; giving an average of 11·6 in a family.Mr. Doubleday insists much on the support given to his theory by the barrenness of very luxuriant plants, and the fruitfulness produced in plants by depletion. Had he been aware that the change from barrenness to fruitfulness in plants, is a change from agamogenesis to gamogenesis—had it been as well known at the time when he wrote as it is now, that a tree which goes on putting out sexless shoots, is thus producing new individuals; and that when it begins to bear fruit, it simply begins to produce new individuals after another manner—he would have perceived that facts of this class do not tell in his favour.In the law which Mr. Doubleday alleges, he sees a guarantee for the maintenance of species. He argues that the plethoric state of the individuals constituting any race of organisms, presupposes conditions so favourable to life that the race can be in no danger; and that rapidity of multiplication becomes needless. Conversely, he argues that a deplethoric state implies unfavourable conditions—implies, consequently, unusual mortality; that is—implies a necessity for increased fertility to prevent the race from dying out. It may be readily shown, however, that such an arrangement would be the reverse of self-adjusting. Suppose a species, too numerous for its food, to be in the resulting deplethoric state. It will, according to Mr. Doubleday, become unusually fertile; and the next generation will be more numerous rather than less numerous. For, by the hypothesis, the unusual fertility due to the deplethoric state, is the cause of undue increase of population. But if the next generation is more numerous while the supply of food has not increased in proportion, then this next generation will be in a still more deplethoric state, and will be still more fertile. Thus there will go on an ever-increasing rate of multiplication, and an ever-decreasing share of food, for each person, until the species disappears. Suppose, on the other hand, the members of a species to be in an unusually plethoric state. Their rate of multiplication, ordinarily sufficient to maintain their numbers, will become insufficient to maintain their numbers. In the next generation, therefore, there will be fewer to eat the already abundant food, which becoming relatively still more abundant, will render the fewer members of the species still more plethoric, and still less fertile, than their parents. And the actions and reactions continuing, the species will presently die out from absolute barrenness.[67]A good deal of this chapter retains its original form; and the above paragraph is reprinted verbatim from theWestminster Reviewfor April, 1852, in which the views developed in the foregoing hundred pages were first sketched out. This paragraph shows how near one may be to a great generalization without seeing it. Though the struggle for life is the alleged motive force; though the process of natural selection is recognized; and though to it is ascribed a share in the evolution of a higher type; yet the conception is not that which Mr. Darwin has worked out with such wonderful skill and knowledge. In the first place, natural selection is here described only as furthering direct adaptation—only as aiding progress by the preservation of individuals in whom functionally-produced modifications have gone on most favourably. In the second place, there is no trace of the idea that natural selection may by co-operation with the cause assigned, or with other causes, producedivergencesof structure; and of course, in the absence of this idea, there is no implication that natural selection has anything to do with the origin of species. And in the third place, the all-important factor of variation—“spontaneous,” or incidental as we may otherwise call it—is wholly ignored. Though use and disuse are, I think, much more potent causes of organic modification than Mr. Darwin supposes—though, while pursuing the inquiry in detail, I have been led to believe that direct equilibration has played a more active part even than I had myself at one time thought; yet I hold Mr. Darwin to have shown beyond question, that a great part of the facts—perhaps the greater part—are explicable only as resulting from the survival of individuals which have deviated in some indirectly-caused way from the ancestral type. Thus, the above paragraph contains merely a passing recognition of the selective process; and indicates no suspicion of the enormous range of its effects, or of the conditions under which a large part of its effects are produced.[68]For the information of those who may wish to examine metamorphoses of these kinds, I may here state that I have found nearly all the examples described, in the neighbourhood of the sea—the last-named, on the shore of Locheil, near Fort William. Whether it is that I have sought more diligently for cases when in such localities, or whether it is that the sea-air favours that excessive nutrition whence these transformations result, I am unable to say.[69]These two dyes have affinities for different components of the tissues, and may be advantageously used in different cases. Magenta is rapidly taken up by woody matter and other secondary deposits; while logwood colours the cell-membranes, and takes but reluctantly to the substances seized by magenta. By trying both of them on the same structure, we may guard ourselves against any error arising from selective combination.[70]Those who repeat these experiments must be prepared for great irregularities in the rates of absorption. Succulent structures in general absorb much more slowly than others, and sometimes will scarcely take up the dye at all. The differences between different structures, and the same structure at different times, probably depend on the degrees in which the tissues are charged with liquid and the rates at which they are losing it by evaporation.[71]It may be added here that, on considering the mechanical actions that must go on, we are enabled in some measure to understand both how such inosculating channels are initiated, and how the structures of their component cells are explicable. What must happen to one of these elongated prosenchyma-cells if, in the course of its development, it is subject to intermittent compressions? Its squeezed-out liquid while partially escaping laterally, will more largely escape upwards and downwards; and while repeated lateral escape will tend to form lateral channels communicating with laterally-adjacent cells, repeated longitudinal escape will tend to form channels communicating with longitudinally-adjacent cells—so producing continuous though irregular longitudinal canals. Meanwhile each cell into and out of which the nutritive liquid is from time to time squeezed through small openings in its walls, cannot thicken internally in an even manner: deposition will be interfered with by the passage of the currents through the pores. The rush to or from each pore will tend to maintain a funnel-shaped depression in the deposit around; and the opening from cell to cell will so acquire just that shape which the microscope shows up—two hollow cones with their apices meeting at the point where the cell-membranes are in contact. Moreover, as confirming this interpretation, it may be remarked that we are thus supplied with a reason for the differences of shape between these passages from one pitted cell to another, and the analogous passages that exist between cells otherwise formed and otherwise conditioned. In the cells of the medulla, and others which are but little exposed to compression, the passages are severally formed more like a tube with two trumpet-mouths, one in each cell. This is just the form which might be expected where the nutritive fluid passes from cell to cell in moderate currents, and not by the violent rushes caused by intermittent pressures. Of course it is not meant that in each individual cell these structures are determined by these mechanical actions. The facts clearly negative any such conclusion, showing us, as they in many cases do, that these structures are assumed in advance of these mechanical actions. The implication is, that such mechanical actions initiated modifications that have, with the aid of natural selection, been accumulated from generation to generation; until, in conformity with ordinary embryological laws, the cells of the parts exposed to such actions assume these special structures irrespective of the actions—the actions, however, still serving to aid and complete the assumption of the inherited type.[72]Some exceptions to this occur in plants that have retrograded in the character of their tissues towards the simpler vegetal types. Certain very succulent leaves, such as those ofSempervivum, in which the cellular tissue is immensely developed in comparison with the vascular tissue, seem to have resumed to a considerable extent what we must regard as the primitive form of vegetal circulation—simple absorption from cell to cell. These, when they have lost much of their water, will take up the dye to some distance through their general substance, or rather through its interstices, even neglecting the vessels. At other times, in the same leaves, the vessels will become charged while comparatively little absorption takes place through the cellular tissue. Even in these exceptional cases, however, the movement through cellular tissue is nothing like as fast as the movement through vessels.[73]It seems probable, however, that osmotic distention is here, especially, the more important of the two factors. The rising of the sap in spring may indirectly result, like the sprouting of the seed, from the transformation of starch into sugar. During germination, this change of an oxy-hydro-carbon from an insoluble into a soluble form, leads to rapid endosmose; consequently to great distention of the seed; and therefore to a force which thrusts the contained liquids into the plumule and radicle, and gives them power to displace the soil in their way: it sets up an active internal movement when neither evaporation nor the change which light produces can be operative. And similarly, if, in the spring, the starch stored-up in the roots of a tree passes into the form of sugar, the unusual osmotic absorption that arises will cause an unusual distention—a distention which, being resisted by the tough bark of the roots and stem, will result in a powerful upward thrust of the contained liquid.
[1]It seems needful here to say, that allusion is made in this paragraph to a proposition respecting the ultimate natures of Evolution and Dissolution, which is contained in an essay onThe Classification of the Sciences, published in March, 1864. When the opportunity comes, I hope to make the definition there arrived at, the basis of a re-organization of the second part ofFirst Principles: giving to that work a higher development, and a greater cohesion, than it at present possesses. [The intention here indicated was duly carried out in 1867.]
[1]It seems needful here to say, that allusion is made in this paragraph to a proposition respecting the ultimate natures of Evolution and Dissolution, which is contained in an essay onThe Classification of the Sciences, published in March, 1864. When the opportunity comes, I hope to make the definition there arrived at, the basis of a re-organization of the second part ofFirst Principles: giving to that work a higher development, and a greater cohesion, than it at present possesses. [The intention here indicated was duly carried out in 1867.]
[2]Let me here refer those who are interested in this question, to Prof. Huxley’s criticism on the cell-doctrine, published in theMedico-Chirurgical Reviewin 1853.A critic who thinks the above statements are “rather misleading” admits that the lowest types of organisms yield them support, saying that “there are certainly masses of protoplasm containing many nuclei, but no trace of cellular structure, in both animals and plants. Such non-cellular masses may exist during development and later become separated up into cells, but there are certain low organisms in which such masses exist in the adult state. They are called by some botanists non-cellular, by others multi-nucleate cells. Clearly the difference lies in the criteria of a cell. There are also someProtozoa, and theBacteria, in which no nucleus has certainly been demonstrated. But it is usual to consider the bodies of such organisms as cells nevertheless, and it is supposed that such cells represent a stage of development in which the nucleus has not yet been evolved, though the chemical substance ‘nuclein’ has been formed in some of them.”Perhaps it will be most correct to say that, excluding the minute, non-nucleated organisms, all the higher organisms—MetazoaandMetaphyta—are composed throughout of cells, or of tissues originally cellular, or of materials which have in the course of development been derived from cells. It must, however, be borne in mind that, according to sundry leading biologists, cells in the strict sense are not the immediate products either of the primitive fissions or of subsequent fissions; but that the multiplying so-called cells are nucleated masses of protoplasm which remain connected by strands of protoplasm, and which acquire limiting membranes by a secondary process. So that, in the view of Mr. Adam Sedgwick and others, the substance of an organism is in fact a continuous mass of vacuolated protoplasm.
[2]Let me here refer those who are interested in this question, to Prof. Huxley’s criticism on the cell-doctrine, published in theMedico-Chirurgical Reviewin 1853.
A critic who thinks the above statements are “rather misleading” admits that the lowest types of organisms yield them support, saying that “there are certainly masses of protoplasm containing many nuclei, but no trace of cellular structure, in both animals and plants. Such non-cellular masses may exist during development and later become separated up into cells, but there are certain low organisms in which such masses exist in the adult state. They are called by some botanists non-cellular, by others multi-nucleate cells. Clearly the difference lies in the criteria of a cell. There are also someProtozoa, and theBacteria, in which no nucleus has certainly been demonstrated. But it is usual to consider the bodies of such organisms as cells nevertheless, and it is supposed that such cells represent a stage of development in which the nucleus has not yet been evolved, though the chemical substance ‘nuclein’ has been formed in some of them.”
Perhaps it will be most correct to say that, excluding the minute, non-nucleated organisms, all the higher organisms—MetazoaandMetaphyta—are composed throughout of cells, or of tissues originally cellular, or of materials which have in the course of development been derived from cells. It must, however, be borne in mind that, according to sundry leading biologists, cells in the strict sense are not the immediate products either of the primitive fissions or of subsequent fissions; but that the multiplying so-called cells are nucleated masses of protoplasm which remain connected by strands of protoplasm, and which acquire limiting membranes by a secondary process. So that, in the view of Mr. Adam Sedgwick and others, the substance of an organism is in fact a continuous mass of vacuolated protoplasm.
[3]In further illustration, Mr. Tansley names the fact that in the genusCaulerpawe have extremely complicated forms often of considerable size produced in the same way. The various species simulate very perfectly the members of different groups among the higher plants, such as Horse-tails, Mosses, Cactuses, Conifers and the like.
[3]In further illustration, Mr. Tansley names the fact that in the genusCaulerpawe have extremely complicated forms often of considerable size produced in the same way. The various species simulate very perfectly the members of different groups among the higher plants, such as Horse-tails, Mosses, Cactuses, Conifers and the like.
[4]It may be objected that inCladophorathe separate compartments of the thallus severally contain many nuclei, making it doubtful whether they descend from uni-nucleate cells. If, however, they do not they simply illustrate another form of integration.
[4]It may be objected that inCladophorathe separate compartments of the thallus severally contain many nuclei, making it doubtful whether they descend from uni-nucleate cells. If, however, they do not they simply illustrate another form of integration.
[5]The great mass of early ancestral types—plant and animal—consisting of soft tissues, have left no remains whatever, and we have no reason to suppose that those which left remains fell within the direct ancestral lines of any existing forms. Contrariwise, we have reason to suppose that they fell within lines of evolution out of which the lines ending in existing forms diverged. We must therefore infer that the difficulties of affiliation which arise if we contemplate divergent types now existing, would not arise if we had before us all the early intermediate types. The Mammalia differ in sundry respects from all other kinds of Vertebrata—Fishes, Reptiles, Birds; and if the absence of hair, mammæ, and two occipital condyles, in these other vertebrates were taken to imply a fundamental distinction, it might, in the absence of any known fossil links, be inferred that the Mammalia belonged to a separate phylum. But these differences are not held to negative the assumed relationship. Similarly among plants. We must not reject an hypothesis respecting a certain supposed type, because the existing types it must have been akin to present traits which it could not have had. We are justified in assuming, within limits, a hypothetical type, unlike existing types in traits of some importance. Hence results the answer to a criticism passed on the above argument, that it implies relations between the undeveloped and developed forms of theJungermanniaceæsuch as the facts do not show us. This objection is met on remembering that the types in which the supposed transition took place disappeared myriads of years ago.
[5]The great mass of early ancestral types—plant and animal—consisting of soft tissues, have left no remains whatever, and we have no reason to suppose that those which left remains fell within the direct ancestral lines of any existing forms. Contrariwise, we have reason to suppose that they fell within lines of evolution out of which the lines ending in existing forms diverged. We must therefore infer that the difficulties of affiliation which arise if we contemplate divergent types now existing, would not arise if we had before us all the early intermediate types. The Mammalia differ in sundry respects from all other kinds of Vertebrata—Fishes, Reptiles, Birds; and if the absence of hair, mammæ, and two occipital condyles, in these other vertebrates were taken to imply a fundamental distinction, it might, in the absence of any known fossil links, be inferred that the Mammalia belonged to a separate phylum. But these differences are not held to negative the assumed relationship. Similarly among plants. We must not reject an hypothesis respecting a certain supposed type, because the existing types it must have been akin to present traits which it could not have had. We are justified in assuming, within limits, a hypothetical type, unlike existing types in traits of some importance. Hence results the answer to a criticism passed on the above argument, that it implies relations between the undeveloped and developed forms of theJungermanniaceæsuch as the facts do not show us. This objection is met on remembering that the types in which the supposed transition took place disappeared myriads of years ago.
[6]There is much force in the criticism passed on the above paragraph, and by implication on some preceding paragraphs, that though in plants which tend to produce compound leaves the production is largely dependent on the supply of nutriment, yet the unqualified statement of this relation as a general one, is negatived by the existence of plants which bear only simple leaves, however much high nutrition causes growth. But mostly valid though this objection is, it is probably not universally valid. I am led to say this by what occasionally occurs in flowers. The flowering stem of the Hyacinth is single; but I have seen a cultivated Hyacinth in which one of the flowers had developed into a lateral spike. Still more striking evidence was once supplied to me by Agrimony. All samples of this plant previously seen had single flowering spikes, but some years ago I met with one, extremely luxuriant, in which some flowers of the primitive spike were replaced by lateral spikes; and I am not sure that some of these, again, did not bear lateral spikes. Now if in plants which, in probably millions of cases, have their flowering stems single, excessive nutrition changes certain of their flowers into new spikes, it is a reasonable supposition that in like manner plants which are thought invariably to bear only single leaves, will, under kindred conditions, bear compound leaves.
[6]There is much force in the criticism passed on the above paragraph, and by implication on some preceding paragraphs, that though in plants which tend to produce compound leaves the production is largely dependent on the supply of nutriment, yet the unqualified statement of this relation as a general one, is negatived by the existence of plants which bear only simple leaves, however much high nutrition causes growth. But mostly valid though this objection is, it is probably not universally valid. I am led to say this by what occasionally occurs in flowers. The flowering stem of the Hyacinth is single; but I have seen a cultivated Hyacinth in which one of the flowers had developed into a lateral spike. Still more striking evidence was once supplied to me by Agrimony. All samples of this plant previously seen had single flowering spikes, but some years ago I met with one, extremely luxuriant, in which some flowers of the primitive spike were replaced by lateral spikes; and I am not sure that some of these, again, did not bear lateral spikes. Now if in plants which, in probably millions of cases, have their flowering stems single, excessive nutrition changes certain of their flowers into new spikes, it is a reasonable supposition that in like manner plants which are thought invariably to bear only single leaves, will, under kindred conditions, bear compound leaves.
[7]SeeBritish and Foreign Medico-Chirurgical Reviewfor January, 1862.
[7]SeeBritish and Foreign Medico-Chirurgical Reviewfor January, 1862.
[8]Schleiden, who chooses to regard as an axis that which Mr. Berkeley, with more obvious truth, calls a mid-rib, says:—“The flat stem of the Liverworts presents many varieties, consisting frequently of one simple layer of thin-walled cells, or it exhibits in its axis the elements of the ordinary stem.” This passage exemplifies the wholly gratuitous hypotheses which men will sometimes espouse, to escape hypotheses they dislike. Schleiden, with the positiveness characteristic of him, asserts the primordial distinction between axial organs and foliar organs. In the higher Archegoniates he sees an undeniable stem. In the lower Archegoniates, clearly allied to them by their fructification, there is no structure having the remotest resemblance to a stem. But to save his hypothesis, Schleiden calls that “a flat stem,” which is obviously a structure in which stem and leaf are not differentiated. He is the more to be blamed for this unphilosophical assumption, since he is merciless in his strictures on the unphilosophical assumptions of other botanists.
[8]Schleiden, who chooses to regard as an axis that which Mr. Berkeley, with more obvious truth, calls a mid-rib, says:—“The flat stem of the Liverworts presents many varieties, consisting frequently of one simple layer of thin-walled cells, or it exhibits in its axis the elements of the ordinary stem.” This passage exemplifies the wholly gratuitous hypotheses which men will sometimes espouse, to escape hypotheses they dislike. Schleiden, with the positiveness characteristic of him, asserts the primordial distinction between axial organs and foliar organs. In the higher Archegoniates he sees an undeniable stem. In the lower Archegoniates, clearly allied to them by their fructification, there is no structure having the remotest resemblance to a stem. But to save his hypothesis, Schleiden calls that “a flat stem,” which is obviously a structure in which stem and leaf are not differentiated. He is the more to be blamed for this unphilosophical assumption, since he is merciless in his strictures on the unphilosophical assumptions of other botanists.
[9]To this interpretation it is objected that “the more-developedJungermanniaceæ” do not appear to have arisen from the lower forms ofJungermanniaceæ—that is to say, from such lower forms as are now existing. It may, however, be contended that this fact does not exclude the interpretation given; since the higher forms may well have been evolved, not from any of the lower forms we now know, but from lower forms which have become extinct. This, indeed, is the implication of the evolutionary process as pointed out in the note to Chap. I. If then we assume some early type of intermediate structure, the explanation may not improbably hold.
[9]To this interpretation it is objected that “the more-developedJungermanniaceæ” do not appear to have arisen from the lower forms ofJungermanniaceæ—that is to say, from such lower forms as are now existing. It may, however, be contended that this fact does not exclude the interpretation given; since the higher forms may well have been evolved, not from any of the lower forms we now know, but from lower forms which have become extinct. This, indeed, is the implication of the evolutionary process as pointed out in the note to Chap. I. If then we assume some early type of intermediate structure, the explanation may not improbably hold.
[10]I am indebted to Dr. Hooker for pointing out further facts supporting this view. In hisFlora Antarctica, he describes the genusLessonia(see Fig.37), and especiallyL. ovata, as having a mode of growth simulating that of the dicotyledonous trees, not only in general form but in internal structure. The tall vertical stem thickens as it grows, by the periodical addition of layers to its periphery. That even Thallophytes should thus, under certain conditions, present a transversely-increasing axis, shows that there is nothing absolutely characteristic of Phanerogams in their habit of stem-thickening. Mr. Tansley gives me further verification by the statement that “it is also now certain that members of theEquisetineæandLycopodineæ, as well as some Ferns which flourished in Carboniferous times, had secondary thickening in their stems quite comparable to that of modern Dicotyledonous trees.”
[10]I am indebted to Dr. Hooker for pointing out further facts supporting this view. In hisFlora Antarctica, he describes the genusLessonia(see Fig.37), and especiallyL. ovata, as having a mode of growth simulating that of the dicotyledonous trees, not only in general form but in internal structure. The tall vertical stem thickens as it grows, by the periodical addition of layers to its periphery. That even Thallophytes should thus, under certain conditions, present a transversely-increasing axis, shows that there is nothing absolutely characteristic of Phanerogams in their habit of stem-thickening. Mr. Tansley gives me further verification by the statement that “it is also now certain that members of theEquisetineæandLycopodineæ, as well as some Ferns which flourished in Carboniferous times, had secondary thickening in their stems quite comparable to that of modern Dicotyledonous trees.”
[11]See note at the end of the chapter.
[11]See note at the end of the chapter.
[12]Since this paragraph was put in type [this refers to the first edition], I have observed that in some varieties ofCineraria, as probably in other plants, a single individual furnishes all these forms of leaves—all gradations between unstipulated leaves on long petioles, and leaves that embrace the axis. It may be added that the distribution of these various forms is quite in harmony with the rationale above given.
[12]Since this paragraph was put in type [this refers to the first edition], I have observed that in some varieties ofCineraria, as probably in other plants, a single individual furnishes all these forms of leaves—all gradations between unstipulated leaves on long petioles, and leaves that embrace the axis. It may be added that the distribution of these various forms is quite in harmony with the rationale above given.
[13]Since these figures were put on the block, it has occurred to me that the relations would be still clearer, were the primary frond represented as not taking part in these processes of modification, which have been described as giving rise to the erect form; as, indeed, the rooting of its under surface will prevent it from doing in any considerable degree. In such case, each of the Figs.111 to 117, should have a horizontal rooted frond at its base, homologous with the pro-embryo among Acrogens. This primary frond would then more manifestly stand in the same relation to the rest, as the cotyledon does to the plumule—both by position, and as a supplier of nutriment. Fig.117a, which I am enabled to add, shows that this would complete the interpretation. Of the dicotyledonous series, it is needful to add no further explanation than that the difference in habit of growth, will permit the second frond to root itself as well as the first; and so to become an additional source of nutriment, similarly circumstanced to the first and equal with it.
[13]Since these figures were put on the block, it has occurred to me that the relations would be still clearer, were the primary frond represented as not taking part in these processes of modification, which have been described as giving rise to the erect form; as, indeed, the rooting of its under surface will prevent it from doing in any considerable degree. In such case, each of the Figs.111 to 117, should have a horizontal rooted frond at its base, homologous with the pro-embryo among Acrogens. This primary frond would then more manifestly stand in the same relation to the rest, as the cotyledon does to the plumule—both by position, and as a supplier of nutriment. Fig.117a, which I am enabled to add, shows that this would complete the interpretation. Of the dicotyledonous series, it is needful to add no further explanation than that the difference in habit of growth, will permit the second frond to root itself as well as the first; and so to become an additional source of nutriment, similarly circumstanced to the first and equal with it.
[14]How the element of time modifies the result, is shown by the familiar fact that crystals rapidly formed are small, and become relatively large when left to form more slowly. If the quantity of molecules contained in a solution is relatively great, so that the mutual polarities of the molecules crowded together in every place throughout the solution are intense, there arises a crystalline aggregation around local axes; whereas, in proportion as the local action of molecules on one another is rendered less intense by their wider dispersion, they become relatively more subordinate to the forces exerted on them by the larger aggregates of molecules that are at greater distances, and thus are left to arrange themselves round fewer axes into larger crystals.
[14]How the element of time modifies the result, is shown by the familiar fact that crystals rapidly formed are small, and become relatively large when left to form more slowly. If the quantity of molecules contained in a solution is relatively great, so that the mutual polarities of the molecules crowded together in every place throughout the solution are intense, there arises a crystalline aggregation around local axes; whereas, in proportion as the local action of molecules on one another is rendered less intense by their wider dispersion, they become relatively more subordinate to the forces exerted on them by the larger aggregates of molecules that are at greater distances, and thus are left to arrange themselves round fewer axes into larger crystals.
[15]It is objected that these transformations should be much commoner than they are, were they caused solely by the variations of nutrition described. The reply is that they are comparatively rare in uncultivated plants, where such variations are not frequent. The occurrence of them is chiefly among cultivated plants which, being artificially manured, are specially liable to immense accessions of nutriment, caused now by sudden supplies of fertilizing matters, and now by sudden arrival of the roots at such matters already deposited in the soil. It is to these greatchangesof nutrition, especially apt to take place in gardens, that these monstrosities are ascribed; and it seems to me that they are as frequent as may be expected.
[15]It is objected that these transformations should be much commoner than they are, were they caused solely by the variations of nutrition described. The reply is that they are comparatively rare in uncultivated plants, where such variations are not frequent. The occurrence of them is chiefly among cultivated plants which, being artificially manured, are specially liable to immense accessions of nutriment, caused now by sudden supplies of fertilizing matters, and now by sudden arrival of the roots at such matters already deposited in the soil. It is to these greatchangesof nutrition, especially apt to take place in gardens, that these monstrosities are ascribed; and it seems to me that they are as frequent as may be expected.
[16]Since this paragraph was published in 1865, much has been learned concerning cell-structure, as is shown in Chapter VIAof Part I. While some assert that there exist portions of living protoplasm without nuclei, others assert that a nucleus is in every case present, and that where it does not exist in a definite aggregated form it exists in a dispersed form. As remarked in the chapter named, “the evidence is somewhat strained to justify this dogma.” Words are taken in their non-natural senses, if one which connotes an individualized body is applied to the widely-diffused components of such a body; and this perverting of proper meanings leads to obscuration of what may perhaps be an essential truth. As argued in the chapter named (§§ 74e, 74f), nuclear matter is, as shown by its chemical character, an extremely unstable substance, the molecular changes of which, perpetually going on, initiate shocks, producing changes all around. In the earlier stages of cell-evolution this unstable substance is dispersed throughout the cytoplasm; whereas in the more advanced stages it is gathered together in one mass. If so, instead of saying there is a dispersed nucleus we should say there are the materials of a nucleus not yet integrated.
[16]Since this paragraph was published in 1865, much has been learned concerning cell-structure, as is shown in Chapter VIAof Part I. While some assert that there exist portions of living protoplasm without nuclei, others assert that a nucleus is in every case present, and that where it does not exist in a definite aggregated form it exists in a dispersed form. As remarked in the chapter named, “the evidence is somewhat strained to justify this dogma.” Words are taken in their non-natural senses, if one which connotes an individualized body is applied to the widely-diffused components of such a body; and this perverting of proper meanings leads to obscuration of what may perhaps be an essential truth. As argued in the chapter named (§§ 74e, 74f), nuclear matter is, as shown by its chemical character, an extremely unstable substance, the molecular changes of which, perpetually going on, initiate shocks, producing changes all around. In the earlier stages of cell-evolution this unstable substance is dispersed throughout the cytoplasm; whereas in the more advanced stages it is gathered together in one mass. If so, instead of saying there is a dispersed nucleus we should say there are the materials of a nucleus not yet integrated.
[17]This statement seems at variance with the figure; but the figure is very inaccurate. Its inaccuracy curiously illustrates the vitiation of evidence. When I saw the drawing on the block, I pointed out to the draughtsman, that he had made the surrounding curves much more obviously related to the contained bodies, than they were in the original (in Dr. Carpenter’sForaminifera); and having looked on while he in great measure remedied this defect, thought no further care was needed. Now, however, on seeing the figure in the printer’s proof, I find that the engraver, swayed by the same supposition as the draughtsman that such a relation was meant to be shown, has made his lines represent it still more decidedly than those of the draughtsman before they were corrected. Thus, vague linear representations, like vague verbal ones, are apt to grow more definite when repeated. Hypothesis warps perceptions as it warps thoughts.
[17]This statement seems at variance with the figure; but the figure is very inaccurate. Its inaccuracy curiously illustrates the vitiation of evidence. When I saw the drawing on the block, I pointed out to the draughtsman, that he had made the surrounding curves much more obviously related to the contained bodies, than they were in the original (in Dr. Carpenter’sForaminifera); and having looked on while he in great measure remedied this defect, thought no further care was needed. Now, however, on seeing the figure in the printer’s proof, I find that the engraver, swayed by the same supposition as the draughtsman that such a relation was meant to be shown, has made his lines represent it still more decidedly than those of the draughtsman before they were corrected. Thus, vague linear representations, like vague verbal ones, are apt to grow more definite when repeated. Hypothesis warps perceptions as it warps thoughts.
[18]Though the subdivision into chambers of the shell does not correspond to the subdivision into cell-units it may still be held that since in the solitary types the subdivision of the nucleus is followed by formation of new individuals which separate, and since in the compound types the subdivision of the nucleus is followed by growth and formation of new chambers, the compound type must be regarded as an aggregate of the second order.
[18]Though the subdivision into chambers of the shell does not correspond to the subdivision into cell-units it may still be held that since in the solitary types the subdivision of the nucleus is followed by formation of new individuals which separate, and since in the compound types the subdivision of the nucleus is followed by growth and formation of new chambers, the compound type must be regarded as an aggregate of the second order.
[19]A critic says the question is “what are the forces internal or external which produce union or separation.” A proximate reply is—degree of nutrition. As in a plant new individuals or rudiments of them are cast off where nutrition is failing, so in a compound animal. The connecting part dwindles if it ceases to carry nutriment.
[19]A critic says the question is “what are the forces internal or external which produce union or separation.” A proximate reply is—degree of nutrition. As in a plant new individuals or rudiments of them are cast off where nutrition is failing, so in a compound animal. The connecting part dwindles if it ceases to carry nutriment.
[20]It has been pointed out that I have here understated the evidence of physiological integration. An instance of it amongHydrozoais shown in Fig.151, but by a strange oversight I have forgotten to name the various cases furnished by theSiphonophorain which the individual polypes of a compound aggregate are greatly specialized in adaptation to different functions.
[20]It has been pointed out that I have here understated the evidence of physiological integration. An instance of it amongHydrozoais shown in Fig.151, but by a strange oversight I have forgotten to name the various cases furnished by theSiphonophorain which the individual polypes of a compound aggregate are greatly specialized in adaptation to different functions.
[21]Recently Mr. T. H. Morgan has made elaborate experiments which show thatPlanaria Maculatamay be cut into many pieces from various parts and of various shapes—even a slice out of the side—and each, if not too small, will produce a perfect animal.
[21]Recently Mr. T. H. Morgan has made elaborate experiments which show thatPlanaria Maculatamay be cut into many pieces from various parts and of various shapes—even a slice out of the side—and each, if not too small, will produce a perfect animal.
[22]Since this was written in 1865 there has come to light evidence more completely to the point than any at that time known. In the subdivision ofPlatyhelminthesknown asTurbellaria, there are some, theMicrostomidawhich, by a process of segmentation form “chains of 4, then 8, then 16, and sometimes even 32 individuals.” “Each forms a mouth [lateral] and for some time the chain persists, but the individuals ultimately become sexually matured and then separate.” (Shipley,Zoology of the Invertebrata, p. 92.) Here it should be remarked that the lateral mouths enable the members of a string to feed separately, and that nutrition not being interfered with they doubtless gain some advantage by temporary maintenance of their union—probably in creeping.
[22]Since this was written in 1865 there has come to light evidence more completely to the point than any at that time known. In the subdivision ofPlatyhelminthesknown asTurbellaria, there are some, theMicrostomidawhich, by a process of segmentation form “chains of 4, then 8, then 16, and sometimes even 32 individuals.” “Each forms a mouth [lateral] and for some time the chain persists, but the individuals ultimately become sexually matured and then separate.” (Shipley,Zoology of the Invertebrata, p. 92.) Here it should be remarked that the lateral mouths enable the members of a string to feed separately, and that nutrition not being interfered with they doubtless gain some advantage by temporary maintenance of their union—probably in creeping.
[23]I find that the reasons for regarding the segment of aTæniaas answering to an individual of the second order of aggregation, are much stronger than I supposed when writing the above. Van Beneden says:—“Le Proglottis (segment) ayant acquis tout son développement, se détache ordinairement de la colonie et continue encore à croître dans l’intestin du même animal; il change même souvent de forme et semble doué d’une nouvelle vie; ses angles s’effacent, tout le corps s’arrondit, et il nage comme une Planaire au milieu des muscosités intestinales.”
[23]I find that the reasons for regarding the segment of aTæniaas answering to an individual of the second order of aggregation, are much stronger than I supposed when writing the above. Van Beneden says:—“Le Proglottis (segment) ayant acquis tout son développement, se détache ordinairement de la colonie et continue encore à croître dans l’intestin du même animal; il change même souvent de forme et semble doué d’une nouvelle vie; ses angles s’effacent, tout le corps s’arrondit, et il nage comme une Planaire au milieu des muscosités intestinales.”
[24]Though this was doubtful in 1865 it is no longer doubtful. In an individualCtenodrilus monostylus, which multiplies by dividing and subdividing itself, “parts arise which are destitute of both head and anus and at times consist of only a single segment.” In another species,C. pardalis, there is separation into many segments; and each segment before separating forms a budding zone out of which other segments are afterwards produced, completing the animal (Korschelt and Heider,Embryology, i, 301–2).
[24]Though this was doubtful in 1865 it is no longer doubtful. In an individualCtenodrilus monostylus, which multiplies by dividing and subdividing itself, “parts arise which are destitute of both head and anus and at times consist of only a single segment.” In another species,C. pardalis, there is separation into many segments; and each segment before separating forms a budding zone out of which other segments are afterwards produced, completing the animal (Korschelt and Heider,Embryology, i, 301–2).
[25]In place of those originally here instanced about which there are disputes, I may give an undoubted one described by McIntosh, theSyllis ramosa, a species of chætopod living in hexactinellid sponges from the Arafura Sea, which branches laterally repeatedly so as to extend in all directions through the canals of the sponge. In most cases the buds terminate in oval segments with two long cirri each. But male and female buds were found, provided each with a head, and containing ovaries and testes. Sometimes these sexual buds had become separate from the branched stock.
[25]In place of those originally here instanced about which there are disputes, I may give an undoubted one described by McIntosh, theSyllis ramosa, a species of chætopod living in hexactinellid sponges from the Arafura Sea, which branches laterally repeatedly so as to extend in all directions through the canals of the sponge. In most cases the buds terminate in oval segments with two long cirri each. But male and female buds were found, provided each with a head, and containing ovaries and testes. Sometimes these sexual buds had become separate from the branched stock.
[26]The nameAnnulosa, once used to embrace theAnnelidaandArthropoda, has of late ceased to be used. It seems to me better thanAppendiculata, both as being more obviously descriptive and as being more exclusive.
[26]The nameAnnulosa, once used to embrace theAnnelidaandArthropoda, has of late ceased to be used. It seems to me better thanAppendiculata, both as being more obviously descriptive and as being more exclusive.
[27]The fusion of the segments forming the Arthropod head and the extreme changes, or perhaps in some cases disappearances, of their appendages, put great difficulties in the way of identification; so that there are differences of opinion respecting the number of included segments. Prof. MacBride writes:—“It is highly probable that a primary head (præoral lobe or præstomium) has been derived from annelid ancestors, but the secondary fusion of body-segments with this head, in other words the formation of a secondary head, has gone on independently in the different classes of the phylumArthropoda, viz.,Arachnida,Crustacea, andTracheata(including Insects and Myriapods). Judged by the number of appendages (which gives an inferior limit) the head of a malacostracous Crustacean consists of præstomium and 8 segments; the head of an insect of præstomium and 4 segments; the head of a Myriapod of præstomium and 3 segments; and the head of an Arachnid of præstomium and 3 segments.” Again, the comment of Mr. J. T. Cunningham is:—“According to Claus and most modern authorities there are only 5 segments in the head of an Arthropod, the eyes not counting as appendages; and further it should be noted that the second pair of antennæ are wanting in Insects.”Of course difference of opinion respecting the number of somites in the head involves difference of opinion respecting the number constituting the entire body, which, in the higher Arthropods, is said by some to be 19 and by others 20. But those who thus differ in detail, agree in regarding all the segments of head and body as homologous, and this is the essential point with which we are here concerned.
[27]The fusion of the segments forming the Arthropod head and the extreme changes, or perhaps in some cases disappearances, of their appendages, put great difficulties in the way of identification; so that there are differences of opinion respecting the number of included segments. Prof. MacBride writes:—“It is highly probable that a primary head (præoral lobe or præstomium) has been derived from annelid ancestors, but the secondary fusion of body-segments with this head, in other words the formation of a secondary head, has gone on independently in the different classes of the phylumArthropoda, viz.,Arachnida,Crustacea, andTracheata(including Insects and Myriapods). Judged by the number of appendages (which gives an inferior limit) the head of a malacostracous Crustacean consists of præstomium and 8 segments; the head of an insect of præstomium and 4 segments; the head of a Myriapod of præstomium and 3 segments; and the head of an Arachnid of præstomium and 3 segments.” Again, the comment of Mr. J. T. Cunningham is:—“According to Claus and most modern authorities there are only 5 segments in the head of an Arthropod, the eyes not counting as appendages; and further it should be noted that the second pair of antennæ are wanting in Insects.”
Of course difference of opinion respecting the number of somites in the head involves difference of opinion respecting the number constituting the entire body, which, in the higher Arthropods, is said by some to be 19 and by others 20. But those who thus differ in detail, agree in regarding all the segments of head and body as homologous, and this is the essential point with which we are here concerned.
[28]Prof. MacBride corrects this statement by saying that “The ctenidia or gills (which inMolluscagenerally are represented only by a single pair) are here represented by a large number of pairs; they do not, however, correspond in either number or position to the shell plates.” It may, I think, be contended that if these had any morphological significance, they would not differ in arrangement from the shell plates, and would not be limited to this special type of Mollusc.
[28]Prof. MacBride corrects this statement by saying that “The ctenidia or gills (which inMolluscagenerally are represented only by a single pair) are here represented by a large number of pairs; they do not, however, correspond in either number or position to the shell plates.” It may, I think, be contended that if these had any morphological significance, they would not differ in arrangement from the shell plates, and would not be limited to this special type of Mollusc.
[29]Though it is alleged that at a later stage the posterior part of the skull is formed by fusion of divisions which are assumed to represent vertebræ, yet it is admitted that the anterior part of the skull never shows any signs of such division. Moreover in both parts the bones show no trace of primitive segmentation.
[29]Though it is alleged that at a later stage the posterior part of the skull is formed by fusion of divisions which are assumed to represent vertebræ, yet it is admitted that the anterior part of the skull never shows any signs of such division. Moreover in both parts the bones show no trace of primitive segmentation.
[30]See note at the end of the chapter.
[30]See note at the end of the chapter.
[31]A qualifying fact should be named. When the production of vertebral segments has become constitutionally established, so that there is an innate tendency to form them, there arises a liability to form supernumerary ones; and this, from time to time recurring, may lengthen the series, as in the body of a snake or the neck of a swan. This qualification, however, affects equally the hypothesis of an ideal type and the hypothesis of mechanical genesis.
[31]A qualifying fact should be named. When the production of vertebral segments has become constitutionally established, so that there is an innate tendency to form them, there arises a liability to form supernumerary ones; and this, from time to time recurring, may lengthen the series, as in the body of a snake or the neck of a swan. This qualification, however, affects equally the hypothesis of an ideal type and the hypothesis of mechanical genesis.
[32]Here and throughout, the wordradialis applied equally to the spiral and the whorled structures. These, as being alike on all sides, are similarly distinguished from arrangements that are alike on two sides only.
[32]Here and throughout, the wordradialis applied equally to the spiral and the whorled structures. These, as being alike on all sides, are similarly distinguished from arrangements that are alike on two sides only.
[33]It should be added that this change of distribution is not due to change in the relative positions of the insertions of the leaves but to their twistings.
[33]It should be added that this change of distribution is not due to change in the relative positions of the insertions of the leaves but to their twistings.
[34]We may note that some of these leaves, as those of the Lime, furnish indications of the ratio which exists between the effects of individual circumstances and those of typical tendencies. On the one hand, the leaves borne by these drooping branches of the Lime are with hardly an exception unsymmetrical more or less decidedly, even in positions where the causes of unsymmetry are not in action: a fact showing us the repetition of the type irrespective of the conditions. On the other hand, the degree of deviation from symmetry is extremely variable, even on the same shoot: a fact proving that the circumstances of the individual leaf are influential in modifying its form. But the most striking evidence of this direct modification is afforded by the suckers of the Lime. Growing, as these do, in approximately upright attitudes, the leaves they bear do not stand to one another in the way above described, and the causes of unsymmetry are not in action; and here, though there is a general leaning to the unsymmetrical form, a large proportion of the leaves become quite symmetrical.
[34]We may note that some of these leaves, as those of the Lime, furnish indications of the ratio which exists between the effects of individual circumstances and those of typical tendencies. On the one hand, the leaves borne by these drooping branches of the Lime are with hardly an exception unsymmetrical more or less decidedly, even in positions where the causes of unsymmetry are not in action: a fact showing us the repetition of the type irrespective of the conditions. On the other hand, the degree of deviation from symmetry is extremely variable, even on the same shoot: a fact proving that the circumstances of the individual leaf are influential in modifying its form. But the most striking evidence of this direct modification is afforded by the suckers of the Lime. Growing, as these do, in approximately upright attitudes, the leaves they bear do not stand to one another in the way above described, and the causes of unsymmetry are not in action; and here, though there is a general leaning to the unsymmetrical form, a large proportion of the leaves become quite symmetrical.
[35]It was by an observation on the forms of leaves, that I was first led to the views set forth in the preceding and succeeding chapters on the morphological differentiation of plants and animals. In the year 1851, during a country ramble in which the structures of plants had been a topic of conversation with a friend—Mr. G. H. Lewes—I happened to pick up the leaf of a buttercup, and, drawing it by its foot-stalk through my fingers so as to thrust together its deeply-cleft divisions, observed that its palmate and almost radial form was changed into a bilateral one; and that were the divisions to grow together in this new position, an ordinary bilateral leaf would result. Joining this observation with the familiar fact that leaves, in common with the larger members of plants, habitually turn themselves to the light, it occurred to me that a natural change in the circumstances of the leaf might readily cause such a modification of form as that which I had produced artificially. If, as they often do with plants, soil and climate were greatly to change the habit of the buttercup, making it branched and shrub-like; and if these palmate leaves were thus much overshadowed by one another; would not the inner segments of the leaves grow towards the periphery of the plant where the light was greatest, and so change the palmate form into a more decidedly bilateral form? Immediately I began to look round for evidence of the relation between the forms of leaves and the general characters of the plants they belong to; and soon found some signs of connexion. Certain anomalies, or seeming anomalies, however, prevented me from then pursuing the inquiry much further. But consideration cleared up these difficulties; and the idea afterwards widened into the general doctrine here elaborated. Occupation with other things prevented me from giving expression to this general doctrine until Jan. 1859; when I published an outline of it in theMedico-Chirugical Review.
[35]It was by an observation on the forms of leaves, that I was first led to the views set forth in the preceding and succeeding chapters on the morphological differentiation of plants and animals. In the year 1851, during a country ramble in which the structures of plants had been a topic of conversation with a friend—Mr. G. H. Lewes—I happened to pick up the leaf of a buttercup, and, drawing it by its foot-stalk through my fingers so as to thrust together its deeply-cleft divisions, observed that its palmate and almost radial form was changed into a bilateral one; and that were the divisions to grow together in this new position, an ordinary bilateral leaf would result. Joining this observation with the familiar fact that leaves, in common with the larger members of plants, habitually turn themselves to the light, it occurred to me that a natural change in the circumstances of the leaf might readily cause such a modification of form as that which I had produced artificially. If, as they often do with plants, soil and climate were greatly to change the habit of the buttercup, making it branched and shrub-like; and if these palmate leaves were thus much overshadowed by one another; would not the inner segments of the leaves grow towards the periphery of the plant where the light was greatest, and so change the palmate form into a more decidedly bilateral form? Immediately I began to look round for evidence of the relation between the forms of leaves and the general characters of the plants they belong to; and soon found some signs of connexion. Certain anomalies, or seeming anomalies, however, prevented me from then pursuing the inquiry much further. But consideration cleared up these difficulties; and the idea afterwards widened into the general doctrine here elaborated. Occupation with other things prevented me from giving expression to this general doctrine until Jan. 1859; when I published an outline of it in theMedico-Chirugical Review.
[36]It is objected to the above interpretation that “many flowers of sizes intermediate between the Hollyhock and the Agrimony are radially symmetrical and yet grow sideways. I may mention variousLiliaceæ, e.g.Chlorophytum,Eucomis,Muscari,Anthericum.Sagittaria, also, has many of its flowers in this position. Further, if the higher insects alight on flowers in a definite way, as they do, the parts of the flower must bear different relations to the visiting insect, however large, so that flowers unvisited ought all to be zygomorphic.” My reply is that in the sense which here concerns us, the different petals of the Hollyhock-flower do not bear different relations to the visiting insect; since, practically, the upper and lateral petals bear no physical relations at all: in so far as the visiting bee is concerned they are non-existent. The argument implies that change in the form of a flower from the radial to the bilateral is likely to take place only when the contact-relations of the petals to the visiting insect, are such as to make some forms facilitate its action more than others; and the large petals of the Hollyhock cannot facilitate its action at all. In respect of theLiliaceæinstanced, it is needful to inquire whether the structures are such that this alleged cause of bilateral symmetry can come into play.
[36]It is objected to the above interpretation that “many flowers of sizes intermediate between the Hollyhock and the Agrimony are radially symmetrical and yet grow sideways. I may mention variousLiliaceæ, e.g.Chlorophytum,Eucomis,Muscari,Anthericum.Sagittaria, also, has many of its flowers in this position. Further, if the higher insects alight on flowers in a definite way, as they do, the parts of the flower must bear different relations to the visiting insect, however large, so that flowers unvisited ought all to be zygomorphic.” My reply is that in the sense which here concerns us, the different petals of the Hollyhock-flower do not bear different relations to the visiting insect; since, practically, the upper and lateral petals bear no physical relations at all: in so far as the visiting bee is concerned they are non-existent. The argument implies that change in the form of a flower from the radial to the bilateral is likely to take place only when the contact-relations of the petals to the visiting insect, are such as to make some forms facilitate its action more than others; and the large petals of the Hollyhock cannot facilitate its action at all. In respect of theLiliaceæinstanced, it is needful to inquire whether the structures are such that this alleged cause of bilateral symmetry can come into play.
[37]I had intended here to insert a figure exhibiting these differences; but as the Cow-parsnip does not flower till July, and as I can find no drawing of the umbel which adequately represents its details, I am obliged to take another instance.
[37]I had intended here to insert a figure exhibiting these differences; but as the Cow-parsnip does not flower till July, and as I can find no drawing of the umbel which adequately represents its details, I am obliged to take another instance.
[38]It has been pointed out to me that “the extreme development of the corolla so often found in the outer flowers or on the outer side of the outer flowers in closely-packed inflorescences, associated as it often is with disappearance of stamens or carpels or both, is usually put down to specialization of these outer flowers for attractive purposes. Since the whole inflorescence is increased in conspicuousness by such a modification, it is supposed that natural selection favoured those plants which sacrificed a portion of their seed-bearing capacity for the supposed greater advantage of securing more insect visits.” But granting this interpretation, it may still be held that increase of attractiveness due to increase of area must be achieved by florets at the periphery, and that their ability to achieve it depends on their having an outer, unoccupied, space which the inner florets have not; so that, though in a more indirect way, their different development is determined by different exposure to conditions.
[38]It has been pointed out to me that “the extreme development of the corolla so often found in the outer flowers or on the outer side of the outer flowers in closely-packed inflorescences, associated as it often is with disappearance of stamens or carpels or both, is usually put down to specialization of these outer flowers for attractive purposes. Since the whole inflorescence is increased in conspicuousness by such a modification, it is supposed that natural selection favoured those plants which sacrificed a portion of their seed-bearing capacity for the supposed greater advantage of securing more insect visits.” But granting this interpretation, it may still be held that increase of attractiveness due to increase of area must be achieved by florets at the periphery, and that their ability to achieve it depends on their having an outer, unoccupied, space which the inner florets have not; so that, though in a more indirect way, their different development is determined by different exposure to conditions.
[39]One of my critics writes:—“This chapter might of course be enormously extended, not only as in the preceding ones by citation of quite similar cases, but by the introduction of fresh groups of cases.”
[39]One of my critics writes:—“This chapter might of course be enormously extended, not only as in the preceding ones by citation of quite similar cases, but by the introduction of fresh groups of cases.”
[40]Natural selection may have operated in establishing a constitutional tendency to other sudden abridgments. Mr. Tansley alleges that this is a part-cause of the varying distribution of leaves. He says:—“I have myself made some observations on the length of internodes in the Beech, and am satisfied that it follows quite other laws, connected with the suitable disposition of the leaves on the branch. Although I have not had the opportunity of following up this line of work so as in any way to generalize the results, I suspect that ‘indirect equilibration’ is a widespread cause of such variation.”
[40]Natural selection may have operated in establishing a constitutional tendency to other sudden abridgments. Mr. Tansley alleges that this is a part-cause of the varying distribution of leaves. He says:—“I have myself made some observations on the length of internodes in the Beech, and am satisfied that it follows quite other laws, connected with the suitable disposition of the leaves on the branch. Although I have not had the opportunity of following up this line of work so as in any way to generalize the results, I suspect that ‘indirect equilibration’ is a widespread cause of such variation.”
[41]It is but just to the memory of Wolff, here to point out that he was immensely in advance of Goethe in his rationale of these metamorphoses. Whatever greater elaboration Goethe gave to the theory considered as an induction, seems to me more than counter-balanced by the irrationality of his deductive interpretation; which unites mediæval physiology with Platonic philosophy. A dominant idea with him is that leaves exist for the purpose of carrying off crude juices—that “as long as there are crude juices to be carried off, the plant must be provided with organs competent to effect the task”; that while “the less pure fluids are got rid of, purer ones are introduced” and that “if nourishment is withheld, that operation of nature (flowering) is facilitated and hastened; the organs of the nodes (leaves) become more refined in texture, the action of the purified juices becomes stronger, and the transformation of parts having now become possible, takes place without delay.” This being the proximate explanation, the ultimate explanation is, that Nature wishes to form flowers—that when a plant flowers it “attains the end prescribed to it by nature”; and that so “Nature at length attains her object.” Instead of vitiating his induction by a teleology that is as unwarranted in its assigned object as in its assigned means, Wolff ascribes the phenomena to a cause which, whether sufficient or not, is strictly scientific in its character. Variation of nutrition is unquestionably a “true cause” of variation in plant-structure. We have here no imaginary action of a fictitious agency; but an ascertained action of a known agency.
[41]It is but just to the memory of Wolff, here to point out that he was immensely in advance of Goethe in his rationale of these metamorphoses. Whatever greater elaboration Goethe gave to the theory considered as an induction, seems to me more than counter-balanced by the irrationality of his deductive interpretation; which unites mediæval physiology with Platonic philosophy. A dominant idea with him is that leaves exist for the purpose of carrying off crude juices—that “as long as there are crude juices to be carried off, the plant must be provided with organs competent to effect the task”; that while “the less pure fluids are got rid of, purer ones are introduced” and that “if nourishment is withheld, that operation of nature (flowering) is facilitated and hastened; the organs of the nodes (leaves) become more refined in texture, the action of the purified juices becomes stronger, and the transformation of parts having now become possible, takes place without delay.” This being the proximate explanation, the ultimate explanation is, that Nature wishes to form flowers—that when a plant flowers it “attains the end prescribed to it by nature”; and that so “Nature at length attains her object.” Instead of vitiating his induction by a teleology that is as unwarranted in its assigned object as in its assigned means, Wolff ascribes the phenomena to a cause which, whether sufficient or not, is strictly scientific in its character. Variation of nutrition is unquestionably a “true cause” of variation in plant-structure. We have here no imaginary action of a fictitious agency; but an ascertained action of a known agency.
[42]TheNatural History Reviewfor July, 1865, contained an article on the doctrine of morphological composition set forth in the foregoing Chaps. I. to III. In this article, which unites exposition and criticism in a way that is unhappily not common with reviewers, it is suggested that the spiral structure may be caused by natural selection. When this article appeared, the foregoing five pages were standing over in type, as surplus from No. 14, issued in June, 1865.
[42]TheNatural History Reviewfor July, 1865, contained an article on the doctrine of morphological composition set forth in the foregoing Chaps. I. to III. In this article, which unites exposition and criticism in a way that is unhappily not common with reviewers, it is suggested that the spiral structure may be caused by natural selection. When this article appeared, the foregoing five pages were standing over in type, as surplus from No. 14, issued in June, 1865.
[43]A verifying comment on this paragraph runs as follows:—“In the Hypotricha Infusoria, which creep over solid surfaces, there is a differentiation between ventral and dorsal surface and an approach to bilateral symmetry. The ventral surface is provided with movable cilia, the dorsal with immobile setæ.”
[43]A verifying comment on this paragraph runs as follows:—“In the Hypotricha Infusoria, which creep over solid surfaces, there is a differentiation between ventral and dorsal surface and an approach to bilateral symmetry. The ventral surface is provided with movable cilia, the dorsal with immobile setæ.”
[44]Criticisms on the above passage have shown the need for naming sundry complications. These complications chiefly, if not wholly, arise from changes in modes of life—changes from the locomotive to the stationary, and from the stationary to the locomotive. Referring to my statement that (ignoring the spherical) the radial type is the lowest and must be taken as antecedent to the bilateral type, it is alleged that all existing “radial animals above Protozoa are probably derived from free-swimming, bilaterally-symmetrical animals.” If this is intended to include the planulæ of the hydroid polyps, then it seems rather a straining of the evidence. These locomotive embryos, described as severally having the structure of a gastrula with a closed mouth, can be said to show bilateralness only because the first two tentacles make their appearance on opposite sides of the mouth—a bilateralness which lasts only till two other tentacles make their appearance in a plane at right angles, so giving the radial structure. I think the criticism applies only to cases furnished by Echinoderms. The larvæ of these creatures have bilaterally-symmetrical structures, which they retain as long as they swim about and which such of them as fix themselves lose by becoming similarly related to conditions all round: the radial structure being retained by those types which, becoming subsequently detached, move about miscellaneously. But, as happens in some of the Sea-urchins and still more among the Holothurians, the structure is again made bilaterally-symmetrical by a locomotive life pursued with one end foremost. Should it be contended that the conditions and the forms are reciprocally influential—that either may initiate the other, it still remains unquestionable that ordinarily the conditions are the antecedents, as is so abundantly shown by plants.
[44]Criticisms on the above passage have shown the need for naming sundry complications. These complications chiefly, if not wholly, arise from changes in modes of life—changes from the locomotive to the stationary, and from the stationary to the locomotive. Referring to my statement that (ignoring the spherical) the radial type is the lowest and must be taken as antecedent to the bilateral type, it is alleged that all existing “radial animals above Protozoa are probably derived from free-swimming, bilaterally-symmetrical animals.” If this is intended to include the planulæ of the hydroid polyps, then it seems rather a straining of the evidence. These locomotive embryos, described as severally having the structure of a gastrula with a closed mouth, can be said to show bilateralness only because the first two tentacles make their appearance on opposite sides of the mouth—a bilateralness which lasts only till two other tentacles make their appearance in a plane at right angles, so giving the radial structure. I think the criticism applies only to cases furnished by Echinoderms. The larvæ of these creatures have bilaterally-symmetrical structures, which they retain as long as they swim about and which such of them as fix themselves lose by becoming similarly related to conditions all round: the radial structure being retained by those types which, becoming subsequently detached, move about miscellaneously. But, as happens in some of the Sea-urchins and still more among the Holothurians, the structure is again made bilaterally-symmetrical by a locomotive life pursued with one end foremost. Should it be contended that the conditions and the forms are reciprocally influential—that either may initiate the other, it still remains unquestionable that ordinarily the conditions are the antecedents, as is so abundantly shown by plants.
[45]Should it be proved that the Ascidian is a degraded vertebrate, then the argument will be strengthened; since loss of bilateral symmetry has gone along with change to asymmetrical conditions.
[45]Should it be proved that the Ascidian is a degraded vertebrate, then the argument will be strengthened; since loss of bilateral symmetry has gone along with change to asymmetrical conditions.
[46]A critical comment made on this sentence runs as follows:—“The aërial roots of most epiphytic orchids contain chlorophyll in their cortex throughout their length, but the cortex being covered by a ‘velamen’ of air-containing cells which break up and reflect incident light, the green colour is not visible through this opaque coat. When moistened the cells of the velamen take up water and the green colour immediately shows through. Such roots do not however possess stomata. The roots of certain species ofAngræcum, however, contain the whole of the assimilating tissue of the plant.”
[46]A critical comment made on this sentence runs as follows:—“The aërial roots of most epiphytic orchids contain chlorophyll in their cortex throughout their length, but the cortex being covered by a ‘velamen’ of air-containing cells which break up and reflect incident light, the green colour is not visible through this opaque coat. When moistened the cells of the velamen take up water and the green colour immediately shows through. Such roots do not however possess stomata. The roots of certain species ofAngræcum, however, contain the whole of the assimilating tissue of the plant.”
[47]The current doctrine that chlorophyll isthespecial substance concerned in vegetal assimilation, either as an agent or as an incidental product, must be taken with considerable qualification. Besides the fact that among theAlgæthere are many red and brown kinds which thrive; and besides the fact that among the lower Archegoniates there are species which are purple or chocolate-coloured; there is the fact that Phænogams are not all green. We have the Copper-Beech, we have the black-purpleColeus Verschaffeltii, and we have the red variety of Cabbage, which seems to flourish as well as the other varieties. Chlorophyll, then, must be regarded simply as the most general of the colouring matters found in those parts of plants in which assimilation is being effected by the agency of light. Though it is always presentalong withthe red and brown pigments, yet there is much evidence to show that these are the actual assimilative pigments.
[47]The current doctrine that chlorophyll isthespecial substance concerned in vegetal assimilation, either as an agent or as an incidental product, must be taken with considerable qualification. Besides the fact that among theAlgæthere are many red and brown kinds which thrive; and besides the fact that among the lower Archegoniates there are species which are purple or chocolate-coloured; there is the fact that Phænogams are not all green. We have the Copper-Beech, we have the black-purpleColeus Verschaffeltii, and we have the red variety of Cabbage, which seems to flourish as well as the other varieties. Chlorophyll, then, must be regarded simply as the most general of the colouring matters found in those parts of plants in which assimilation is being effected by the agency of light. Though it is always presentalong withthe red and brown pigments, yet there is much evidence to show that these are the actual assimilative pigments.
[48]This seems as fit a place as any for noting the fact, that the greater part of what we call beauty in the organic world, is in some way dependent on the sexual relation. It is not only so with the colours and odours of flowers. It is so, too, with the brilliant plumage of birds; and it is probable that the colours of the more conspicuous insects are in part similarly determined. The remarkable circumstance is, that these characteristics, which have originated by furthering the production of the best offspring, while they are naturally those which render the organisms possessing them attractive to one another, directly or indirectly, should also be those which are so generally attractive to us—those without which the fields and woods would lose half their charm. It is interesting, too, to observe how the conception of human beauty is in a considerable degree thus originated. And the trite observation that the element of beauty which grows out of the sexual relation is so predominant in æsthetic products—in music, in the drama, in fiction, in poetry—gains a new meaning when we see how deep down in organic nature this connexion extends.
[48]This seems as fit a place as any for noting the fact, that the greater part of what we call beauty in the organic world, is in some way dependent on the sexual relation. It is not only so with the colours and odours of flowers. It is so, too, with the brilliant plumage of birds; and it is probable that the colours of the more conspicuous insects are in part similarly determined. The remarkable circumstance is, that these characteristics, which have originated by furthering the production of the best offspring, while they are naturally those which render the organisms possessing them attractive to one another, directly or indirectly, should also be those which are so generally attractive to us—those without which the fields and woods would lose half their charm. It is interesting, too, to observe how the conception of human beauty is in a considerable degree thus originated. And the trite observation that the element of beauty which grows out of the sexual relation is so predominant in æsthetic products—in music, in the drama, in fiction, in poetry—gains a new meaning when we see how deep down in organic nature this connexion extends.
[49]Students of vegetal physiology, familiar with the controversies respecting sundry points dealt with in this chapter, will probably be surprised to find taken for granted in it, propositions which they have habitually regarded as open to doubt. Hence it seems needful to say that the conclusions here set forth, have resulted from investigations undertaken for the purpose of forming opinions on several unsettled questions which I had to treat, but which I could find in books no adequate data for treating. The details of these investigations, and the entire argument of which this chapter is partly an abstract, will be found in Appendix C.
[49]Students of vegetal physiology, familiar with the controversies respecting sundry points dealt with in this chapter, will probably be surprised to find taken for granted in it, propositions which they have habitually regarded as open to doubt. Hence it seems needful to say that the conclusions here set forth, have resulted from investigations undertaken for the purpose of forming opinions on several unsettled questions which I had to treat, but which I could find in books no adequate data for treating. The details of these investigations, and the entire argument of which this chapter is partly an abstract, will be found in Appendix C.
[50]To this implied inference it is objected that “excess of nutritive material does not necessarily lead to correspondingly increased growth.” My reply is that a concomitant factor is activity of the tissue, and that in its absence growth is not to be expected.
[50]To this implied inference it is objected that “excess of nutritive material does not necessarily lead to correspondingly increased growth.” My reply is that a concomitant factor is activity of the tissue, and that in its absence growth is not to be expected.
[51]In recent years (since 1890) Prof. Wilhelm Roux, in essays on functional adaptation, has set forth some views akin to the foregoing in respect to the general belief they imply, though differing in respect of the physiological processes he indicates. The following relevant passage has been translated for me from an article of his in theReal-Encyclopädie der gesammten Heilkunde:—“A more complete theory of functional adaptation by the author is founded on the assumption that the ‘functional’ stimulus, or ‘the act of exercising the function’ (in muscles and glands), and especially, in the case of bones, the concussion and tension caused by stress and strain, exert a ‘trophic’ stimulus on the cells, in consequence of which, and along with an increased absorption of nutriment, they grow and eventually increase (or the osteoblasts at the point of greater stimulus form more bone); while, conversely, with continued inactivity, by absence of these stimuli the nourishment of the cell declines so that the waste is insufficiently replaced (or otherwise that the bone-substance gradually loses its power of resistance to the osteoblasts formed as a result of inactivity”).
[51]In recent years (since 1890) Prof. Wilhelm Roux, in essays on functional adaptation, has set forth some views akin to the foregoing in respect to the general belief they imply, though differing in respect of the physiological processes he indicates. The following relevant passage has been translated for me from an article of his in theReal-Encyclopädie der gesammten Heilkunde:—“A more complete theory of functional adaptation by the author is founded on the assumption that the ‘functional’ stimulus, or ‘the act of exercising the function’ (in muscles and glands), and especially, in the case of bones, the concussion and tension caused by stress and strain, exert a ‘trophic’ stimulus on the cells, in consequence of which, and along with an increased absorption of nutriment, they grow and eventually increase (or the osteoblasts at the point of greater stimulus form more bone); while, conversely, with continued inactivity, by absence of these stimuli the nourishment of the cell declines so that the waste is insufficiently replaced (or otherwise that the bone-substance gradually loses its power of resistance to the osteoblasts formed as a result of inactivity”).
[52]An outline of the doctrine set forth in the following chapters, was originally published in theWestminster Reviewfor April, 1852, under the title—A Theory of Population deduced from the General Law of Animal Fertility; and was shortly afterwards republished with a prefatory note stating that it must be accepted as a sketch which I hoped at some future time to elaborate. In now revising and completing it, I have omitted a non-essential part of the argument, while I have expanded the remainder by adding to the number of facts put in evidence, by meeting objections which want of space before obliged me to pass over, and by drawing various secondary conclusions. The original paper, with omissions, will be found in Appendix A to Volume I of this work.
[52]An outline of the doctrine set forth in the following chapters, was originally published in theWestminster Reviewfor April, 1852, under the title—A Theory of Population deduced from the General Law of Animal Fertility; and was shortly afterwards republished with a prefatory note stating that it must be accepted as a sketch which I hoped at some future time to elaborate. In now revising and completing it, I have omitted a non-essential part of the argument, while I have expanded the remainder by adding to the number of facts put in evidence, by meeting objections which want of space before obliged me to pass over, and by drawing various secondary conclusions. The original paper, with omissions, will be found in Appendix A to Volume I of this work.
[53]I was here thinking only of the cases which are general among insects, but it seems that vertebrate animals, too, furnish cases. Mr. Cunningham writes:—“There is a curious instance of this in the Conger: the female grows to 6 or 7 feet long and a weight of 60 lbs. and upwards and then ceases to feed for 6 months while the eggs develop, and when the eggs are shed dies.”
[53]I was here thinking only of the cases which are general among insects, but it seems that vertebrate animals, too, furnish cases. Mr. Cunningham writes:—“There is a curious instance of this in the Conger: the female grows to 6 or 7 feet long and a weight of 60 lbs. and upwards and then ceases to feed for 6 months while the eggs develop, and when the eggs are shed dies.”
[54]I say “normal” for the purpose of excluding not only morbid growths but excess of fat.
[54]I say “normal” for the purpose of excluding not only morbid growths but excess of fat.
[55]To meet a possible criticism it should be remarked that this calculation assumes that the power of asexual reproduction is not exhausted by the end of the month. It has been found that “the successive fissions ofParamœciumcannot continue indefinitely. After some hundreds of generations the products of fission are small, have no mouth, and die unless before this they have been allowed to conjugate with individuals of another brood.” It may, however, be fairly taken for granted that “some hundreds of generations” would take longer than a month.
[55]To meet a possible criticism it should be remarked that this calculation assumes that the power of asexual reproduction is not exhausted by the end of the month. It has been found that “the successive fissions ofParamœciumcannot continue indefinitely. After some hundreds of generations the products of fission are small, have no mouth, and die unless before this they have been allowed to conjugate with individuals of another brood.” It may, however, be fairly taken for granted that “some hundreds of generations” would take longer than a month.
[56]Even this number is far exceeded. Dr. Edward Klein, in a lecture he gave at the Royal Institution on June 2, 1898, asserted that 246 bacteria in a cubic centimetre of nutritive liquid would multiply to 20,000,000 in the course of twenty-four hours: a rate which, at the end of thethirdday, would give, as the offspring of one individual, 537,367,797,000,000.
[56]Even this number is far exceeded. Dr. Edward Klein, in a lecture he gave at the Royal Institution on June 2, 1898, asserted that 246 bacteria in a cubic centimetre of nutritive liquid would multiply to 20,000,000 in the course of twenty-four hours: a rate which, at the end of thethirdday, would give, as the offspring of one individual, 537,367,797,000,000.
[57]It has since been shown that inMyrianida fasciataas many as 29 attached groups exist. SeeCambridge Natural History, Vol. II,Worms, Rotifers and Polyzoa, p. 280.
[57]It has since been shown that inMyrianida fasciataas many as 29 attached groups exist. SeeCambridge Natural History, Vol. II,Worms, Rotifers and Polyzoa, p. 280.
[58]To this passage Prof. MacBride appends the remark:—“This is quite proven now, and the statement as it stands is quite correct; but far better and more minutely worked out cases are to be found amongst theInfusoria. InParamœciumfor example, there are normally present a large macronucleus and a small micronucleus lying alongside of it. When two individuals adhere preparatory to conjugation, the macronucleus breaks up into fragments which are absorbed: the micronucleus—which has some time previously divided into two—begins to break up further and eventually forms eight bodies; all of these except one disappear; this last piece then divides into two; of these two one represents a male genital cell, for it passes over into the body of the otherParamœciumand fuses with one of the two corresponding nuclei there; thus each of the two individuals which adhere fertilizes the other. The two individuals then separate and the nucleus (result of fusion of male and female nuclei) in each divides into four. Of these, two move to one end of the animal and two to the other. The animal then divides into two transversely—each of the products thus having two nuclei which form the micro-and macronucleus of it. Thus it appears that the function of sexual union is simply to give increased vigour to all the vital processesincluding fission. Since as mentioned above (p. 443) if it is prevented, the products of fission are eventually unable to feed themselves.”
[58]To this passage Prof. MacBride appends the remark:—“This is quite proven now, and the statement as it stands is quite correct; but far better and more minutely worked out cases are to be found amongst theInfusoria. InParamœciumfor example, there are normally present a large macronucleus and a small micronucleus lying alongside of it. When two individuals adhere preparatory to conjugation, the macronucleus breaks up into fragments which are absorbed: the micronucleus—which has some time previously divided into two—begins to break up further and eventually forms eight bodies; all of these except one disappear; this last piece then divides into two; of these two one represents a male genital cell, for it passes over into the body of the otherParamœciumand fuses with one of the two corresponding nuclei there; thus each of the two individuals which adhere fertilizes the other. The two individuals then separate and the nucleus (result of fusion of male and female nuclei) in each divides into four. Of these, two move to one end of the animal and two to the other. The animal then divides into two transversely—each of the products thus having two nuclei which form the micro-and macronucleus of it. Thus it appears that the function of sexual union is simply to give increased vigour to all the vital processesincluding fission. Since as mentioned above (p. 443) if it is prevented, the products of fission are eventually unable to feed themselves.”
[59]A passage translated for me from the German may be here given in verification. Dr. Dionys Hellin in an essay on the origin of Multiparity and Twin-births, refers to the thesis above set forth, and says that “the fact that it is generally women of small growth who bear twins is in complete agreement with it.” He adds that “Puech is right in his opinion that twin pregnancies are a direct result of relatively large ovaries (i.e., in comparison with the whole body). He has observed that for the same size of body the ovarium of a pluriparous animal is always of greater volume than that of a uniparous animal ... a sow has ovaries as large as a cow’s; but while the latter bears only one calf [at a time], the sow brings forth 6–15 at each litter. Even in animals of the same species but belonging to different races these relations may be verified,”e.g., Barbary sheep and ordinary sheep.
[59]A passage translated for me from the German may be here given in verification. Dr. Dionys Hellin in an essay on the origin of Multiparity and Twin-births, refers to the thesis above set forth, and says that “the fact that it is generally women of small growth who bear twins is in complete agreement with it.” He adds that “Puech is right in his opinion that twin pregnancies are a direct result of relatively large ovaries (i.e., in comparison with the whole body). He has observed that for the same size of body the ovarium of a pluriparous animal is always of greater volume than that of a uniparous animal ... a sow has ovaries as large as a cow’s; but while the latter bears only one calf [at a time], the sow brings forth 6–15 at each litter. Even in animals of the same species but belonging to different races these relations may be verified,”e.g., Barbary sheep and ordinary sheep.
[60]When, after having held for some years the general doctrine elaborated in these chapters, I agreed, early in 1852, to prepare an outline of it for theWestminster Review, I consulted, among other works, the just-issued third edition of Dr. Carpenter’sPrinciples of Physiology, General and Comparative—seeking in it for facts illustrating the different degrees of fertility of different organisms, I met with a passage, quoted above in§ 339, which seemed tacitly to assert that individual aggrandizement is at variance with the propagation of the race; but nowhere found a distinct enunciation of this truth. I did not then read the Chapter entitled “General View of the Functions,” which held out no promise of such evidence as I was looking for. But on since referring to this chapter, I discovered in it the definite statement that—“there is a certain degree of antagonism between the Nutritive and Reproductive functions, the one being executed at the expense of the other. The reproductive apparatus derives the materials of its operations through the nutritive system, and is entirely dependent upon it for the continuance of its function. If, therefore, it be in a state of excessive activity, it will necessarily draw off from the individual fabric some portion of the aliment destined for its maintenance. It may be universally observed that, when the nutritive functions are particularly active in supporting theindividual, the reproductive system is in a corresponding degree undeveloped,—andvice versâ.” P. 592.
[60]When, after having held for some years the general doctrine elaborated in these chapters, I agreed, early in 1852, to prepare an outline of it for theWestminster Review, I consulted, among other works, the just-issued third edition of Dr. Carpenter’sPrinciples of Physiology, General and Comparative—seeking in it for facts illustrating the different degrees of fertility of different organisms, I met with a passage, quoted above in§ 339, which seemed tacitly to assert that individual aggrandizement is at variance with the propagation of the race; but nowhere found a distinct enunciation of this truth. I did not then read the Chapter entitled “General View of the Functions,” which held out no promise of such evidence as I was looking for. But on since referring to this chapter, I discovered in it the definite statement that—“there is a certain degree of antagonism between the Nutritive and Reproductive functions, the one being executed at the expense of the other. The reproductive apparatus derives the materials of its operations through the nutritive system, and is entirely dependent upon it for the continuance of its function. If, therefore, it be in a state of excessive activity, it will necessarily draw off from the individual fabric some portion of the aliment destined for its maintenance. It may be universally observed that, when the nutritive functions are particularly active in supporting theindividual, the reproductive system is in a corresponding degree undeveloped,—andvice versâ.” P. 592.
[61]The climate, the locality, and the kind of food, are of course all factors; and hence, probably, the differences between the statements of different authorities concerning these several cases. Prof. MacBride writes:—“According to Flower (Mammals, Living and Extinct) the Ferret is a domesticated variety of the common polecat, which has 3 to 8 young. Darwin (Animals and Plants) says that the wild sow often breeds twice a year and produces a litter of 4 to 8, and sometimes even 12. The domestic sow breeds twice and would breed oftener if permitted, and if any good at all produces 8 in litter.”
[61]The climate, the locality, and the kind of food, are of course all factors; and hence, probably, the differences between the statements of different authorities concerning these several cases. Prof. MacBride writes:—
“According to Flower (Mammals, Living and Extinct) the Ferret is a domesticated variety of the common polecat, which has 3 to 8 young. Darwin (Animals and Plants) says that the wild sow often breeds twice a year and produces a litter of 4 to 8, and sometimes even 12. The domestic sow breeds twice and would breed oftener if permitted, and if any good at all produces 8 in litter.”
[62]It is worth while inquiring whether unfitness of the food given to them, is not the chief cause of that sterility which, as Mr. Darwin says, “is the great bar to the domestication of animals.” He remarks that “when animals and plants are removed from their natural conditions, they are extremely liable to have their reproductive systems seriously affected.” Possibly the relative or absolute arrest of genesis, is less due to a direct effect on the reproductive system, than to a changed nutrition of which the reproductive system most clearly shows the results. The matters required for forming an embryo are in a greater proportion nitrogenous than are the matters required for maintaining an adult. Hence, an animal forced to live on insufficiently-nitrogenized food, may have its surplus for reproduction cut off, but still have a sufficiency to keep its own tissues in repair, and appear to be in good health—meanwhile increasing in bulk from excess of the non-nitrogenous matters it eats.
[62]It is worth while inquiring whether unfitness of the food given to them, is not the chief cause of that sterility which, as Mr. Darwin says, “is the great bar to the domestication of animals.” He remarks that “when animals and plants are removed from their natural conditions, they are extremely liable to have their reproductive systems seriously affected.” Possibly the relative or absolute arrest of genesis, is less due to a direct effect on the reproductive system, than to a changed nutrition of which the reproductive system most clearly shows the results. The matters required for forming an embryo are in a greater proportion nitrogenous than are the matters required for maintaining an adult. Hence, an animal forced to live on insufficiently-nitrogenized food, may have its surplus for reproduction cut off, but still have a sufficiency to keep its own tissues in repair, and appear to be in good health—meanwhile increasing in bulk from excess of the non-nitrogenous matters it eats.
[63]Huxley,Anatomy of Invertebrated Animals, p. 274.
[63]Huxley,Anatomy of Invertebrated Animals, p. 274.
[64]Shipley,Zoology of Invertebrata, p. 112.
[64]Shipley,Zoology of Invertebrata, p. 112.
[65]I am told that “Wagner, who described the larva, found that it bored into the bark of trees. It attacks also the wheat plant, and is a most destructive parasite.” Apparently this statement is at variance with the foregoing inference. It is clear, however, that since these heaps of nitrogenous refuse in which it has been found are artificial and recent, they cannot be its natural habitats; and it seems not improbable that these larvæ, suddenly supplied with a more nutritive food in unlimited amount, may have as a consequence acquired this habit of agamogenetic multiplication which did not characterize the species under its natural conditions and relatively low nutrition.
[65]I am told that “Wagner, who described the larva, found that it bored into the bark of trees. It attacks also the wheat plant, and is a most destructive parasite.” Apparently this statement is at variance with the foregoing inference. It is clear, however, that since these heaps of nitrogenous refuse in which it has been found are artificial and recent, they cannot be its natural habitats; and it seems not improbable that these larvæ, suddenly supplied with a more nutritive food in unlimited amount, may have as a consequence acquired this habit of agamogenetic multiplication which did not characterize the species under its natural conditions and relatively low nutrition.
[66]This is exactly the reverse of Mr. Doubleday’s doctrine; which is that throughout both the animal and vegetable kingdoms, “over-feeding checks increase; whilst, on the other hand, a limited or deficient nutriment stimulates and adds to it.” Or, as he elsewhere says—“Be the range of the natural power to increase in any species what it may, theplethoricstate invariably checks it, and thedeplethoricstate invariably develops it; and this happens in the exact ratio of the intensity and completeness of each state, until each state be carried so far as to bring about the actual death of the animal or plant itself.”I have space here only to indicate the misinterpretations on which Mr. Doubleday has based his argument.In the first place, he has confounded normal plethora with what I have, in§ 355, distinguished as abnormal plethora. The cases of infertility accompanying fatness, which he cites in proof that over-feeding checks increase, are not cases of high nutrition properly so-called; but cases of such defective absorption or assimilation as constitutes low nutrition. In Chap. IX, abundant proof was given that a truly plethoric state is an unusually fertile state. It may be added that much of the evidence by which Mr. Doubleday seeks to show that among men, highly-fed classes are infertile classes, may be out-balanced by counter-evidence. Many years ago Mr. G. H. Lewes pointed this out: extracting from a book on the peerage, the names of 16 peers who had, at that time, 186 children; giving an average of 11·6 in a family.Mr. Doubleday insists much on the support given to his theory by the barrenness of very luxuriant plants, and the fruitfulness produced in plants by depletion. Had he been aware that the change from barrenness to fruitfulness in plants, is a change from agamogenesis to gamogenesis—had it been as well known at the time when he wrote as it is now, that a tree which goes on putting out sexless shoots, is thus producing new individuals; and that when it begins to bear fruit, it simply begins to produce new individuals after another manner—he would have perceived that facts of this class do not tell in his favour.In the law which Mr. Doubleday alleges, he sees a guarantee for the maintenance of species. He argues that the plethoric state of the individuals constituting any race of organisms, presupposes conditions so favourable to life that the race can be in no danger; and that rapidity of multiplication becomes needless. Conversely, he argues that a deplethoric state implies unfavourable conditions—implies, consequently, unusual mortality; that is—implies a necessity for increased fertility to prevent the race from dying out. It may be readily shown, however, that such an arrangement would be the reverse of self-adjusting. Suppose a species, too numerous for its food, to be in the resulting deplethoric state. It will, according to Mr. Doubleday, become unusually fertile; and the next generation will be more numerous rather than less numerous. For, by the hypothesis, the unusual fertility due to the deplethoric state, is the cause of undue increase of population. But if the next generation is more numerous while the supply of food has not increased in proportion, then this next generation will be in a still more deplethoric state, and will be still more fertile. Thus there will go on an ever-increasing rate of multiplication, and an ever-decreasing share of food, for each person, until the species disappears. Suppose, on the other hand, the members of a species to be in an unusually plethoric state. Their rate of multiplication, ordinarily sufficient to maintain their numbers, will become insufficient to maintain their numbers. In the next generation, therefore, there will be fewer to eat the already abundant food, which becoming relatively still more abundant, will render the fewer members of the species still more plethoric, and still less fertile, than their parents. And the actions and reactions continuing, the species will presently die out from absolute barrenness.
[66]This is exactly the reverse of Mr. Doubleday’s doctrine; which is that throughout both the animal and vegetable kingdoms, “over-feeding checks increase; whilst, on the other hand, a limited or deficient nutriment stimulates and adds to it.” Or, as he elsewhere says—“Be the range of the natural power to increase in any species what it may, theplethoricstate invariably checks it, and thedeplethoricstate invariably develops it; and this happens in the exact ratio of the intensity and completeness of each state, until each state be carried so far as to bring about the actual death of the animal or plant itself.”
I have space here only to indicate the misinterpretations on which Mr. Doubleday has based his argument.
In the first place, he has confounded normal plethora with what I have, in§ 355, distinguished as abnormal plethora. The cases of infertility accompanying fatness, which he cites in proof that over-feeding checks increase, are not cases of high nutrition properly so-called; but cases of such defective absorption or assimilation as constitutes low nutrition. In Chap. IX, abundant proof was given that a truly plethoric state is an unusually fertile state. It may be added that much of the evidence by which Mr. Doubleday seeks to show that among men, highly-fed classes are infertile classes, may be out-balanced by counter-evidence. Many years ago Mr. G. H. Lewes pointed this out: extracting from a book on the peerage, the names of 16 peers who had, at that time, 186 children; giving an average of 11·6 in a family.
Mr. Doubleday insists much on the support given to his theory by the barrenness of very luxuriant plants, and the fruitfulness produced in plants by depletion. Had he been aware that the change from barrenness to fruitfulness in plants, is a change from agamogenesis to gamogenesis—had it been as well known at the time when he wrote as it is now, that a tree which goes on putting out sexless shoots, is thus producing new individuals; and that when it begins to bear fruit, it simply begins to produce new individuals after another manner—he would have perceived that facts of this class do not tell in his favour.
In the law which Mr. Doubleday alleges, he sees a guarantee for the maintenance of species. He argues that the plethoric state of the individuals constituting any race of organisms, presupposes conditions so favourable to life that the race can be in no danger; and that rapidity of multiplication becomes needless. Conversely, he argues that a deplethoric state implies unfavourable conditions—implies, consequently, unusual mortality; that is—implies a necessity for increased fertility to prevent the race from dying out. It may be readily shown, however, that such an arrangement would be the reverse of self-adjusting. Suppose a species, too numerous for its food, to be in the resulting deplethoric state. It will, according to Mr. Doubleday, become unusually fertile; and the next generation will be more numerous rather than less numerous. For, by the hypothesis, the unusual fertility due to the deplethoric state, is the cause of undue increase of population. But if the next generation is more numerous while the supply of food has not increased in proportion, then this next generation will be in a still more deplethoric state, and will be still more fertile. Thus there will go on an ever-increasing rate of multiplication, and an ever-decreasing share of food, for each person, until the species disappears. Suppose, on the other hand, the members of a species to be in an unusually plethoric state. Their rate of multiplication, ordinarily sufficient to maintain their numbers, will become insufficient to maintain their numbers. In the next generation, therefore, there will be fewer to eat the already abundant food, which becoming relatively still more abundant, will render the fewer members of the species still more plethoric, and still less fertile, than their parents. And the actions and reactions continuing, the species will presently die out from absolute barrenness.
[67]A good deal of this chapter retains its original form; and the above paragraph is reprinted verbatim from theWestminster Reviewfor April, 1852, in which the views developed in the foregoing hundred pages were first sketched out. This paragraph shows how near one may be to a great generalization without seeing it. Though the struggle for life is the alleged motive force; though the process of natural selection is recognized; and though to it is ascribed a share in the evolution of a higher type; yet the conception is not that which Mr. Darwin has worked out with such wonderful skill and knowledge. In the first place, natural selection is here described only as furthering direct adaptation—only as aiding progress by the preservation of individuals in whom functionally-produced modifications have gone on most favourably. In the second place, there is no trace of the idea that natural selection may by co-operation with the cause assigned, or with other causes, producedivergencesof structure; and of course, in the absence of this idea, there is no implication that natural selection has anything to do with the origin of species. And in the third place, the all-important factor of variation—“spontaneous,” or incidental as we may otherwise call it—is wholly ignored. Though use and disuse are, I think, much more potent causes of organic modification than Mr. Darwin supposes—though, while pursuing the inquiry in detail, I have been led to believe that direct equilibration has played a more active part even than I had myself at one time thought; yet I hold Mr. Darwin to have shown beyond question, that a great part of the facts—perhaps the greater part—are explicable only as resulting from the survival of individuals which have deviated in some indirectly-caused way from the ancestral type. Thus, the above paragraph contains merely a passing recognition of the selective process; and indicates no suspicion of the enormous range of its effects, or of the conditions under which a large part of its effects are produced.
[67]A good deal of this chapter retains its original form; and the above paragraph is reprinted verbatim from theWestminster Reviewfor April, 1852, in which the views developed in the foregoing hundred pages were first sketched out. This paragraph shows how near one may be to a great generalization without seeing it. Though the struggle for life is the alleged motive force; though the process of natural selection is recognized; and though to it is ascribed a share in the evolution of a higher type; yet the conception is not that which Mr. Darwin has worked out with such wonderful skill and knowledge. In the first place, natural selection is here described only as furthering direct adaptation—only as aiding progress by the preservation of individuals in whom functionally-produced modifications have gone on most favourably. In the second place, there is no trace of the idea that natural selection may by co-operation with the cause assigned, or with other causes, producedivergencesof structure; and of course, in the absence of this idea, there is no implication that natural selection has anything to do with the origin of species. And in the third place, the all-important factor of variation—“spontaneous,” or incidental as we may otherwise call it—is wholly ignored. Though use and disuse are, I think, much more potent causes of organic modification than Mr. Darwin supposes—though, while pursuing the inquiry in detail, I have been led to believe that direct equilibration has played a more active part even than I had myself at one time thought; yet I hold Mr. Darwin to have shown beyond question, that a great part of the facts—perhaps the greater part—are explicable only as resulting from the survival of individuals which have deviated in some indirectly-caused way from the ancestral type. Thus, the above paragraph contains merely a passing recognition of the selective process; and indicates no suspicion of the enormous range of its effects, or of the conditions under which a large part of its effects are produced.
[68]For the information of those who may wish to examine metamorphoses of these kinds, I may here state that I have found nearly all the examples described, in the neighbourhood of the sea—the last-named, on the shore of Locheil, near Fort William. Whether it is that I have sought more diligently for cases when in such localities, or whether it is that the sea-air favours that excessive nutrition whence these transformations result, I am unable to say.
[68]For the information of those who may wish to examine metamorphoses of these kinds, I may here state that I have found nearly all the examples described, in the neighbourhood of the sea—the last-named, on the shore of Locheil, near Fort William. Whether it is that I have sought more diligently for cases when in such localities, or whether it is that the sea-air favours that excessive nutrition whence these transformations result, I am unable to say.
[69]These two dyes have affinities for different components of the tissues, and may be advantageously used in different cases. Magenta is rapidly taken up by woody matter and other secondary deposits; while logwood colours the cell-membranes, and takes but reluctantly to the substances seized by magenta. By trying both of them on the same structure, we may guard ourselves against any error arising from selective combination.
[69]These two dyes have affinities for different components of the tissues, and may be advantageously used in different cases. Magenta is rapidly taken up by woody matter and other secondary deposits; while logwood colours the cell-membranes, and takes but reluctantly to the substances seized by magenta. By trying both of them on the same structure, we may guard ourselves against any error arising from selective combination.
[70]Those who repeat these experiments must be prepared for great irregularities in the rates of absorption. Succulent structures in general absorb much more slowly than others, and sometimes will scarcely take up the dye at all. The differences between different structures, and the same structure at different times, probably depend on the degrees in which the tissues are charged with liquid and the rates at which they are losing it by evaporation.
[70]Those who repeat these experiments must be prepared for great irregularities in the rates of absorption. Succulent structures in general absorb much more slowly than others, and sometimes will scarcely take up the dye at all. The differences between different structures, and the same structure at different times, probably depend on the degrees in which the tissues are charged with liquid and the rates at which they are losing it by evaporation.
[71]It may be added here that, on considering the mechanical actions that must go on, we are enabled in some measure to understand both how such inosculating channels are initiated, and how the structures of their component cells are explicable. What must happen to one of these elongated prosenchyma-cells if, in the course of its development, it is subject to intermittent compressions? Its squeezed-out liquid while partially escaping laterally, will more largely escape upwards and downwards; and while repeated lateral escape will tend to form lateral channels communicating with laterally-adjacent cells, repeated longitudinal escape will tend to form channels communicating with longitudinally-adjacent cells—so producing continuous though irregular longitudinal canals. Meanwhile each cell into and out of which the nutritive liquid is from time to time squeezed through small openings in its walls, cannot thicken internally in an even manner: deposition will be interfered with by the passage of the currents through the pores. The rush to or from each pore will tend to maintain a funnel-shaped depression in the deposit around; and the opening from cell to cell will so acquire just that shape which the microscope shows up—two hollow cones with their apices meeting at the point where the cell-membranes are in contact. Moreover, as confirming this interpretation, it may be remarked that we are thus supplied with a reason for the differences of shape between these passages from one pitted cell to another, and the analogous passages that exist between cells otherwise formed and otherwise conditioned. In the cells of the medulla, and others which are but little exposed to compression, the passages are severally formed more like a tube with two trumpet-mouths, one in each cell. This is just the form which might be expected where the nutritive fluid passes from cell to cell in moderate currents, and not by the violent rushes caused by intermittent pressures. Of course it is not meant that in each individual cell these structures are determined by these mechanical actions. The facts clearly negative any such conclusion, showing us, as they in many cases do, that these structures are assumed in advance of these mechanical actions. The implication is, that such mechanical actions initiated modifications that have, with the aid of natural selection, been accumulated from generation to generation; until, in conformity with ordinary embryological laws, the cells of the parts exposed to such actions assume these special structures irrespective of the actions—the actions, however, still serving to aid and complete the assumption of the inherited type.
[71]It may be added here that, on considering the mechanical actions that must go on, we are enabled in some measure to understand both how such inosculating channels are initiated, and how the structures of their component cells are explicable. What must happen to one of these elongated prosenchyma-cells if, in the course of its development, it is subject to intermittent compressions? Its squeezed-out liquid while partially escaping laterally, will more largely escape upwards and downwards; and while repeated lateral escape will tend to form lateral channels communicating with laterally-adjacent cells, repeated longitudinal escape will tend to form channels communicating with longitudinally-adjacent cells—so producing continuous though irregular longitudinal canals. Meanwhile each cell into and out of which the nutritive liquid is from time to time squeezed through small openings in its walls, cannot thicken internally in an even manner: deposition will be interfered with by the passage of the currents through the pores. The rush to or from each pore will tend to maintain a funnel-shaped depression in the deposit around; and the opening from cell to cell will so acquire just that shape which the microscope shows up—two hollow cones with their apices meeting at the point where the cell-membranes are in contact. Moreover, as confirming this interpretation, it may be remarked that we are thus supplied with a reason for the differences of shape between these passages from one pitted cell to another, and the analogous passages that exist between cells otherwise formed and otherwise conditioned. In the cells of the medulla, and others which are but little exposed to compression, the passages are severally formed more like a tube with two trumpet-mouths, one in each cell. This is just the form which might be expected where the nutritive fluid passes from cell to cell in moderate currents, and not by the violent rushes caused by intermittent pressures. Of course it is not meant that in each individual cell these structures are determined by these mechanical actions. The facts clearly negative any such conclusion, showing us, as they in many cases do, that these structures are assumed in advance of these mechanical actions. The implication is, that such mechanical actions initiated modifications that have, with the aid of natural selection, been accumulated from generation to generation; until, in conformity with ordinary embryological laws, the cells of the parts exposed to such actions assume these special structures irrespective of the actions—the actions, however, still serving to aid and complete the assumption of the inherited type.
[72]Some exceptions to this occur in plants that have retrograded in the character of their tissues towards the simpler vegetal types. Certain very succulent leaves, such as those ofSempervivum, in which the cellular tissue is immensely developed in comparison with the vascular tissue, seem to have resumed to a considerable extent what we must regard as the primitive form of vegetal circulation—simple absorption from cell to cell. These, when they have lost much of their water, will take up the dye to some distance through their general substance, or rather through its interstices, even neglecting the vessels. At other times, in the same leaves, the vessels will become charged while comparatively little absorption takes place through the cellular tissue. Even in these exceptional cases, however, the movement through cellular tissue is nothing like as fast as the movement through vessels.
[72]Some exceptions to this occur in plants that have retrograded in the character of their tissues towards the simpler vegetal types. Certain very succulent leaves, such as those ofSempervivum, in which the cellular tissue is immensely developed in comparison with the vascular tissue, seem to have resumed to a considerable extent what we must regard as the primitive form of vegetal circulation—simple absorption from cell to cell. These, when they have lost much of their water, will take up the dye to some distance through their general substance, or rather through its interstices, even neglecting the vessels. At other times, in the same leaves, the vessels will become charged while comparatively little absorption takes place through the cellular tissue. Even in these exceptional cases, however, the movement through cellular tissue is nothing like as fast as the movement through vessels.
[73]It seems probable, however, that osmotic distention is here, especially, the more important of the two factors. The rising of the sap in spring may indirectly result, like the sprouting of the seed, from the transformation of starch into sugar. During germination, this change of an oxy-hydro-carbon from an insoluble into a soluble form, leads to rapid endosmose; consequently to great distention of the seed; and therefore to a force which thrusts the contained liquids into the plumule and radicle, and gives them power to displace the soil in their way: it sets up an active internal movement when neither evaporation nor the change which light produces can be operative. And similarly, if, in the spring, the starch stored-up in the roots of a tree passes into the form of sugar, the unusual osmotic absorption that arises will cause an unusual distention—a distention which, being resisted by the tough bark of the roots and stem, will result in a powerful upward thrust of the contained liquid.
[73]It seems probable, however, that osmotic distention is here, especially, the more important of the two factors. The rising of the sap in spring may indirectly result, like the sprouting of the seed, from the transformation of starch into sugar. During germination, this change of an oxy-hydro-carbon from an insoluble into a soluble form, leads to rapid endosmose; consequently to great distention of the seed; and therefore to a force which thrusts the contained liquids into the plumule and radicle, and gives them power to displace the soil in their way: it sets up an active internal movement when neither evaporation nor the change which light produces can be operative. And similarly, if, in the spring, the starch stored-up in the roots of a tree passes into the form of sugar, the unusual osmotic absorption that arises will cause an unusual distention—a distention which, being resisted by the tough bark of the roots and stem, will result in a powerful upward thrust of the contained liquid.
Transcriber’s Note:1. Obvious printers’, spelling and punctuation errors have been silently corrected.2. Where appropriate, original spelling has been retained.3. Both hyphenated and non-hyphenated versions of the same words have been retained where deemed appropriate.