Chapter 20

see captionFig.90.—Apparatus for the manufacture of carbon bisulphide.

Fig.90.—Apparatus for the manufacture of carbon bisulphide.

In the laboratory carbon bisulphide is prepared as follows: A porcelain tube is luted into a furnace in an inclined position, the upper extremity of the tube being closed by a cork, and the lower end connected with a condenser. The tube contains charcoal, which is raised to a red heat, and then pieces of sulphur are placed in the upper end. The sulphur melts, and its vapour comes into contact with the red-hot charcoal, when combination takes place; the vapours condense in the condenser, carbon bisulphide being a liquid boiling at 48°. On a large scale the apparatus depicted in fig.90is employed. A cast-iron cylinder rests on a stand in a furnace. Wood charcoal is charged into the cylinder through the upper tube closed by a clay stopper, whilst the sulphur is introduced through a tube reaching to the bottom of the cylinder. Pieces of sulphur thrown into this tube fall on to the bottom of the cylinder, and are converted into vapour, which passes through the entire layer of charcoal in the cylinder. The vapour of carbon bisulphide thus formed passes through the exit tube first into a Woulfe's bottle (where the sulphur which has not entered into the reaction is condensed), and then into a strongly-cooled condenser or worm.[71]

Pure carbon bisulphide is a colourless liquid, which refracts light strongly, and has a pure ethereal smell; at 0° its specific gravity is 1·293, and at 15° 1·271. If kept for a long time it seems to undergo a change, especially when it is kept under water, in which it is insoluble. It boils at 48°, and the tension of its vapour is so great that it evaporates very easily, producing cold,[72]and therefore it has to be kept in well-stoppered vessels; it is generally kept under a layer of water, which hinders its evaporation and does not dissolve it.[73]

Carbon bisulphide enters into many combinations, which are frequently closely analogous to the compounds of carbonic anhydride. In this respect it is athio-anhydride—i.e.it has the character of the acid anhydrides,[73 bis]like carbonic anhydride, with the difference that the oxygen of the latter is replaced by sulphur. By thio-compounds in general are understood those compounds of sulphur which differ from the compounds of oxygen as carbon bisulphide does from carbonic anhydride—that is, which correspond with the oxygen compounds, but with substitution of sulphur for oxygen. Thus thiosulphuric acid is monothiosulphuric acid—that is, sulphuric acid in which one atom of sulphur replaces one atom of oxygen. With the sulphides of the alkalis and alkaline earths, it forms saline substances corresponding with the carbonates, and these compounds may be termedthiocarbonates. For example, the composition of the sodium salt Na2CS3is exactly like that of sodium carbonate. They are formed by the direct solution of carbon bisulphide in aqueous solutions of the sulphides; but they are difficult to obtain in a crystalline form, because they are easily decomposable. When the solutions of these salts are highly concentrated they begin to decompose, with the evolution of sulphuretted hydrogen and the formation of a carbonate, water taking part in the reaction—for example, K2CS3+ 3H2O = K2CO3+ 3H2S.[74]

A remarkable example[74 bis]of the thio-compounds is found inthiocyanic acid—i.e.cyanic acid in which the oxygen is replaced by sulphur, HCNS. We know (ChapterIX.) that with oxygen the cyanides of the alkaline metals RCN give cyanates RCNO; but theyalso combine with sulphur, and therefore if yellow prussiate of potash be treated as in the preparation of potassium cyanide, and sulphur be added to the mass, potassium thiocyanate, KNCS, is obtained in solution. This salt is much more stable than potassium cyanate; it dissolves without change in water and alcohol, forming colourless solutions from which it easily crystallises on evaporation. It may be kept exposed to air even when in solution; in dissolving in water it absorbs a considerable amount of heat, and forms a starting-point for the preparation of all the thiocyanates, RCNS, and organic compounds in which the metals are replaced by hydrocarbon groups. Such, for example, is volatile mustard oil, C3H5CSN (allyl thiocyanate),[75]which gives to mustard its caustic properties. With ferric salts the thiocyanates give an exceedingly brilliant red coloration, which serves for detecting the smallest traces of ferric salts in solution. Thiocyanic acid, HCNS, may be obtained by a method of double decomposition, by distilling potassium thiocyanate with dilute sulphuric acid. It is a volatile colourless liquid, having a smell recalling that of vinegar, is soluble in water, and may be kept in solution without change.[75 bis]

The sulphur compounds of chlorine Cl2S and Cl2S2may be regarded on the one hand as products of the metalepsis of the sulphides of hydrogen, H2S and H2S2; and on the other hand of the oxygen compounds of chlorine, because chloride of sulphur, Cl2S, resembles chlorine oxide, Cl2O, whilst Cl2S2corresponds with the higher oxide of chlorine; or thirdly, we may see in these compounds the type of the acid chloranhydrides, because they are all decomposed by water, forming hydrochloricacid, and sulphur tetrachloride, SCl4, is decomposed with the formation of sulphurous anhydride.[76]

see captionFig.91.—Apparatus for the preparation of sulphur chloride, and similar volatile compounds prepared by combustion in a stream of chlorine.

Fig.91.—Apparatus for the preparation of sulphur chloride, and similar volatile compounds prepared by combustion in a stream of chlorine.

The compounds of sulphur with chlorine are prepared in the apparatus depicted in fig.91. As sulphur chloride is decomposed by water, the chlorine evolved in the flask C must be dried before coming into contact with the sulphur. It is therefore first passed through a Woulfe's bottle, B, containing sulphuric acid, and then through the cylinder D containing pumice stone moistened with sulphuric acid, and then led into the retort E, in which the sulphur is heated. The compound which is formed distils over into the receiver R. A certain amount of sulphur passes over with the sulphur chloride, but if the resultant distillate be re-saturated with chlorine and distilled no free sulphur remains, the boiling-point rises to 144°, and pure sulphur chloride, S2Cl2, is obtained. It has this formula because its vapour density referred to hydrogen is 68. It is also obtained by heating certain metallic chlorides (stannous, mercuric) with sulphur; both themetal and chlorine then combine with the sulphur. Sulphur chloride is a yellowish-brown liquid, which boils at 144°, and has a specific gravity of 1·70 at 0°. It fumes strongly in the air, reacting on the moisture contained therein, and has a heavy chloranhydrous odour. It dissolves sulphur, is miscible with carbon bisulphide, and falls to the bottom of a vessel containing water, by which it is decomposed, forming sulphurous anhydride and hydrochloric acid; but it first forms various lower stages of oxidation of sulphur, because the addition of silver nitrate to the solution gives a black precipitate. With hydrogen sulphide it gives sulphur and hydrochloric acid, and it reacts directly with metals—especially arsenic, antimony, and tin—forming sulphides and chlorides. In the cold, it absorbs chlorine and givessulphur dichloride, SCl2. The entire conversion into this substance requires the prolonged passage of dry chlorine through sulphur chloride surrounded by a freezing mixture. The distillation of the dichloride must be conducted in a stream of chlorine, as otherwise it partially decomposes into sulphur chloride andchlorine. Pure sulphur dichloride is a reddish-brown liquid, which resembles the lower chloride in many respects; its specific gravity is 1·62; its odour is more suffocating than that of sulphur chloride; it volatilises at 64°.[77]

Thionyl chloride, SOCl2, may be regarded as oxidised sulphur dichloride; it corresponds with sulphur chloride, S2Cl2, in which one atom of sulphur is replaced by oxygen. At the same time it is chlorine oxide (hypochlorous anhydride, Cl2O) combined with sulphur, and also the chloranhydride of sulphurous acid—that is, SO(HO)2, in which the two hydroxyl groups are replaced by two atoms of chlorine, or sulphurous anhydride, SO2, in which one atom of oxygen is replaced by two atoms of chlorine. All these representations are confirmed by reactions of formation, or decompositions; they all agree with our notions of the other compounds of sulphur, oxygen, and chlorine; hence these definitions are not contradictory to each other. Thus, for instance, thionyl chloride was first obtained by Schiff, by the action of dry sulphurous anhydride on phosphorus pentachloride. On distilling the resultant liquid, thionyl chloride comes over first at 80°, and on continuing the distillation phosphorus oxychloride distils over at above 100°, PCl5+ SO2= POCl3+ SOCl2. This mode of preparation is direct evidence of the oxychloride character of SOCl2. Würtz obtained the same substance by passing a stream of chlorine oxide through a cold solution of sulphur in sulphur chloride; the chlorine oxide then combined directly with the sulphur, S + Cl2O = SOCl2, whilst the sulphur chloride remained unchanged (sulphur cannot be combined directly with chlorine oxide, as an explosion takes place). Thionyl chloride is a colourless liquid, with a suffocating acrid smell; it has a specific gravity at 0° of 1·675, and boilsat 78°. It sinks in water, by which it is immediately decomposed, like all chloranhydrides—for example, like carbonyl chloride, which corresponds with it: SOCl2+ H2O = SO2+ 2HCl.[77 bis]

Normalsulphuric acid has two corresponding chloranhydrides; the first, SO2(OH)Cl, is sulphuric acid, SO2(HO)2, in which one equivalent of HO is replaced by chlorine; the second has the composition SO2Cl2—that is, two HO groups are substituted by two of chlorine. The second chloranhydride, or the compound SO2Cl2, is called sulphuryl chloride, and the first chloranhydride, SO2HOCl, may be called chlorosulphonic acid, because it is really an acid; it still retains one hydroxyl of sulphuric acid, and its corresponding salts are known. Thus, potassium chloride absorbs the vapour of sulphuric anhydride, forming a salt, SO3KCl, corresponding with SO3HCl as acid. In acting on sodium chloride it forms hydrochloric acid and the salt NaSO3Cl. This first chloranhydride of sulphuric acid, SO2HOCl, discovered by Williamson, is obtained either by the action of phosphorus pentachloride on sulphuric acid (PCl5+ H2SO4= POCl3+ HCl + HSO3Cl), or directly by the action of dry hydrochloric acid on sulphuric anhydride, SO3+ HCl = HSO3Cl. The most easy and rapid method of its formation is by direct saturation of cold Nordhausen acid with dry hydrochloric acid gas (SO3+ HCl = HSO3Cl), and distillation of the resultant solution; the distillate then contains HSO3Cl. It is a colourless fuming liquid, having an acrid odour; it boils at 153° (according to my determination, confirmed by Konovaloff), and its specific gravity at 19° is 1·776. It is immediately decomposed by water, forming hydrochloric and sulphuric acids, as should be the case with a true chloranhydride. In the reactions of this chloranhydride we find the easiest means of introducing the sulphonic group HSO3into other compounds, because it is here combined with chlorine. The second chloranhydride of sulphuric acid, orsulphuryl chloride, SO2Cl2, was obtained by Regnault by the direct action of the sun's ray on a mixture of equal volumes of chlorine and sulphurous oxide. The gases gradually condense into a liquid, combining together as carbonic oxide does with chlorine. It is also obtained when a mixture of the two gases in acetic acid is allowed to stand for some time. The first chloranhydride, SO3HCl, decomposes when heated at 200° in a closed tube into sulphuric acid and sulphuryl chloride. It boils at 70°, its specific gravity is 1·7, it gives hydrochloric and sulphuric acids with water, fumes in the air, and, judging by its vapour density, does not decompose when distilled.[78]

In the group of the halogens we saw four closely analogous elements—fluorine, chlorine, bromine, and iodine—and we meet with the same number of closely allied analogues in the oxygen group; for besidessulphur this group also includesseleniumandtellurium: O, S, Se, Te. These two groups are very closely allied, both in respect to the magnitudes of their atomic weights and also in the faculty of the elements of both groups for combining with metals. The distinct analogy and definite degree of variance known to us for the halogens, also repeat themselves in the same degree for the elements of the oxygen group. Amongst the halogens fluorine has many peculiarities compared to Cl, Br and I which are more closely analogous, whilst oxygen differs in many respects from S, Se, Te, which possess greater similarities. The analogy in a quantitative respect is perfect in both cases. Thus the halogens combine with H, and the elements of the oxygen group with H2, forming H2O, H2S, H2Se, H2Te. The hydrogen compounds of selenium and tellurium are acids like hydrogen sulphide. Selenium, by simple heating in a stream of hydrogen, partially combines with it directly, but seleniuretted hydrogen is more readily decomposable by heat than sulphuretted hydrogen, and this property is still more developed in telluretted hydrogen. Hydrogen selenide and telluride are gases like sulphuretted hydrogen, and, like it, are soluble in water, form saline compounds with alkalis, precipitate metallic salts, are obtained by the action of acids on their compounds with metals, &c. Selenium and tellurium, like sulphur, give two normal grades of combination with oxygen, both of an acid character, of which only the forms corresponding to sulphurous anhydride—namely, selenious anhydride, SeO2, and tellurous anhydride, TeO2[79]—are formed directly.These are both solids, obtained by the combustion of the elements themselves and by the action of oxidising agents on them. They form feebly energetic acids, having distinct bibasic properties; however, a characteristic difference from SO2is observable both in the physical properties of these compounds and in their stability and capacity for further oxidation, just as in the series of the halogens already known to us, only in an inverse order; in the latter we saw that iodine combines more easily than bromine or chlorine with oxygen, forming more stable oxygen compounds, whereas here, on the contrary, sulphurous anhydride,as we know, is difficultly decomposed, parts with its sulphur with difficulty, and is easily oxidised and especially in its salts, while selenious and tellurous anhydrides are oxidised with difficulty and easily reduced, even by means of sulphurous acid.

Seleniumwas obtained in 1817 by Berzelius from the sublimate which collects in the first chamber in the preparation of sulphuric acid from Fahlun pyrites. Certain other pyrites also contain small quantities of selenium. Some native selenides, especially those of lead, mercury, and copper, have been found in the Hartz Mountains, but only in small quantities. Pyrites and blendes, in which the sulphur is partially replaced by selenium, still remain the chief source for its extraction. When these pyrites are roasted they evolve selenious anhydride, which condenses in the cooler portions of the apparatus in which the pyrites are roasted, and is partially or wholly reduced by the sulphurous anhydride simultaneously formed. The presence of selenium in ores and sublimates is most simply tested by heating them before the blowpipe, when they evolve the characteristic odour of garlic. Selenium exhibits two modifications, like sulphur: one amorphous and insoluble in carbon bisulphide, the other crystalline and slightly soluble in carbon bisulphide (in 1,000 parts at 45° and 6,000 at 0°), and separating from its solutions in monoclinic prisms. If the red precipitate obtained by the action of sulphurous anhydride on selenious anhydride be dried, it gives a brown powder, having a specific gravity of 4·26, which when heated changes colour and fuses to a metallic mass, which gains lustre as it cools. The selenium acquires different properties according to the rate at which it is cooled from a fused state; if rapidly cooled, it remains amorphous and has the same specific gravity (4·28) as the powder, but if slowly cooled it becomes crystalline and opaque, soluble in carbon bisulphide, and has a specific gravity of 4·80. In this form it fuses at 214° and remains unchanged, whilst the amorphous form, especially above 80°, gradually passes into the crystalline variety. The transition is accompanied by the evolution of heat, as in the case of sulphur; thus the analogy between sulphur and selenium is clearly shown here. In the fused amorphous form selenium presents a brown mass, slightly translucent, with a vitreous fracture, whilst in the crystalline form it has the appearance of a grey metal, with a feeble lustre and a crystalline fracture.[79 bis]Seleniumboils at 700°, forming a vapour whose density is only constant at a temperature of about 1,400°, when it is equal to 79·4 (referred to hydrogen)—that is, the molecular formula is then Se2, like sulphur at an equally high temperature.

Telluriumis met with still more rarely than selenium (it is known in Saxony) in combination with gold, silver, lead, and antimony in the so-called foliated tellurium ore. Bismuth telluride and silver telluride have been found in Hungary and in the Altai. Tellurium is extracted from bismuth telluride by mixing the finely-powdered ore with potassium and charcoal in as intimate a mixture as possible, and then heating in a covered crucible. Potassium telluride, K2Te, is then formed, because the charcoal reduces potassium tellurite. As potassium telluride is soluble in water, forming a red-brown solution which is decomposed by the oxygen of the atmosphere (K2Te + O + H2O = 2KHO + Te), the mass formed in the crucible is treated with boiling water and filtered as rapidly as possible, and the resultant solution exposed to the air, by which means the tellurium is precipitated.[80]In a free state tellurium has a perfectlymetallic appearance; it is of a silver-white colour, crystallises very easily in long brilliant needles; is very brittle, so that it can be easily reduced to powder; but it is a bad conductor of heat and electricity, and in this respect, as in many others, it forms a transition from the metals to the non-metals. Its specific gravity is 6·18, it melts at an incipient red heat, and takes fire when heated in air, like selenium and sulphur, burning with a blue flame, evolving white fumes of tellurous anhydride, TeO2, and emitting an acrid smell if no selenium be present; but if it be, the odour of the latter preponderates. Alkalis dissolve tellurium when boiled with it, potassium telluride, K2Te, and potassium tellurite, K2TeO3, being formed. The solution is of a red colour, owingto the presence of the telluride, K2Te; but the colour disappears when the solution is cooled or diluted, the tellurium being all precipitated: 2K2Te + K2TeO3+ 3H2O = 6KHO + 3Te.[81]


Back to IndexNext