Chapter 24

[69]Even light decomposes carbon bisulphide, but not to the extent of separating carbon; under the action of the sun's rays it is decomposed into sulphur and solid substance which is considered to be carbon monosulphide; it is of a red colour, and its sp. gr. is 1·66. (The formation of a red liquid compound C3S2has also been remarked.) Thorpe (1889) observed a complete decomposition of carbon bisulphide under the action of a liquid alloy of potassium and sodium; it is accompanied by an explosion and the deposition of carbon and sulphur. A similar complete decomposition of carbon bisulphide is also accomplished by the action of mercury fulminate (Chapter XVI., Note26), and is due to the fact thatat the ordinary temperature(at which carbon bisulphide is not produced)the decompositionof carbon bisulphide takes place with the development of heat—that is, it presents an exothermal reaction, like the decomposition of all explosives. It is very possible that at a higher temperature, when carbon bisulphide is formed, thecombinationof carbon with sulphur is also an exothermal reaction—that is, heat is developed. If this should be the case, carbon bisulphide would present a most instructive example in thermochemistry.[70]The fact should not be lost sight of that sulphur and charcoal are solids at the ordinary temperature, whilst carbon bisulphide is a very volatile liquid, and consequently, in the act of combination, referred to the ordinary temperature (Note69), there is, as it were, a passage into a liquid state, and this requires the absorption of heat. And furthermore, the molecule of sulphur contains at least six atoms, and the molecule of carbon in all probability (ChapterVIII.) a very considerable number of atoms; thus the reaction of sulphur on charcoal may be expressed in the following manner: 3Cn+nS6= 3nCS2—that is, fromn+ 3 molecules there proceed 3nmolecules, and asnmust be very considerable, 3nmust be greater than 3 +n, which indicates a decomposition in the formation of carbon bisulphide, although the reaction at first sight appears as one of combination. This decomposition is seen also from the volumes in the solid and liquid states. Carbon bisulphide has a sp. gr. of 1·29; hence its molecular volume is 59. But the volume of carbon, even in the form of charcoal, is not more than 6, and the volume of S2is 30; hence 36 volumes after combination give 59 volumes—an expansion takes place, as in decompositions.[71]Carbon bisulphide, as prepared on a large scale, is generally very impure, and contains not only sulphur, but, more especially, other impurities which give it a very disagreeable odour. The best method of purifying this malodorous carbon bisulphide is to shake it up with a certain amount of mercuric chloride, or even simply with mercury, until the surface of the metal ceases to turn black. After this the carbon bisulphide must be poured off and distilled over a water-bath, after mixing with some oil to retain the impurities.[72]If carbon bisulphide be evaporated under the receiver of an air-pump, or by means of a current of air, it is possible to obtain a temperature as low as -60°, and the carbon bisulphide does not solidify at this temperature. However, if a series of air-bubbles be passed through it by means of bellows, a crystalline white substance remains which volatilises below 0°: this a hydrate, H2O,2CS2; it easily decomposes into water and carbon bisulphide. It is formed in the above experiment by the moisture held in the air passed through the carbon bisulphide, and the fall of temperature.[73]Strong alcohol is miscible in all proportions with carbon bisulphide, but dilute alcohol only in a definite amount, owing to its diminished solubility from the presence of the water in it. Ether, hydrocarbons, fatty oils, and many other organic substances are soluble with great ease in carbon bisulphide. This is taken advantage of in practice for extracting the fatty oils from vegetable seeds, such as linseed, palm-nuts, or from bones, &c. The preparation of vegetable oils is usually done by pressing the seeds under a press, but the residue always contains a certain amount of oil. These traces of oil can, however, be removed by treatment with carbon bisulphide. In this manner a solution is obtained which when heated easily parts with all the carbon bisulphide, leaving the non-volatile fatty oil behind, so that the same carbon bisulphide may be condensed and used over again for the same purpose. It also dissolves iodine, bromine, indiarubber, sulphur, and tars.Carbon bisulphide, especially at high temperatures, very often acts by its elements in a manner in which carbon and sulphur alone are not able to react, which will be understood from what has been said above respecting its endothermal origin. If it be passed over red-hot metals—even over copper, for instance, not to mention sodium, &c.—it forms a sulphide of the metal and deposits charcoal, and if the vapour be passed over incandescent metallic oxides it forms metallic sulphides and carbonic anhydride (and sometimes a certain amount of sulphurous anhydride). Lime and similar oxides give under these circumstances a carbonate and a sulphide—for example, CS2+3CaO = 2CaS + CaCO3. The sulphides obtained by this means are often well crystallised, like those found in nature—for example, lead and antimony sulphides.[73 bis]And just as COCl2corresponds to CO2, so also the chloranhydride, CSCl2, orthiophosgene, corresponds to CS2.[74]If instead of a sulphide we take an alkali hydroxide, a thiocarbonate is also formed, together with a carbonate—thus, 3BaH2O2+ 3CS2= 2BaCS3+ BaCO3+ 3H2O. From the instability of the thiocarbonates of the alkaline metals we can clearly see the reason of the difficulty with which the salts of the heavier metals are formed, whose basic properties are incomparably weaker than those of the alkali metals. However, these salts may be obtained by double decomposition. Ammonia in reacting on carbon bisulphide gives, besides products like those formed by other alkalis, a whole series of products of as complex a structure as those substances which are produced by the action of carbonic anhydride on ammonia. In the ninth chapter we examined the formation of the ammonium carbonates, and saw the transition from them into the cyanides. It is not surprising after this that the action of carbon bisulphide on ammonia not only produces the above-mentioned salts, but also amidic compounds corresponding with them, in which the oxygen is wholly or partially replaced by sulphur. Thus ammonium dithiocarbamate is very easily obtained if carbon bisulphide be added to an alcoholic solution of ammonia, and the mixture cooled in a closed vessel. The salt then separates out in minute yellow crystals, CN2H6S2.Carbon bisulphide not only forms compounds with the metallic sulphides, but also with sulphuretted hydrogen—that is, it formsthiocarbonic acid, H2CS3. This is obtained by carefully mixing solutions of thiocarbonates with dilute hydrochloric acid. It then separates in an oily layer, which easily decomposes in the presence of water into sulphuretted hydrogen and carbon bisulphide, just as the corresponding carbonic acid (hydrate) decomposes into water and carbonic anhydride. Carbon bisulphide combines not only with sodium sulphide, but also with the bisulphide, Na2S2, not, however, with the trisulphide, Na2S3.The relation of carbon bisulphide to the other carbon compounds presents many most interesting features which are considered in organic chemistry. We will here only turn our attention to one of the compounds of this class. Ethyl sulphide, (C2H5)2S, combines with ethyl iodide, C2H5I, forming a new molecule, S(C2H5)3I. If we designate the hydrocarbon group, for instance ethyl, C2H5, by Et, the reaction would be expressed by the following equation : Et2S + EtI = SEt3I. This compound is of a saline character, corresponds with salts of the alkalis, and is closely analogous to ammonium chloride. It is soluble in water; when heated it again splits up into its components EtI and Et2S, and with silver hydroxide gives a hydroxide, Et3S·OH, having the property of a distinct and energetic alkali, resembling caustic ammonia. Thus the compound group SEt3combines, like potassium or ammonium, with iodine, hydroxyl, chlorine, &c. The hydroxide SEt3·OH is soluble in water, precipitates metallic salts, saturates acids, &c. Hence sulphur here enters into a relation towards other elements similar to that of nitrogen in ammonia and ammonium salts, with only this difference, that nitrogen retains, besides iodine, hydroxyl, and other groups, also H4or Et4(for example, NH4Cl, NEt3HI, NEt4I), whilst sulphur only retains Et3. Compounds of the formula SH3X are however unknown, only the products of substitution SEt3X, &c. are known. The distinctly alkaline properties of the hydroxide, triethylsulphine hydroxide, SEt3OH, and also the sharply-defined properties of the corresponding hydroxide, tetraethylammonium hydroxide, NEt4OH, depend naturally not only on the properties of the nitrogen and sulphur entering into their composition, but also on the large proportion of hydrocarbon groups they contain. Judging from the existence of the ethylsulphine compounds, it might be imagined that sulphur forms a compound, SH4, with hydrogen; but no such compound is known, just as NH5is unknown, although NH4Cl exists.[74 bis]Thorpe and Rodger (1889), by heating a mixture of lead fluoride and phosphorus pentasulphide to 250° in an atmosphere of dry nitrogen, obtained gaseousphosphorus fluosulphide, orthiophosphoryl fluoride, PSF3, corresponding with POCl3. This colourless gas is converted into a colourless liquid by a pressure of eleven atmospheres; it does not act on dry mercury, and takes fire spontaneously in air or oxygen, forming phosphorus pentafluoride, phosphoric anhydride, and sulphurous anhydride. It is soluble in ether, but is decomposed by water: PSF3+ 4H2O = H2S + H3PO4+ 3HF (Note20).[75]Although mustard oil may be obtained from the thiocyanates, it is only an isomer of allyl thiocyanate proper, as is explained in Organic Chemistry.[75 bis]Sulphur can only replace half the oxygen in CO2, as is seen incarbon oxysulphide, or monothiocarbonic anhydride COS. This substance was obtained by Than, and is formed in many reactions. A certain amount is obtained if a mixture of carbonic oxide and the vapour of sulphur be passed through a red-hot tube. When carbon tetrachloride is heated with sulphurous anhydride, this substance is also formed; but it is best obtained in a pure form by decomposing potassium thiocyanate with a mixture of equal volumes of water and sulphuric acid. A gas is then evolved containing a certain amount of hydrocyanic acid, from which it may be freed by passing it over wool containing moistened mercuric oxide, which retains the hydrocyanic acid. The reaction is expressed by the equation: 2KCNS + 2H2SO4+ 2H2O = K2SO4+ (NH4)2SO4+ 2COS. It is also formed by passing the vapour of carbon bisulphide over alumina or clay heated to redness (Gautier; silicon sulphide is then formed). COS is also formed by passing phosgene over a long layer of asbestos mixed with cadmium sulphide at 270°; CdS + COCl3= CdCl2+ COS (Nuricsán, 1892). The pure gas has an aromatic odour, is soluble in an equal volume of water, which, however, acts on it, so that it must be collected over mercury. When slightly heated, carbon oxysulphide decomposes into sulphur and carbonic oxide. It burns in air with a pale blue flame, explodes with oxygen, and yields potassium sulphide and carbonate with potassium hydroxide: COS + 4KHO = K2CO3+ K2S + 2H2O.[76]There is no reason for seeing any contradiction or mutual incompatibility in these three views, because every analogy is more or less modified by a change of elements. Thus, for instance, it cannot be expected that the product of the metalepsis of hydrogen sulphide would resemble the corresponding products of water in all respects, because water has not the acid properties of hydrogen sulphide. In the days of dualism and electrical polarity it was supposed that the sulphur varied in its nature: in hydrogen sulphide or potassium sulphide it was considered to be negative, and in sulphurous anhydride or sulphur dichloride positive. It then appeared evident that sulphur dichloride would have no point of analogy with potassium sulphide. But metalepsis, or its expression in the law of substitution, necessitates such opinions being laid aside. If we can compare CO2, CH4, CCl4, CHCl3, CH3(OH) with each other, we cannot recognise any difference in the sulphur in SH2, SCl2, SK2, or in general SX2, for otherwise we should have to acknowledge as many different states of sulphur, carbon, or hydrogen as there are compounds of sulphur, carbon, or hydrogen. The essential truth of the matter is that all the elements in a molecule play their part in the reactions into which it enters. Often this appears to be contradicted in the result—for example, hydrogen alone may be replaced; but it is not this hydrogen alone that has determined the reaction; all the elements present have participated in it. This may be made clearer by the following rough illustration. Supposing two regiments of soldiers were fighting against each other, and that several men were lost by one of the regiments; no one could say that it was only these men who took part in the engagement. The other men fired and the bullets flew over the heads of their opponents. It was not only those who fell who fought, although they only were removed from the field of battle; the fighting proceeded among the masses, but only those few were disabled who went forward and were more conspicuous &c.; not that the remainder did not take part in the action; they also fought and were an object of attack, only they remained sound and unhurt. Hydrogen is lighter than other elements and its atoms more mobile; it subjects itself more frequently and easily to reactions; but it is not it alone which reacts, it is even less liable to attack than other elements. It participates in exceedingly diverse reactions, not indeed because the hydrogen itself varies, but because one atom of it puts itself forward, another is hidden, one is united with carbon, another feebly held by sulphur, one stands or moves in the neighbourhood of oxygen, another is joined to a hydrocarbon. All hydrogen atoms are equal, and equally serve as an object of attack for the atoms of molecules encountering them, but those only are removed from the sphere of action which are nearer the surface of a molecule, which are more mobile, or held by a less sum of forces. So also sulphur is one and the same in sulphur dichloride, in sulphurous or sulphuric anhydride, in hydrogen sulphide, in potassium sulphide, but it reacts differently, and those elements which are with it also vary in their reactions because they are with it, and it varies its reactions because it is with them. It is possible to seize on a character common to substances quantitatively and qualitatively analogous to each other. It may be admitted that an element in certain forms is not able to enter into reactions into which in other forms it enters willingly, if only the requisite conditions are encountered; but it must not therefore be concluded that an element changes its essential quality in these different cases. The preceding remarks touch on questions which are subject to much argument among chemists, and I mention them here in order to show the treatment of those most important problems of chemistry which lie at the basis of this treatise.[77]The observed vapour density of sulphur dichloride referred to hydrogen is 53·3, and that given by the formula is 51·5. The smaller molecular weight explains its boiling point being lower than that of sulphur chloride, S2Cl2. The reactions of both these compounds are very similar. Sulphur converts the dichloride, SCl2, into the monochloride, S2Cl2. In one point the dichloride differs distinctly from the monochloride—that is, in its capacity for easily giving up chlorine and decomposing. Even light decomposes it into chlorine and the monochloride. Hence it acts on many substances in the same manner as chlorine, or substances which easily part with the latter, such as phosphoric or antimonic chloride. In distinction to these, however, sulphur dichloride would appear to distil without any considerable decomposition, judging by the vapour density. But this is not a valid conclusion, for if there be a decomposition, then 2SCl2= S2Cl2+ Cl2; now the density of sulphur chloride = 67·5, and of chlorine = 35·5, and consequently a mixture of equal volumes of the two = 51·5, just the same as an equal volume of sulphur dichloride.Therefore the distillation of sulphur dichloride is probably nothing but its decomposition.Hence the compound SCl2, which is stable at the ordinary temperature, decomposes at 64°. In the cold it absorbs a further amount of chlorine, corresponding to SCl4, but even at -10° a portion of the absorbed chlorine is given off—that is, dissociation takes place. Thus the tetrachloride is even less stable than the dichloride.[77 bis]Hartog and Sims (1893) obtained thionyl bromide, SOBr2, by treating SOCl2with sodium bromide; it is a red liquid, sp. gr. 2·62, and decomposes at 150°.[78]Pyrosulphuryl chloride, S2O5Cl2. See Note44. Thorpe and Kirman, by treating SO3with HF, obtained SO2(OH)F, as a liquid boiling at 163°, but which decomposed with greater facility and then gave SO2F2.The acids of sulphur naturally have their corresponding ammonium salts, and the latter their amides and nitriles. It will be readily understood how vast a field for research is presented by the series of compounds of sulphur and nitrogen, if we only remember that to carbonic and formic acids there corresponds, as we saw (ChapterIX.), a vast series of derivatives corresponding with their ammonium salts. To sulphuric acid there correspond two ammonium salts, SO2(HO)(NH4O) and SO2(NH4O)2; three amides: the acid amide SO2(HO)(NH2), or sulphamic acid, the normal saline compound SO2(NH4O)(NH2), or ammonium sulphamate, and the normal amide SO2(NH2)2, or sulphamide (the analogue of urea); then the acid nitrile, SON(HO), and two neutral nitriles, SON(NH2) and SN2. There are similar compounds corresponding with sulphurous acid, and therefore its nitriles will be, an acid, SN(HO), its salt, and the normal compound, SN(NH2). Dithionic and the other acids of sulphur should also have their corresponding amides and nitriles. Only a few examples are known, which we will briefly describe. Sulphuric acid forms salts of very great stability with ammonia, and ammonium sulphate is one of the commonest ammoniacal compounds. It is obtained by the direct action of ammonia on sulphuric acid, or by the action of the latter on ammonium carbonate; it separates from its solutions in an anhydrous state, like potassium sulphate, with which it is isomorphous. Hence, the composition of crystals of ammonium sulphate is (NH4)2SO4. This salt fuses at 140°, and does not undergo any change when heated up to 180°. At higher temperatures it does not lose water, but parts with half its ammonia, and is converted into the acid salt, HNH4SO4; and this acid salt, on further heating, undergoes a further decomposition, and splits up into nitrogen, water, and acid ammonium sulphite, HNH4SO3. At the ordinary temperature the normal salt is soluble in twice its weight of water and at the boiling-point of water in an equal weight. In its faculty for combinations this salt exhibits a great resemblance to potassium sulphate, and, like it, easily forms a number of double salts; the most remarkable of which are the ammonia alums, NH4AlS2O8,12H2O, and the double salts formed by the metals of the magnesium group, having, for example, the composition (NH4)2MgS2O8,6H2O. Ammonium sulphate does not give an amide when heated, perhaps owing to the faculty of sulphuric anhydride to retain the water combined with it with great force. But the amides of sulphuric acid may be very conveniently prepared from sulphuric anhydride. Their formation by this method is very easily understood because an amide is equal to an ammonium salt less water, and if the anhydride be taken it will give an amide directly with ammonia. Thus, if dry ammonia be passed into a vessel surrounded by a freezing mixture and containing sulphuric anhydride, it forms a white powdery mass called sulphatammon, having the composition SO3,2H3N, and resembling the similar compound of carbonic acid, CO2,2NH3. This substance is naturally the ammonium salt of sulphamic acid, SO2(NH4O)NH2. It is slowly acted on by water, and may therefore be obtained in solution, in which it slowly reacts with barium chloride, which proves that with water it still forms ammonium sulphate. If this substance be carefully dissolved in water and evaporated, it yields well-formed crystals, whose solution no longer gives a precipitate with barium chloride. This is not due to the presence of impurities, but to a change in the nature of the substance, and therefore Rose calls the crystalline modificationparasulphatammon. Platinum chloride only precipitates half the nitrogen as platinochloride from solutions of sulphat- and parasulphatammon, which shows that they are ammonium salts, SO2(NH4O)(NH2). It may be that the reason of the difference in the two modifications is connected with the fact that two different substances of the composition N2H4SO2are possible: one is the amide SO2(NH2)2corresponding with the normal salt, and the other is the salt of the nitrile acid corresponding with acid ammonium sulphate—that is, SON(ONH4) corresponds with the acid SON(OH) = SO2(NH4O)OH - 2H2O. Hence there may here be a difference of the same nature as between urea and ammonium cyanate. Up to the present, the isomerism indicated above has been but little investigated, and might be the subject of interesting researches.If in the preceding experiment the ammonia, and not the sulphuric anhydride, be taken in excess, a soluble substance of the composition 2SO2,3NH3is formed. This compound, obtained by Jacqueline and investigated by Voronin, doubtless also contains a salt of sulphamic acid—that is, of the amide corresponding with the acid ammonium sulphate = HNH4SO4- H2O = (NH2)SO2(OH). Probably it is a compound of sulphatammon with sulphamic acid. Thus it has an acid reaction, and does not give a precipitate with barium chloride.With normal sulphate of ammonium, an amide of the composition N2H4SO2should correspond, which should bear the same relation to sulphuric acid as urea bears to carbonic acid. This amide, known assulphamide, is obtained by the action of dry ammonia on the sulphuryl chloride, SO2Cl2, just as urea is obtained by the action of ammonia on carbonyl chloride, SO2Cl2+ 4NH3= N2H4SO2+ 2NH4Cl. The ammonium chloride is separated from the resultant sulphamide with great difficulty. Cold water, acting on the mixture, dissolves them both; the cold solution does not gives precipitate with barium chloride. Alkalis act on it slowly, as they do on urea; but on boiling, especially in the presence of alkalis or acids, it easily recombines with water, and gives an ammonium salt. V. Traube (1892) obtained sulphamide by the reaction of sulphuryl, dissolved in chloroform, upon ammonia. The resultant precipitate dissolves when shaken up with water, and the solution (after boiling with the oxides or lead or silver) is evaporated, when a syrupy liquid remains. With nitrate of silver the latter gives a solid compound, which, when decomposed by hydrochloric acid, gives free sulphamide in large colourless crystals, having the composition SO2(NH2)2. This substance fuses at 81°, begins to decompose below 100°, and is entirely decomposed above 250°; it is soluble in water, and the solution has a neutral reaction and bitter taste. When heated with acids, sulphamide gradually decomposes, forming sulphuric acid and ammonia. If the silver compound obtained by the action of sulphamide on nitrate of silver be heated at 170°-180° until ammonia is no longer evolved, and the residue be extracted with water acidulated with nitric acid, a salt separates out from the solution, answering in its composition to sulphamide, SO2NAg, which = the amide - NH3= SO2N2H4- NH3= SO2NH. The action of sulphuryl chloride (and of the other chloranhydrides of sulphur) on ammonium carbonate always, as Mente showed (1888), results in the formation of the salt NH(SO3NH4)2.The nitriles corresponding with sulphuric acid are not as yet known with any certainty. The most simple nitrile corresponding with sulphuric acid should have the composition N2H8SO4- 4H2O = N2S. This would be a kind of cyanogen corresponding with sulphuric acid. On comparing sulphurous acid with carbonic acid, we saw that they present a great analogy in many respects, and therefore it might be expected that nitrile compounds having the composition NHS and N2S2would be found. The latter of these compounds is well known, and was obtained by Soubeiron, by the action of dry ammonia on sulphur chloride. This substance corresponds with cyanogen (paracyanogen), and is known asnitrogen sulphide, N2S2. It is formed according to the equation 3SCl2+ 8NH3= N2S2+ S + 6NH4Cl. The free sulphur and nitrogen sulphide are dissolved by acting on the product with carbon bisulphide, the nitrogen sulphide being much less soluble than the sulphur. It is a yellow substance, which is excessively irritating to the eyes and nostrils. It explodes when rubbed with a hard substance, being naturally decomposed with the evolution of nitrogen; but when heated it fuses without decomposing, and only decomposes with explosion at 157°. It is insoluble in water, and only slightly so in alcohol, ether, and carbon bisulphide; 100 parts of the latter dissolve 1·5 part of nitrogen sulphide at the boiling point. This solution on cooling deposits it in minute transparent prisms of a golden yellow colour.[79]Selenious anhydride, SeO2, is a volatile solid, which crystallises in prisms soluble in water. It is best procured by the action of nitric acid on selenium. The well-known researches of Nilson (1874) showed that the salts of selenious acid easily form acid salts, and are so characteristic in many respects that they may even serve for judging the analogy of types of oxides. Thus the oxides of the composition RO give normal salts of the composition RSeO3,2H2O, where R = Mn, Co, Ni, Cu, Zn. The salts of magnesium, barium, and calcium contain a different quantity of water, as do also the salts of the oxides R2O3. We here turn attention to the fact that beryllium gives a normal salt, BeSeO3,2H2O, and not a salt analogous to those of aluminium, scandium, Sc2(SeO3)3,H2O, yttrium, Y2(SeO3)2,12H2O, and other oxides of the form R2O3, which speaks in favour of the formula BeO.Tellurous anhydrideis also a colourless solid, which crystallises in octahedra; it also, when heated, first fuses and then volatilises. It is insoluble in water, and the decomposition of its salts gives a hydrate, H2TeO3, which is insoluble.It is a very characteristic circumstance that selenious and tellurous anhydrides are very easilyreducedto selenium and tellurium. This is not only effected by metals like zinc, or by sulphuretted hydrogen, which are powerful deoxidisers, but even by sulphurous anhydride, which is able to precipitate selenium and tellurium from solutions of the selenites and tellurites, and even of the acids themselves, which is taken advantage of in obtaining these elements and separating them from sulphur.Sulphuric acid, as we know, rarely acts as an oxidising agent. It is otherwise with selenic and telluric acids, H2SeO4and H2TeO4, which are powerful oxidising agents—that is, are easily reduced in many circumstances either into the lower oxide or even to selenium and tellurium. A powerful oxidising agent is required in order to convert selenious and tellurous anhydrides into selenic and telluric anhydrides, and, moreover, it must be employed in excess. If chlorine be passed through a solution of potassium selenide, K2Se, telluride, K2Te, selenite, K2SeO3, or tellurite, K2TeO3, it acts as an oxidiser in the presence of the water, forming potassium selenate, K2SeO4, or tellurate, K2TeO4. The same salts are formed by fusing the lower oxides with nitre. These salts are isomorphous with the corresponding sulphates, and cannot therefore be separated from them by crystallisation. The salts of potassium, sodium, magnesium, copper, cadmium, &c. are soluble like the sulphates, but those of barium and calcium are insoluble, in perfect analogy with the sulphates. When copper selenate, CuSeO4, is treated with sulphuretted hydrogen (CuS is precipitated),selenic acidremains in solution. On evaporation and drying in vacuo at 180° it gives a syrupy liquid, which may be concentrated to almost the pure acid, H2SeO4, having a specific gravity of 2·6. Cameron and Macallan (1891) showed that pure H2SeO4only remains liquid in a state of superfusion whilst the solidified acid melts at +58°, the solid acid crystallises well, its sp. gr. is then 2·95. The hydrate H2SeO4,H2O melts at +25°. The acid in a superfused state has a sp. gr. 2·36 and the solid 2·63. Like sulphuric acid strong selenic acid attracts moisture from the atmosphere; it is not decomposed by sulphurous acid, but oxidises hydrochloric acid (like nitric, chromic, and manganic acids), evolving chlorine and forming selenious acid, H2SeO4+ 2HCl = H2SeO3+ H2O + Cl2.Telluric acid, H2TeO4, is obtained by fusing tellurous anhydride with potassium hydroxide and chlorate; the solution, containing potassium tellurate, is then precipitated with barium chloride, and the barium tellurate, BaTeO4obtained in the precipitate is decomposed by sulphuric acid. A solution of telluric acid is thus obtained, which on evaporation yields colourless prisms, soluble in water, and containing TeH2O4,2H2O. Two equivalents of water are driven off at 160°; on further heating the last equivalent of water is expelled, and then oxygen is given off. It also gives chlorine with hydrochloric acid, like selenic acid. Its salts also correspond with those of sulphuric acid. It must, however, be remarked that telluric and selenic acids are able to give poly-acid salts with much greater ease than sulphuric acid. Thus, for example, there are known for telluric acid not only K2TeO4,5H2O and KHTeO4,3H2O, but also KHTeO4,H2TeO4,H2O = K2TeO4,3H2TeO4,2H2O. This salt is easily obtained from acid solutions of the preceding salts and is less soluble in water. As selenious anhydride is volatile and gives similar poly-salts, it may be surmised that selenious, tellurous, selenic, and telluric anhydrides are polymeric as compared with sulphurous and sulphuric anhydrides, for which reason it would be desirable to determine the vapour density of selenious anhydride. It would probably correspond with Se2O4or Se3O6.In order to show the very close analogy of selenium to sulphur, I will quote two examples. Potassium cyanide dissolves selenium, as it does sulphur, forming potassium selenocyanate, KCNSe, corresponding with potassium thiocyanate. Acids precipitate selenium from this solution, because selenocyanic acid, H2CNSe, when in a free state is immediately decomposed. A boiling solution of sodium sulphite dissolves selenium, just as it would sulphur, forming a salt analogous to thiosulphate of sodium, namely, sodium selenosulphate, Na2SSeO3. Selenium is separated from a solution of this salt by the action of acid.[79 bis]Muthmann, in his researches upon the allotropic forms of selenium, pointed out (1889) a peculiar modification, which appears, as it were, as a transition between crystalline and amorphous selenium. It is obtained together with the crystalline variety by slowly evaporating a solution of selenium in bisulphide of carbon, and differs from the crystalline variety in the form of its crystals; it passes into the latter modification when heated. Schultz also obtained selenium (like Ag,seeChapterXXIV.) in a soluble form, but these researches are not so conclusive as those upon soluble silver, and we shall therefore not consider them more fully.[80]The tellurium thus prepared is impure, and contains a large amount of selenium. The latter may be removed by converting the mixture into the salts of potassium, and treating this with nitric acid and barium nitrate, when barium selenate only is precipitated, whilst the barium tellurate remains in solution. This method does not, however, give a pure product, and it appears to be best to separate the selenium from the tellurium in a metallic form; this is done by boiling the impure potassium tellurate with hydrochloric acid, which converts it into potassium tellurite, from which the tellurium is reduced by sulphurous anhydride. The metal thus obtained is then fused and distilled in a stream of hydrogen; the selenium volatilises first, and then the tellurium, owing to its being much less volatile than the former. Nevertheless, tellurium is also volatile, and may be separated in this manner from less volatile metals, such as antimony. Brauner determined the atomic weight of pure tellurium, and found it to be 125, but showed (1889) that tellurium purified by the usual method, even after distillation, contains a large amount of impurities.[81]The decomposition proceeds in the above order in the cold, but in a hot solution with an excess of potassium hydroxide it proceeds inversely. A similar phenomenon takes place when tellurium is fused with alkalis, and it is therefore necessary in order to obtain potassium telluride to add charcoal.Selenium and tellurium form higher compounds with chlorine with comparative ease. For selenium, SeCl2and SeCl4are known, and for tellurium TeCl2and TeCl4. The tetrachlorides of selenium and tellurium are formed by passing chlorine over these elements. Selenium tetrachloride, SeCl4, is a crystalline, volatile mass which gives selenious anhydride and hydrochloric acid with water. Tellurium tetrachloride is much less volatile, fuses easily, and is also decomposed by water. Both elements form similar compounds with bromine. Tellurium tetrabromide is red, fuses to a brown liquid, volatilises, and gives a crystalline salt, K2TeBr6,3H2O, with an aqueous solution of potassium bromide.

[69]Even light decomposes carbon bisulphide, but not to the extent of separating carbon; under the action of the sun's rays it is decomposed into sulphur and solid substance which is considered to be carbon monosulphide; it is of a red colour, and its sp. gr. is 1·66. (The formation of a red liquid compound C3S2has also been remarked.) Thorpe (1889) observed a complete decomposition of carbon bisulphide under the action of a liquid alloy of potassium and sodium; it is accompanied by an explosion and the deposition of carbon and sulphur. A similar complete decomposition of carbon bisulphide is also accomplished by the action of mercury fulminate (Chapter XVI., Note26), and is due to the fact thatat the ordinary temperature(at which carbon bisulphide is not produced)the decompositionof carbon bisulphide takes place with the development of heat—that is, it presents an exothermal reaction, like the decomposition of all explosives. It is very possible that at a higher temperature, when carbon bisulphide is formed, thecombinationof carbon with sulphur is also an exothermal reaction—that is, heat is developed. If this should be the case, carbon bisulphide would present a most instructive example in thermochemistry.

[69]Even light decomposes carbon bisulphide, but not to the extent of separating carbon; under the action of the sun's rays it is decomposed into sulphur and solid substance which is considered to be carbon monosulphide; it is of a red colour, and its sp. gr. is 1·66. (The formation of a red liquid compound C3S2has also been remarked.) Thorpe (1889) observed a complete decomposition of carbon bisulphide under the action of a liquid alloy of potassium and sodium; it is accompanied by an explosion and the deposition of carbon and sulphur. A similar complete decomposition of carbon bisulphide is also accomplished by the action of mercury fulminate (Chapter XVI., Note26), and is due to the fact thatat the ordinary temperature(at which carbon bisulphide is not produced)the decompositionof carbon bisulphide takes place with the development of heat—that is, it presents an exothermal reaction, like the decomposition of all explosives. It is very possible that at a higher temperature, when carbon bisulphide is formed, thecombinationof carbon with sulphur is also an exothermal reaction—that is, heat is developed. If this should be the case, carbon bisulphide would present a most instructive example in thermochemistry.

[70]The fact should not be lost sight of that sulphur and charcoal are solids at the ordinary temperature, whilst carbon bisulphide is a very volatile liquid, and consequently, in the act of combination, referred to the ordinary temperature (Note69), there is, as it were, a passage into a liquid state, and this requires the absorption of heat. And furthermore, the molecule of sulphur contains at least six atoms, and the molecule of carbon in all probability (ChapterVIII.) a very considerable number of atoms; thus the reaction of sulphur on charcoal may be expressed in the following manner: 3Cn+nS6= 3nCS2—that is, fromn+ 3 molecules there proceed 3nmolecules, and asnmust be very considerable, 3nmust be greater than 3 +n, which indicates a decomposition in the formation of carbon bisulphide, although the reaction at first sight appears as one of combination. This decomposition is seen also from the volumes in the solid and liquid states. Carbon bisulphide has a sp. gr. of 1·29; hence its molecular volume is 59. But the volume of carbon, even in the form of charcoal, is not more than 6, and the volume of S2is 30; hence 36 volumes after combination give 59 volumes—an expansion takes place, as in decompositions.

[70]The fact should not be lost sight of that sulphur and charcoal are solids at the ordinary temperature, whilst carbon bisulphide is a very volatile liquid, and consequently, in the act of combination, referred to the ordinary temperature (Note69), there is, as it were, a passage into a liquid state, and this requires the absorption of heat. And furthermore, the molecule of sulphur contains at least six atoms, and the molecule of carbon in all probability (ChapterVIII.) a very considerable number of atoms; thus the reaction of sulphur on charcoal may be expressed in the following manner: 3Cn+nS6= 3nCS2—that is, fromn+ 3 molecules there proceed 3nmolecules, and asnmust be very considerable, 3nmust be greater than 3 +n, which indicates a decomposition in the formation of carbon bisulphide, although the reaction at first sight appears as one of combination. This decomposition is seen also from the volumes in the solid and liquid states. Carbon bisulphide has a sp. gr. of 1·29; hence its molecular volume is 59. But the volume of carbon, even in the form of charcoal, is not more than 6, and the volume of S2is 30; hence 36 volumes after combination give 59 volumes—an expansion takes place, as in decompositions.

[71]Carbon bisulphide, as prepared on a large scale, is generally very impure, and contains not only sulphur, but, more especially, other impurities which give it a very disagreeable odour. The best method of purifying this malodorous carbon bisulphide is to shake it up with a certain amount of mercuric chloride, or even simply with mercury, until the surface of the metal ceases to turn black. After this the carbon bisulphide must be poured off and distilled over a water-bath, after mixing with some oil to retain the impurities.

[71]Carbon bisulphide, as prepared on a large scale, is generally very impure, and contains not only sulphur, but, more especially, other impurities which give it a very disagreeable odour. The best method of purifying this malodorous carbon bisulphide is to shake it up with a certain amount of mercuric chloride, or even simply with mercury, until the surface of the metal ceases to turn black. After this the carbon bisulphide must be poured off and distilled over a water-bath, after mixing with some oil to retain the impurities.

[72]If carbon bisulphide be evaporated under the receiver of an air-pump, or by means of a current of air, it is possible to obtain a temperature as low as -60°, and the carbon bisulphide does not solidify at this temperature. However, if a series of air-bubbles be passed through it by means of bellows, a crystalline white substance remains which volatilises below 0°: this a hydrate, H2O,2CS2; it easily decomposes into water and carbon bisulphide. It is formed in the above experiment by the moisture held in the air passed through the carbon bisulphide, and the fall of temperature.

[72]If carbon bisulphide be evaporated under the receiver of an air-pump, or by means of a current of air, it is possible to obtain a temperature as low as -60°, and the carbon bisulphide does not solidify at this temperature. However, if a series of air-bubbles be passed through it by means of bellows, a crystalline white substance remains which volatilises below 0°: this a hydrate, H2O,2CS2; it easily decomposes into water and carbon bisulphide. It is formed in the above experiment by the moisture held in the air passed through the carbon bisulphide, and the fall of temperature.

[73]Strong alcohol is miscible in all proportions with carbon bisulphide, but dilute alcohol only in a definite amount, owing to its diminished solubility from the presence of the water in it. Ether, hydrocarbons, fatty oils, and many other organic substances are soluble with great ease in carbon bisulphide. This is taken advantage of in practice for extracting the fatty oils from vegetable seeds, such as linseed, palm-nuts, or from bones, &c. The preparation of vegetable oils is usually done by pressing the seeds under a press, but the residue always contains a certain amount of oil. These traces of oil can, however, be removed by treatment with carbon bisulphide. In this manner a solution is obtained which when heated easily parts with all the carbon bisulphide, leaving the non-volatile fatty oil behind, so that the same carbon bisulphide may be condensed and used over again for the same purpose. It also dissolves iodine, bromine, indiarubber, sulphur, and tars.Carbon bisulphide, especially at high temperatures, very often acts by its elements in a manner in which carbon and sulphur alone are not able to react, which will be understood from what has been said above respecting its endothermal origin. If it be passed over red-hot metals—even over copper, for instance, not to mention sodium, &c.—it forms a sulphide of the metal and deposits charcoal, and if the vapour be passed over incandescent metallic oxides it forms metallic sulphides and carbonic anhydride (and sometimes a certain amount of sulphurous anhydride). Lime and similar oxides give under these circumstances a carbonate and a sulphide—for example, CS2+3CaO = 2CaS + CaCO3. The sulphides obtained by this means are often well crystallised, like those found in nature—for example, lead and antimony sulphides.

[73]Strong alcohol is miscible in all proportions with carbon bisulphide, but dilute alcohol only in a definite amount, owing to its diminished solubility from the presence of the water in it. Ether, hydrocarbons, fatty oils, and many other organic substances are soluble with great ease in carbon bisulphide. This is taken advantage of in practice for extracting the fatty oils from vegetable seeds, such as linseed, palm-nuts, or from bones, &c. The preparation of vegetable oils is usually done by pressing the seeds under a press, but the residue always contains a certain amount of oil. These traces of oil can, however, be removed by treatment with carbon bisulphide. In this manner a solution is obtained which when heated easily parts with all the carbon bisulphide, leaving the non-volatile fatty oil behind, so that the same carbon bisulphide may be condensed and used over again for the same purpose. It also dissolves iodine, bromine, indiarubber, sulphur, and tars.

Carbon bisulphide, especially at high temperatures, very often acts by its elements in a manner in which carbon and sulphur alone are not able to react, which will be understood from what has been said above respecting its endothermal origin. If it be passed over red-hot metals—even over copper, for instance, not to mention sodium, &c.—it forms a sulphide of the metal and deposits charcoal, and if the vapour be passed over incandescent metallic oxides it forms metallic sulphides and carbonic anhydride (and sometimes a certain amount of sulphurous anhydride). Lime and similar oxides give under these circumstances a carbonate and a sulphide—for example, CS2+3CaO = 2CaS + CaCO3. The sulphides obtained by this means are often well crystallised, like those found in nature—for example, lead and antimony sulphides.

[73 bis]And just as COCl2corresponds to CO2, so also the chloranhydride, CSCl2, orthiophosgene, corresponds to CS2.

[73 bis]And just as COCl2corresponds to CO2, so also the chloranhydride, CSCl2, orthiophosgene, corresponds to CS2.

[74]If instead of a sulphide we take an alkali hydroxide, a thiocarbonate is also formed, together with a carbonate—thus, 3BaH2O2+ 3CS2= 2BaCS3+ BaCO3+ 3H2O. From the instability of the thiocarbonates of the alkaline metals we can clearly see the reason of the difficulty with which the salts of the heavier metals are formed, whose basic properties are incomparably weaker than those of the alkali metals. However, these salts may be obtained by double decomposition. Ammonia in reacting on carbon bisulphide gives, besides products like those formed by other alkalis, a whole series of products of as complex a structure as those substances which are produced by the action of carbonic anhydride on ammonia. In the ninth chapter we examined the formation of the ammonium carbonates, and saw the transition from them into the cyanides. It is not surprising after this that the action of carbon bisulphide on ammonia not only produces the above-mentioned salts, but also amidic compounds corresponding with them, in which the oxygen is wholly or partially replaced by sulphur. Thus ammonium dithiocarbamate is very easily obtained if carbon bisulphide be added to an alcoholic solution of ammonia, and the mixture cooled in a closed vessel. The salt then separates out in minute yellow crystals, CN2H6S2.Carbon bisulphide not only forms compounds with the metallic sulphides, but also with sulphuretted hydrogen—that is, it formsthiocarbonic acid, H2CS3. This is obtained by carefully mixing solutions of thiocarbonates with dilute hydrochloric acid. It then separates in an oily layer, which easily decomposes in the presence of water into sulphuretted hydrogen and carbon bisulphide, just as the corresponding carbonic acid (hydrate) decomposes into water and carbonic anhydride. Carbon bisulphide combines not only with sodium sulphide, but also with the bisulphide, Na2S2, not, however, with the trisulphide, Na2S3.The relation of carbon bisulphide to the other carbon compounds presents many most interesting features which are considered in organic chemistry. We will here only turn our attention to one of the compounds of this class. Ethyl sulphide, (C2H5)2S, combines with ethyl iodide, C2H5I, forming a new molecule, S(C2H5)3I. If we designate the hydrocarbon group, for instance ethyl, C2H5, by Et, the reaction would be expressed by the following equation : Et2S + EtI = SEt3I. This compound is of a saline character, corresponds with salts of the alkalis, and is closely analogous to ammonium chloride. It is soluble in water; when heated it again splits up into its components EtI and Et2S, and with silver hydroxide gives a hydroxide, Et3S·OH, having the property of a distinct and energetic alkali, resembling caustic ammonia. Thus the compound group SEt3combines, like potassium or ammonium, with iodine, hydroxyl, chlorine, &c. The hydroxide SEt3·OH is soluble in water, precipitates metallic salts, saturates acids, &c. Hence sulphur here enters into a relation towards other elements similar to that of nitrogen in ammonia and ammonium salts, with only this difference, that nitrogen retains, besides iodine, hydroxyl, and other groups, also H4or Et4(for example, NH4Cl, NEt3HI, NEt4I), whilst sulphur only retains Et3. Compounds of the formula SH3X are however unknown, only the products of substitution SEt3X, &c. are known. The distinctly alkaline properties of the hydroxide, triethylsulphine hydroxide, SEt3OH, and also the sharply-defined properties of the corresponding hydroxide, tetraethylammonium hydroxide, NEt4OH, depend naturally not only on the properties of the nitrogen and sulphur entering into their composition, but also on the large proportion of hydrocarbon groups they contain. Judging from the existence of the ethylsulphine compounds, it might be imagined that sulphur forms a compound, SH4, with hydrogen; but no such compound is known, just as NH5is unknown, although NH4Cl exists.

[74]If instead of a sulphide we take an alkali hydroxide, a thiocarbonate is also formed, together with a carbonate—thus, 3BaH2O2+ 3CS2= 2BaCS3+ BaCO3+ 3H2O. From the instability of the thiocarbonates of the alkaline metals we can clearly see the reason of the difficulty with which the salts of the heavier metals are formed, whose basic properties are incomparably weaker than those of the alkali metals. However, these salts may be obtained by double decomposition. Ammonia in reacting on carbon bisulphide gives, besides products like those formed by other alkalis, a whole series of products of as complex a structure as those substances which are produced by the action of carbonic anhydride on ammonia. In the ninth chapter we examined the formation of the ammonium carbonates, and saw the transition from them into the cyanides. It is not surprising after this that the action of carbon bisulphide on ammonia not only produces the above-mentioned salts, but also amidic compounds corresponding with them, in which the oxygen is wholly or partially replaced by sulphur. Thus ammonium dithiocarbamate is very easily obtained if carbon bisulphide be added to an alcoholic solution of ammonia, and the mixture cooled in a closed vessel. The salt then separates out in minute yellow crystals, CN2H6S2.

Carbon bisulphide not only forms compounds with the metallic sulphides, but also with sulphuretted hydrogen—that is, it formsthiocarbonic acid, H2CS3. This is obtained by carefully mixing solutions of thiocarbonates with dilute hydrochloric acid. It then separates in an oily layer, which easily decomposes in the presence of water into sulphuretted hydrogen and carbon bisulphide, just as the corresponding carbonic acid (hydrate) decomposes into water and carbonic anhydride. Carbon bisulphide combines not only with sodium sulphide, but also with the bisulphide, Na2S2, not, however, with the trisulphide, Na2S3.

The relation of carbon bisulphide to the other carbon compounds presents many most interesting features which are considered in organic chemistry. We will here only turn our attention to one of the compounds of this class. Ethyl sulphide, (C2H5)2S, combines with ethyl iodide, C2H5I, forming a new molecule, S(C2H5)3I. If we designate the hydrocarbon group, for instance ethyl, C2H5, by Et, the reaction would be expressed by the following equation : Et2S + EtI = SEt3I. This compound is of a saline character, corresponds with salts of the alkalis, and is closely analogous to ammonium chloride. It is soluble in water; when heated it again splits up into its components EtI and Et2S, and with silver hydroxide gives a hydroxide, Et3S·OH, having the property of a distinct and energetic alkali, resembling caustic ammonia. Thus the compound group SEt3combines, like potassium or ammonium, with iodine, hydroxyl, chlorine, &c. The hydroxide SEt3·OH is soluble in water, precipitates metallic salts, saturates acids, &c. Hence sulphur here enters into a relation towards other elements similar to that of nitrogen in ammonia and ammonium salts, with only this difference, that nitrogen retains, besides iodine, hydroxyl, and other groups, also H4or Et4(for example, NH4Cl, NEt3HI, NEt4I), whilst sulphur only retains Et3. Compounds of the formula SH3X are however unknown, only the products of substitution SEt3X, &c. are known. The distinctly alkaline properties of the hydroxide, triethylsulphine hydroxide, SEt3OH, and also the sharply-defined properties of the corresponding hydroxide, tetraethylammonium hydroxide, NEt4OH, depend naturally not only on the properties of the nitrogen and sulphur entering into their composition, but also on the large proportion of hydrocarbon groups they contain. Judging from the existence of the ethylsulphine compounds, it might be imagined that sulphur forms a compound, SH4, with hydrogen; but no such compound is known, just as NH5is unknown, although NH4Cl exists.

[74 bis]Thorpe and Rodger (1889), by heating a mixture of lead fluoride and phosphorus pentasulphide to 250° in an atmosphere of dry nitrogen, obtained gaseousphosphorus fluosulphide, orthiophosphoryl fluoride, PSF3, corresponding with POCl3. This colourless gas is converted into a colourless liquid by a pressure of eleven atmospheres; it does not act on dry mercury, and takes fire spontaneously in air or oxygen, forming phosphorus pentafluoride, phosphoric anhydride, and sulphurous anhydride. It is soluble in ether, but is decomposed by water: PSF3+ 4H2O = H2S + H3PO4+ 3HF (Note20).

[74 bis]Thorpe and Rodger (1889), by heating a mixture of lead fluoride and phosphorus pentasulphide to 250° in an atmosphere of dry nitrogen, obtained gaseousphosphorus fluosulphide, orthiophosphoryl fluoride, PSF3, corresponding with POCl3. This colourless gas is converted into a colourless liquid by a pressure of eleven atmospheres; it does not act on dry mercury, and takes fire spontaneously in air or oxygen, forming phosphorus pentafluoride, phosphoric anhydride, and sulphurous anhydride. It is soluble in ether, but is decomposed by water: PSF3+ 4H2O = H2S + H3PO4+ 3HF (Note20).

[75]Although mustard oil may be obtained from the thiocyanates, it is only an isomer of allyl thiocyanate proper, as is explained in Organic Chemistry.

[75]Although mustard oil may be obtained from the thiocyanates, it is only an isomer of allyl thiocyanate proper, as is explained in Organic Chemistry.

[75 bis]Sulphur can only replace half the oxygen in CO2, as is seen incarbon oxysulphide, or monothiocarbonic anhydride COS. This substance was obtained by Than, and is formed in many reactions. A certain amount is obtained if a mixture of carbonic oxide and the vapour of sulphur be passed through a red-hot tube. When carbon tetrachloride is heated with sulphurous anhydride, this substance is also formed; but it is best obtained in a pure form by decomposing potassium thiocyanate with a mixture of equal volumes of water and sulphuric acid. A gas is then evolved containing a certain amount of hydrocyanic acid, from which it may be freed by passing it over wool containing moistened mercuric oxide, which retains the hydrocyanic acid. The reaction is expressed by the equation: 2KCNS + 2H2SO4+ 2H2O = K2SO4+ (NH4)2SO4+ 2COS. It is also formed by passing the vapour of carbon bisulphide over alumina or clay heated to redness (Gautier; silicon sulphide is then formed). COS is also formed by passing phosgene over a long layer of asbestos mixed with cadmium sulphide at 270°; CdS + COCl3= CdCl2+ COS (Nuricsán, 1892). The pure gas has an aromatic odour, is soluble in an equal volume of water, which, however, acts on it, so that it must be collected over mercury. When slightly heated, carbon oxysulphide decomposes into sulphur and carbonic oxide. It burns in air with a pale blue flame, explodes with oxygen, and yields potassium sulphide and carbonate with potassium hydroxide: COS + 4KHO = K2CO3+ K2S + 2H2O.

[75 bis]Sulphur can only replace half the oxygen in CO2, as is seen incarbon oxysulphide, or monothiocarbonic anhydride COS. This substance was obtained by Than, and is formed in many reactions. A certain amount is obtained if a mixture of carbonic oxide and the vapour of sulphur be passed through a red-hot tube. When carbon tetrachloride is heated with sulphurous anhydride, this substance is also formed; but it is best obtained in a pure form by decomposing potassium thiocyanate with a mixture of equal volumes of water and sulphuric acid. A gas is then evolved containing a certain amount of hydrocyanic acid, from which it may be freed by passing it over wool containing moistened mercuric oxide, which retains the hydrocyanic acid. The reaction is expressed by the equation: 2KCNS + 2H2SO4+ 2H2O = K2SO4+ (NH4)2SO4+ 2COS. It is also formed by passing the vapour of carbon bisulphide over alumina or clay heated to redness (Gautier; silicon sulphide is then formed). COS is also formed by passing phosgene over a long layer of asbestos mixed with cadmium sulphide at 270°; CdS + COCl3= CdCl2+ COS (Nuricsán, 1892). The pure gas has an aromatic odour, is soluble in an equal volume of water, which, however, acts on it, so that it must be collected over mercury. When slightly heated, carbon oxysulphide decomposes into sulphur and carbonic oxide. It burns in air with a pale blue flame, explodes with oxygen, and yields potassium sulphide and carbonate with potassium hydroxide: COS + 4KHO = K2CO3+ K2S + 2H2O.

[76]There is no reason for seeing any contradiction or mutual incompatibility in these three views, because every analogy is more or less modified by a change of elements. Thus, for instance, it cannot be expected that the product of the metalepsis of hydrogen sulphide would resemble the corresponding products of water in all respects, because water has not the acid properties of hydrogen sulphide. In the days of dualism and electrical polarity it was supposed that the sulphur varied in its nature: in hydrogen sulphide or potassium sulphide it was considered to be negative, and in sulphurous anhydride or sulphur dichloride positive. It then appeared evident that sulphur dichloride would have no point of analogy with potassium sulphide. But metalepsis, or its expression in the law of substitution, necessitates such opinions being laid aside. If we can compare CO2, CH4, CCl4, CHCl3, CH3(OH) with each other, we cannot recognise any difference in the sulphur in SH2, SCl2, SK2, or in general SX2, for otherwise we should have to acknowledge as many different states of sulphur, carbon, or hydrogen as there are compounds of sulphur, carbon, or hydrogen. The essential truth of the matter is that all the elements in a molecule play their part in the reactions into which it enters. Often this appears to be contradicted in the result—for example, hydrogen alone may be replaced; but it is not this hydrogen alone that has determined the reaction; all the elements present have participated in it. This may be made clearer by the following rough illustration. Supposing two regiments of soldiers were fighting against each other, and that several men were lost by one of the regiments; no one could say that it was only these men who took part in the engagement. The other men fired and the bullets flew over the heads of their opponents. It was not only those who fell who fought, although they only were removed from the field of battle; the fighting proceeded among the masses, but only those few were disabled who went forward and were more conspicuous &c.; not that the remainder did not take part in the action; they also fought and were an object of attack, only they remained sound and unhurt. Hydrogen is lighter than other elements and its atoms more mobile; it subjects itself more frequently and easily to reactions; but it is not it alone which reacts, it is even less liable to attack than other elements. It participates in exceedingly diverse reactions, not indeed because the hydrogen itself varies, but because one atom of it puts itself forward, another is hidden, one is united with carbon, another feebly held by sulphur, one stands or moves in the neighbourhood of oxygen, another is joined to a hydrocarbon. All hydrogen atoms are equal, and equally serve as an object of attack for the atoms of molecules encountering them, but those only are removed from the sphere of action which are nearer the surface of a molecule, which are more mobile, or held by a less sum of forces. So also sulphur is one and the same in sulphur dichloride, in sulphurous or sulphuric anhydride, in hydrogen sulphide, in potassium sulphide, but it reacts differently, and those elements which are with it also vary in their reactions because they are with it, and it varies its reactions because it is with them. It is possible to seize on a character common to substances quantitatively and qualitatively analogous to each other. It may be admitted that an element in certain forms is not able to enter into reactions into which in other forms it enters willingly, if only the requisite conditions are encountered; but it must not therefore be concluded that an element changes its essential quality in these different cases. The preceding remarks touch on questions which are subject to much argument among chemists, and I mention them here in order to show the treatment of those most important problems of chemistry which lie at the basis of this treatise.

[76]There is no reason for seeing any contradiction or mutual incompatibility in these three views, because every analogy is more or less modified by a change of elements. Thus, for instance, it cannot be expected that the product of the metalepsis of hydrogen sulphide would resemble the corresponding products of water in all respects, because water has not the acid properties of hydrogen sulphide. In the days of dualism and electrical polarity it was supposed that the sulphur varied in its nature: in hydrogen sulphide or potassium sulphide it was considered to be negative, and in sulphurous anhydride or sulphur dichloride positive. It then appeared evident that sulphur dichloride would have no point of analogy with potassium sulphide. But metalepsis, or its expression in the law of substitution, necessitates such opinions being laid aside. If we can compare CO2, CH4, CCl4, CHCl3, CH3(OH) with each other, we cannot recognise any difference in the sulphur in SH2, SCl2, SK2, or in general SX2, for otherwise we should have to acknowledge as many different states of sulphur, carbon, or hydrogen as there are compounds of sulphur, carbon, or hydrogen. The essential truth of the matter is that all the elements in a molecule play their part in the reactions into which it enters. Often this appears to be contradicted in the result—for example, hydrogen alone may be replaced; but it is not this hydrogen alone that has determined the reaction; all the elements present have participated in it. This may be made clearer by the following rough illustration. Supposing two regiments of soldiers were fighting against each other, and that several men were lost by one of the regiments; no one could say that it was only these men who took part in the engagement. The other men fired and the bullets flew over the heads of their opponents. It was not only those who fell who fought, although they only were removed from the field of battle; the fighting proceeded among the masses, but only those few were disabled who went forward and were more conspicuous &c.; not that the remainder did not take part in the action; they also fought and were an object of attack, only they remained sound and unhurt. Hydrogen is lighter than other elements and its atoms more mobile; it subjects itself more frequently and easily to reactions; but it is not it alone which reacts, it is even less liable to attack than other elements. It participates in exceedingly diverse reactions, not indeed because the hydrogen itself varies, but because one atom of it puts itself forward, another is hidden, one is united with carbon, another feebly held by sulphur, one stands or moves in the neighbourhood of oxygen, another is joined to a hydrocarbon. All hydrogen atoms are equal, and equally serve as an object of attack for the atoms of molecules encountering them, but those only are removed from the sphere of action which are nearer the surface of a molecule, which are more mobile, or held by a less sum of forces. So also sulphur is one and the same in sulphur dichloride, in sulphurous or sulphuric anhydride, in hydrogen sulphide, in potassium sulphide, but it reacts differently, and those elements which are with it also vary in their reactions because they are with it, and it varies its reactions because it is with them. It is possible to seize on a character common to substances quantitatively and qualitatively analogous to each other. It may be admitted that an element in certain forms is not able to enter into reactions into which in other forms it enters willingly, if only the requisite conditions are encountered; but it must not therefore be concluded that an element changes its essential quality in these different cases. The preceding remarks touch on questions which are subject to much argument among chemists, and I mention them here in order to show the treatment of those most important problems of chemistry which lie at the basis of this treatise.

[77]The observed vapour density of sulphur dichloride referred to hydrogen is 53·3, and that given by the formula is 51·5. The smaller molecular weight explains its boiling point being lower than that of sulphur chloride, S2Cl2. The reactions of both these compounds are very similar. Sulphur converts the dichloride, SCl2, into the monochloride, S2Cl2. In one point the dichloride differs distinctly from the monochloride—that is, in its capacity for easily giving up chlorine and decomposing. Even light decomposes it into chlorine and the monochloride. Hence it acts on many substances in the same manner as chlorine, or substances which easily part with the latter, such as phosphoric or antimonic chloride. In distinction to these, however, sulphur dichloride would appear to distil without any considerable decomposition, judging by the vapour density. But this is not a valid conclusion, for if there be a decomposition, then 2SCl2= S2Cl2+ Cl2; now the density of sulphur chloride = 67·5, and of chlorine = 35·5, and consequently a mixture of equal volumes of the two = 51·5, just the same as an equal volume of sulphur dichloride.Therefore the distillation of sulphur dichloride is probably nothing but its decomposition.Hence the compound SCl2, which is stable at the ordinary temperature, decomposes at 64°. In the cold it absorbs a further amount of chlorine, corresponding to SCl4, but even at -10° a portion of the absorbed chlorine is given off—that is, dissociation takes place. Thus the tetrachloride is even less stable than the dichloride.

[77]The observed vapour density of sulphur dichloride referred to hydrogen is 53·3, and that given by the formula is 51·5. The smaller molecular weight explains its boiling point being lower than that of sulphur chloride, S2Cl2. The reactions of both these compounds are very similar. Sulphur converts the dichloride, SCl2, into the monochloride, S2Cl2. In one point the dichloride differs distinctly from the monochloride—that is, in its capacity for easily giving up chlorine and decomposing. Even light decomposes it into chlorine and the monochloride. Hence it acts on many substances in the same manner as chlorine, or substances which easily part with the latter, such as phosphoric or antimonic chloride. In distinction to these, however, sulphur dichloride would appear to distil without any considerable decomposition, judging by the vapour density. But this is not a valid conclusion, for if there be a decomposition, then 2SCl2= S2Cl2+ Cl2; now the density of sulphur chloride = 67·5, and of chlorine = 35·5, and consequently a mixture of equal volumes of the two = 51·5, just the same as an equal volume of sulphur dichloride.Therefore the distillation of sulphur dichloride is probably nothing but its decomposition.Hence the compound SCl2, which is stable at the ordinary temperature, decomposes at 64°. In the cold it absorbs a further amount of chlorine, corresponding to SCl4, but even at -10° a portion of the absorbed chlorine is given off—that is, dissociation takes place. Thus the tetrachloride is even less stable than the dichloride.

[77 bis]Hartog and Sims (1893) obtained thionyl bromide, SOBr2, by treating SOCl2with sodium bromide; it is a red liquid, sp. gr. 2·62, and decomposes at 150°.

[77 bis]Hartog and Sims (1893) obtained thionyl bromide, SOBr2, by treating SOCl2with sodium bromide; it is a red liquid, sp. gr. 2·62, and decomposes at 150°.

[78]Pyrosulphuryl chloride, S2O5Cl2. See Note44. Thorpe and Kirman, by treating SO3with HF, obtained SO2(OH)F, as a liquid boiling at 163°, but which decomposed with greater facility and then gave SO2F2.The acids of sulphur naturally have their corresponding ammonium salts, and the latter their amides and nitriles. It will be readily understood how vast a field for research is presented by the series of compounds of sulphur and nitrogen, if we only remember that to carbonic and formic acids there corresponds, as we saw (ChapterIX.), a vast series of derivatives corresponding with their ammonium salts. To sulphuric acid there correspond two ammonium salts, SO2(HO)(NH4O) and SO2(NH4O)2; three amides: the acid amide SO2(HO)(NH2), or sulphamic acid, the normal saline compound SO2(NH4O)(NH2), or ammonium sulphamate, and the normal amide SO2(NH2)2, or sulphamide (the analogue of urea); then the acid nitrile, SON(HO), and two neutral nitriles, SON(NH2) and SN2. There are similar compounds corresponding with sulphurous acid, and therefore its nitriles will be, an acid, SN(HO), its salt, and the normal compound, SN(NH2). Dithionic and the other acids of sulphur should also have their corresponding amides and nitriles. Only a few examples are known, which we will briefly describe. Sulphuric acid forms salts of very great stability with ammonia, and ammonium sulphate is one of the commonest ammoniacal compounds. It is obtained by the direct action of ammonia on sulphuric acid, or by the action of the latter on ammonium carbonate; it separates from its solutions in an anhydrous state, like potassium sulphate, with which it is isomorphous. Hence, the composition of crystals of ammonium sulphate is (NH4)2SO4. This salt fuses at 140°, and does not undergo any change when heated up to 180°. At higher temperatures it does not lose water, but parts with half its ammonia, and is converted into the acid salt, HNH4SO4; and this acid salt, on further heating, undergoes a further decomposition, and splits up into nitrogen, water, and acid ammonium sulphite, HNH4SO3. At the ordinary temperature the normal salt is soluble in twice its weight of water and at the boiling-point of water in an equal weight. In its faculty for combinations this salt exhibits a great resemblance to potassium sulphate, and, like it, easily forms a number of double salts; the most remarkable of which are the ammonia alums, NH4AlS2O8,12H2O, and the double salts formed by the metals of the magnesium group, having, for example, the composition (NH4)2MgS2O8,6H2O. Ammonium sulphate does not give an amide when heated, perhaps owing to the faculty of sulphuric anhydride to retain the water combined with it with great force. But the amides of sulphuric acid may be very conveniently prepared from sulphuric anhydride. Their formation by this method is very easily understood because an amide is equal to an ammonium salt less water, and if the anhydride be taken it will give an amide directly with ammonia. Thus, if dry ammonia be passed into a vessel surrounded by a freezing mixture and containing sulphuric anhydride, it forms a white powdery mass called sulphatammon, having the composition SO3,2H3N, and resembling the similar compound of carbonic acid, CO2,2NH3. This substance is naturally the ammonium salt of sulphamic acid, SO2(NH4O)NH2. It is slowly acted on by water, and may therefore be obtained in solution, in which it slowly reacts with barium chloride, which proves that with water it still forms ammonium sulphate. If this substance be carefully dissolved in water and evaporated, it yields well-formed crystals, whose solution no longer gives a precipitate with barium chloride. This is not due to the presence of impurities, but to a change in the nature of the substance, and therefore Rose calls the crystalline modificationparasulphatammon. Platinum chloride only precipitates half the nitrogen as platinochloride from solutions of sulphat- and parasulphatammon, which shows that they are ammonium salts, SO2(NH4O)(NH2). It may be that the reason of the difference in the two modifications is connected with the fact that two different substances of the composition N2H4SO2are possible: one is the amide SO2(NH2)2corresponding with the normal salt, and the other is the salt of the nitrile acid corresponding with acid ammonium sulphate—that is, SON(ONH4) corresponds with the acid SON(OH) = SO2(NH4O)OH - 2H2O. Hence there may here be a difference of the same nature as between urea and ammonium cyanate. Up to the present, the isomerism indicated above has been but little investigated, and might be the subject of interesting researches.If in the preceding experiment the ammonia, and not the sulphuric anhydride, be taken in excess, a soluble substance of the composition 2SO2,3NH3is formed. This compound, obtained by Jacqueline and investigated by Voronin, doubtless also contains a salt of sulphamic acid—that is, of the amide corresponding with the acid ammonium sulphate = HNH4SO4- H2O = (NH2)SO2(OH). Probably it is a compound of sulphatammon with sulphamic acid. Thus it has an acid reaction, and does not give a precipitate with barium chloride.With normal sulphate of ammonium, an amide of the composition N2H4SO2should correspond, which should bear the same relation to sulphuric acid as urea bears to carbonic acid. This amide, known assulphamide, is obtained by the action of dry ammonia on the sulphuryl chloride, SO2Cl2, just as urea is obtained by the action of ammonia on carbonyl chloride, SO2Cl2+ 4NH3= N2H4SO2+ 2NH4Cl. The ammonium chloride is separated from the resultant sulphamide with great difficulty. Cold water, acting on the mixture, dissolves them both; the cold solution does not gives precipitate with barium chloride. Alkalis act on it slowly, as they do on urea; but on boiling, especially in the presence of alkalis or acids, it easily recombines with water, and gives an ammonium salt. V. Traube (1892) obtained sulphamide by the reaction of sulphuryl, dissolved in chloroform, upon ammonia. The resultant precipitate dissolves when shaken up with water, and the solution (after boiling with the oxides or lead or silver) is evaporated, when a syrupy liquid remains. With nitrate of silver the latter gives a solid compound, which, when decomposed by hydrochloric acid, gives free sulphamide in large colourless crystals, having the composition SO2(NH2)2. This substance fuses at 81°, begins to decompose below 100°, and is entirely decomposed above 250°; it is soluble in water, and the solution has a neutral reaction and bitter taste. When heated with acids, sulphamide gradually decomposes, forming sulphuric acid and ammonia. If the silver compound obtained by the action of sulphamide on nitrate of silver be heated at 170°-180° until ammonia is no longer evolved, and the residue be extracted with water acidulated with nitric acid, a salt separates out from the solution, answering in its composition to sulphamide, SO2NAg, which = the amide - NH3= SO2N2H4- NH3= SO2NH. The action of sulphuryl chloride (and of the other chloranhydrides of sulphur) on ammonium carbonate always, as Mente showed (1888), results in the formation of the salt NH(SO3NH4)2.The nitriles corresponding with sulphuric acid are not as yet known with any certainty. The most simple nitrile corresponding with sulphuric acid should have the composition N2H8SO4- 4H2O = N2S. This would be a kind of cyanogen corresponding with sulphuric acid. On comparing sulphurous acid with carbonic acid, we saw that they present a great analogy in many respects, and therefore it might be expected that nitrile compounds having the composition NHS and N2S2would be found. The latter of these compounds is well known, and was obtained by Soubeiron, by the action of dry ammonia on sulphur chloride. This substance corresponds with cyanogen (paracyanogen), and is known asnitrogen sulphide, N2S2. It is formed according to the equation 3SCl2+ 8NH3= N2S2+ S + 6NH4Cl. The free sulphur and nitrogen sulphide are dissolved by acting on the product with carbon bisulphide, the nitrogen sulphide being much less soluble than the sulphur. It is a yellow substance, which is excessively irritating to the eyes and nostrils. It explodes when rubbed with a hard substance, being naturally decomposed with the evolution of nitrogen; but when heated it fuses without decomposing, and only decomposes with explosion at 157°. It is insoluble in water, and only slightly so in alcohol, ether, and carbon bisulphide; 100 parts of the latter dissolve 1·5 part of nitrogen sulphide at the boiling point. This solution on cooling deposits it in minute transparent prisms of a golden yellow colour.

[78]Pyrosulphuryl chloride, S2O5Cl2. See Note44. Thorpe and Kirman, by treating SO3with HF, obtained SO2(OH)F, as a liquid boiling at 163°, but which decomposed with greater facility and then gave SO2F2.

The acids of sulphur naturally have their corresponding ammonium salts, and the latter their amides and nitriles. It will be readily understood how vast a field for research is presented by the series of compounds of sulphur and nitrogen, if we only remember that to carbonic and formic acids there corresponds, as we saw (ChapterIX.), a vast series of derivatives corresponding with their ammonium salts. To sulphuric acid there correspond two ammonium salts, SO2(HO)(NH4O) and SO2(NH4O)2; three amides: the acid amide SO2(HO)(NH2), or sulphamic acid, the normal saline compound SO2(NH4O)(NH2), or ammonium sulphamate, and the normal amide SO2(NH2)2, or sulphamide (the analogue of urea); then the acid nitrile, SON(HO), and two neutral nitriles, SON(NH2) and SN2. There are similar compounds corresponding with sulphurous acid, and therefore its nitriles will be, an acid, SN(HO), its salt, and the normal compound, SN(NH2). Dithionic and the other acids of sulphur should also have their corresponding amides and nitriles. Only a few examples are known, which we will briefly describe. Sulphuric acid forms salts of very great stability with ammonia, and ammonium sulphate is one of the commonest ammoniacal compounds. It is obtained by the direct action of ammonia on sulphuric acid, or by the action of the latter on ammonium carbonate; it separates from its solutions in an anhydrous state, like potassium sulphate, with which it is isomorphous. Hence, the composition of crystals of ammonium sulphate is (NH4)2SO4. This salt fuses at 140°, and does not undergo any change when heated up to 180°. At higher temperatures it does not lose water, but parts with half its ammonia, and is converted into the acid salt, HNH4SO4; and this acid salt, on further heating, undergoes a further decomposition, and splits up into nitrogen, water, and acid ammonium sulphite, HNH4SO3. At the ordinary temperature the normal salt is soluble in twice its weight of water and at the boiling-point of water in an equal weight. In its faculty for combinations this salt exhibits a great resemblance to potassium sulphate, and, like it, easily forms a number of double salts; the most remarkable of which are the ammonia alums, NH4AlS2O8,12H2O, and the double salts formed by the metals of the magnesium group, having, for example, the composition (NH4)2MgS2O8,6H2O. Ammonium sulphate does not give an amide when heated, perhaps owing to the faculty of sulphuric anhydride to retain the water combined with it with great force. But the amides of sulphuric acid may be very conveniently prepared from sulphuric anhydride. Their formation by this method is very easily understood because an amide is equal to an ammonium salt less water, and if the anhydride be taken it will give an amide directly with ammonia. Thus, if dry ammonia be passed into a vessel surrounded by a freezing mixture and containing sulphuric anhydride, it forms a white powdery mass called sulphatammon, having the composition SO3,2H3N, and resembling the similar compound of carbonic acid, CO2,2NH3. This substance is naturally the ammonium salt of sulphamic acid, SO2(NH4O)NH2. It is slowly acted on by water, and may therefore be obtained in solution, in which it slowly reacts with barium chloride, which proves that with water it still forms ammonium sulphate. If this substance be carefully dissolved in water and evaporated, it yields well-formed crystals, whose solution no longer gives a precipitate with barium chloride. This is not due to the presence of impurities, but to a change in the nature of the substance, and therefore Rose calls the crystalline modificationparasulphatammon. Platinum chloride only precipitates half the nitrogen as platinochloride from solutions of sulphat- and parasulphatammon, which shows that they are ammonium salts, SO2(NH4O)(NH2). It may be that the reason of the difference in the two modifications is connected with the fact that two different substances of the composition N2H4SO2are possible: one is the amide SO2(NH2)2corresponding with the normal salt, and the other is the salt of the nitrile acid corresponding with acid ammonium sulphate—that is, SON(ONH4) corresponds with the acid SON(OH) = SO2(NH4O)OH - 2H2O. Hence there may here be a difference of the same nature as between urea and ammonium cyanate. Up to the present, the isomerism indicated above has been but little investigated, and might be the subject of interesting researches.

If in the preceding experiment the ammonia, and not the sulphuric anhydride, be taken in excess, a soluble substance of the composition 2SO2,3NH3is formed. This compound, obtained by Jacqueline and investigated by Voronin, doubtless also contains a salt of sulphamic acid—that is, of the amide corresponding with the acid ammonium sulphate = HNH4SO4- H2O = (NH2)SO2(OH). Probably it is a compound of sulphatammon with sulphamic acid. Thus it has an acid reaction, and does not give a precipitate with barium chloride.

With normal sulphate of ammonium, an amide of the composition N2H4SO2should correspond, which should bear the same relation to sulphuric acid as urea bears to carbonic acid. This amide, known assulphamide, is obtained by the action of dry ammonia on the sulphuryl chloride, SO2Cl2, just as urea is obtained by the action of ammonia on carbonyl chloride, SO2Cl2+ 4NH3= N2H4SO2+ 2NH4Cl. The ammonium chloride is separated from the resultant sulphamide with great difficulty. Cold water, acting on the mixture, dissolves them both; the cold solution does not gives precipitate with barium chloride. Alkalis act on it slowly, as they do on urea; but on boiling, especially in the presence of alkalis or acids, it easily recombines with water, and gives an ammonium salt. V. Traube (1892) obtained sulphamide by the reaction of sulphuryl, dissolved in chloroform, upon ammonia. The resultant precipitate dissolves when shaken up with water, and the solution (after boiling with the oxides or lead or silver) is evaporated, when a syrupy liquid remains. With nitrate of silver the latter gives a solid compound, which, when decomposed by hydrochloric acid, gives free sulphamide in large colourless crystals, having the composition SO2(NH2)2. This substance fuses at 81°, begins to decompose below 100°, and is entirely decomposed above 250°; it is soluble in water, and the solution has a neutral reaction and bitter taste. When heated with acids, sulphamide gradually decomposes, forming sulphuric acid and ammonia. If the silver compound obtained by the action of sulphamide on nitrate of silver be heated at 170°-180° until ammonia is no longer evolved, and the residue be extracted with water acidulated with nitric acid, a salt separates out from the solution, answering in its composition to sulphamide, SO2NAg, which = the amide - NH3= SO2N2H4- NH3= SO2NH. The action of sulphuryl chloride (and of the other chloranhydrides of sulphur) on ammonium carbonate always, as Mente showed (1888), results in the formation of the salt NH(SO3NH4)2.

The nitriles corresponding with sulphuric acid are not as yet known with any certainty. The most simple nitrile corresponding with sulphuric acid should have the composition N2H8SO4- 4H2O = N2S. This would be a kind of cyanogen corresponding with sulphuric acid. On comparing sulphurous acid with carbonic acid, we saw that they present a great analogy in many respects, and therefore it might be expected that nitrile compounds having the composition NHS and N2S2would be found. The latter of these compounds is well known, and was obtained by Soubeiron, by the action of dry ammonia on sulphur chloride. This substance corresponds with cyanogen (paracyanogen), and is known asnitrogen sulphide, N2S2. It is formed according to the equation 3SCl2+ 8NH3= N2S2+ S + 6NH4Cl. The free sulphur and nitrogen sulphide are dissolved by acting on the product with carbon bisulphide, the nitrogen sulphide being much less soluble than the sulphur. It is a yellow substance, which is excessively irritating to the eyes and nostrils. It explodes when rubbed with a hard substance, being naturally decomposed with the evolution of nitrogen; but when heated it fuses without decomposing, and only decomposes with explosion at 157°. It is insoluble in water, and only slightly so in alcohol, ether, and carbon bisulphide; 100 parts of the latter dissolve 1·5 part of nitrogen sulphide at the boiling point. This solution on cooling deposits it in minute transparent prisms of a golden yellow colour.

[79]Selenious anhydride, SeO2, is a volatile solid, which crystallises in prisms soluble in water. It is best procured by the action of nitric acid on selenium. The well-known researches of Nilson (1874) showed that the salts of selenious acid easily form acid salts, and are so characteristic in many respects that they may even serve for judging the analogy of types of oxides. Thus the oxides of the composition RO give normal salts of the composition RSeO3,2H2O, where R = Mn, Co, Ni, Cu, Zn. The salts of magnesium, barium, and calcium contain a different quantity of water, as do also the salts of the oxides R2O3. We here turn attention to the fact that beryllium gives a normal salt, BeSeO3,2H2O, and not a salt analogous to those of aluminium, scandium, Sc2(SeO3)3,H2O, yttrium, Y2(SeO3)2,12H2O, and other oxides of the form R2O3, which speaks in favour of the formula BeO.Tellurous anhydrideis also a colourless solid, which crystallises in octahedra; it also, when heated, first fuses and then volatilises. It is insoluble in water, and the decomposition of its salts gives a hydrate, H2TeO3, which is insoluble.It is a very characteristic circumstance that selenious and tellurous anhydrides are very easilyreducedto selenium and tellurium. This is not only effected by metals like zinc, or by sulphuretted hydrogen, which are powerful deoxidisers, but even by sulphurous anhydride, which is able to precipitate selenium and tellurium from solutions of the selenites and tellurites, and even of the acids themselves, which is taken advantage of in obtaining these elements and separating them from sulphur.Sulphuric acid, as we know, rarely acts as an oxidising agent. It is otherwise with selenic and telluric acids, H2SeO4and H2TeO4, which are powerful oxidising agents—that is, are easily reduced in many circumstances either into the lower oxide or even to selenium and tellurium. A powerful oxidising agent is required in order to convert selenious and tellurous anhydrides into selenic and telluric anhydrides, and, moreover, it must be employed in excess. If chlorine be passed through a solution of potassium selenide, K2Se, telluride, K2Te, selenite, K2SeO3, or tellurite, K2TeO3, it acts as an oxidiser in the presence of the water, forming potassium selenate, K2SeO4, or tellurate, K2TeO4. The same salts are formed by fusing the lower oxides with nitre. These salts are isomorphous with the corresponding sulphates, and cannot therefore be separated from them by crystallisation. The salts of potassium, sodium, magnesium, copper, cadmium, &c. are soluble like the sulphates, but those of barium and calcium are insoluble, in perfect analogy with the sulphates. When copper selenate, CuSeO4, is treated with sulphuretted hydrogen (CuS is precipitated),selenic acidremains in solution. On evaporation and drying in vacuo at 180° it gives a syrupy liquid, which may be concentrated to almost the pure acid, H2SeO4, having a specific gravity of 2·6. Cameron and Macallan (1891) showed that pure H2SeO4only remains liquid in a state of superfusion whilst the solidified acid melts at +58°, the solid acid crystallises well, its sp. gr. is then 2·95. The hydrate H2SeO4,H2O melts at +25°. The acid in a superfused state has a sp. gr. 2·36 and the solid 2·63. Like sulphuric acid strong selenic acid attracts moisture from the atmosphere; it is not decomposed by sulphurous acid, but oxidises hydrochloric acid (like nitric, chromic, and manganic acids), evolving chlorine and forming selenious acid, H2SeO4+ 2HCl = H2SeO3+ H2O + Cl2.Telluric acid, H2TeO4, is obtained by fusing tellurous anhydride with potassium hydroxide and chlorate; the solution, containing potassium tellurate, is then precipitated with barium chloride, and the barium tellurate, BaTeO4obtained in the precipitate is decomposed by sulphuric acid. A solution of telluric acid is thus obtained, which on evaporation yields colourless prisms, soluble in water, and containing TeH2O4,2H2O. Two equivalents of water are driven off at 160°; on further heating the last equivalent of water is expelled, and then oxygen is given off. It also gives chlorine with hydrochloric acid, like selenic acid. Its salts also correspond with those of sulphuric acid. It must, however, be remarked that telluric and selenic acids are able to give poly-acid salts with much greater ease than sulphuric acid. Thus, for example, there are known for telluric acid not only K2TeO4,5H2O and KHTeO4,3H2O, but also KHTeO4,H2TeO4,H2O = K2TeO4,3H2TeO4,2H2O. This salt is easily obtained from acid solutions of the preceding salts and is less soluble in water. As selenious anhydride is volatile and gives similar poly-salts, it may be surmised that selenious, tellurous, selenic, and telluric anhydrides are polymeric as compared with sulphurous and sulphuric anhydrides, for which reason it would be desirable to determine the vapour density of selenious anhydride. It would probably correspond with Se2O4or Se3O6.In order to show the very close analogy of selenium to sulphur, I will quote two examples. Potassium cyanide dissolves selenium, as it does sulphur, forming potassium selenocyanate, KCNSe, corresponding with potassium thiocyanate. Acids precipitate selenium from this solution, because selenocyanic acid, H2CNSe, when in a free state is immediately decomposed. A boiling solution of sodium sulphite dissolves selenium, just as it would sulphur, forming a salt analogous to thiosulphate of sodium, namely, sodium selenosulphate, Na2SSeO3. Selenium is separated from a solution of this salt by the action of acid.

[79]Selenious anhydride, SeO2, is a volatile solid, which crystallises in prisms soluble in water. It is best procured by the action of nitric acid on selenium. The well-known researches of Nilson (1874) showed that the salts of selenious acid easily form acid salts, and are so characteristic in many respects that they may even serve for judging the analogy of types of oxides. Thus the oxides of the composition RO give normal salts of the composition RSeO3,2H2O, where R = Mn, Co, Ni, Cu, Zn. The salts of magnesium, barium, and calcium contain a different quantity of water, as do also the salts of the oxides R2O3. We here turn attention to the fact that beryllium gives a normal salt, BeSeO3,2H2O, and not a salt analogous to those of aluminium, scandium, Sc2(SeO3)3,H2O, yttrium, Y2(SeO3)2,12H2O, and other oxides of the form R2O3, which speaks in favour of the formula BeO.

Tellurous anhydrideis also a colourless solid, which crystallises in octahedra; it also, when heated, first fuses and then volatilises. It is insoluble in water, and the decomposition of its salts gives a hydrate, H2TeO3, which is insoluble.

It is a very characteristic circumstance that selenious and tellurous anhydrides are very easilyreducedto selenium and tellurium. This is not only effected by metals like zinc, or by sulphuretted hydrogen, which are powerful deoxidisers, but even by sulphurous anhydride, which is able to precipitate selenium and tellurium from solutions of the selenites and tellurites, and even of the acids themselves, which is taken advantage of in obtaining these elements and separating them from sulphur.

Sulphuric acid, as we know, rarely acts as an oxidising agent. It is otherwise with selenic and telluric acids, H2SeO4and H2TeO4, which are powerful oxidising agents—that is, are easily reduced in many circumstances either into the lower oxide or even to selenium and tellurium. A powerful oxidising agent is required in order to convert selenious and tellurous anhydrides into selenic and telluric anhydrides, and, moreover, it must be employed in excess. If chlorine be passed through a solution of potassium selenide, K2Se, telluride, K2Te, selenite, K2SeO3, or tellurite, K2TeO3, it acts as an oxidiser in the presence of the water, forming potassium selenate, K2SeO4, or tellurate, K2TeO4. The same salts are formed by fusing the lower oxides with nitre. These salts are isomorphous with the corresponding sulphates, and cannot therefore be separated from them by crystallisation. The salts of potassium, sodium, magnesium, copper, cadmium, &c. are soluble like the sulphates, but those of barium and calcium are insoluble, in perfect analogy with the sulphates. When copper selenate, CuSeO4, is treated with sulphuretted hydrogen (CuS is precipitated),selenic acidremains in solution. On evaporation and drying in vacuo at 180° it gives a syrupy liquid, which may be concentrated to almost the pure acid, H2SeO4, having a specific gravity of 2·6. Cameron and Macallan (1891) showed that pure H2SeO4only remains liquid in a state of superfusion whilst the solidified acid melts at +58°, the solid acid crystallises well, its sp. gr. is then 2·95. The hydrate H2SeO4,H2O melts at +25°. The acid in a superfused state has a sp. gr. 2·36 and the solid 2·63. Like sulphuric acid strong selenic acid attracts moisture from the atmosphere; it is not decomposed by sulphurous acid, but oxidises hydrochloric acid (like nitric, chromic, and manganic acids), evolving chlorine and forming selenious acid, H2SeO4+ 2HCl = H2SeO3+ H2O + Cl2.Telluric acid, H2TeO4, is obtained by fusing tellurous anhydride with potassium hydroxide and chlorate; the solution, containing potassium tellurate, is then precipitated with barium chloride, and the barium tellurate, BaTeO4obtained in the precipitate is decomposed by sulphuric acid. A solution of telluric acid is thus obtained, which on evaporation yields colourless prisms, soluble in water, and containing TeH2O4,2H2O. Two equivalents of water are driven off at 160°; on further heating the last equivalent of water is expelled, and then oxygen is given off. It also gives chlorine with hydrochloric acid, like selenic acid. Its salts also correspond with those of sulphuric acid. It must, however, be remarked that telluric and selenic acids are able to give poly-acid salts with much greater ease than sulphuric acid. Thus, for example, there are known for telluric acid not only K2TeO4,5H2O and KHTeO4,3H2O, but also KHTeO4,H2TeO4,H2O = K2TeO4,3H2TeO4,2H2O. This salt is easily obtained from acid solutions of the preceding salts and is less soluble in water. As selenious anhydride is volatile and gives similar poly-salts, it may be surmised that selenious, tellurous, selenic, and telluric anhydrides are polymeric as compared with sulphurous and sulphuric anhydrides, for which reason it would be desirable to determine the vapour density of selenious anhydride. It would probably correspond with Se2O4or Se3O6.

In order to show the very close analogy of selenium to sulphur, I will quote two examples. Potassium cyanide dissolves selenium, as it does sulphur, forming potassium selenocyanate, KCNSe, corresponding with potassium thiocyanate. Acids precipitate selenium from this solution, because selenocyanic acid, H2CNSe, when in a free state is immediately decomposed. A boiling solution of sodium sulphite dissolves selenium, just as it would sulphur, forming a salt analogous to thiosulphate of sodium, namely, sodium selenosulphate, Na2SSeO3. Selenium is separated from a solution of this salt by the action of acid.

[79 bis]Muthmann, in his researches upon the allotropic forms of selenium, pointed out (1889) a peculiar modification, which appears, as it were, as a transition between crystalline and amorphous selenium. It is obtained together with the crystalline variety by slowly evaporating a solution of selenium in bisulphide of carbon, and differs from the crystalline variety in the form of its crystals; it passes into the latter modification when heated. Schultz also obtained selenium (like Ag,seeChapterXXIV.) in a soluble form, but these researches are not so conclusive as those upon soluble silver, and we shall therefore not consider them more fully.

[79 bis]Muthmann, in his researches upon the allotropic forms of selenium, pointed out (1889) a peculiar modification, which appears, as it were, as a transition between crystalline and amorphous selenium. It is obtained together with the crystalline variety by slowly evaporating a solution of selenium in bisulphide of carbon, and differs from the crystalline variety in the form of its crystals; it passes into the latter modification when heated. Schultz also obtained selenium (like Ag,seeChapterXXIV.) in a soluble form, but these researches are not so conclusive as those upon soluble silver, and we shall therefore not consider them more fully.

[80]The tellurium thus prepared is impure, and contains a large amount of selenium. The latter may be removed by converting the mixture into the salts of potassium, and treating this with nitric acid and barium nitrate, when barium selenate only is precipitated, whilst the barium tellurate remains in solution. This method does not, however, give a pure product, and it appears to be best to separate the selenium from the tellurium in a metallic form; this is done by boiling the impure potassium tellurate with hydrochloric acid, which converts it into potassium tellurite, from which the tellurium is reduced by sulphurous anhydride. The metal thus obtained is then fused and distilled in a stream of hydrogen; the selenium volatilises first, and then the tellurium, owing to its being much less volatile than the former. Nevertheless, tellurium is also volatile, and may be separated in this manner from less volatile metals, such as antimony. Brauner determined the atomic weight of pure tellurium, and found it to be 125, but showed (1889) that tellurium purified by the usual method, even after distillation, contains a large amount of impurities.

[80]The tellurium thus prepared is impure, and contains a large amount of selenium. The latter may be removed by converting the mixture into the salts of potassium, and treating this with nitric acid and barium nitrate, when barium selenate only is precipitated, whilst the barium tellurate remains in solution. This method does not, however, give a pure product, and it appears to be best to separate the selenium from the tellurium in a metallic form; this is done by boiling the impure potassium tellurate with hydrochloric acid, which converts it into potassium tellurite, from which the tellurium is reduced by sulphurous anhydride. The metal thus obtained is then fused and distilled in a stream of hydrogen; the selenium volatilises first, and then the tellurium, owing to its being much less volatile than the former. Nevertheless, tellurium is also volatile, and may be separated in this manner from less volatile metals, such as antimony. Brauner determined the atomic weight of pure tellurium, and found it to be 125, but showed (1889) that tellurium purified by the usual method, even after distillation, contains a large amount of impurities.

[81]The decomposition proceeds in the above order in the cold, but in a hot solution with an excess of potassium hydroxide it proceeds inversely. A similar phenomenon takes place when tellurium is fused with alkalis, and it is therefore necessary in order to obtain potassium telluride to add charcoal.Selenium and tellurium form higher compounds with chlorine with comparative ease. For selenium, SeCl2and SeCl4are known, and for tellurium TeCl2and TeCl4. The tetrachlorides of selenium and tellurium are formed by passing chlorine over these elements. Selenium tetrachloride, SeCl4, is a crystalline, volatile mass which gives selenious anhydride and hydrochloric acid with water. Tellurium tetrachloride is much less volatile, fuses easily, and is also decomposed by water. Both elements form similar compounds with bromine. Tellurium tetrabromide is red, fuses to a brown liquid, volatilises, and gives a crystalline salt, K2TeBr6,3H2O, with an aqueous solution of potassium bromide.

[81]The decomposition proceeds in the above order in the cold, but in a hot solution with an excess of potassium hydroxide it proceeds inversely. A similar phenomenon takes place when tellurium is fused with alkalis, and it is therefore necessary in order to obtain potassium telluride to add charcoal.

Selenium and tellurium form higher compounds with chlorine with comparative ease. For selenium, SeCl2and SeCl4are known, and for tellurium TeCl2and TeCl4. The tetrachlorides of selenium and tellurium are formed by passing chlorine over these elements. Selenium tetrachloride, SeCl4, is a crystalline, volatile mass which gives selenious anhydride and hydrochloric acid with water. Tellurium tetrachloride is much less volatile, fuses easily, and is also decomposed by water. Both elements form similar compounds with bromine. Tellurium tetrabromide is red, fuses to a brown liquid, volatilises, and gives a crystalline salt, K2TeBr6,3H2O, with an aqueous solution of potassium bromide.


Back to IndexNext