Chapter 26

Footnotes:[1]The working of the Ural chrome iron ore into chromium compounds has been firmly established in Russia, thanks to the endeavours of P. K. Ushakoff, who constructed large works for this purpose on the river Kama, near Elabougi, where as much as 2,000 tons of ore are treated yearly, owing to which the importation of chromium preparations into Russia has ceased.[1 bis]But the calcium chromate is soluble in water in the presence of an excess of chromic acid, as may be seen from the fact that a solution of chromic acid dissolves lime.[2]There are many variations in the details of the manufacturing processes, and these must be looked for in works on technical chemistry. But we may add that the chromate may also be obtained by slightly roasting briquettes of a mixture of chrome iron and lime, and then leaving the resultant mass to the action of moist air (oxygen is absorbed, and the mass turns yellow).[2 bis]The oxidising action of potassium dichromate on organic substances at the ordinary temperature is especially marked under the action of light. Thus it acts on gelatin, as Poutven discovered; this is applied to photography in the processes of photogravure, photo-lithography, pigment printing, &c. Under the action of light this gelatin is oxidised, and the chromic anhydride deoxidised into chromic oxide, which unites with the gelatin and forms a compound insoluble in warm water, whilst where the light has not acted, the gelatin remains soluble, its properties being unaffected by the presence of chromic acid or potassium dichromate.[3]Ammonium and sodium dichromates are now also prepared on a large scale. The sodium salts may be prepared in exactly the same manner as those of potassium. The normal salt combines with ten equivalents of water, like Glauber's salt, with which it is isomorphous. Its solution above 30° deposits the anhydrous salt. Sodium dichromate crystals contain Na2Cr2O7,2H2O. Theammonium salts of chromic acidare obtained by saturating the anhydride itself with ammonia. The dichromate is obtained by saturating one part of the anhydride with ammonia, and then adding a second part of anhydride and evaporating under the receiver of an air-pump. On ignition, the normal and acid salts leave chromic oxide. Potassium ammonium chromate, NH4KCrO4, is obtained in yellow needles from a solution of potassium dichromate in aqueous ammonia; it not only loses ammonia and becomes converted into potassium dichromate when ignited, but also by degrees at the ordinary temperature. This shows the feeble energy of chromic acid, and its tendency to form stable dichromates. Magnesium chromate is soluble in water, as also is the strontium salt. The calcium salt is also somewhat soluble, but the barium salt is almost insoluble. The isomorphism with sulphuric acid is shown in the chromates by the fact that the magnesium and ammonium salts form double salts containing six equivalents of water, which are perfectly isomorphous with the corresponding sulphates. The magnesium salt crystallises in large crystals containing seven equivalents of water. The beryllium, cerium, and cobalt salts are insoluble in water. Chromic acid dissolves manganous carbonate, but on evaporation the solution deposits manganese dioxide, formed at the expense of the oxygen of the chromic acid. Chromic acid also oxidises ferrous oxide, and ferric oxide is soluble in chromic acid.One of the chromates most used by the dyer is the insoluble yellow lead chromate, PbCrO4(Chapter XVIII., Note46), which is precipitated on mixing solutions of PbX2with soluble chromates. It easily forms a basic salt, having the composition PbO,PbCrO4, as a crystalline powder, obtained by fusing the normal salt with nitre and then rapidly washing in water. The same substance is obtained, although impure and in small quantity, by treating lead chromate with neutral potassium chromate, especially on boiling the mixture; and this gives the possibility of attaining, by means of these materials, various tints of lead chromate, from yellow to red, passing through different orange shades. The decomposition which takes place (incompletely) in this case is as follows: 2PbCrO4+ K2CrO4= PbCrO4,PbO + K2Cr2O7—that is, potassium dichromate is formed in solution.[4]The sulphuric acid should not contain any lower oxides of nitrogen, because they reduce chromic anhydride into chromic oxide. If a solution of a chromate be heated with an excess of acid—for instance, sulphuric or hydrochloric acid—oxygen or chlorine is evolved, and a solution of a chromic salt is formed. Hence, under these circumstances, chromic acid cannot be obtained from its salts. One of the first methods employed consisted in converting its salts into volatilechromium hexafluoride, CrF6. This compound, obtained by Unverdorben, may be prepared by mixing lead chromate with fluor spar in a dry state, and treating the mixture with fuming sulphuric acid in a platinum vessel: PbCrO4+ 3CaF2+ 4H2SO4= PbSO4+ 3CaSO4+ 4H2O + CrF6. Fuming sulphuric acid is taken, and in considerable excess, because the chromium fluoride which is formed is very easily decomposed by water. It is volatile, and forms a very caustic, poisonous vapour, which condenses when cooled in a dry platinum vessel into a red, exceedingly volatile liquid, which fumes powerfully in air. The vapours of this substance when introduced into water are decomposed into hydrofluoric acid and chromic anhydride: CrF6+ 3H2O = CrO3+ 6HF. If very little water be taken the hydrofluoric acid volatilises, and chromic anhydride separates directly in crystals. The chloranhydride of chromic acid, CrO2Cl2(Note5), is also decomposed in the same manner. A solution of chromic acid and a precipitate of barium sulphate are formed by treating the insoluble barium chromate with an equivalent quantity of sulphuric acid. If carefully evaporated, the solution yields crystals of chromic anhydride. Fritzsche gave a very convenient method of preparing chromic anhydride, based on the relation of chromic to sulphuric acid. At the ordinary temperature the strong acid dissolves both chromic anhydride and potassium chromate, but if a certain amount of water is added to the solution the chromic anhydride separates, and if the amount of water be increased the precipitated chromic anhydride is again dissolved. The chromic anhydride is almost all separated from the solution when it contains two equivalents of water to one equivalent of sulphuric acid. Many methods for the preparation of chromic anhydride are based on this fact.[4 bis]They cannot be filtered through paper or washed, because the chromic anhydride is reduced by the filter-paper, and is dissolved during the process of washing.[5]Berzelius observed, and Rose carefully investigated, this remarkable reaction, which occurs between chromic acid and sodium chloride in the presence of sulphuric acid. If 10 parts of common salt be mixed with 12 parts of potassium dichromate, fused, cooled, and broken up into lumps, and placed in a retort with 20 parts of fuming sulphuric acid, it gives rise to a violent reaction, accompanied by the formation of brown fumes ofchromic chloranhydride, orchromyl chloride, CrO2Cl2, according to the reaction: CrO3+ 2NaCl + H2SO4= Na2SO4+ H2O + CrO2Cl2. The addition of an excess of sulphuric acid is necessary in order to retain the water. The same substance is always formed when a metallic chloride is heated with chromic acid, or any of its salts, in the presence of sulphuric acid. The formation of this volatile substance is easily observed from the brown colour which is proper to its vapour. On condensing the vapour in a dry receiver a liquid is obtained having a sp. gr. of 1·9, boiling at 118°, and giving a vapour whose density, compared with hydrogen, is 78, which corresponds with the above formula. Chromyl chloride is decomposed by heat into chromic oxide, oxygen, and chlorine: 2CrO2Cl2= Cr2O3+ 2Cl2+ O; so that it is able to act simultaneously as a powerful oxidising and chlorinating agent, which is taken advantage of in the investigation of many, and especially of organic, substances. When treated with water, this substance first falls to the bottom, and is then decomposed into hydrochloric and chromic acids, like all chloranhydrides: CrO2Cl2+ H2O = CrO3+ 2HCl. When brought into contact with inflammable substances it sets fire to them; it acts thus, for instance, on phosphorus, sulphur, oil of turpentine, ammonia, hydrogen, and other substances. It attracts moisture from the atmosphere with great energy, and must therefore be kept in closed vessels. It dissolves iodine and chlorine, and even forms a solid compound with the latter, which depends upon the faculty of chromium to form its higher oxide, Cr2O7. The close analogy in the physical properties of the chloranhydrides, CrO2Cl2and SO2Cl2, is very remarkable, although sulphurous anhydride is a gas, and the corresponding oxide, CrO2, is a non-volatile solid. It may be imagined, therefore, that chromium dioxide (which will be mentioned in the following note) presents a polymerised modification of the substance having the composition CrO2; in fact, this is obvious from the method of its formation.If three parts of potassium dichromate be mixed with four parts of strong hydrochloric acid and a small quantity of water, and gently warmed, it all passes into solution, and no chlorine is evolved; on cooling, the liquid deposits red prismatic crystals, known asPeligot's salt, very stable in air. This has the composition KCl,CrO3, and is formed according to the equation K2Cr2O7+ 2HCl = 2KCl,CrO3+ H2O. It is evident that this is the first chloranhydride of chromic acid, HCrO3Cl, in which the hydrogen is replaced by potassium. It is decomposed by water, and on evaporation the solution yields potassium dichromate and hydrochloric acid. This is a fresh instance of the reversible reactions so frequently encountered. With sulphuric acid Peligot's salt forms chromyl chloride. The latter circumstance, and the fact that Geuther produced Peligot's salt from potassium chromate and chromyl chloride, give reason for thinking that it is a compound of these two substances: 2KCl,CrO3= K2CrO4+ CrO2Cl2. It is also sometimes regarded as potassium dichromate in which one atom of oxygen is replaced by chlorine—that is, K2Cr2O6Cl2, corresponding with K2Cr2O7. When heated it parts with all its chlorine, and on further heating gives chromic oxide.[6]This intermediate degree of oxidation, CrO2, may also be obtained by mixing solutions of chromic salts with solutions of chromates. The brown precipitate formed contains a compound, Cr2O3,CrO3, consisting of equivalent amounts of chromic oxide and anhydride. The brown precipitate of chromium dioxide contains water. The same substance is formed by the imperfect deoxidation of chromic anhydride by various reducing agents. Chromic oxide, when heated, absorbs oxygen, and appears to give the same substance. Chromic nitrate, when ignited, also gives this substance. When this substance is heated it first disengages water and then oxygen, chromic oxide being left. It corresponds with manganese dioxide, Cr2O3,CrO3= 3CrO2. Krüger treated chromium dioxide with a mixture of sodium chloride and sulphuric acid, and found that chlorine gas was evolved, but that chromyl chloride was not formed. Under the action of light, a solution of chromic acid also deposits the brown dioxide. At the ordinary temperature chromic anhydride leaves a brown stain upon the skin and tissues, which probably proceeds from a decomposition of the same kind. Chromic anhydride is soluble in alcohol containing water, and this solution is decomposed in a similar manner by light. Chromium dioxide forms K2CrO4when treated with H2O2in the presence of KHO.[6 bis]Now that persulphuric acid H2S2O8is well known it might be supposed that perchromic anhydride, Cr2O7, would correspond to perchromic acid, H2Cr2O8, but as yet it is not certain whether corresponding salts are formed. Péchard (1891) on adding an excess of H2O2and baryta water to a dilute solution of CrO2(8 grm. per litre), observed the formation of a yellow precipitate, but oxygen was disengaged at the same time and the precipitate (which easily exploded when dried) was found to contain, besides an admixture of BaO2, a compound BaCrO5, and this = BaO2+ CrO3, and does not correspond to perchromic acid. The fact of its decomposing with an explosion, and the mode of its preparation, proves, however, that this is a similar derivative of peroxide of hydrogen to persulphuric acid (ChapterXX.)[7]As a mixture of potassium dichromate and sulphuric acid is usually employed for oxidation, the resultant solution generally contains a double sulphate of potassium and chromium—that is,chrome alum, isomorphous with ordinary alum—K2Cr2O7+ 4H2SO4+ 20H2O = O3+ K2Cr2(SO4)4,24H2O or 2(KCr(SO4)2,12H2O). It is prepared by dissolving potassium dichromate in dilute sulphuric acid; alcohol is then added and the solution slightly heated, or sulphurous anhydride is passed through it. On the addition of alcohol to a cold mixture of potassium dichromate and sulphuric acid, the gradual disengagement of pleasant-smelling volatile products of the oxidation of alcohol, and especially of aldehyde, C2H4O, is remarked. If the temperature of decomposition does not exceed 35°, avioletsolution of chrome alum is obtained, but if the temperature be higher, a solution of the same alum is obtained of agreencolour. As chrome alum requires for solution 7 parts of water at the ordinary temperature, it follows that if a somewhat strong solution of potassium dichromate be taken (4 parts of water and 1½ of sulphuric acid to 1 part of dichromate), it will give so concentrated a solution of chrome alum that on cooling, the salt will separate without further evaporation.If the liquid, prepared as above or in any instance of the deoxidation of chromic acid,be heated(the oxidation naturally proceeds more rapidly) somewhat strongly, for instance, to the boiling-point of water, or if the violet solution already formed be raised to the same temperature, it acquires a brightgreen colour, and on evaporation the same mixture, which at lower temperatures so easily gives cubical crystals of chrome alum,does not give any crystals whatever.If the green solution be kept, however,for several weeksat the ordinary temperature, it depositsviolet crystalsof chrome alum. The green solution, when evaporated, gives a non-crystalline mass, and the violet crystals lose water at 100° and turn green. It must be remarked that the transition of the green modification into the violet is accompanied by a decrease in volume (Lecoq de Boisbaudran, Favre). If the green mass formed at the higher temperature be evaporated to dryness and heated at 30° in a current of air, it does not retain more then 6 equivalents of water. Hence Löwel, and also Schrötter, concluded that the green and violet modifications of the alum depend on different degrees of combination with water, which may be likened to the different compounds of sodium sulphate with water and to the different hydrates of ferric oxide.However, the question in this case is not so simple, as we shall afterwards see. Not chrome alum alone, butall the chromic salts, give two, if not three,varieties. At least, there is no doubt about the existence of two—agreenand aviolet modification. The green chromic salts are obtained by heating solutions of the violet salts, the violet solutions are produced on keeping solutions of the green salts for a long time. The conversion of the violet salts into green by the action of heat is itself an indication of the possibility of explaining the different modifications by their containing different proportions (or states) of water, and, moreover, by the green salts having a less amount of water than the violet. However, there are other explanations. Chromic oxide is a base like alumina, and is therefore able to give both acid and basic salts. It is supposed that the difference between the green and violet salts is due to this fact. This opinion of Krüger is based on the fact that alcohol separates out a salt from the green solution which contains less sulphuric acid than the normal violet salt. On the other hand, Löwel showed that all the acid cannot be separated from the green chromic salts by suitable reagents, as easily as it can be from the same solution of the violet salts; thus barium salts do not precipitate all the sulphuric acid from solutions of the green salts. According to other researches the cause of the varieties of the chromic salts lies in a difference in the bases they contain—that is, it is connected with a modification of the properties of the oxide of chromium itself. This only refers to the hydroxides, but as hydroxides themselves are only special forms of salts, the differences observed as yet in this direction between the hydroxides only confirm the generality of the difference observed in the chromic compounds (seeNote7 bis).The salts of chromic oxide, like those of alumina, are easily decomposed, give basic and double salts, and have an acid reaction, as chromic oxide is a feeble base. Potassium and sodium hydroxides give aprecipitateof the hydroxide with chromic salts, CrX3. The violet and green salts give ahydroxide soluble in an excess of the reagent; but the hydroxide is held in solution by very feeble affinities, so that it is partially separated by heat and dilution with water, and completely so on boiling. In an alkaline solution, chromic hydroxide is easily converted into chromic acid by the action of lead dioxide, chlorine, and other oxidising agents. If the chromic oxide occurs together with such oxides as magnesia, or zinc oxide, then on precipitation it separates out from its solution in combination with these oxides, forming, for example, ZnO,Cr2O3. Viard obtained compounds of Cr2O3with the oxides of Mg, Zn, Cd, &c.) On precipitating the violet solution of chrome alum with ammonia, a precipitate containing Cr2O3,6H2O is obtained, whilst the precipitate from the boiling solution with caustic potash was a hydrate containing four equivalents of water. When fused with borax chromic salts give a green glass. The same coloration is communicated to ordinary glass by the presence of traces of chromic oxide. A chrome glass containing a large amount of chromic oxide may be ground up and used as a green pigment. Among the hydrates of oxide of chromiumGuignet's greenforms one of the widely-used green pigments which have been substituted for the poisonous arsenical copper pigments, such as Schweinfurt green, which formerly was much used. Guignet's green has an extremely bright green colour, and is distinguished for its great stability, not only under the action of light but also towards reagents; thus it is not altered by alkaline solutions, and even nitric acid does not act on it. This pigment remains unchanged up to a temperature of 250°; it contains Cr2O3,2H2O, and generally a small amount of alkali. It is prepared by fusing 3 parts of boric acid with 1 part of potassium dichromate; oxygen is disengaged, and a green glass, containing a mixture of the borates of chromium and potassium, is obtained. When cool this glass is ground up and treated with water, which extracts the boric acid and alkali and leaves the above-named chromic hydroxide behind. This hydroxide only parts with its water at a red heat, leaving the anhydrous oxide.The chromic hydroxides lose their water by ignition, and in so doing become spontaneously incandescent, like the ordinary ferric hydroxide (ChapterXXII.). It is not known, however, whether all the modifications of chromic oxide show this phenomenon. The anhydrouschromic oxide, Cr2O3, is exceedingly difficultly soluble in acids, if it has passed through the above recalescence. But if it has parted with its water, or the greater part of it, and not yet undergone this self-induced incandescence (has not lost a portion of its energy), then it is soluble in acids. It is not reduced by hydrogen. It is easily obtained in various crystalline forms by many methods. The chromates of mercury and ammonium give a very convenient method for its preparation, because when ignited they leave chromic oxide behind. In the first instance oxygen and mercury are disengaged, and in the second case nitrogen and water: 2Hg2CrO4= Cr2O3+ O5+ 4Hg or (NH4)2Cr2O7= Cr2O3+ 4H2O + N2. The second reaction is very energetic, and the mass of salt burns spontaneously if the temperature be sufficiently high. A mixture of potassium sulphate and chromic oxide is formed by heating potassium dichromate with an equal weight of sulphur: K2Cr2O7+ S = K2SO4+ Cr2O3. The sulphate is easily extracted by water, and there remains a bright green residue of the oxide, whose colour is more brilliant the lower the temperature of the decomposition. The oxide thus obtained is used as a green pigment for china and enamel. The anhydrous chromic oxide obtained from chromyl chloride, CrO2Cl2, has a specific gravity of 5·21, and forms almost black crystals, which give a green powder. They are hard enough to scratch glass, and have a metallic lustre. The crystalline form of chromic oxide is identical with that of the oxide of iron and alumina, with which it is isomorphous.[7 bis]The most important of the compounds corresponding with chromic oxide ischromic chloride, Cr2Cl6, which is known in an anhydrous and in a hydrated form. It resembles ferric and aluminic chlorides in many respects. There is a great difference between the anhydrous and the hydrated chlorides; the former is insoluble in water, the latter easily dissolves, and on evaporation its solution forms a hygroscopic mass which is very unstable and easily evolves hydrochloric acid when heated with water. The anhydrous form is of a violet colour, and Wöhler gives the following method for its preparation: an intimate mixture is prepared of the anhydrous chromic oxide with carbon and organic matter, and charged into a wide infusible glass or porcelain tube which is heated in a combustion furnace; one extremity of the tube communicates with an apparatus generating chlorine which is passed through several bottles containing sulphuric acid in order to dry it perfectly before it reaches the tube. On heating the portion of the tube in which the mixture is placed and passing chlorine through, a slightly volatile sublimate of chromic chloride, CrCl3or Cr2Cl6, is formed. This substance formsviolet tabular crystals, which may be distilled in dry chlorine without change, but which, however, require a red heat for their volatilisation. These crystals are greasy to the touch and insoluble in water, but if they be powdered and boiled in water for a long time they pass intoa green solution. Strong sulphuric acid does not act on the anhydrous salt, or only acts with exceeding slowness, like water. Even aqua regia and other acids do not act on the crystals, and alkalis only show a very feeble action. The specific gravity of the crystals is 2·99. When fused with sodium carbonate and nitre they give sodium chloride and potassium chromate, and when ignited in air they form green chromic oxide and evolve chlorine. On ignition in a stream of ammonia, chromic chloride forms sal-ammoniac and chromium nitride, CrN (analogous to the nitrides BN, AlN). Mosberg and Peligot showed that when chromic chloride is ignited in hydrogen, it parts with one-third of its chlorine, forming chromous chloride, CrCl2—that is, there is formed from a compound corresponding with chromic oxide, Cr2O3, a compound answering to thesuboxide, chromous oxide, CrO—just as hydrogen converts ferric chloride into ferrous chloride with the aid of heat.Chromous chloride, CrCl2, forms colourless crystals easily soluble in water, which in dissolving evolve a considerable amount of heat, and form a blue liquid, capable of absorbing oxygen from the air with great facility, being converted thereby into a chromic compound.The blue solution of chromous chloride may also be obtained by the action of metallic zinc on the green solution of the hydrated chromic chloride; the zinc in this case takes up chlorine just as the hydrogen did. It must be employed in a large excess. Chromic oxide is also formed in the action of zinc on chromic chloride, and if the solution remain for a long time in contact with the zinc the whole of the chromium is converted into chromic oxychloride. Other chromic salts are also reduced by zinc intochromous salts, CrX2, just as the ferric salts FeX3are converted into ferrous salts FeX2by it. The chromous salts are exceedingly unstable and easily oxidise and pass into chromic salts; hence the reducing power of these salts is very great. From cupric salts they separate cuprous salts, from stannous salts they precipitate metallic tin, they reduce mercuric salts into mercurous and ferric into ferrous salts. Moreover, they absorb oxygen from the air directly. With potassium chromate they give a brown precipitate of chromium dioxide or of chromic oxide, according to the relative amounts of the substances taken: CrO3+ CrO = 2CrO2or CrO3+ 3CrO = 2Cr2O3. Aqueous ammonia gives a blue precipitate, and in the presence of ammoniacal salts a blue liquid is obtained which turns red in the air from oxidation. This is accompanied by the formation of compounds analogous to those given by cobalt (ChapterXXII.). A solution of chromous chloride with a hot saturated solution of sodium acetate, C2H3NaO2, gives, on cooling, transparent red crystals of chromous acetate, C4H6CrO4,H2O. This salt is also a powerful reducing agent, but may be kept for a long time in a vessel full of carbonic anhydride.The insoluble anhydrouschromic chlorideCrCl3very easilypasses into solutionin the presence of a trace (0·004) ofchromous chlorideCrCl2. This remarkable phenomenon was observed by Peligot and explained by Löwel in the following manner: chromous chloride, as a lower stage of oxidation, is capable of absorbing both oxygen and chlorine, combining with various substances. It is able to decompose many chlorides by taking up chlorine from them; thus it precipitates mercurous chloride from a solution of mercuric chloride, and in so doing passes into chromic chloride: 2CrCl2+ 2HgCl2= Cr2Cl6+ 2HgCl. Let us suppose that the same phenomenon takes place when the anhydrous chromic chloride is mixed with a solution of chromous chloride. The latter will then take up a portion of the chlorine of the former, and pass into a soluble hydrate of chromic chloride (hydrochloride of oxide of chromium), and the original anhydrous chromic chloride will pass into chromous chloride. The chromous chloride re-formed in this manner will then act on a fresh quantity of the chromic chloride, and in this manner transfer it entirely into solution as hydrate. This view is confirmed by the fact that other chlorides, capable of absorbing chlorine like chromous chloride, also induce the solution of the insoluble chromic chloride—for example, ferrous chloride, FeCl2, and cuprous chloride. The presence of zinc also aids the solution of chromic chloride, owing to its converting a portion of it into chromous chloride. The solution of chromic chloride in water obtained by these methods is perfectly identical with that which is formed by dissolving chromic hydroxide in hydrochloric acid. On evaporating thegreen solutionobtained in this manner, it gives a green mass, containing water. On further heating it leaves a soluble chromic oxychloride, and when ignited it first forms an insoluble oxychloride and then chromic oxide; but no anhydrous chromic chloride, Cr2Cl6, is formed by heating the aqueous solution of chromic chloride, which forms an important fact in support of the view that the green solution of chromic chloride is nothing else but hydrochloride of oxide of chromium. At 100° the composition of the green hydrate is Cr2Cl6,9H2O, and on evaporation at the ordinary temperature over H2SO4crystals are obtained with 12 equivalents of water; the red mass obtained at 120° contains Cr2O3,4Cr2Cl6,24H2O. The greater portion of it is soluble in water, like the mass which is formed at 150°. The latter contains Cr2O3,2Cr2Cl6,9H2O = 3(Cr2OCl4,3H2O)—that is, it presents the same composition as chromic chloride in which one atom of oxygen replaces two of chlorine. And if the hydrate of chromic chloride be regarded as Cr2O3,6HCl, the substance which is obtained should be regarded as Cr2O3,4HCl combined with water, H2O. The addition of alkalis—for example, baryta—to a solution of chromic chloride immediately produces a precipitate, which, however, re-dissolves on shaking, owing to the formation of one of the oxychlorides just mentioned, which may be regarded asbasic salts. Thus we may represent the product of the change produced on chromic chloride under the influence of water and heat by the following formulæ: first Cr2O3,6HCl or Cr2Cl6,3H2O is formed, then Cr2O3,4HCl,H2O or Cr2OCl4,3H2O, and lastly Cr2O3,2HCl,2H2O or Cr2O2Cl2,3H2O. In all three cases there are 2 equivalents of chromium to at least 3 equivalents of water. These compounds may be regarded as being intermediate between chromic hydroxide and chloride; chromic chloride is Cr2Cl6, the first oxychloride Cr2(OH)2Cl4, the second Cr2(OH)4Cl2, and the hydrate Cr2(OH)6—that is, the chlorine is replaced by hydroxyl.It is very important to remark two circumstances in respect to this: (1) That the whole of the chlorine in the above compounds is not precipitated from their solutions by silver nitrate; thus the normal salt of the composition Cr2Cl6,9H2O only gives up two-thirds of its chlorine; therefore Peligot supposes that the normal salt contains the oxychloride combined with hydrochloric acid: Cr2Cl6+ 2H2O = Cr2O2Cl2,4HCl, and that the chlorine held as hydrochloric acid reacts with the silver, whilst that held in the oxychloride does not enter into reaction, just as we observe a very feebly-developed faculty for reaction in the anhydrous chromic chloride; and (2) if the green aqueous solution of CrCl3be left to stand for some time, it ultimately turns violet; in this form the whole of the chlorine is precipitated by AgNO3, whilst boiling re-converts it into the green variety. Löwel obtained the violet solution of hydrochloride of chromic oxide by decomposing the violet chromic sulphate with barium chloride. Silver nitrate precipitates all the chlorine from this violet modification; but if the violet solution be boiled and so converted into the green modification, silver nitrate then only precipitates a portion of the chlorine.Recoura (1890–1893) obtained a crystallohydrate of violet chromium sulphate, Cr2(SO4)3, with 18 or 15 H2O. By boiling a solution of this crystallohydrate, he converted it into the green salt, which, when treated with alkalis, gave a precipitate of Cr2O3,2H2O, soluble in 2H2SO4(and not 3), and only forming the basic salt, Cr2(OH)2(SO4)2. He therefore concludes that the green salts are basic salts. The cryoscopic determinations made by A. Speransky (1892) and Marchetti (1892) give a greater ‘depression’ for the violet than the green salts, that is, indicate a greater molecular weight for the green salts. But as Étard, by heating the violet sulphate to 100°, converted it into a green salt of the same composition, but with a smaller amount of H2O, it follows that the formation of a basic salt alone is insufficient to explain the difference between the green and violet varieties, and this is also shown by the fact that BaCl2precipitates the whole of the sulphuric acid of the violet salt, and only a portion of that of the green salt. A. Speransky also showed that the molecular electro-conductivity of the green solutions is less than that of the violet. It is also known that the passage of the former into the latter is accompanied by an increase of volume, and, according to Recoura, by an evolution of heat also.Piccini's researches (1894) throw an important light upon the peculiarities of the green chromium trichloride (or chromic chloride); he showed (1) that AgF (in contradistinction to the other salts of silver) precipitates all the chlorine from an aqueous solution of the green variety; (2) that solutions of green CrCl3,6H2O in ethyl alcohol and acetone precipitate all their chlorine when mixed with a similar solution of AgNO3; (3) that the rise of the boiling-point of the ethyl alcohol and acetone green solutions of CrCl3,6H2O (Chapter VII., Note27 bis) shows that i in this case (as in the aqueous solutions of MgSO4and HgCl2) is nearly equal to 1, that is, that they are like solutions of non-conductors; (4) that a solution of green CrCl3in methyl alcohol at first precipitates about ⅞ of its chlorine (an aqueous solution about ⅔) when treated with AgNO3, but after a time the whole of the chlorine is precipitated; and (5) that an aqueous solution of the green variety gradually passes into the violet, while a methyl alcoholic solution preserves its green colour, both of itself and also after the whole of the chlorine has been precipitated by AgNO3. If, however, in an aqueous or methyl alcoholic solution only a portion of the chlorine be precipitated, the solution gradually turns violet. In my opinion the general meaning of all these observations requires further elucidation and explanation, which should be in harmony with the theory of solutions. Recoura, moreover, obtained compounds of the green salt, Cr2(SO4)3, with 1, 2, and 3 molecules of H2SO4, K2SO4, and even a compound Cr2(SO4)3H2CrO4. By neutralising the sulphuric acid of the compounds of Cr2(SO4)3and H2SO4with caustic soda, Recoura obtained an evolution of 33 thousand calories per each 2NaHO, while free H2SO4only gives 30·8 thousand calories. Recoura is of opinion that specialchromo sulphuric acids, for instance (CrSO4)H2SO4= ½Cr2(SO4)3H2SO4, are formed. With a still larger excess of sulphuric acid, Recoura obtained salts containing a still greater number of sulphuric acid radicles, but even this method does not explain the difference between the green and violet salts.These facts must naturally be taken into consideration in order to arrive at any complete decision as to the cause of the different modifications of the chromic salts. We may observe that the green modification of chromic chloride does not give double salts with the metallic chlorides, whilst the violet variety forms compounds Cr2Cl6,2RCl (where R = an alkali metal), which are obtained by heating the chromates with an excess of hydrochloric acid and evaporating the solution until it acquires a violet colour. As the result of all the existing researches on the green and violet chromic salts, it appears to me most probable that their difference is determined by the feeble basic character of chromic oxide, by its faculty of giving basic salts, and by the colloidal properties of its hydroxide (these three properties are mutually connected), and moreover, it seems to me that the relation between the green and violet salts of chromic oxide best answers to the relation of the purpureo to the luteo cobaltic salts (Chapter XXII., Note35). This subject cannot yet be considered as exhausted (seeNote7).We may here observe that with tin the chromic salts, CrX3, give at low temperatures CrX2and SnX2, whilst at high temperatures, on the contrary, CrX2reduces the metal from its salts SnX2. The reaction, therefore, belongs to the class of reversible reactions (Beketoff).Poulenc obtained anhydrous CrF3(sp. gr. 3·78) and CrF2(sp. gr. 4·11) by the action of gaseous HF upon CrCl2. A solution of fluoride of chromium is employed as a mordant in dyeing. Recoura (1890) obtained green and violet varieties of Cr2Br6,6H2O. The green variety can only be kept in the presence of an excess of HBr in the solution; if alone its solution easily passes into the violet variety with evolution of heat.[8]The reduction of metallic chromium proceeds with comparative ease in aqueous solutions. Thus the action of sodium amalgams upon a strong solution of Cr2Cl6gives (first CrCl2) an amalgam of chromium from which the mercury may be easily driven off by heating (in hydrogen to avoid oxidation), and there remains a spongy mass of easily oxidizable chromium. Plaset (1891), by passing an electric current through a solution of chrome alum mixed with a small amount of H2SO4and K2SO4, obtained hard scales of chromium of a bluish-white colour possessing great hardness and stability (under the action of water, air, and acids). Glatzel (1890) reduced a mixture of 2KCl + Cr2Cl6by heating it to redness with shavings of magnesium. The metallic chromium thus obtained has the appearance of a fine light-grey powder which is seen to be crystalline under the microscope; its sp. gr. at 16° is 6·7284. It fuses (with anhydrous borax) only at the highest temperatures, and after fusion presents a silver-white fracture. The strongest magnet has no action upon it.Moissan (1893) obtained chromium by reducing the oxide Cr2O3with carbon in the electrical furnace (Chapter VIII., Note17) in 9–10 minutes with a current of 350 ampères and 50 volts. The mixture of oxide and carbon gives a bright ingot weighing 100–110 grams. A current of 100 ampères and 50 volts completes the experiment upon a smaller quantity of material in 15 minutes; a current of 30 ampères and 50 volts gave an ingot of 10 grams in 30–40 minutes. The resultant carbon alloy is more or less rich in chromium (from 87·37–91·7 p.c.). To obtain the metal free from carbon, the alloy is broken into large lumps, mixed with oxide of chromium, put into a crucible and covered with a layer of oxide. This mixture is then heated in the electric furnace and the pure metal is obtained. This reduction can also be carried on with chrome iron ore FeOCr2O3which occurs in nature. In this case a homogeneous alloy of iron and chromium is obtained. If this alloy be thrown in lumps into molten nitre, it forms insoluble sesquioxide of iron and a soluble alkaline chromate. This alloy of iron and chromium dissolved in molten steel (chrome steel) renders it hard and tough, so that such steel has many valuable applications. The alloy, containing about 3 p.c. Cr and about 1·3 p.c. carbon, is even harder than the ordinary kinds of tempered steel and has a fine granular fracture. The usual mode of preparing the ferrochromes for adding to steel is by fusing powdered chrome iron ore under fluxes in a graphite crucible.[8 bis]The atomic composition of the tungsten and molybdenum compounds is taken as being identical with that of the compounds of sulphur and chromium, because (1) both these metals give two oxides in which the amounts of oxygen per given amount of metal stand in the ratio 2 : 3; (2) the higher oxide is of the latter kind, and, like chromic and sulphuric anhydrides, it has an acid character; (3) certain of the molybdates are isomorphous with the sulphates; (4) the specific heat of tungsten is 0·0334, consequently the product of the atomic weight and specific heat is 6·15, like that of the other elements—it is the same with molybdenum, 96·0 × 0·0722 = 6·9; (5) tungsten forms with chlorine not only compounds WCl6, WCl5, and WOCl4, but also WO2Cl2, a volatile substance the analogue of chromyl chloride, CrO2Cl2, and sulphuryl chloride, SO2Cl2. Molybdenum gives the chlorine compounds, MOCl2, MOCl3(?), MOCl4(fuses at 194°, boils at 268°; according to Debray it contains MOCl5), MoOCl4, MoO2Cl2, and MoO2(OH)Cl. The existence of tungsten hexachloride, WCl6, is an excellent proof of the fact that the type SX6appears in the analogues of sulphur as in SO3; (6) the vapour density accurately determined for the chlorine compounds MoCl4, WCl6, WCl5, WOCl4(Roscoe) leaves no doubt as to the molecular composition of the compounds of tungsten and molybdenum, for the observed and calculated results entirely agree.Tungsten is sometimes called scheele in honour of Scheele, who discovered it in 1781 and molybdenum in 1778. Tungsten is also known as wolfram; the former name was the name given to it by Scheele, because he extracted it from the mineral then known as tungsten and now called scheelite, CaWO4. The researches of Roscoe, Blomstrand and others have subsequently thrown considerable light on the whole history of the compounds of molybdenum and tungsten.The ammonium salts of tungsten and molybdic acids when ignited leave the anhydrides, which resemble each other in many respects.Tungsten anhydride, WO3, is a yellowish substance, which only fuses at a strong heat, and has a sp. gr. of 6·8. It is insoluble both in water and acid, but solutions of the alkalis, and even of the alkali carbonates, dissolve it, especially when heated, forming alkaline salts.Molybdic anhydride, MoO3, is obtained by igniting the acid (hydrate) or the ammonium salt, and forms a white mass which fuses at a red heat, and solidifies to a yellow crystalline mass of sp. gr. 4·4; whilst on further heating in open vessels or in a stream of air this anhydridesublimesin pearly scales—this enables it to be obtained in a tolerably pure state. Water dissolves it in small quantities—namely, 1 part requires 600 parts of water for its solution. The hydrates of molybdic anhydride aresoluble also in acids(a hydrate, H2MoO4, is obtained from the nitric acid solution of the ammonium salt), which forms one of their distinctions from the tungstic acids. But after ignition molybdic anhydride is insoluble in acids, like tungstic anhydride; alkalis dissolve this anhydride, easily forming molybdates. Potassium bitartrate dissolves the anhydride with the aid of heat. None of the acids yet considered by us form so many different salts with one and the same base (alkali) as molybdic and tungstic acids. The composition of these salts, and their properties also, vary considerably. The most important discovery in this respect was made by Marguerite and Laurent, who showed that the salts which contain a large proportion of tungstic acid are easily soluble in water, and ascribed this property to the fact that tungstic acid may be obtainedin several states. The common tungstates, obtained with an excess of alkali, have an alkaline reaction, and on the addition of sulphuric or hydrochloric acid first deposit an acid salt and then a hydrate of tungstic acid, which is insoluble both in water and acids; but if instead of sulphuric or hydrochloric acids, we add acetic or phosphoric acid, or if the tungstate be saturated with a fresh quantity of tungstic acid, which may be done by boiling the solution of the alkali salt with the precipitated tungstic acid, a solution is obtained which, on the addition of sulphuric or a similar acid, does not give a precipitate of tungstic acid at the ordinary or at higher temperatures. The solution then contains peculiar salts of tungstic acid, and if there be an excess of acid it also contains tungstic acid itself; Laurent, Riche, and others called itmetatungstic acid, and it is still known by this name. Those salts which with acids immediately give the insoluble tungstic acid have the composition R2WO4,RHWO4, whilst those which give the soluble metatungstic acid contain a far greater proportion of the acid elements. Scheibler obtained the (soluble) metatungstic acid itself by treating the soluble barium (meta) tetratungstate, BaO,4WO3, with sulphuric acid. Subsequent research showed the existence of a similar phenomenon for molybdic acid. There is no doubt that this is a case of colloidal modifications.Many chemists have worked on the various salts formed by molybdic and tungstic acids. The tungstates have been investigated by Marguerite, Laurent, Marignac, Riche, Scheibler, Anthon, and others. The molybdates were partially studied by the same chemists, but chiefly by Struvé and Svanberg, Delafontaine, and others. It appears that for a given amount of base the salts contain one to eight equivalents of molybdic or tungstic anhydride;i.e.if the base have the composition RO, then the highest proportion of base will be contained by the salts of the composition ROWO3or ROMoO3—that is, by those salts which correspond with the normal acids H2WO4and H2MoO4, of the same nature as sulphuric acid; but there also exist salts of the composition RO,2WO3, RO,3WO3… RO,8WO3. The water contained in the composition of many of the acid salts is often not taken into account in the above. The properties of the salts holding different proportions of acids vary considerably, but one salt may be converted into another by the addition of acid or base with great facility, and the greater the proportion of the elements of the acid in a salt, the more stable, within a certain limit, is its solution and the salt itself.The most common ammonium molybdate has the composition (NH4HO)6,H2O,7MoO3(or, according to Marignac and others, NH4HMoO4), and is prepared by evaporating an ammoniacal solution of molybdic acid. It is used in the laboratory for precipitating phosphoric acid, and is purified for this purpose by mixing its solution with a small quantity of magnesium nitrate, in order to precipitate any phosphoric acid present, filtering, and then adding nitric acid and evaporating to dryness. A pure ammonium molybdate free from phosphoric acid may then be extracted from the residue.Phosphoric acid forms insoluble compounds with the oxides of uranium and iron, tin, bismuth, &c., having feeble basic and even acid properties. This perhaps depends on the fact that the atoms of hydrogen in phosphoric acid are of a very different character, as we saw above. Those atoms of hydrogen which are replaced with difficulty by ammonium, sodium, &c., are probably easily replaced by feebly energetic acid groups—that is, the formation of particular complex substances may be expected to take place at the expense of these atoms of the hydrogen of phosphoric acid and of certain feeble metallic acids; and these substances will still be acids, because the hydrogen of the phosphoric acids and metallic acids, which is easily replaced by metals, is not removed by their mutual combination, but remains in the resultant compound. Such a conclusion is verified in thephosphomolybdic acidsobtained (1888) by Debray. If a solution of ammonium molybdate be acidified, and a small amount of a solution (it may be acid) containing orthophosphoric acid or its salts be added to it (so that there are at least 40 parts of molybdic acid present to 1 part of phosphoric acid), then after a period of twenty-four hours the whole of the phosphoric acid is separated as a yellow precipitate, containing, however, not more than 3 to 4 p.c. of phosphoric anhydride, about 3 p.c. of ammonia, about 90 p.c. of molybdic anhydride, and about 4 p.c. of water. The formation of this precipitate is so distinct and so complete that this method is employed for the discovery and separation of the smallest quantities of phosphoric acid. Phosphoric acid was found to be present in the majority of rocks by this means. The precipitate is soluble in ammonia and its salts, in alkalis and phosphates, but is perfectly insoluble in nitric, sulphuric, and hydrochloric acids in the presence of ammonium molybdate. The composition of the precipitate appears to vary under the conditions of its precipitation, but its nature became clear when the acid corresponding with it was obtained. If the above-described yellow precipitate be boiled in aqua regia, the ammonia is destroyed, and an acid is obtained in solution, which, when evaporated in the air, crystallises out in yellow oblique prisms of approximately the composition P2O5,20MoO3,26H2O. Such an unusual proportion of component parts is explained by the above-mentioned considerations. We saw above that molybdic acid easily gives salts R2OnMoO3mH2O, which we may imagine to correspond to a hydrate MoO2(HO)2nMo3mH2O. And suppose that such a hydrate reacts on orthophosphoric acid, forming water and compounds of the composition MoO2(HPO4)nMoO3mH2O or MoO3(H2PO4)2nMoO3mH2O; this is actually the composition of phosphomolybdic acid. Probably it contains a portion of the hydrogen replaceable by metals of both the acids H3PO4and of H2MoO4. The crystalline acid above is probably H3MoPO7,9MoO3,12H2O. This acid is really tribasic, because its aqueous solution precipitates salts of potassium, ammonium, rubidium (but not lithium and sodium)from acid solutions, and gives ayellowprecipitate of the composition R3MoPO7,9MoO3,8H2O, where R = NH4. Besides these, salts of another composition may be obtained, as would be expected from the preceding. These salts are only stable in acid solutions (which is naturally due to their containing an excess of acid oxides), whilst under the action of alkalis they givecolourlessphosphomolybdates of the composition R3MoPO3,MoO2,3H2O. The corresponding salts of potassium, silver, ammonium, are easily soluble in water and crystalline.Phosphomolybdic acid is an example of thecomplex inorganic acidsfirst obtained by Marignac and afterwards generalised and studied in detail by Gibbs. We shall afterwards meet with several examples of such acids, and we will now turn attention to the fact that they are usually formed by weak polybasic acids (boric, silicic, molybdic, &c.), and in certain respects resemble the cobaltic and such similar complex compounds, with which we shall become acquainted in the following chapter. As an example we will here mention certain complex compounds containing molybdic and tungstic acids, as they will illustrate the possibility of a considerable complexity in the composition of salts. The action of ammonium molybdate upon a dilute solution of purpureocobaltic salts (seeChapterXXII.) acidulated with acetic acid gives a salt which after drying at 100° has the composition Co2O310NH37MoO33H2O. After ignition this salt leaves a residue having the composition 2CoO7MoO3. An analogous compound is also obtained for tungstic acid, having the composition Co2O310NH310WO39H2O. In this case after ignition there remains a salt of the composition CoO5WO3(Carnot, 1889). Professor Kournakoff, by treating a solution of potassium and sodium molybdates, containing a certain amount of suboxide of cobalt, with bromine obtained salts having the composition: 3K2OCo2O312MoO320H2O (light green) and 3K2OCo2O310Mo310H2O (dark green). Péchard (1893) obtained salts of the four complex phosphotungstic acids by evaporating equivalent mixtures of solutions of phosphoric acid and metatungstic acid (seefurther on): phosphotrimetatungstic acid P2O512WO348H2O, phosphotetrametatungstic acid P2O516WO369H2O, phosphopentametatungstic acid P2O520WO3H2O, and phosphohexametatungstic acid P2O524WO359H2O. Kehrmann and Frankel described still more complex salts, such as: 3Ag2O4BaOP2O522WO3H2O,5BaO2K2OP2O322WO348H2O. Analogous double salts with 22WO3were also obtained with KSr, KHg, BaHg, and NH4Pb. Kehrmann (1892) considers the possibility of obtaining an unlimited number of such salts to be a general characteristic of such compounds. Mahom and Friedheim (1892) obtained compounds of similar complexity for molybdic and arsenic acids.For tungstic acid there are known: (1) Normal salts—for example, K2WO4; (2) the so-called acid salts have a composition like 3K2O,7WO3,6H2O or K6H8(WO4)7,2H2O; (3) the tritungstates like Na3O,3WO3,3H2O = Na2H4(WO4)3,H2O. All these three classes of salts are soluble in water, but are precipitated by barium chloride, and with acids in solution give an insoluble hydrate of tungstic acid; whilst those salts which are enumerated below do not give a precipitate either with acids or with the salts of the heavy metals, because they form soluble salts even with barium and lead. They are generally called metatungstates. They all contain water and a larger proportion of acid elements than the preceding salts; (4) the tetratungstates, like Na2O,4WO3,10H2O and BaO,4WO3,9H2O for example; (5) the octatungstates—for example, Na2O,8WO3,24H2O. Since the metatungstates lose so much water at 100° that they leave salts whose composition corresponds with an acid, 3H2O,4WO3—that is, H6W4O15—whilst in the meta salts only 2 hydrogens are replaced by metals, it is assumed, although without much ground, that these salts contain a particular soluble metatungstic acid of the composition H6W4O15.As an example we will give a short description of the sodium salts. The normal salt, Na2WO4, is obtained by heating a strong solution of sodium carbonate with tungstic acid to a temperature of 80°; if the solution be filtered hot, it crystallises in rhombic tabular crystals, having the composition Na2WO4,2H2O, which remain unchanged in the air and are easily soluble in water. When this salt is fused with a fresh quantity of tungstic acid, it gives a ditungstate, which is soluble in water and separates from its solution in crystals containing water. The same salt is obtained by carefully adding hydrochloric acid to the solution of the normal salt so long as a precipitate does not appear, and the liquid still has an alkaline reaction. This salt was first supposed to have the composition Na2W2O7,4H2O, but it has since been found to contain (at 100°) Na6W7O24,16H2O—that is, it corresponds with the similar salt of molybdic acid.(If this salt be heated to a red heat in a stream of hydrogen, it loses a portion of its oxygen, acquires a metallic lustre, and turns a golden yellow colour, and, after being treated with water, alkali, and acid, leaves golden yellow leaflets and cubes which are very like gold. This very remarkable substance, discovered by Wöhler, has, according to Malaguti's analysis, the composition Na2W3O9; that is, it, as it were, contains a double tungstate of tungsten oxide, WO2, and of sodium, Na2WO4,WO2WO3. The decomposition of the fused sodium salt is best effected by finely-divided tin. This substance has a sp. gr. 6·6; it conducts electricity like metals, and like them has a metallic lustre. When brought into contact with zinc and sulphuric acid it disengages hydrogen, and it becomes covered with a coating of copper in a solution of copper sulphate in the presence of zinc—that is, notwithstanding its complex composition it presents to a certain extent the appearance and reactions of the metals. It is not acted on by aqua regia or alkaline solutions, but it is oxidised when ignited in air.)The ditungstate mentioned above, deprived of water (having undergone a modification similar to that of metaphosphoric acid), after being treated with water, leaves an anhydrous, sparingly soluble tetratungstate, Na2WO4,3WO3, which, when heated at 120° in a closed tube with water, passes into an easily soluble metatungstate. It may therefore be said that the metatungstates are hydrated compounds. On boiling a solution of the above-mentioned salts of sodium with the yellow hydrate of tungstic acid they give a solution of metatungstate, which is the hydrated tetratungstate. Its crystals contain Na2W4O13,10H2O. After the hydrate of tungstic acid (obtained from the ordinary tungstates by precipitation with an acid) has stood a long time in contact with a solution (hot or cold) of sodium tungstate, it gives a solution which is not precipitated by hydrochloric acid; this must be filtered and evaporated over sulphuric acid in a desiccator (it is decomposed by boiling). It first forms a very dense solution (aluminium floats in it) of sp. gr. 3·0, and octahedral crystals ofsodium metatungstate, Na2W4O13,10H2O, sp. gr. 3·85, then separate. It effloresces and loses water, and at 100° only two out of the ten equivalents of water remain, but the properties of the salt remain unaltered. If the salt be deprived of water by further heating, it becomes insoluble. At the ordinary temperature one part of water dissolves ten parts of the metatungstate. The other metatungstates are easily obtained from this salt. Thus a strong and hot solution, mixed with a like solution of barium chloride, gives on cooling crystals of barium metatungstate, BaW4O13,9H2O. These crystals are dissolved without change in water containing hydrochloric acid, and also in hot water, but they are partially decomposed by cold water, with the formation of a solution of metatungstic acid and of the normal barium salt BaWO4.In order to explain the difference in the properties of the salts of tungstic acid, we may add that a mixture of a solution of tungstic acid with a solution of silicic acid does not coagulate when heated, although the silicic acid alone would do so; this is due to the formation of a silicotungstic acid, discovered by Marignac, which presents a fresh example of a complex acid. A solution of a tungstate dissolves gelatinous silica, just as it does gelatinous tungstic acid, and when evaporated deposits a crystalline salt of silicotungstic acid. This solution is not precipitated either by acids (a clear analogy to the metatungstates) or by sulphuretted hydrogen, and corresponds with a series of salts. These salts contain one equivalent of silica and 8 equivalents of hydrogen or metals, in the same form as in salts, to 12 or 10 equivalents of tungstic anhydride; for example the crystalline potassium salt has the composition K8W12SiO42,14H2O = 4K2O,12WO3,SiO2,14H2O. Acid salts are also known in which half of the metal is replaced by hydrogen. The complexity of the composition of such complex acids (for example, of the phosphomolybdic acid) involuntarily leads to the idea of polymerisation, which we were obliged to recognise for silica, lead oxide, and other compounds. This polymerisation, it seems to me, may be understood thus: a hydrate A (for example, tungstic acid) is capable of combining with a hydrate B (for example, silica or phosphoric acid, with or without the disengagement of water), and by reason of this faculty it is capable of polymerisation—that is, A combines with A—combines with itself—just as aldehyde, C2H4O, or the cyanogen compounds are able to combine with hydrogen, oxygen, &c., and are liable to polymerisation. On this view the molecule of tungstic acid is probably much more complex than we represent it; this agrees with the easy volatility of such compounds as the chloranhydrides, CrO2Cl2, MoO2Cl2, the analogues of the volatile sulphuryl chloride, SO2Cl2, and with the non-volatility, or difficult volatility, of chromic and molybdic anhydrides, the analogues of the volatile sulphuric anhydride. Such a view also finds a certain confirmation in the researches made by Graham on thecolloidalstate of tungstic acid, because colloidal properties only appertain to compounds of a very complex composition. The observations made by Graham on the colloidal state of tungstic and molybdic acids introduced much new matter into the history of these substances. When sodium tungstate, mixed in a dilute solution with an equivalent quantity of dilute hydrochloric acid, is placed in a dialyser, hydrochloric acid and sodium chloride pass through the membrane, and a solution of tungstic acid remains in the dialyser. Out of 100 parts of tungstic acid about 80 parts remain in the dialyser. The solution has a bitter, astringent taste, and does not yield gelatinous tungstic acid (hydrogel) either when heated or on the addition of acids or salts. It may also be evaporated to dryness; it then forms a vitreous mass of thehydrosoloftungstic acid, which adheres strongly to the walls of the vessel in which it has been evaporated, and is perfectly soluble in water. It does not even lose its solubility after having been heated to 200°, and only becomes insoluble when heated to a red heat, when it loses about 2½ p.c. of water. The dry acid, dissolved in a small quantity of water, forms a gluey mass, just like gum arabic, which is one of the representatives of the hydrosols of colloidal substances. The solution, containing 5 p.c of the anhydride, has a sp. gr. of 1·047; with 20 p.c., of 1·217; with 50 p.c., of 1·80; and with 80 p.c., of 3·24. The presence of a polymerised trioxide in the form of hydrate, H2OW3O9or H2O4WO3, must then be recognised in the solution: this is confirmed by Sabaneeff's cryoscopic determinations (1889). A similar stable solution of molybdic acid is obtained by the dialysis of a mixture of a strong solution of sodium molybdate with hydrochloric acid (the precipitate which is formed is re-dissolved). If MoCl4be precipitated by ammonia and washed with water, a point is reached at which perfect solution takes place, and the molybdic acid forms a colloid solution which is precipitated by the addition of ammonia (Muthmann). The addition of alkali to the solutions of the hydrosols of tungstic and molybdic acids immediately results in the re-formation of the ordinary tungstates and molybdates. There appears to be no doubt but that the same transformation is accomplished in the passage of the ordinary tungstates into the metatungstates as takes place in the passage of tungstic acid itself from an insoluble into a soluble state; but this may be even actually proved to be the case, because Scheibler obtained a solution of tungstic acid, before Graham, by decomposing barium metatungstate (BaO4WO3,9H2O) with sulphuric acid. By treating this salt with sulphuric acid in the amount required for the precipitation of the baryta, Scheibler obtained a solution of metatungstic acid which, when containing 43·75 p.c. of acid, had a sp. gr. of 1·634, and with 27·61 p.c. a sp. gr. of 1·327—that is, specific gravities corresponding with those found by Graham.Péchard found that as much heat is evolved by neutralising metatungstic acid as with sulphuric acid.Questions connected with the metamorphoses or modifications of tungstic and molybdic acids, and the polymerisation and colloidal state of substances, as well as the formation of complex acids, belong to that class of problems the solution of which will do much towards attaining a true comprehension of the mechanism of a number of chemical reactions. I think, moreover, that questions of this kind stand in intimate connection with the theory of the formation of solutions and alloys and other so-called indefinite compounds.

Footnotes:

[1]The working of the Ural chrome iron ore into chromium compounds has been firmly established in Russia, thanks to the endeavours of P. K. Ushakoff, who constructed large works for this purpose on the river Kama, near Elabougi, where as much as 2,000 tons of ore are treated yearly, owing to which the importation of chromium preparations into Russia has ceased.

[1]The working of the Ural chrome iron ore into chromium compounds has been firmly established in Russia, thanks to the endeavours of P. K. Ushakoff, who constructed large works for this purpose on the river Kama, near Elabougi, where as much as 2,000 tons of ore are treated yearly, owing to which the importation of chromium preparations into Russia has ceased.

[1 bis]But the calcium chromate is soluble in water in the presence of an excess of chromic acid, as may be seen from the fact that a solution of chromic acid dissolves lime.

[1 bis]But the calcium chromate is soluble in water in the presence of an excess of chromic acid, as may be seen from the fact that a solution of chromic acid dissolves lime.

[2]There are many variations in the details of the manufacturing processes, and these must be looked for in works on technical chemistry. But we may add that the chromate may also be obtained by slightly roasting briquettes of a mixture of chrome iron and lime, and then leaving the resultant mass to the action of moist air (oxygen is absorbed, and the mass turns yellow).

[2]There are many variations in the details of the manufacturing processes, and these must be looked for in works on technical chemistry. But we may add that the chromate may also be obtained by slightly roasting briquettes of a mixture of chrome iron and lime, and then leaving the resultant mass to the action of moist air (oxygen is absorbed, and the mass turns yellow).

[2 bis]The oxidising action of potassium dichromate on organic substances at the ordinary temperature is especially marked under the action of light. Thus it acts on gelatin, as Poutven discovered; this is applied to photography in the processes of photogravure, photo-lithography, pigment printing, &c. Under the action of light this gelatin is oxidised, and the chromic anhydride deoxidised into chromic oxide, which unites with the gelatin and forms a compound insoluble in warm water, whilst where the light has not acted, the gelatin remains soluble, its properties being unaffected by the presence of chromic acid or potassium dichromate.

[2 bis]The oxidising action of potassium dichromate on organic substances at the ordinary temperature is especially marked under the action of light. Thus it acts on gelatin, as Poutven discovered; this is applied to photography in the processes of photogravure, photo-lithography, pigment printing, &c. Under the action of light this gelatin is oxidised, and the chromic anhydride deoxidised into chromic oxide, which unites with the gelatin and forms a compound insoluble in warm water, whilst where the light has not acted, the gelatin remains soluble, its properties being unaffected by the presence of chromic acid or potassium dichromate.

[3]Ammonium and sodium dichromates are now also prepared on a large scale. The sodium salts may be prepared in exactly the same manner as those of potassium. The normal salt combines with ten equivalents of water, like Glauber's salt, with which it is isomorphous. Its solution above 30° deposits the anhydrous salt. Sodium dichromate crystals contain Na2Cr2O7,2H2O. Theammonium salts of chromic acidare obtained by saturating the anhydride itself with ammonia. The dichromate is obtained by saturating one part of the anhydride with ammonia, and then adding a second part of anhydride and evaporating under the receiver of an air-pump. On ignition, the normal and acid salts leave chromic oxide. Potassium ammonium chromate, NH4KCrO4, is obtained in yellow needles from a solution of potassium dichromate in aqueous ammonia; it not only loses ammonia and becomes converted into potassium dichromate when ignited, but also by degrees at the ordinary temperature. This shows the feeble energy of chromic acid, and its tendency to form stable dichromates. Magnesium chromate is soluble in water, as also is the strontium salt. The calcium salt is also somewhat soluble, but the barium salt is almost insoluble. The isomorphism with sulphuric acid is shown in the chromates by the fact that the magnesium and ammonium salts form double salts containing six equivalents of water, which are perfectly isomorphous with the corresponding sulphates. The magnesium salt crystallises in large crystals containing seven equivalents of water. The beryllium, cerium, and cobalt salts are insoluble in water. Chromic acid dissolves manganous carbonate, but on evaporation the solution deposits manganese dioxide, formed at the expense of the oxygen of the chromic acid. Chromic acid also oxidises ferrous oxide, and ferric oxide is soluble in chromic acid.One of the chromates most used by the dyer is the insoluble yellow lead chromate, PbCrO4(Chapter XVIII., Note46), which is precipitated on mixing solutions of PbX2with soluble chromates. It easily forms a basic salt, having the composition PbO,PbCrO4, as a crystalline powder, obtained by fusing the normal salt with nitre and then rapidly washing in water. The same substance is obtained, although impure and in small quantity, by treating lead chromate with neutral potassium chromate, especially on boiling the mixture; and this gives the possibility of attaining, by means of these materials, various tints of lead chromate, from yellow to red, passing through different orange shades. The decomposition which takes place (incompletely) in this case is as follows: 2PbCrO4+ K2CrO4= PbCrO4,PbO + K2Cr2O7—that is, potassium dichromate is formed in solution.

[3]Ammonium and sodium dichromates are now also prepared on a large scale. The sodium salts may be prepared in exactly the same manner as those of potassium. The normal salt combines with ten equivalents of water, like Glauber's salt, with which it is isomorphous. Its solution above 30° deposits the anhydrous salt. Sodium dichromate crystals contain Na2Cr2O7,2H2O. Theammonium salts of chromic acidare obtained by saturating the anhydride itself with ammonia. The dichromate is obtained by saturating one part of the anhydride with ammonia, and then adding a second part of anhydride and evaporating under the receiver of an air-pump. On ignition, the normal and acid salts leave chromic oxide. Potassium ammonium chromate, NH4KCrO4, is obtained in yellow needles from a solution of potassium dichromate in aqueous ammonia; it not only loses ammonia and becomes converted into potassium dichromate when ignited, but also by degrees at the ordinary temperature. This shows the feeble energy of chromic acid, and its tendency to form stable dichromates. Magnesium chromate is soluble in water, as also is the strontium salt. The calcium salt is also somewhat soluble, but the barium salt is almost insoluble. The isomorphism with sulphuric acid is shown in the chromates by the fact that the magnesium and ammonium salts form double salts containing six equivalents of water, which are perfectly isomorphous with the corresponding sulphates. The magnesium salt crystallises in large crystals containing seven equivalents of water. The beryllium, cerium, and cobalt salts are insoluble in water. Chromic acid dissolves manganous carbonate, but on evaporation the solution deposits manganese dioxide, formed at the expense of the oxygen of the chromic acid. Chromic acid also oxidises ferrous oxide, and ferric oxide is soluble in chromic acid.

One of the chromates most used by the dyer is the insoluble yellow lead chromate, PbCrO4(Chapter XVIII., Note46), which is precipitated on mixing solutions of PbX2with soluble chromates. It easily forms a basic salt, having the composition PbO,PbCrO4, as a crystalline powder, obtained by fusing the normal salt with nitre and then rapidly washing in water. The same substance is obtained, although impure and in small quantity, by treating lead chromate with neutral potassium chromate, especially on boiling the mixture; and this gives the possibility of attaining, by means of these materials, various tints of lead chromate, from yellow to red, passing through different orange shades. The decomposition which takes place (incompletely) in this case is as follows: 2PbCrO4+ K2CrO4= PbCrO4,PbO + K2Cr2O7—that is, potassium dichromate is formed in solution.

[4]The sulphuric acid should not contain any lower oxides of nitrogen, because they reduce chromic anhydride into chromic oxide. If a solution of a chromate be heated with an excess of acid—for instance, sulphuric or hydrochloric acid—oxygen or chlorine is evolved, and a solution of a chromic salt is formed. Hence, under these circumstances, chromic acid cannot be obtained from its salts. One of the first methods employed consisted in converting its salts into volatilechromium hexafluoride, CrF6. This compound, obtained by Unverdorben, may be prepared by mixing lead chromate with fluor spar in a dry state, and treating the mixture with fuming sulphuric acid in a platinum vessel: PbCrO4+ 3CaF2+ 4H2SO4= PbSO4+ 3CaSO4+ 4H2O + CrF6. Fuming sulphuric acid is taken, and in considerable excess, because the chromium fluoride which is formed is very easily decomposed by water. It is volatile, and forms a very caustic, poisonous vapour, which condenses when cooled in a dry platinum vessel into a red, exceedingly volatile liquid, which fumes powerfully in air. The vapours of this substance when introduced into water are decomposed into hydrofluoric acid and chromic anhydride: CrF6+ 3H2O = CrO3+ 6HF. If very little water be taken the hydrofluoric acid volatilises, and chromic anhydride separates directly in crystals. The chloranhydride of chromic acid, CrO2Cl2(Note5), is also decomposed in the same manner. A solution of chromic acid and a precipitate of barium sulphate are formed by treating the insoluble barium chromate with an equivalent quantity of sulphuric acid. If carefully evaporated, the solution yields crystals of chromic anhydride. Fritzsche gave a very convenient method of preparing chromic anhydride, based on the relation of chromic to sulphuric acid. At the ordinary temperature the strong acid dissolves both chromic anhydride and potassium chromate, but if a certain amount of water is added to the solution the chromic anhydride separates, and if the amount of water be increased the precipitated chromic anhydride is again dissolved. The chromic anhydride is almost all separated from the solution when it contains two equivalents of water to one equivalent of sulphuric acid. Many methods for the preparation of chromic anhydride are based on this fact.

[4]The sulphuric acid should not contain any lower oxides of nitrogen, because they reduce chromic anhydride into chromic oxide. If a solution of a chromate be heated with an excess of acid—for instance, sulphuric or hydrochloric acid—oxygen or chlorine is evolved, and a solution of a chromic salt is formed. Hence, under these circumstances, chromic acid cannot be obtained from its salts. One of the first methods employed consisted in converting its salts into volatilechromium hexafluoride, CrF6. This compound, obtained by Unverdorben, may be prepared by mixing lead chromate with fluor spar in a dry state, and treating the mixture with fuming sulphuric acid in a platinum vessel: PbCrO4+ 3CaF2+ 4H2SO4= PbSO4+ 3CaSO4+ 4H2O + CrF6. Fuming sulphuric acid is taken, and in considerable excess, because the chromium fluoride which is formed is very easily decomposed by water. It is volatile, and forms a very caustic, poisonous vapour, which condenses when cooled in a dry platinum vessel into a red, exceedingly volatile liquid, which fumes powerfully in air. The vapours of this substance when introduced into water are decomposed into hydrofluoric acid and chromic anhydride: CrF6+ 3H2O = CrO3+ 6HF. If very little water be taken the hydrofluoric acid volatilises, and chromic anhydride separates directly in crystals. The chloranhydride of chromic acid, CrO2Cl2(Note5), is also decomposed in the same manner. A solution of chromic acid and a precipitate of barium sulphate are formed by treating the insoluble barium chromate with an equivalent quantity of sulphuric acid. If carefully evaporated, the solution yields crystals of chromic anhydride. Fritzsche gave a very convenient method of preparing chromic anhydride, based on the relation of chromic to sulphuric acid. At the ordinary temperature the strong acid dissolves both chromic anhydride and potassium chromate, but if a certain amount of water is added to the solution the chromic anhydride separates, and if the amount of water be increased the precipitated chromic anhydride is again dissolved. The chromic anhydride is almost all separated from the solution when it contains two equivalents of water to one equivalent of sulphuric acid. Many methods for the preparation of chromic anhydride are based on this fact.

[4 bis]They cannot be filtered through paper or washed, because the chromic anhydride is reduced by the filter-paper, and is dissolved during the process of washing.

[4 bis]They cannot be filtered through paper or washed, because the chromic anhydride is reduced by the filter-paper, and is dissolved during the process of washing.

[5]Berzelius observed, and Rose carefully investigated, this remarkable reaction, which occurs between chromic acid and sodium chloride in the presence of sulphuric acid. If 10 parts of common salt be mixed with 12 parts of potassium dichromate, fused, cooled, and broken up into lumps, and placed in a retort with 20 parts of fuming sulphuric acid, it gives rise to a violent reaction, accompanied by the formation of brown fumes ofchromic chloranhydride, orchromyl chloride, CrO2Cl2, according to the reaction: CrO3+ 2NaCl + H2SO4= Na2SO4+ H2O + CrO2Cl2. The addition of an excess of sulphuric acid is necessary in order to retain the water. The same substance is always formed when a metallic chloride is heated with chromic acid, or any of its salts, in the presence of sulphuric acid. The formation of this volatile substance is easily observed from the brown colour which is proper to its vapour. On condensing the vapour in a dry receiver a liquid is obtained having a sp. gr. of 1·9, boiling at 118°, and giving a vapour whose density, compared with hydrogen, is 78, which corresponds with the above formula. Chromyl chloride is decomposed by heat into chromic oxide, oxygen, and chlorine: 2CrO2Cl2= Cr2O3+ 2Cl2+ O; so that it is able to act simultaneously as a powerful oxidising and chlorinating agent, which is taken advantage of in the investigation of many, and especially of organic, substances. When treated with water, this substance first falls to the bottom, and is then decomposed into hydrochloric and chromic acids, like all chloranhydrides: CrO2Cl2+ H2O = CrO3+ 2HCl. When brought into contact with inflammable substances it sets fire to them; it acts thus, for instance, on phosphorus, sulphur, oil of turpentine, ammonia, hydrogen, and other substances. It attracts moisture from the atmosphere with great energy, and must therefore be kept in closed vessels. It dissolves iodine and chlorine, and even forms a solid compound with the latter, which depends upon the faculty of chromium to form its higher oxide, Cr2O7. The close analogy in the physical properties of the chloranhydrides, CrO2Cl2and SO2Cl2, is very remarkable, although sulphurous anhydride is a gas, and the corresponding oxide, CrO2, is a non-volatile solid. It may be imagined, therefore, that chromium dioxide (which will be mentioned in the following note) presents a polymerised modification of the substance having the composition CrO2; in fact, this is obvious from the method of its formation.If three parts of potassium dichromate be mixed with four parts of strong hydrochloric acid and a small quantity of water, and gently warmed, it all passes into solution, and no chlorine is evolved; on cooling, the liquid deposits red prismatic crystals, known asPeligot's salt, very stable in air. This has the composition KCl,CrO3, and is formed according to the equation K2Cr2O7+ 2HCl = 2KCl,CrO3+ H2O. It is evident that this is the first chloranhydride of chromic acid, HCrO3Cl, in which the hydrogen is replaced by potassium. It is decomposed by water, and on evaporation the solution yields potassium dichromate and hydrochloric acid. This is a fresh instance of the reversible reactions so frequently encountered. With sulphuric acid Peligot's salt forms chromyl chloride. The latter circumstance, and the fact that Geuther produced Peligot's salt from potassium chromate and chromyl chloride, give reason for thinking that it is a compound of these two substances: 2KCl,CrO3= K2CrO4+ CrO2Cl2. It is also sometimes regarded as potassium dichromate in which one atom of oxygen is replaced by chlorine—that is, K2Cr2O6Cl2, corresponding with K2Cr2O7. When heated it parts with all its chlorine, and on further heating gives chromic oxide.

[5]Berzelius observed, and Rose carefully investigated, this remarkable reaction, which occurs between chromic acid and sodium chloride in the presence of sulphuric acid. If 10 parts of common salt be mixed with 12 parts of potassium dichromate, fused, cooled, and broken up into lumps, and placed in a retort with 20 parts of fuming sulphuric acid, it gives rise to a violent reaction, accompanied by the formation of brown fumes ofchromic chloranhydride, orchromyl chloride, CrO2Cl2, according to the reaction: CrO3+ 2NaCl + H2SO4= Na2SO4+ H2O + CrO2Cl2. The addition of an excess of sulphuric acid is necessary in order to retain the water. The same substance is always formed when a metallic chloride is heated with chromic acid, or any of its salts, in the presence of sulphuric acid. The formation of this volatile substance is easily observed from the brown colour which is proper to its vapour. On condensing the vapour in a dry receiver a liquid is obtained having a sp. gr. of 1·9, boiling at 118°, and giving a vapour whose density, compared with hydrogen, is 78, which corresponds with the above formula. Chromyl chloride is decomposed by heat into chromic oxide, oxygen, and chlorine: 2CrO2Cl2= Cr2O3+ 2Cl2+ O; so that it is able to act simultaneously as a powerful oxidising and chlorinating agent, which is taken advantage of in the investigation of many, and especially of organic, substances. When treated with water, this substance first falls to the bottom, and is then decomposed into hydrochloric and chromic acids, like all chloranhydrides: CrO2Cl2+ H2O = CrO3+ 2HCl. When brought into contact with inflammable substances it sets fire to them; it acts thus, for instance, on phosphorus, sulphur, oil of turpentine, ammonia, hydrogen, and other substances. It attracts moisture from the atmosphere with great energy, and must therefore be kept in closed vessels. It dissolves iodine and chlorine, and even forms a solid compound with the latter, which depends upon the faculty of chromium to form its higher oxide, Cr2O7. The close analogy in the physical properties of the chloranhydrides, CrO2Cl2and SO2Cl2, is very remarkable, although sulphurous anhydride is a gas, and the corresponding oxide, CrO2, is a non-volatile solid. It may be imagined, therefore, that chromium dioxide (which will be mentioned in the following note) presents a polymerised modification of the substance having the composition CrO2; in fact, this is obvious from the method of its formation.

If three parts of potassium dichromate be mixed with four parts of strong hydrochloric acid and a small quantity of water, and gently warmed, it all passes into solution, and no chlorine is evolved; on cooling, the liquid deposits red prismatic crystals, known asPeligot's salt, very stable in air. This has the composition KCl,CrO3, and is formed according to the equation K2Cr2O7+ 2HCl = 2KCl,CrO3+ H2O. It is evident that this is the first chloranhydride of chromic acid, HCrO3Cl, in which the hydrogen is replaced by potassium. It is decomposed by water, and on evaporation the solution yields potassium dichromate and hydrochloric acid. This is a fresh instance of the reversible reactions so frequently encountered. With sulphuric acid Peligot's salt forms chromyl chloride. The latter circumstance, and the fact that Geuther produced Peligot's salt from potassium chromate and chromyl chloride, give reason for thinking that it is a compound of these two substances: 2KCl,CrO3= K2CrO4+ CrO2Cl2. It is also sometimes regarded as potassium dichromate in which one atom of oxygen is replaced by chlorine—that is, K2Cr2O6Cl2, corresponding with K2Cr2O7. When heated it parts with all its chlorine, and on further heating gives chromic oxide.

[6]This intermediate degree of oxidation, CrO2, may also be obtained by mixing solutions of chromic salts with solutions of chromates. The brown precipitate formed contains a compound, Cr2O3,CrO3, consisting of equivalent amounts of chromic oxide and anhydride. The brown precipitate of chromium dioxide contains water. The same substance is formed by the imperfect deoxidation of chromic anhydride by various reducing agents. Chromic oxide, when heated, absorbs oxygen, and appears to give the same substance. Chromic nitrate, when ignited, also gives this substance. When this substance is heated it first disengages water and then oxygen, chromic oxide being left. It corresponds with manganese dioxide, Cr2O3,CrO3= 3CrO2. Krüger treated chromium dioxide with a mixture of sodium chloride and sulphuric acid, and found that chlorine gas was evolved, but that chromyl chloride was not formed. Under the action of light, a solution of chromic acid also deposits the brown dioxide. At the ordinary temperature chromic anhydride leaves a brown stain upon the skin and tissues, which probably proceeds from a decomposition of the same kind. Chromic anhydride is soluble in alcohol containing water, and this solution is decomposed in a similar manner by light. Chromium dioxide forms K2CrO4when treated with H2O2in the presence of KHO.

[6]This intermediate degree of oxidation, CrO2, may also be obtained by mixing solutions of chromic salts with solutions of chromates. The brown precipitate formed contains a compound, Cr2O3,CrO3, consisting of equivalent amounts of chromic oxide and anhydride. The brown precipitate of chromium dioxide contains water. The same substance is formed by the imperfect deoxidation of chromic anhydride by various reducing agents. Chromic oxide, when heated, absorbs oxygen, and appears to give the same substance. Chromic nitrate, when ignited, also gives this substance. When this substance is heated it first disengages water and then oxygen, chromic oxide being left. It corresponds with manganese dioxide, Cr2O3,CrO3= 3CrO2. Krüger treated chromium dioxide with a mixture of sodium chloride and sulphuric acid, and found that chlorine gas was evolved, but that chromyl chloride was not formed. Under the action of light, a solution of chromic acid also deposits the brown dioxide. At the ordinary temperature chromic anhydride leaves a brown stain upon the skin and tissues, which probably proceeds from a decomposition of the same kind. Chromic anhydride is soluble in alcohol containing water, and this solution is decomposed in a similar manner by light. Chromium dioxide forms K2CrO4when treated with H2O2in the presence of KHO.

[6 bis]Now that persulphuric acid H2S2O8is well known it might be supposed that perchromic anhydride, Cr2O7, would correspond to perchromic acid, H2Cr2O8, but as yet it is not certain whether corresponding salts are formed. Péchard (1891) on adding an excess of H2O2and baryta water to a dilute solution of CrO2(8 grm. per litre), observed the formation of a yellow precipitate, but oxygen was disengaged at the same time and the precipitate (which easily exploded when dried) was found to contain, besides an admixture of BaO2, a compound BaCrO5, and this = BaO2+ CrO3, and does not correspond to perchromic acid. The fact of its decomposing with an explosion, and the mode of its preparation, proves, however, that this is a similar derivative of peroxide of hydrogen to persulphuric acid (ChapterXX.)

[6 bis]Now that persulphuric acid H2S2O8is well known it might be supposed that perchromic anhydride, Cr2O7, would correspond to perchromic acid, H2Cr2O8, but as yet it is not certain whether corresponding salts are formed. Péchard (1891) on adding an excess of H2O2and baryta water to a dilute solution of CrO2(8 grm. per litre), observed the formation of a yellow precipitate, but oxygen was disengaged at the same time and the precipitate (which easily exploded when dried) was found to contain, besides an admixture of BaO2, a compound BaCrO5, and this = BaO2+ CrO3, and does not correspond to perchromic acid. The fact of its decomposing with an explosion, and the mode of its preparation, proves, however, that this is a similar derivative of peroxide of hydrogen to persulphuric acid (ChapterXX.)

[7]As a mixture of potassium dichromate and sulphuric acid is usually employed for oxidation, the resultant solution generally contains a double sulphate of potassium and chromium—that is,chrome alum, isomorphous with ordinary alum—K2Cr2O7+ 4H2SO4+ 20H2O = O3+ K2Cr2(SO4)4,24H2O or 2(KCr(SO4)2,12H2O). It is prepared by dissolving potassium dichromate in dilute sulphuric acid; alcohol is then added and the solution slightly heated, or sulphurous anhydride is passed through it. On the addition of alcohol to a cold mixture of potassium dichromate and sulphuric acid, the gradual disengagement of pleasant-smelling volatile products of the oxidation of alcohol, and especially of aldehyde, C2H4O, is remarked. If the temperature of decomposition does not exceed 35°, avioletsolution of chrome alum is obtained, but if the temperature be higher, a solution of the same alum is obtained of agreencolour. As chrome alum requires for solution 7 parts of water at the ordinary temperature, it follows that if a somewhat strong solution of potassium dichromate be taken (4 parts of water and 1½ of sulphuric acid to 1 part of dichromate), it will give so concentrated a solution of chrome alum that on cooling, the salt will separate without further evaporation.If the liquid, prepared as above or in any instance of the deoxidation of chromic acid,be heated(the oxidation naturally proceeds more rapidly) somewhat strongly, for instance, to the boiling-point of water, or if the violet solution already formed be raised to the same temperature, it acquires a brightgreen colour, and on evaporation the same mixture, which at lower temperatures so easily gives cubical crystals of chrome alum,does not give any crystals whatever.If the green solution be kept, however,for several weeksat the ordinary temperature, it depositsviolet crystalsof chrome alum. The green solution, when evaporated, gives a non-crystalline mass, and the violet crystals lose water at 100° and turn green. It must be remarked that the transition of the green modification into the violet is accompanied by a decrease in volume (Lecoq de Boisbaudran, Favre). If the green mass formed at the higher temperature be evaporated to dryness and heated at 30° in a current of air, it does not retain more then 6 equivalents of water. Hence Löwel, and also Schrötter, concluded that the green and violet modifications of the alum depend on different degrees of combination with water, which may be likened to the different compounds of sodium sulphate with water and to the different hydrates of ferric oxide.However, the question in this case is not so simple, as we shall afterwards see. Not chrome alum alone, butall the chromic salts, give two, if not three,varieties. At least, there is no doubt about the existence of two—agreenand aviolet modification. The green chromic salts are obtained by heating solutions of the violet salts, the violet solutions are produced on keeping solutions of the green salts for a long time. The conversion of the violet salts into green by the action of heat is itself an indication of the possibility of explaining the different modifications by their containing different proportions (or states) of water, and, moreover, by the green salts having a less amount of water than the violet. However, there are other explanations. Chromic oxide is a base like alumina, and is therefore able to give both acid and basic salts. It is supposed that the difference between the green and violet salts is due to this fact. This opinion of Krüger is based on the fact that alcohol separates out a salt from the green solution which contains less sulphuric acid than the normal violet salt. On the other hand, Löwel showed that all the acid cannot be separated from the green chromic salts by suitable reagents, as easily as it can be from the same solution of the violet salts; thus barium salts do not precipitate all the sulphuric acid from solutions of the green salts. According to other researches the cause of the varieties of the chromic salts lies in a difference in the bases they contain—that is, it is connected with a modification of the properties of the oxide of chromium itself. This only refers to the hydroxides, but as hydroxides themselves are only special forms of salts, the differences observed as yet in this direction between the hydroxides only confirm the generality of the difference observed in the chromic compounds (seeNote7 bis).The salts of chromic oxide, like those of alumina, are easily decomposed, give basic and double salts, and have an acid reaction, as chromic oxide is a feeble base. Potassium and sodium hydroxides give aprecipitateof the hydroxide with chromic salts, CrX3. The violet and green salts give ahydroxide soluble in an excess of the reagent; but the hydroxide is held in solution by very feeble affinities, so that it is partially separated by heat and dilution with water, and completely so on boiling. In an alkaline solution, chromic hydroxide is easily converted into chromic acid by the action of lead dioxide, chlorine, and other oxidising agents. If the chromic oxide occurs together with such oxides as magnesia, or zinc oxide, then on precipitation it separates out from its solution in combination with these oxides, forming, for example, ZnO,Cr2O3. Viard obtained compounds of Cr2O3with the oxides of Mg, Zn, Cd, &c.) On precipitating the violet solution of chrome alum with ammonia, a precipitate containing Cr2O3,6H2O is obtained, whilst the precipitate from the boiling solution with caustic potash was a hydrate containing four equivalents of water. When fused with borax chromic salts give a green glass. The same coloration is communicated to ordinary glass by the presence of traces of chromic oxide. A chrome glass containing a large amount of chromic oxide may be ground up and used as a green pigment. Among the hydrates of oxide of chromiumGuignet's greenforms one of the widely-used green pigments which have been substituted for the poisonous arsenical copper pigments, such as Schweinfurt green, which formerly was much used. Guignet's green has an extremely bright green colour, and is distinguished for its great stability, not only under the action of light but also towards reagents; thus it is not altered by alkaline solutions, and even nitric acid does not act on it. This pigment remains unchanged up to a temperature of 250°; it contains Cr2O3,2H2O, and generally a small amount of alkali. It is prepared by fusing 3 parts of boric acid with 1 part of potassium dichromate; oxygen is disengaged, and a green glass, containing a mixture of the borates of chromium and potassium, is obtained. When cool this glass is ground up and treated with water, which extracts the boric acid and alkali and leaves the above-named chromic hydroxide behind. This hydroxide only parts with its water at a red heat, leaving the anhydrous oxide.The chromic hydroxides lose their water by ignition, and in so doing become spontaneously incandescent, like the ordinary ferric hydroxide (ChapterXXII.). It is not known, however, whether all the modifications of chromic oxide show this phenomenon. The anhydrouschromic oxide, Cr2O3, is exceedingly difficultly soluble in acids, if it has passed through the above recalescence. But if it has parted with its water, or the greater part of it, and not yet undergone this self-induced incandescence (has not lost a portion of its energy), then it is soluble in acids. It is not reduced by hydrogen. It is easily obtained in various crystalline forms by many methods. The chromates of mercury and ammonium give a very convenient method for its preparation, because when ignited they leave chromic oxide behind. In the first instance oxygen and mercury are disengaged, and in the second case nitrogen and water: 2Hg2CrO4= Cr2O3+ O5+ 4Hg or (NH4)2Cr2O7= Cr2O3+ 4H2O + N2. The second reaction is very energetic, and the mass of salt burns spontaneously if the temperature be sufficiently high. A mixture of potassium sulphate and chromic oxide is formed by heating potassium dichromate with an equal weight of sulphur: K2Cr2O7+ S = K2SO4+ Cr2O3. The sulphate is easily extracted by water, and there remains a bright green residue of the oxide, whose colour is more brilliant the lower the temperature of the decomposition. The oxide thus obtained is used as a green pigment for china and enamel. The anhydrous chromic oxide obtained from chromyl chloride, CrO2Cl2, has a specific gravity of 5·21, and forms almost black crystals, which give a green powder. They are hard enough to scratch glass, and have a metallic lustre. The crystalline form of chromic oxide is identical with that of the oxide of iron and alumina, with which it is isomorphous.

[7]As a mixture of potassium dichromate and sulphuric acid is usually employed for oxidation, the resultant solution generally contains a double sulphate of potassium and chromium—that is,chrome alum, isomorphous with ordinary alum—K2Cr2O7+ 4H2SO4+ 20H2O = O3+ K2Cr2(SO4)4,24H2O or 2(KCr(SO4)2,12H2O). It is prepared by dissolving potassium dichromate in dilute sulphuric acid; alcohol is then added and the solution slightly heated, or sulphurous anhydride is passed through it. On the addition of alcohol to a cold mixture of potassium dichromate and sulphuric acid, the gradual disengagement of pleasant-smelling volatile products of the oxidation of alcohol, and especially of aldehyde, C2H4O, is remarked. If the temperature of decomposition does not exceed 35°, avioletsolution of chrome alum is obtained, but if the temperature be higher, a solution of the same alum is obtained of agreencolour. As chrome alum requires for solution 7 parts of water at the ordinary temperature, it follows that if a somewhat strong solution of potassium dichromate be taken (4 parts of water and 1½ of sulphuric acid to 1 part of dichromate), it will give so concentrated a solution of chrome alum that on cooling, the salt will separate without further evaporation.If the liquid, prepared as above or in any instance of the deoxidation of chromic acid,be heated(the oxidation naturally proceeds more rapidly) somewhat strongly, for instance, to the boiling-point of water, or if the violet solution already formed be raised to the same temperature, it acquires a brightgreen colour, and on evaporation the same mixture, which at lower temperatures so easily gives cubical crystals of chrome alum,does not give any crystals whatever.If the green solution be kept, however,for several weeksat the ordinary temperature, it depositsviolet crystalsof chrome alum. The green solution, when evaporated, gives a non-crystalline mass, and the violet crystals lose water at 100° and turn green. It must be remarked that the transition of the green modification into the violet is accompanied by a decrease in volume (Lecoq de Boisbaudran, Favre). If the green mass formed at the higher temperature be evaporated to dryness and heated at 30° in a current of air, it does not retain more then 6 equivalents of water. Hence Löwel, and also Schrötter, concluded that the green and violet modifications of the alum depend on different degrees of combination with water, which may be likened to the different compounds of sodium sulphate with water and to the different hydrates of ferric oxide.

However, the question in this case is not so simple, as we shall afterwards see. Not chrome alum alone, butall the chromic salts, give two, if not three,varieties. At least, there is no doubt about the existence of two—agreenand aviolet modification. The green chromic salts are obtained by heating solutions of the violet salts, the violet solutions are produced on keeping solutions of the green salts for a long time. The conversion of the violet salts into green by the action of heat is itself an indication of the possibility of explaining the different modifications by their containing different proportions (or states) of water, and, moreover, by the green salts having a less amount of water than the violet. However, there are other explanations. Chromic oxide is a base like alumina, and is therefore able to give both acid and basic salts. It is supposed that the difference between the green and violet salts is due to this fact. This opinion of Krüger is based on the fact that alcohol separates out a salt from the green solution which contains less sulphuric acid than the normal violet salt. On the other hand, Löwel showed that all the acid cannot be separated from the green chromic salts by suitable reagents, as easily as it can be from the same solution of the violet salts; thus barium salts do not precipitate all the sulphuric acid from solutions of the green salts. According to other researches the cause of the varieties of the chromic salts lies in a difference in the bases they contain—that is, it is connected with a modification of the properties of the oxide of chromium itself. This only refers to the hydroxides, but as hydroxides themselves are only special forms of salts, the differences observed as yet in this direction between the hydroxides only confirm the generality of the difference observed in the chromic compounds (seeNote7 bis).

The salts of chromic oxide, like those of alumina, are easily decomposed, give basic and double salts, and have an acid reaction, as chromic oxide is a feeble base. Potassium and sodium hydroxides give aprecipitateof the hydroxide with chromic salts, CrX3. The violet and green salts give ahydroxide soluble in an excess of the reagent; but the hydroxide is held in solution by very feeble affinities, so that it is partially separated by heat and dilution with water, and completely so on boiling. In an alkaline solution, chromic hydroxide is easily converted into chromic acid by the action of lead dioxide, chlorine, and other oxidising agents. If the chromic oxide occurs together with such oxides as magnesia, or zinc oxide, then on precipitation it separates out from its solution in combination with these oxides, forming, for example, ZnO,Cr2O3. Viard obtained compounds of Cr2O3with the oxides of Mg, Zn, Cd, &c.) On precipitating the violet solution of chrome alum with ammonia, a precipitate containing Cr2O3,6H2O is obtained, whilst the precipitate from the boiling solution with caustic potash was a hydrate containing four equivalents of water. When fused with borax chromic salts give a green glass. The same coloration is communicated to ordinary glass by the presence of traces of chromic oxide. A chrome glass containing a large amount of chromic oxide may be ground up and used as a green pigment. Among the hydrates of oxide of chromiumGuignet's greenforms one of the widely-used green pigments which have been substituted for the poisonous arsenical copper pigments, such as Schweinfurt green, which formerly was much used. Guignet's green has an extremely bright green colour, and is distinguished for its great stability, not only under the action of light but also towards reagents; thus it is not altered by alkaline solutions, and even nitric acid does not act on it. This pigment remains unchanged up to a temperature of 250°; it contains Cr2O3,2H2O, and generally a small amount of alkali. It is prepared by fusing 3 parts of boric acid with 1 part of potassium dichromate; oxygen is disengaged, and a green glass, containing a mixture of the borates of chromium and potassium, is obtained. When cool this glass is ground up and treated with water, which extracts the boric acid and alkali and leaves the above-named chromic hydroxide behind. This hydroxide only parts with its water at a red heat, leaving the anhydrous oxide.

The chromic hydroxides lose their water by ignition, and in so doing become spontaneously incandescent, like the ordinary ferric hydroxide (ChapterXXII.). It is not known, however, whether all the modifications of chromic oxide show this phenomenon. The anhydrouschromic oxide, Cr2O3, is exceedingly difficultly soluble in acids, if it has passed through the above recalescence. But if it has parted with its water, or the greater part of it, and not yet undergone this self-induced incandescence (has not lost a portion of its energy), then it is soluble in acids. It is not reduced by hydrogen. It is easily obtained in various crystalline forms by many methods. The chromates of mercury and ammonium give a very convenient method for its preparation, because when ignited they leave chromic oxide behind. In the first instance oxygen and mercury are disengaged, and in the second case nitrogen and water: 2Hg2CrO4= Cr2O3+ O5+ 4Hg or (NH4)2Cr2O7= Cr2O3+ 4H2O + N2. The second reaction is very energetic, and the mass of salt burns spontaneously if the temperature be sufficiently high. A mixture of potassium sulphate and chromic oxide is formed by heating potassium dichromate with an equal weight of sulphur: K2Cr2O7+ S = K2SO4+ Cr2O3. The sulphate is easily extracted by water, and there remains a bright green residue of the oxide, whose colour is more brilliant the lower the temperature of the decomposition. The oxide thus obtained is used as a green pigment for china and enamel. The anhydrous chromic oxide obtained from chromyl chloride, CrO2Cl2, has a specific gravity of 5·21, and forms almost black crystals, which give a green powder. They are hard enough to scratch glass, and have a metallic lustre. The crystalline form of chromic oxide is identical with that of the oxide of iron and alumina, with which it is isomorphous.

[7 bis]The most important of the compounds corresponding with chromic oxide ischromic chloride, Cr2Cl6, which is known in an anhydrous and in a hydrated form. It resembles ferric and aluminic chlorides in many respects. There is a great difference between the anhydrous and the hydrated chlorides; the former is insoluble in water, the latter easily dissolves, and on evaporation its solution forms a hygroscopic mass which is very unstable and easily evolves hydrochloric acid when heated with water. The anhydrous form is of a violet colour, and Wöhler gives the following method for its preparation: an intimate mixture is prepared of the anhydrous chromic oxide with carbon and organic matter, and charged into a wide infusible glass or porcelain tube which is heated in a combustion furnace; one extremity of the tube communicates with an apparatus generating chlorine which is passed through several bottles containing sulphuric acid in order to dry it perfectly before it reaches the tube. On heating the portion of the tube in which the mixture is placed and passing chlorine through, a slightly volatile sublimate of chromic chloride, CrCl3or Cr2Cl6, is formed. This substance formsviolet tabular crystals, which may be distilled in dry chlorine without change, but which, however, require a red heat for their volatilisation. These crystals are greasy to the touch and insoluble in water, but if they be powdered and boiled in water for a long time they pass intoa green solution. Strong sulphuric acid does not act on the anhydrous salt, or only acts with exceeding slowness, like water. Even aqua regia and other acids do not act on the crystals, and alkalis only show a very feeble action. The specific gravity of the crystals is 2·99. When fused with sodium carbonate and nitre they give sodium chloride and potassium chromate, and when ignited in air they form green chromic oxide and evolve chlorine. On ignition in a stream of ammonia, chromic chloride forms sal-ammoniac and chromium nitride, CrN (analogous to the nitrides BN, AlN). Mosberg and Peligot showed that when chromic chloride is ignited in hydrogen, it parts with one-third of its chlorine, forming chromous chloride, CrCl2—that is, there is formed from a compound corresponding with chromic oxide, Cr2O3, a compound answering to thesuboxide, chromous oxide, CrO—just as hydrogen converts ferric chloride into ferrous chloride with the aid of heat.Chromous chloride, CrCl2, forms colourless crystals easily soluble in water, which in dissolving evolve a considerable amount of heat, and form a blue liquid, capable of absorbing oxygen from the air with great facility, being converted thereby into a chromic compound.The blue solution of chromous chloride may also be obtained by the action of metallic zinc on the green solution of the hydrated chromic chloride; the zinc in this case takes up chlorine just as the hydrogen did. It must be employed in a large excess. Chromic oxide is also formed in the action of zinc on chromic chloride, and if the solution remain for a long time in contact with the zinc the whole of the chromium is converted into chromic oxychloride. Other chromic salts are also reduced by zinc intochromous salts, CrX2, just as the ferric salts FeX3are converted into ferrous salts FeX2by it. The chromous salts are exceedingly unstable and easily oxidise and pass into chromic salts; hence the reducing power of these salts is very great. From cupric salts they separate cuprous salts, from stannous salts they precipitate metallic tin, they reduce mercuric salts into mercurous and ferric into ferrous salts. Moreover, they absorb oxygen from the air directly. With potassium chromate they give a brown precipitate of chromium dioxide or of chromic oxide, according to the relative amounts of the substances taken: CrO3+ CrO = 2CrO2or CrO3+ 3CrO = 2Cr2O3. Aqueous ammonia gives a blue precipitate, and in the presence of ammoniacal salts a blue liquid is obtained which turns red in the air from oxidation. This is accompanied by the formation of compounds analogous to those given by cobalt (ChapterXXII.). A solution of chromous chloride with a hot saturated solution of sodium acetate, C2H3NaO2, gives, on cooling, transparent red crystals of chromous acetate, C4H6CrO4,H2O. This salt is also a powerful reducing agent, but may be kept for a long time in a vessel full of carbonic anhydride.The insoluble anhydrouschromic chlorideCrCl3very easilypasses into solutionin the presence of a trace (0·004) ofchromous chlorideCrCl2. This remarkable phenomenon was observed by Peligot and explained by Löwel in the following manner: chromous chloride, as a lower stage of oxidation, is capable of absorbing both oxygen and chlorine, combining with various substances. It is able to decompose many chlorides by taking up chlorine from them; thus it precipitates mercurous chloride from a solution of mercuric chloride, and in so doing passes into chromic chloride: 2CrCl2+ 2HgCl2= Cr2Cl6+ 2HgCl. Let us suppose that the same phenomenon takes place when the anhydrous chromic chloride is mixed with a solution of chromous chloride. The latter will then take up a portion of the chlorine of the former, and pass into a soluble hydrate of chromic chloride (hydrochloride of oxide of chromium), and the original anhydrous chromic chloride will pass into chromous chloride. The chromous chloride re-formed in this manner will then act on a fresh quantity of the chromic chloride, and in this manner transfer it entirely into solution as hydrate. This view is confirmed by the fact that other chlorides, capable of absorbing chlorine like chromous chloride, also induce the solution of the insoluble chromic chloride—for example, ferrous chloride, FeCl2, and cuprous chloride. The presence of zinc also aids the solution of chromic chloride, owing to its converting a portion of it into chromous chloride. The solution of chromic chloride in water obtained by these methods is perfectly identical with that which is formed by dissolving chromic hydroxide in hydrochloric acid. On evaporating thegreen solutionobtained in this manner, it gives a green mass, containing water. On further heating it leaves a soluble chromic oxychloride, and when ignited it first forms an insoluble oxychloride and then chromic oxide; but no anhydrous chromic chloride, Cr2Cl6, is formed by heating the aqueous solution of chromic chloride, which forms an important fact in support of the view that the green solution of chromic chloride is nothing else but hydrochloride of oxide of chromium. At 100° the composition of the green hydrate is Cr2Cl6,9H2O, and on evaporation at the ordinary temperature over H2SO4crystals are obtained with 12 equivalents of water; the red mass obtained at 120° contains Cr2O3,4Cr2Cl6,24H2O. The greater portion of it is soluble in water, like the mass which is formed at 150°. The latter contains Cr2O3,2Cr2Cl6,9H2O = 3(Cr2OCl4,3H2O)—that is, it presents the same composition as chromic chloride in which one atom of oxygen replaces two of chlorine. And if the hydrate of chromic chloride be regarded as Cr2O3,6HCl, the substance which is obtained should be regarded as Cr2O3,4HCl combined with water, H2O. The addition of alkalis—for example, baryta—to a solution of chromic chloride immediately produces a precipitate, which, however, re-dissolves on shaking, owing to the formation of one of the oxychlorides just mentioned, which may be regarded asbasic salts. Thus we may represent the product of the change produced on chromic chloride under the influence of water and heat by the following formulæ: first Cr2O3,6HCl or Cr2Cl6,3H2O is formed, then Cr2O3,4HCl,H2O or Cr2OCl4,3H2O, and lastly Cr2O3,2HCl,2H2O or Cr2O2Cl2,3H2O. In all three cases there are 2 equivalents of chromium to at least 3 equivalents of water. These compounds may be regarded as being intermediate between chromic hydroxide and chloride; chromic chloride is Cr2Cl6, the first oxychloride Cr2(OH)2Cl4, the second Cr2(OH)4Cl2, and the hydrate Cr2(OH)6—that is, the chlorine is replaced by hydroxyl.It is very important to remark two circumstances in respect to this: (1) That the whole of the chlorine in the above compounds is not precipitated from their solutions by silver nitrate; thus the normal salt of the composition Cr2Cl6,9H2O only gives up two-thirds of its chlorine; therefore Peligot supposes that the normal salt contains the oxychloride combined with hydrochloric acid: Cr2Cl6+ 2H2O = Cr2O2Cl2,4HCl, and that the chlorine held as hydrochloric acid reacts with the silver, whilst that held in the oxychloride does not enter into reaction, just as we observe a very feebly-developed faculty for reaction in the anhydrous chromic chloride; and (2) if the green aqueous solution of CrCl3be left to stand for some time, it ultimately turns violet; in this form the whole of the chlorine is precipitated by AgNO3, whilst boiling re-converts it into the green variety. Löwel obtained the violet solution of hydrochloride of chromic oxide by decomposing the violet chromic sulphate with barium chloride. Silver nitrate precipitates all the chlorine from this violet modification; but if the violet solution be boiled and so converted into the green modification, silver nitrate then only precipitates a portion of the chlorine.Recoura (1890–1893) obtained a crystallohydrate of violet chromium sulphate, Cr2(SO4)3, with 18 or 15 H2O. By boiling a solution of this crystallohydrate, he converted it into the green salt, which, when treated with alkalis, gave a precipitate of Cr2O3,2H2O, soluble in 2H2SO4(and not 3), and only forming the basic salt, Cr2(OH)2(SO4)2. He therefore concludes that the green salts are basic salts. The cryoscopic determinations made by A. Speransky (1892) and Marchetti (1892) give a greater ‘depression’ for the violet than the green salts, that is, indicate a greater molecular weight for the green salts. But as Étard, by heating the violet sulphate to 100°, converted it into a green salt of the same composition, but with a smaller amount of H2O, it follows that the formation of a basic salt alone is insufficient to explain the difference between the green and violet varieties, and this is also shown by the fact that BaCl2precipitates the whole of the sulphuric acid of the violet salt, and only a portion of that of the green salt. A. Speransky also showed that the molecular electro-conductivity of the green solutions is less than that of the violet. It is also known that the passage of the former into the latter is accompanied by an increase of volume, and, according to Recoura, by an evolution of heat also.Piccini's researches (1894) throw an important light upon the peculiarities of the green chromium trichloride (or chromic chloride); he showed (1) that AgF (in contradistinction to the other salts of silver) precipitates all the chlorine from an aqueous solution of the green variety; (2) that solutions of green CrCl3,6H2O in ethyl alcohol and acetone precipitate all their chlorine when mixed with a similar solution of AgNO3; (3) that the rise of the boiling-point of the ethyl alcohol and acetone green solutions of CrCl3,6H2O (Chapter VII., Note27 bis) shows that i in this case (as in the aqueous solutions of MgSO4and HgCl2) is nearly equal to 1, that is, that they are like solutions of non-conductors; (4) that a solution of green CrCl3in methyl alcohol at first precipitates about ⅞ of its chlorine (an aqueous solution about ⅔) when treated with AgNO3, but after a time the whole of the chlorine is precipitated; and (5) that an aqueous solution of the green variety gradually passes into the violet, while a methyl alcoholic solution preserves its green colour, both of itself and also after the whole of the chlorine has been precipitated by AgNO3. If, however, in an aqueous or methyl alcoholic solution only a portion of the chlorine be precipitated, the solution gradually turns violet. In my opinion the general meaning of all these observations requires further elucidation and explanation, which should be in harmony with the theory of solutions. Recoura, moreover, obtained compounds of the green salt, Cr2(SO4)3, with 1, 2, and 3 molecules of H2SO4, K2SO4, and even a compound Cr2(SO4)3H2CrO4. By neutralising the sulphuric acid of the compounds of Cr2(SO4)3and H2SO4with caustic soda, Recoura obtained an evolution of 33 thousand calories per each 2NaHO, while free H2SO4only gives 30·8 thousand calories. Recoura is of opinion that specialchromo sulphuric acids, for instance (CrSO4)H2SO4= ½Cr2(SO4)3H2SO4, are formed. With a still larger excess of sulphuric acid, Recoura obtained salts containing a still greater number of sulphuric acid radicles, but even this method does not explain the difference between the green and violet salts.These facts must naturally be taken into consideration in order to arrive at any complete decision as to the cause of the different modifications of the chromic salts. We may observe that the green modification of chromic chloride does not give double salts with the metallic chlorides, whilst the violet variety forms compounds Cr2Cl6,2RCl (where R = an alkali metal), which are obtained by heating the chromates with an excess of hydrochloric acid and evaporating the solution until it acquires a violet colour. As the result of all the existing researches on the green and violet chromic salts, it appears to me most probable that their difference is determined by the feeble basic character of chromic oxide, by its faculty of giving basic salts, and by the colloidal properties of its hydroxide (these three properties are mutually connected), and moreover, it seems to me that the relation between the green and violet salts of chromic oxide best answers to the relation of the purpureo to the luteo cobaltic salts (Chapter XXII., Note35). This subject cannot yet be considered as exhausted (seeNote7).We may here observe that with tin the chromic salts, CrX3, give at low temperatures CrX2and SnX2, whilst at high temperatures, on the contrary, CrX2reduces the metal from its salts SnX2. The reaction, therefore, belongs to the class of reversible reactions (Beketoff).Poulenc obtained anhydrous CrF3(sp. gr. 3·78) and CrF2(sp. gr. 4·11) by the action of gaseous HF upon CrCl2. A solution of fluoride of chromium is employed as a mordant in dyeing. Recoura (1890) obtained green and violet varieties of Cr2Br6,6H2O. The green variety can only be kept in the presence of an excess of HBr in the solution; if alone its solution easily passes into the violet variety with evolution of heat.

[7 bis]The most important of the compounds corresponding with chromic oxide ischromic chloride, Cr2Cl6, which is known in an anhydrous and in a hydrated form. It resembles ferric and aluminic chlorides in many respects. There is a great difference between the anhydrous and the hydrated chlorides; the former is insoluble in water, the latter easily dissolves, and on evaporation its solution forms a hygroscopic mass which is very unstable and easily evolves hydrochloric acid when heated with water. The anhydrous form is of a violet colour, and Wöhler gives the following method for its preparation: an intimate mixture is prepared of the anhydrous chromic oxide with carbon and organic matter, and charged into a wide infusible glass or porcelain tube which is heated in a combustion furnace; one extremity of the tube communicates with an apparatus generating chlorine which is passed through several bottles containing sulphuric acid in order to dry it perfectly before it reaches the tube. On heating the portion of the tube in which the mixture is placed and passing chlorine through, a slightly volatile sublimate of chromic chloride, CrCl3or Cr2Cl6, is formed. This substance formsviolet tabular crystals, which may be distilled in dry chlorine without change, but which, however, require a red heat for their volatilisation. These crystals are greasy to the touch and insoluble in water, but if they be powdered and boiled in water for a long time they pass intoa green solution. Strong sulphuric acid does not act on the anhydrous salt, or only acts with exceeding slowness, like water. Even aqua regia and other acids do not act on the crystals, and alkalis only show a very feeble action. The specific gravity of the crystals is 2·99. When fused with sodium carbonate and nitre they give sodium chloride and potassium chromate, and when ignited in air they form green chromic oxide and evolve chlorine. On ignition in a stream of ammonia, chromic chloride forms sal-ammoniac and chromium nitride, CrN (analogous to the nitrides BN, AlN). Mosberg and Peligot showed that when chromic chloride is ignited in hydrogen, it parts with one-third of its chlorine, forming chromous chloride, CrCl2—that is, there is formed from a compound corresponding with chromic oxide, Cr2O3, a compound answering to thesuboxide, chromous oxide, CrO—just as hydrogen converts ferric chloride into ferrous chloride with the aid of heat.Chromous chloride, CrCl2, forms colourless crystals easily soluble in water, which in dissolving evolve a considerable amount of heat, and form a blue liquid, capable of absorbing oxygen from the air with great facility, being converted thereby into a chromic compound.

The blue solution of chromous chloride may also be obtained by the action of metallic zinc on the green solution of the hydrated chromic chloride; the zinc in this case takes up chlorine just as the hydrogen did. It must be employed in a large excess. Chromic oxide is also formed in the action of zinc on chromic chloride, and if the solution remain for a long time in contact with the zinc the whole of the chromium is converted into chromic oxychloride. Other chromic salts are also reduced by zinc intochromous salts, CrX2, just as the ferric salts FeX3are converted into ferrous salts FeX2by it. The chromous salts are exceedingly unstable and easily oxidise and pass into chromic salts; hence the reducing power of these salts is very great. From cupric salts they separate cuprous salts, from stannous salts they precipitate metallic tin, they reduce mercuric salts into mercurous and ferric into ferrous salts. Moreover, they absorb oxygen from the air directly. With potassium chromate they give a brown precipitate of chromium dioxide or of chromic oxide, according to the relative amounts of the substances taken: CrO3+ CrO = 2CrO2or CrO3+ 3CrO = 2Cr2O3. Aqueous ammonia gives a blue precipitate, and in the presence of ammoniacal salts a blue liquid is obtained which turns red in the air from oxidation. This is accompanied by the formation of compounds analogous to those given by cobalt (ChapterXXII.). A solution of chromous chloride with a hot saturated solution of sodium acetate, C2H3NaO2, gives, on cooling, transparent red crystals of chromous acetate, C4H6CrO4,H2O. This salt is also a powerful reducing agent, but may be kept for a long time in a vessel full of carbonic anhydride.

The insoluble anhydrouschromic chlorideCrCl3very easilypasses into solutionin the presence of a trace (0·004) ofchromous chlorideCrCl2. This remarkable phenomenon was observed by Peligot and explained by Löwel in the following manner: chromous chloride, as a lower stage of oxidation, is capable of absorbing both oxygen and chlorine, combining with various substances. It is able to decompose many chlorides by taking up chlorine from them; thus it precipitates mercurous chloride from a solution of mercuric chloride, and in so doing passes into chromic chloride: 2CrCl2+ 2HgCl2= Cr2Cl6+ 2HgCl. Let us suppose that the same phenomenon takes place when the anhydrous chromic chloride is mixed with a solution of chromous chloride. The latter will then take up a portion of the chlorine of the former, and pass into a soluble hydrate of chromic chloride (hydrochloride of oxide of chromium), and the original anhydrous chromic chloride will pass into chromous chloride. The chromous chloride re-formed in this manner will then act on a fresh quantity of the chromic chloride, and in this manner transfer it entirely into solution as hydrate. This view is confirmed by the fact that other chlorides, capable of absorbing chlorine like chromous chloride, also induce the solution of the insoluble chromic chloride—for example, ferrous chloride, FeCl2, and cuprous chloride. The presence of zinc also aids the solution of chromic chloride, owing to its converting a portion of it into chromous chloride. The solution of chromic chloride in water obtained by these methods is perfectly identical with that which is formed by dissolving chromic hydroxide in hydrochloric acid. On evaporating thegreen solutionobtained in this manner, it gives a green mass, containing water. On further heating it leaves a soluble chromic oxychloride, and when ignited it first forms an insoluble oxychloride and then chromic oxide; but no anhydrous chromic chloride, Cr2Cl6, is formed by heating the aqueous solution of chromic chloride, which forms an important fact in support of the view that the green solution of chromic chloride is nothing else but hydrochloride of oxide of chromium. At 100° the composition of the green hydrate is Cr2Cl6,9H2O, and on evaporation at the ordinary temperature over H2SO4crystals are obtained with 12 equivalents of water; the red mass obtained at 120° contains Cr2O3,4Cr2Cl6,24H2O. The greater portion of it is soluble in water, like the mass which is formed at 150°. The latter contains Cr2O3,2Cr2Cl6,9H2O = 3(Cr2OCl4,3H2O)—that is, it presents the same composition as chromic chloride in which one atom of oxygen replaces two of chlorine. And if the hydrate of chromic chloride be regarded as Cr2O3,6HCl, the substance which is obtained should be regarded as Cr2O3,4HCl combined with water, H2O. The addition of alkalis—for example, baryta—to a solution of chromic chloride immediately produces a precipitate, which, however, re-dissolves on shaking, owing to the formation of one of the oxychlorides just mentioned, which may be regarded asbasic salts. Thus we may represent the product of the change produced on chromic chloride under the influence of water and heat by the following formulæ: first Cr2O3,6HCl or Cr2Cl6,3H2O is formed, then Cr2O3,4HCl,H2O or Cr2OCl4,3H2O, and lastly Cr2O3,2HCl,2H2O or Cr2O2Cl2,3H2O. In all three cases there are 2 equivalents of chromium to at least 3 equivalents of water. These compounds may be regarded as being intermediate between chromic hydroxide and chloride; chromic chloride is Cr2Cl6, the first oxychloride Cr2(OH)2Cl4, the second Cr2(OH)4Cl2, and the hydrate Cr2(OH)6—that is, the chlorine is replaced by hydroxyl.

It is very important to remark two circumstances in respect to this: (1) That the whole of the chlorine in the above compounds is not precipitated from their solutions by silver nitrate; thus the normal salt of the composition Cr2Cl6,9H2O only gives up two-thirds of its chlorine; therefore Peligot supposes that the normal salt contains the oxychloride combined with hydrochloric acid: Cr2Cl6+ 2H2O = Cr2O2Cl2,4HCl, and that the chlorine held as hydrochloric acid reacts with the silver, whilst that held in the oxychloride does not enter into reaction, just as we observe a very feebly-developed faculty for reaction in the anhydrous chromic chloride; and (2) if the green aqueous solution of CrCl3be left to stand for some time, it ultimately turns violet; in this form the whole of the chlorine is precipitated by AgNO3, whilst boiling re-converts it into the green variety. Löwel obtained the violet solution of hydrochloride of chromic oxide by decomposing the violet chromic sulphate with barium chloride. Silver nitrate precipitates all the chlorine from this violet modification; but if the violet solution be boiled and so converted into the green modification, silver nitrate then only precipitates a portion of the chlorine.

Recoura (1890–1893) obtained a crystallohydrate of violet chromium sulphate, Cr2(SO4)3, with 18 or 15 H2O. By boiling a solution of this crystallohydrate, he converted it into the green salt, which, when treated with alkalis, gave a precipitate of Cr2O3,2H2O, soluble in 2H2SO4(and not 3), and only forming the basic salt, Cr2(OH)2(SO4)2. He therefore concludes that the green salts are basic salts. The cryoscopic determinations made by A. Speransky (1892) and Marchetti (1892) give a greater ‘depression’ for the violet than the green salts, that is, indicate a greater molecular weight for the green salts. But as Étard, by heating the violet sulphate to 100°, converted it into a green salt of the same composition, but with a smaller amount of H2O, it follows that the formation of a basic salt alone is insufficient to explain the difference between the green and violet varieties, and this is also shown by the fact that BaCl2precipitates the whole of the sulphuric acid of the violet salt, and only a portion of that of the green salt. A. Speransky also showed that the molecular electro-conductivity of the green solutions is less than that of the violet. It is also known that the passage of the former into the latter is accompanied by an increase of volume, and, according to Recoura, by an evolution of heat also.

Piccini's researches (1894) throw an important light upon the peculiarities of the green chromium trichloride (or chromic chloride); he showed (1) that AgF (in contradistinction to the other salts of silver) precipitates all the chlorine from an aqueous solution of the green variety; (2) that solutions of green CrCl3,6H2O in ethyl alcohol and acetone precipitate all their chlorine when mixed with a similar solution of AgNO3; (3) that the rise of the boiling-point of the ethyl alcohol and acetone green solutions of CrCl3,6H2O (Chapter VII., Note27 bis) shows that i in this case (as in the aqueous solutions of MgSO4and HgCl2) is nearly equal to 1, that is, that they are like solutions of non-conductors; (4) that a solution of green CrCl3in methyl alcohol at first precipitates about ⅞ of its chlorine (an aqueous solution about ⅔) when treated with AgNO3, but after a time the whole of the chlorine is precipitated; and (5) that an aqueous solution of the green variety gradually passes into the violet, while a methyl alcoholic solution preserves its green colour, both of itself and also after the whole of the chlorine has been precipitated by AgNO3. If, however, in an aqueous or methyl alcoholic solution only a portion of the chlorine be precipitated, the solution gradually turns violet. In my opinion the general meaning of all these observations requires further elucidation and explanation, which should be in harmony with the theory of solutions. Recoura, moreover, obtained compounds of the green salt, Cr2(SO4)3, with 1, 2, and 3 molecules of H2SO4, K2SO4, and even a compound Cr2(SO4)3H2CrO4. By neutralising the sulphuric acid of the compounds of Cr2(SO4)3and H2SO4with caustic soda, Recoura obtained an evolution of 33 thousand calories per each 2NaHO, while free H2SO4only gives 30·8 thousand calories. Recoura is of opinion that specialchromo sulphuric acids, for instance (CrSO4)H2SO4= ½Cr2(SO4)3H2SO4, are formed. With a still larger excess of sulphuric acid, Recoura obtained salts containing a still greater number of sulphuric acid radicles, but even this method does not explain the difference between the green and violet salts.

These facts must naturally be taken into consideration in order to arrive at any complete decision as to the cause of the different modifications of the chromic salts. We may observe that the green modification of chromic chloride does not give double salts with the metallic chlorides, whilst the violet variety forms compounds Cr2Cl6,2RCl (where R = an alkali metal), which are obtained by heating the chromates with an excess of hydrochloric acid and evaporating the solution until it acquires a violet colour. As the result of all the existing researches on the green and violet chromic salts, it appears to me most probable that their difference is determined by the feeble basic character of chromic oxide, by its faculty of giving basic salts, and by the colloidal properties of its hydroxide (these three properties are mutually connected), and moreover, it seems to me that the relation between the green and violet salts of chromic oxide best answers to the relation of the purpureo to the luteo cobaltic salts (Chapter XXII., Note35). This subject cannot yet be considered as exhausted (seeNote7).

We may here observe that with tin the chromic salts, CrX3, give at low temperatures CrX2and SnX2, whilst at high temperatures, on the contrary, CrX2reduces the metal from its salts SnX2. The reaction, therefore, belongs to the class of reversible reactions (Beketoff).

Poulenc obtained anhydrous CrF3(sp. gr. 3·78) and CrF2(sp. gr. 4·11) by the action of gaseous HF upon CrCl2. A solution of fluoride of chromium is employed as a mordant in dyeing. Recoura (1890) obtained green and violet varieties of Cr2Br6,6H2O. The green variety can only be kept in the presence of an excess of HBr in the solution; if alone its solution easily passes into the violet variety with evolution of heat.

[8]The reduction of metallic chromium proceeds with comparative ease in aqueous solutions. Thus the action of sodium amalgams upon a strong solution of Cr2Cl6gives (first CrCl2) an amalgam of chromium from which the mercury may be easily driven off by heating (in hydrogen to avoid oxidation), and there remains a spongy mass of easily oxidizable chromium. Plaset (1891), by passing an electric current through a solution of chrome alum mixed with a small amount of H2SO4and K2SO4, obtained hard scales of chromium of a bluish-white colour possessing great hardness and stability (under the action of water, air, and acids). Glatzel (1890) reduced a mixture of 2KCl + Cr2Cl6by heating it to redness with shavings of magnesium. The metallic chromium thus obtained has the appearance of a fine light-grey powder which is seen to be crystalline under the microscope; its sp. gr. at 16° is 6·7284. It fuses (with anhydrous borax) only at the highest temperatures, and after fusion presents a silver-white fracture. The strongest magnet has no action upon it.Moissan (1893) obtained chromium by reducing the oxide Cr2O3with carbon in the electrical furnace (Chapter VIII., Note17) in 9–10 minutes with a current of 350 ampères and 50 volts. The mixture of oxide and carbon gives a bright ingot weighing 100–110 grams. A current of 100 ampères and 50 volts completes the experiment upon a smaller quantity of material in 15 minutes; a current of 30 ampères and 50 volts gave an ingot of 10 grams in 30–40 minutes. The resultant carbon alloy is more or less rich in chromium (from 87·37–91·7 p.c.). To obtain the metal free from carbon, the alloy is broken into large lumps, mixed with oxide of chromium, put into a crucible and covered with a layer of oxide. This mixture is then heated in the electric furnace and the pure metal is obtained. This reduction can also be carried on with chrome iron ore FeOCr2O3which occurs in nature. In this case a homogeneous alloy of iron and chromium is obtained. If this alloy be thrown in lumps into molten nitre, it forms insoluble sesquioxide of iron and a soluble alkaline chromate. This alloy of iron and chromium dissolved in molten steel (chrome steel) renders it hard and tough, so that such steel has many valuable applications. The alloy, containing about 3 p.c. Cr and about 1·3 p.c. carbon, is even harder than the ordinary kinds of tempered steel and has a fine granular fracture. The usual mode of preparing the ferrochromes for adding to steel is by fusing powdered chrome iron ore under fluxes in a graphite crucible.

[8]The reduction of metallic chromium proceeds with comparative ease in aqueous solutions. Thus the action of sodium amalgams upon a strong solution of Cr2Cl6gives (first CrCl2) an amalgam of chromium from which the mercury may be easily driven off by heating (in hydrogen to avoid oxidation), and there remains a spongy mass of easily oxidizable chromium. Plaset (1891), by passing an electric current through a solution of chrome alum mixed with a small amount of H2SO4and K2SO4, obtained hard scales of chromium of a bluish-white colour possessing great hardness and stability (under the action of water, air, and acids). Glatzel (1890) reduced a mixture of 2KCl + Cr2Cl6by heating it to redness with shavings of magnesium. The metallic chromium thus obtained has the appearance of a fine light-grey powder which is seen to be crystalline under the microscope; its sp. gr. at 16° is 6·7284. It fuses (with anhydrous borax) only at the highest temperatures, and after fusion presents a silver-white fracture. The strongest magnet has no action upon it.

Moissan (1893) obtained chromium by reducing the oxide Cr2O3with carbon in the electrical furnace (Chapter VIII., Note17) in 9–10 minutes with a current of 350 ampères and 50 volts. The mixture of oxide and carbon gives a bright ingot weighing 100–110 grams. A current of 100 ampères and 50 volts completes the experiment upon a smaller quantity of material in 15 minutes; a current of 30 ampères and 50 volts gave an ingot of 10 grams in 30–40 minutes. The resultant carbon alloy is more or less rich in chromium (from 87·37–91·7 p.c.). To obtain the metal free from carbon, the alloy is broken into large lumps, mixed with oxide of chromium, put into a crucible and covered with a layer of oxide. This mixture is then heated in the electric furnace and the pure metal is obtained. This reduction can also be carried on with chrome iron ore FeOCr2O3which occurs in nature. In this case a homogeneous alloy of iron and chromium is obtained. If this alloy be thrown in lumps into molten nitre, it forms insoluble sesquioxide of iron and a soluble alkaline chromate. This alloy of iron and chromium dissolved in molten steel (chrome steel) renders it hard and tough, so that such steel has many valuable applications. The alloy, containing about 3 p.c. Cr and about 1·3 p.c. carbon, is even harder than the ordinary kinds of tempered steel and has a fine granular fracture. The usual mode of preparing the ferrochromes for adding to steel is by fusing powdered chrome iron ore under fluxes in a graphite crucible.

[8 bis]The atomic composition of the tungsten and molybdenum compounds is taken as being identical with that of the compounds of sulphur and chromium, because (1) both these metals give two oxides in which the amounts of oxygen per given amount of metal stand in the ratio 2 : 3; (2) the higher oxide is of the latter kind, and, like chromic and sulphuric anhydrides, it has an acid character; (3) certain of the molybdates are isomorphous with the sulphates; (4) the specific heat of tungsten is 0·0334, consequently the product of the atomic weight and specific heat is 6·15, like that of the other elements—it is the same with molybdenum, 96·0 × 0·0722 = 6·9; (5) tungsten forms with chlorine not only compounds WCl6, WCl5, and WOCl4, but also WO2Cl2, a volatile substance the analogue of chromyl chloride, CrO2Cl2, and sulphuryl chloride, SO2Cl2. Molybdenum gives the chlorine compounds, MOCl2, MOCl3(?), MOCl4(fuses at 194°, boils at 268°; according to Debray it contains MOCl5), MoOCl4, MoO2Cl2, and MoO2(OH)Cl. The existence of tungsten hexachloride, WCl6, is an excellent proof of the fact that the type SX6appears in the analogues of sulphur as in SO3; (6) the vapour density accurately determined for the chlorine compounds MoCl4, WCl6, WCl5, WOCl4(Roscoe) leaves no doubt as to the molecular composition of the compounds of tungsten and molybdenum, for the observed and calculated results entirely agree.Tungsten is sometimes called scheele in honour of Scheele, who discovered it in 1781 and molybdenum in 1778. Tungsten is also known as wolfram; the former name was the name given to it by Scheele, because he extracted it from the mineral then known as tungsten and now called scheelite, CaWO4. The researches of Roscoe, Blomstrand and others have subsequently thrown considerable light on the whole history of the compounds of molybdenum and tungsten.The ammonium salts of tungsten and molybdic acids when ignited leave the anhydrides, which resemble each other in many respects.Tungsten anhydride, WO3, is a yellowish substance, which only fuses at a strong heat, and has a sp. gr. of 6·8. It is insoluble both in water and acid, but solutions of the alkalis, and even of the alkali carbonates, dissolve it, especially when heated, forming alkaline salts.Molybdic anhydride, MoO3, is obtained by igniting the acid (hydrate) or the ammonium salt, and forms a white mass which fuses at a red heat, and solidifies to a yellow crystalline mass of sp. gr. 4·4; whilst on further heating in open vessels or in a stream of air this anhydridesublimesin pearly scales—this enables it to be obtained in a tolerably pure state. Water dissolves it in small quantities—namely, 1 part requires 600 parts of water for its solution. The hydrates of molybdic anhydride aresoluble also in acids(a hydrate, H2MoO4, is obtained from the nitric acid solution of the ammonium salt), which forms one of their distinctions from the tungstic acids. But after ignition molybdic anhydride is insoluble in acids, like tungstic anhydride; alkalis dissolve this anhydride, easily forming molybdates. Potassium bitartrate dissolves the anhydride with the aid of heat. None of the acids yet considered by us form so many different salts with one and the same base (alkali) as molybdic and tungstic acids. The composition of these salts, and their properties also, vary considerably. The most important discovery in this respect was made by Marguerite and Laurent, who showed that the salts which contain a large proportion of tungstic acid are easily soluble in water, and ascribed this property to the fact that tungstic acid may be obtainedin several states. The common tungstates, obtained with an excess of alkali, have an alkaline reaction, and on the addition of sulphuric or hydrochloric acid first deposit an acid salt and then a hydrate of tungstic acid, which is insoluble both in water and acids; but if instead of sulphuric or hydrochloric acids, we add acetic or phosphoric acid, or if the tungstate be saturated with a fresh quantity of tungstic acid, which may be done by boiling the solution of the alkali salt with the precipitated tungstic acid, a solution is obtained which, on the addition of sulphuric or a similar acid, does not give a precipitate of tungstic acid at the ordinary or at higher temperatures. The solution then contains peculiar salts of tungstic acid, and if there be an excess of acid it also contains tungstic acid itself; Laurent, Riche, and others called itmetatungstic acid, and it is still known by this name. Those salts which with acids immediately give the insoluble tungstic acid have the composition R2WO4,RHWO4, whilst those which give the soluble metatungstic acid contain a far greater proportion of the acid elements. Scheibler obtained the (soluble) metatungstic acid itself by treating the soluble barium (meta) tetratungstate, BaO,4WO3, with sulphuric acid. Subsequent research showed the existence of a similar phenomenon for molybdic acid. There is no doubt that this is a case of colloidal modifications.Many chemists have worked on the various salts formed by molybdic and tungstic acids. The tungstates have been investigated by Marguerite, Laurent, Marignac, Riche, Scheibler, Anthon, and others. The molybdates were partially studied by the same chemists, but chiefly by Struvé and Svanberg, Delafontaine, and others. It appears that for a given amount of base the salts contain one to eight equivalents of molybdic or tungstic anhydride;i.e.if the base have the composition RO, then the highest proportion of base will be contained by the salts of the composition ROWO3or ROMoO3—that is, by those salts which correspond with the normal acids H2WO4and H2MoO4, of the same nature as sulphuric acid; but there also exist salts of the composition RO,2WO3, RO,3WO3… RO,8WO3. The water contained in the composition of many of the acid salts is often not taken into account in the above. The properties of the salts holding different proportions of acids vary considerably, but one salt may be converted into another by the addition of acid or base with great facility, and the greater the proportion of the elements of the acid in a salt, the more stable, within a certain limit, is its solution and the salt itself.The most common ammonium molybdate has the composition (NH4HO)6,H2O,7MoO3(or, according to Marignac and others, NH4HMoO4), and is prepared by evaporating an ammoniacal solution of molybdic acid. It is used in the laboratory for precipitating phosphoric acid, and is purified for this purpose by mixing its solution with a small quantity of magnesium nitrate, in order to precipitate any phosphoric acid present, filtering, and then adding nitric acid and evaporating to dryness. A pure ammonium molybdate free from phosphoric acid may then be extracted from the residue.Phosphoric acid forms insoluble compounds with the oxides of uranium and iron, tin, bismuth, &c., having feeble basic and even acid properties. This perhaps depends on the fact that the atoms of hydrogen in phosphoric acid are of a very different character, as we saw above. Those atoms of hydrogen which are replaced with difficulty by ammonium, sodium, &c., are probably easily replaced by feebly energetic acid groups—that is, the formation of particular complex substances may be expected to take place at the expense of these atoms of the hydrogen of phosphoric acid and of certain feeble metallic acids; and these substances will still be acids, because the hydrogen of the phosphoric acids and metallic acids, which is easily replaced by metals, is not removed by their mutual combination, but remains in the resultant compound. Such a conclusion is verified in thephosphomolybdic acidsobtained (1888) by Debray. If a solution of ammonium molybdate be acidified, and a small amount of a solution (it may be acid) containing orthophosphoric acid or its salts be added to it (so that there are at least 40 parts of molybdic acid present to 1 part of phosphoric acid), then after a period of twenty-four hours the whole of the phosphoric acid is separated as a yellow precipitate, containing, however, not more than 3 to 4 p.c. of phosphoric anhydride, about 3 p.c. of ammonia, about 90 p.c. of molybdic anhydride, and about 4 p.c. of water. The formation of this precipitate is so distinct and so complete that this method is employed for the discovery and separation of the smallest quantities of phosphoric acid. Phosphoric acid was found to be present in the majority of rocks by this means. The precipitate is soluble in ammonia and its salts, in alkalis and phosphates, but is perfectly insoluble in nitric, sulphuric, and hydrochloric acids in the presence of ammonium molybdate. The composition of the precipitate appears to vary under the conditions of its precipitation, but its nature became clear when the acid corresponding with it was obtained. If the above-described yellow precipitate be boiled in aqua regia, the ammonia is destroyed, and an acid is obtained in solution, which, when evaporated in the air, crystallises out in yellow oblique prisms of approximately the composition P2O5,20MoO3,26H2O. Such an unusual proportion of component parts is explained by the above-mentioned considerations. We saw above that molybdic acid easily gives salts R2OnMoO3mH2O, which we may imagine to correspond to a hydrate MoO2(HO)2nMo3mH2O. And suppose that such a hydrate reacts on orthophosphoric acid, forming water and compounds of the composition MoO2(HPO4)nMoO3mH2O or MoO3(H2PO4)2nMoO3mH2O; this is actually the composition of phosphomolybdic acid. Probably it contains a portion of the hydrogen replaceable by metals of both the acids H3PO4and of H2MoO4. The crystalline acid above is probably H3MoPO7,9MoO3,12H2O. This acid is really tribasic, because its aqueous solution precipitates salts of potassium, ammonium, rubidium (but not lithium and sodium)from acid solutions, and gives ayellowprecipitate of the composition R3MoPO7,9MoO3,8H2O, where R = NH4. Besides these, salts of another composition may be obtained, as would be expected from the preceding. These salts are only stable in acid solutions (which is naturally due to their containing an excess of acid oxides), whilst under the action of alkalis they givecolourlessphosphomolybdates of the composition R3MoPO3,MoO2,3H2O. The corresponding salts of potassium, silver, ammonium, are easily soluble in water and crystalline.Phosphomolybdic acid is an example of thecomplex inorganic acidsfirst obtained by Marignac and afterwards generalised and studied in detail by Gibbs. We shall afterwards meet with several examples of such acids, and we will now turn attention to the fact that they are usually formed by weak polybasic acids (boric, silicic, molybdic, &c.), and in certain respects resemble the cobaltic and such similar complex compounds, with which we shall become acquainted in the following chapter. As an example we will here mention certain complex compounds containing molybdic and tungstic acids, as they will illustrate the possibility of a considerable complexity in the composition of salts. The action of ammonium molybdate upon a dilute solution of purpureocobaltic salts (seeChapterXXII.) acidulated with acetic acid gives a salt which after drying at 100° has the composition Co2O310NH37MoO33H2O. After ignition this salt leaves a residue having the composition 2CoO7MoO3. An analogous compound is also obtained for tungstic acid, having the composition Co2O310NH310WO39H2O. In this case after ignition there remains a salt of the composition CoO5WO3(Carnot, 1889). Professor Kournakoff, by treating a solution of potassium and sodium molybdates, containing a certain amount of suboxide of cobalt, with bromine obtained salts having the composition: 3K2OCo2O312MoO320H2O (light green) and 3K2OCo2O310Mo310H2O (dark green). Péchard (1893) obtained salts of the four complex phosphotungstic acids by evaporating equivalent mixtures of solutions of phosphoric acid and metatungstic acid (seefurther on): phosphotrimetatungstic acid P2O512WO348H2O, phosphotetrametatungstic acid P2O516WO369H2O, phosphopentametatungstic acid P2O520WO3H2O, and phosphohexametatungstic acid P2O524WO359H2O. Kehrmann and Frankel described still more complex salts, such as: 3Ag2O4BaOP2O522WO3H2O,5BaO2K2OP2O322WO348H2O. Analogous double salts with 22WO3were also obtained with KSr, KHg, BaHg, and NH4Pb. Kehrmann (1892) considers the possibility of obtaining an unlimited number of such salts to be a general characteristic of such compounds. Mahom and Friedheim (1892) obtained compounds of similar complexity for molybdic and arsenic acids.For tungstic acid there are known: (1) Normal salts—for example, K2WO4; (2) the so-called acid salts have a composition like 3K2O,7WO3,6H2O or K6H8(WO4)7,2H2O; (3) the tritungstates like Na3O,3WO3,3H2O = Na2H4(WO4)3,H2O. All these three classes of salts are soluble in water, but are precipitated by barium chloride, and with acids in solution give an insoluble hydrate of tungstic acid; whilst those salts which are enumerated below do not give a precipitate either with acids or with the salts of the heavy metals, because they form soluble salts even with barium and lead. They are generally called metatungstates. They all contain water and a larger proportion of acid elements than the preceding salts; (4) the tetratungstates, like Na2O,4WO3,10H2O and BaO,4WO3,9H2O for example; (5) the octatungstates—for example, Na2O,8WO3,24H2O. Since the metatungstates lose so much water at 100° that they leave salts whose composition corresponds with an acid, 3H2O,4WO3—that is, H6W4O15—whilst in the meta salts only 2 hydrogens are replaced by metals, it is assumed, although without much ground, that these salts contain a particular soluble metatungstic acid of the composition H6W4O15.As an example we will give a short description of the sodium salts. The normal salt, Na2WO4, is obtained by heating a strong solution of sodium carbonate with tungstic acid to a temperature of 80°; if the solution be filtered hot, it crystallises in rhombic tabular crystals, having the composition Na2WO4,2H2O, which remain unchanged in the air and are easily soluble in water. When this salt is fused with a fresh quantity of tungstic acid, it gives a ditungstate, which is soluble in water and separates from its solution in crystals containing water. The same salt is obtained by carefully adding hydrochloric acid to the solution of the normal salt so long as a precipitate does not appear, and the liquid still has an alkaline reaction. This salt was first supposed to have the composition Na2W2O7,4H2O, but it has since been found to contain (at 100°) Na6W7O24,16H2O—that is, it corresponds with the similar salt of molybdic acid.(If this salt be heated to a red heat in a stream of hydrogen, it loses a portion of its oxygen, acquires a metallic lustre, and turns a golden yellow colour, and, after being treated with water, alkali, and acid, leaves golden yellow leaflets and cubes which are very like gold. This very remarkable substance, discovered by Wöhler, has, according to Malaguti's analysis, the composition Na2W3O9; that is, it, as it were, contains a double tungstate of tungsten oxide, WO2, and of sodium, Na2WO4,WO2WO3. The decomposition of the fused sodium salt is best effected by finely-divided tin. This substance has a sp. gr. 6·6; it conducts electricity like metals, and like them has a metallic lustre. When brought into contact with zinc and sulphuric acid it disengages hydrogen, and it becomes covered with a coating of copper in a solution of copper sulphate in the presence of zinc—that is, notwithstanding its complex composition it presents to a certain extent the appearance and reactions of the metals. It is not acted on by aqua regia or alkaline solutions, but it is oxidised when ignited in air.)The ditungstate mentioned above, deprived of water (having undergone a modification similar to that of metaphosphoric acid), after being treated with water, leaves an anhydrous, sparingly soluble tetratungstate, Na2WO4,3WO3, which, when heated at 120° in a closed tube with water, passes into an easily soluble metatungstate. It may therefore be said that the metatungstates are hydrated compounds. On boiling a solution of the above-mentioned salts of sodium with the yellow hydrate of tungstic acid they give a solution of metatungstate, which is the hydrated tetratungstate. Its crystals contain Na2W4O13,10H2O. After the hydrate of tungstic acid (obtained from the ordinary tungstates by precipitation with an acid) has stood a long time in contact with a solution (hot or cold) of sodium tungstate, it gives a solution which is not precipitated by hydrochloric acid; this must be filtered and evaporated over sulphuric acid in a desiccator (it is decomposed by boiling). It first forms a very dense solution (aluminium floats in it) of sp. gr. 3·0, and octahedral crystals ofsodium metatungstate, Na2W4O13,10H2O, sp. gr. 3·85, then separate. It effloresces and loses water, and at 100° only two out of the ten equivalents of water remain, but the properties of the salt remain unaltered. If the salt be deprived of water by further heating, it becomes insoluble. At the ordinary temperature one part of water dissolves ten parts of the metatungstate. The other metatungstates are easily obtained from this salt. Thus a strong and hot solution, mixed with a like solution of barium chloride, gives on cooling crystals of barium metatungstate, BaW4O13,9H2O. These crystals are dissolved without change in water containing hydrochloric acid, and also in hot water, but they are partially decomposed by cold water, with the formation of a solution of metatungstic acid and of the normal barium salt BaWO4.In order to explain the difference in the properties of the salts of tungstic acid, we may add that a mixture of a solution of tungstic acid with a solution of silicic acid does not coagulate when heated, although the silicic acid alone would do so; this is due to the formation of a silicotungstic acid, discovered by Marignac, which presents a fresh example of a complex acid. A solution of a tungstate dissolves gelatinous silica, just as it does gelatinous tungstic acid, and when evaporated deposits a crystalline salt of silicotungstic acid. This solution is not precipitated either by acids (a clear analogy to the metatungstates) or by sulphuretted hydrogen, and corresponds with a series of salts. These salts contain one equivalent of silica and 8 equivalents of hydrogen or metals, in the same form as in salts, to 12 or 10 equivalents of tungstic anhydride; for example the crystalline potassium salt has the composition K8W12SiO42,14H2O = 4K2O,12WO3,SiO2,14H2O. Acid salts are also known in which half of the metal is replaced by hydrogen. The complexity of the composition of such complex acids (for example, of the phosphomolybdic acid) involuntarily leads to the idea of polymerisation, which we were obliged to recognise for silica, lead oxide, and other compounds. This polymerisation, it seems to me, may be understood thus: a hydrate A (for example, tungstic acid) is capable of combining with a hydrate B (for example, silica or phosphoric acid, with or without the disengagement of water), and by reason of this faculty it is capable of polymerisation—that is, A combines with A—combines with itself—just as aldehyde, C2H4O, or the cyanogen compounds are able to combine with hydrogen, oxygen, &c., and are liable to polymerisation. On this view the molecule of tungstic acid is probably much more complex than we represent it; this agrees with the easy volatility of such compounds as the chloranhydrides, CrO2Cl2, MoO2Cl2, the analogues of the volatile sulphuryl chloride, SO2Cl2, and with the non-volatility, or difficult volatility, of chromic and molybdic anhydrides, the analogues of the volatile sulphuric anhydride. Such a view also finds a certain confirmation in the researches made by Graham on thecolloidalstate of tungstic acid, because colloidal properties only appertain to compounds of a very complex composition. The observations made by Graham on the colloidal state of tungstic and molybdic acids introduced much new matter into the history of these substances. When sodium tungstate, mixed in a dilute solution with an equivalent quantity of dilute hydrochloric acid, is placed in a dialyser, hydrochloric acid and sodium chloride pass through the membrane, and a solution of tungstic acid remains in the dialyser. Out of 100 parts of tungstic acid about 80 parts remain in the dialyser. The solution has a bitter, astringent taste, and does not yield gelatinous tungstic acid (hydrogel) either when heated or on the addition of acids or salts. It may also be evaporated to dryness; it then forms a vitreous mass of thehydrosoloftungstic acid, which adheres strongly to the walls of the vessel in which it has been evaporated, and is perfectly soluble in water. It does not even lose its solubility after having been heated to 200°, and only becomes insoluble when heated to a red heat, when it loses about 2½ p.c. of water. The dry acid, dissolved in a small quantity of water, forms a gluey mass, just like gum arabic, which is one of the representatives of the hydrosols of colloidal substances. The solution, containing 5 p.c of the anhydride, has a sp. gr. of 1·047; with 20 p.c., of 1·217; with 50 p.c., of 1·80; and with 80 p.c., of 3·24. The presence of a polymerised trioxide in the form of hydrate, H2OW3O9or H2O4WO3, must then be recognised in the solution: this is confirmed by Sabaneeff's cryoscopic determinations (1889). A similar stable solution of molybdic acid is obtained by the dialysis of a mixture of a strong solution of sodium molybdate with hydrochloric acid (the precipitate which is formed is re-dissolved). If MoCl4be precipitated by ammonia and washed with water, a point is reached at which perfect solution takes place, and the molybdic acid forms a colloid solution which is precipitated by the addition of ammonia (Muthmann). The addition of alkali to the solutions of the hydrosols of tungstic and molybdic acids immediately results in the re-formation of the ordinary tungstates and molybdates. There appears to be no doubt but that the same transformation is accomplished in the passage of the ordinary tungstates into the metatungstates as takes place in the passage of tungstic acid itself from an insoluble into a soluble state; but this may be even actually proved to be the case, because Scheibler obtained a solution of tungstic acid, before Graham, by decomposing barium metatungstate (BaO4WO3,9H2O) with sulphuric acid. By treating this salt with sulphuric acid in the amount required for the precipitation of the baryta, Scheibler obtained a solution of metatungstic acid which, when containing 43·75 p.c. of acid, had a sp. gr. of 1·634, and with 27·61 p.c. a sp. gr. of 1·327—that is, specific gravities corresponding with those found by Graham.Péchard found that as much heat is evolved by neutralising metatungstic acid as with sulphuric acid.Questions connected with the metamorphoses or modifications of tungstic and molybdic acids, and the polymerisation and colloidal state of substances, as well as the formation of complex acids, belong to that class of problems the solution of which will do much towards attaining a true comprehension of the mechanism of a number of chemical reactions. I think, moreover, that questions of this kind stand in intimate connection with the theory of the formation of solutions and alloys and other so-called indefinite compounds.

[8 bis]The atomic composition of the tungsten and molybdenum compounds is taken as being identical with that of the compounds of sulphur and chromium, because (1) both these metals give two oxides in which the amounts of oxygen per given amount of metal stand in the ratio 2 : 3; (2) the higher oxide is of the latter kind, and, like chromic and sulphuric anhydrides, it has an acid character; (3) certain of the molybdates are isomorphous with the sulphates; (4) the specific heat of tungsten is 0·0334, consequently the product of the atomic weight and specific heat is 6·15, like that of the other elements—it is the same with molybdenum, 96·0 × 0·0722 = 6·9; (5) tungsten forms with chlorine not only compounds WCl6, WCl5, and WOCl4, but also WO2Cl2, a volatile substance the analogue of chromyl chloride, CrO2Cl2, and sulphuryl chloride, SO2Cl2. Molybdenum gives the chlorine compounds, MOCl2, MOCl3(?), MOCl4(fuses at 194°, boils at 268°; according to Debray it contains MOCl5), MoOCl4, MoO2Cl2, and MoO2(OH)Cl. The existence of tungsten hexachloride, WCl6, is an excellent proof of the fact that the type SX6appears in the analogues of sulphur as in SO3; (6) the vapour density accurately determined for the chlorine compounds MoCl4, WCl6, WCl5, WOCl4(Roscoe) leaves no doubt as to the molecular composition of the compounds of tungsten and molybdenum, for the observed and calculated results entirely agree.

Tungsten is sometimes called scheele in honour of Scheele, who discovered it in 1781 and molybdenum in 1778. Tungsten is also known as wolfram; the former name was the name given to it by Scheele, because he extracted it from the mineral then known as tungsten and now called scheelite, CaWO4. The researches of Roscoe, Blomstrand and others have subsequently thrown considerable light on the whole history of the compounds of molybdenum and tungsten.

The ammonium salts of tungsten and molybdic acids when ignited leave the anhydrides, which resemble each other in many respects.Tungsten anhydride, WO3, is a yellowish substance, which only fuses at a strong heat, and has a sp. gr. of 6·8. It is insoluble both in water and acid, but solutions of the alkalis, and even of the alkali carbonates, dissolve it, especially when heated, forming alkaline salts.Molybdic anhydride, MoO3, is obtained by igniting the acid (hydrate) or the ammonium salt, and forms a white mass which fuses at a red heat, and solidifies to a yellow crystalline mass of sp. gr. 4·4; whilst on further heating in open vessels or in a stream of air this anhydridesublimesin pearly scales—this enables it to be obtained in a tolerably pure state. Water dissolves it in small quantities—namely, 1 part requires 600 parts of water for its solution. The hydrates of molybdic anhydride aresoluble also in acids(a hydrate, H2MoO4, is obtained from the nitric acid solution of the ammonium salt), which forms one of their distinctions from the tungstic acids. But after ignition molybdic anhydride is insoluble in acids, like tungstic anhydride; alkalis dissolve this anhydride, easily forming molybdates. Potassium bitartrate dissolves the anhydride with the aid of heat. None of the acids yet considered by us form so many different salts with one and the same base (alkali) as molybdic and tungstic acids. The composition of these salts, and their properties also, vary considerably. The most important discovery in this respect was made by Marguerite and Laurent, who showed that the salts which contain a large proportion of tungstic acid are easily soluble in water, and ascribed this property to the fact that tungstic acid may be obtainedin several states. The common tungstates, obtained with an excess of alkali, have an alkaline reaction, and on the addition of sulphuric or hydrochloric acid first deposit an acid salt and then a hydrate of tungstic acid, which is insoluble both in water and acids; but if instead of sulphuric or hydrochloric acids, we add acetic or phosphoric acid, or if the tungstate be saturated with a fresh quantity of tungstic acid, which may be done by boiling the solution of the alkali salt with the precipitated tungstic acid, a solution is obtained which, on the addition of sulphuric or a similar acid, does not give a precipitate of tungstic acid at the ordinary or at higher temperatures. The solution then contains peculiar salts of tungstic acid, and if there be an excess of acid it also contains tungstic acid itself; Laurent, Riche, and others called itmetatungstic acid, and it is still known by this name. Those salts which with acids immediately give the insoluble tungstic acid have the composition R2WO4,RHWO4, whilst those which give the soluble metatungstic acid contain a far greater proportion of the acid elements. Scheibler obtained the (soluble) metatungstic acid itself by treating the soluble barium (meta) tetratungstate, BaO,4WO3, with sulphuric acid. Subsequent research showed the existence of a similar phenomenon for molybdic acid. There is no doubt that this is a case of colloidal modifications.

Many chemists have worked on the various salts formed by molybdic and tungstic acids. The tungstates have been investigated by Marguerite, Laurent, Marignac, Riche, Scheibler, Anthon, and others. The molybdates were partially studied by the same chemists, but chiefly by Struvé and Svanberg, Delafontaine, and others. It appears that for a given amount of base the salts contain one to eight equivalents of molybdic or tungstic anhydride;i.e.if the base have the composition RO, then the highest proportion of base will be contained by the salts of the composition ROWO3or ROMoO3—that is, by those salts which correspond with the normal acids H2WO4and H2MoO4, of the same nature as sulphuric acid; but there also exist salts of the composition RO,2WO3, RO,3WO3… RO,8WO3. The water contained in the composition of many of the acid salts is often not taken into account in the above. The properties of the salts holding different proportions of acids vary considerably, but one salt may be converted into another by the addition of acid or base with great facility, and the greater the proportion of the elements of the acid in a salt, the more stable, within a certain limit, is its solution and the salt itself.

The most common ammonium molybdate has the composition (NH4HO)6,H2O,7MoO3(or, according to Marignac and others, NH4HMoO4), and is prepared by evaporating an ammoniacal solution of molybdic acid. It is used in the laboratory for precipitating phosphoric acid, and is purified for this purpose by mixing its solution with a small quantity of magnesium nitrate, in order to precipitate any phosphoric acid present, filtering, and then adding nitric acid and evaporating to dryness. A pure ammonium molybdate free from phosphoric acid may then be extracted from the residue.

Phosphoric acid forms insoluble compounds with the oxides of uranium and iron, tin, bismuth, &c., having feeble basic and even acid properties. This perhaps depends on the fact that the atoms of hydrogen in phosphoric acid are of a very different character, as we saw above. Those atoms of hydrogen which are replaced with difficulty by ammonium, sodium, &c., are probably easily replaced by feebly energetic acid groups—that is, the formation of particular complex substances may be expected to take place at the expense of these atoms of the hydrogen of phosphoric acid and of certain feeble metallic acids; and these substances will still be acids, because the hydrogen of the phosphoric acids and metallic acids, which is easily replaced by metals, is not removed by their mutual combination, but remains in the resultant compound. Such a conclusion is verified in thephosphomolybdic acidsobtained (1888) by Debray. If a solution of ammonium molybdate be acidified, and a small amount of a solution (it may be acid) containing orthophosphoric acid or its salts be added to it (so that there are at least 40 parts of molybdic acid present to 1 part of phosphoric acid), then after a period of twenty-four hours the whole of the phosphoric acid is separated as a yellow precipitate, containing, however, not more than 3 to 4 p.c. of phosphoric anhydride, about 3 p.c. of ammonia, about 90 p.c. of molybdic anhydride, and about 4 p.c. of water. The formation of this precipitate is so distinct and so complete that this method is employed for the discovery and separation of the smallest quantities of phosphoric acid. Phosphoric acid was found to be present in the majority of rocks by this means. The precipitate is soluble in ammonia and its salts, in alkalis and phosphates, but is perfectly insoluble in nitric, sulphuric, and hydrochloric acids in the presence of ammonium molybdate. The composition of the precipitate appears to vary under the conditions of its precipitation, but its nature became clear when the acid corresponding with it was obtained. If the above-described yellow precipitate be boiled in aqua regia, the ammonia is destroyed, and an acid is obtained in solution, which, when evaporated in the air, crystallises out in yellow oblique prisms of approximately the composition P2O5,20MoO3,26H2O. Such an unusual proportion of component parts is explained by the above-mentioned considerations. We saw above that molybdic acid easily gives salts R2OnMoO3mH2O, which we may imagine to correspond to a hydrate MoO2(HO)2nMo3mH2O. And suppose that such a hydrate reacts on orthophosphoric acid, forming water and compounds of the composition MoO2(HPO4)nMoO3mH2O or MoO3(H2PO4)2nMoO3mH2O; this is actually the composition of phosphomolybdic acid. Probably it contains a portion of the hydrogen replaceable by metals of both the acids H3PO4and of H2MoO4. The crystalline acid above is probably H3MoPO7,9MoO3,12H2O. This acid is really tribasic, because its aqueous solution precipitates salts of potassium, ammonium, rubidium (but not lithium and sodium)from acid solutions, and gives ayellowprecipitate of the composition R3MoPO7,9MoO3,8H2O, where R = NH4. Besides these, salts of another composition may be obtained, as would be expected from the preceding. These salts are only stable in acid solutions (which is naturally due to their containing an excess of acid oxides), whilst under the action of alkalis they givecolourlessphosphomolybdates of the composition R3MoPO3,MoO2,3H2O. The corresponding salts of potassium, silver, ammonium, are easily soluble in water and crystalline.

Phosphomolybdic acid is an example of thecomplex inorganic acidsfirst obtained by Marignac and afterwards generalised and studied in detail by Gibbs. We shall afterwards meet with several examples of such acids, and we will now turn attention to the fact that they are usually formed by weak polybasic acids (boric, silicic, molybdic, &c.), and in certain respects resemble the cobaltic and such similar complex compounds, with which we shall become acquainted in the following chapter. As an example we will here mention certain complex compounds containing molybdic and tungstic acids, as they will illustrate the possibility of a considerable complexity in the composition of salts. The action of ammonium molybdate upon a dilute solution of purpureocobaltic salts (seeChapterXXII.) acidulated with acetic acid gives a salt which after drying at 100° has the composition Co2O310NH37MoO33H2O. After ignition this salt leaves a residue having the composition 2CoO7MoO3. An analogous compound is also obtained for tungstic acid, having the composition Co2O310NH310WO39H2O. In this case after ignition there remains a salt of the composition CoO5WO3(Carnot, 1889). Professor Kournakoff, by treating a solution of potassium and sodium molybdates, containing a certain amount of suboxide of cobalt, with bromine obtained salts having the composition: 3K2OCo2O312MoO320H2O (light green) and 3K2OCo2O310Mo310H2O (dark green). Péchard (1893) obtained salts of the four complex phosphotungstic acids by evaporating equivalent mixtures of solutions of phosphoric acid and metatungstic acid (seefurther on): phosphotrimetatungstic acid P2O512WO348H2O, phosphotetrametatungstic acid P2O516WO369H2O, phosphopentametatungstic acid P2O520WO3H2O, and phosphohexametatungstic acid P2O524WO359H2O. Kehrmann and Frankel described still more complex salts, such as: 3Ag2O4BaOP2O522WO3H2O,5BaO2K2OP2O322WO348H2O. Analogous double salts with 22WO3were also obtained with KSr, KHg, BaHg, and NH4Pb. Kehrmann (1892) considers the possibility of obtaining an unlimited number of such salts to be a general characteristic of such compounds. Mahom and Friedheim (1892) obtained compounds of similar complexity for molybdic and arsenic acids.

For tungstic acid there are known: (1) Normal salts—for example, K2WO4; (2) the so-called acid salts have a composition like 3K2O,7WO3,6H2O or K6H8(WO4)7,2H2O; (3) the tritungstates like Na3O,3WO3,3H2O = Na2H4(WO4)3,H2O. All these three classes of salts are soluble in water, but are precipitated by barium chloride, and with acids in solution give an insoluble hydrate of tungstic acid; whilst those salts which are enumerated below do not give a precipitate either with acids or with the salts of the heavy metals, because they form soluble salts even with barium and lead. They are generally called metatungstates. They all contain water and a larger proportion of acid elements than the preceding salts; (4) the tetratungstates, like Na2O,4WO3,10H2O and BaO,4WO3,9H2O for example; (5) the octatungstates—for example, Na2O,8WO3,24H2O. Since the metatungstates lose so much water at 100° that they leave salts whose composition corresponds with an acid, 3H2O,4WO3—that is, H6W4O15—whilst in the meta salts only 2 hydrogens are replaced by metals, it is assumed, although without much ground, that these salts contain a particular soluble metatungstic acid of the composition H6W4O15.

As an example we will give a short description of the sodium salts. The normal salt, Na2WO4, is obtained by heating a strong solution of sodium carbonate with tungstic acid to a temperature of 80°; if the solution be filtered hot, it crystallises in rhombic tabular crystals, having the composition Na2WO4,2H2O, which remain unchanged in the air and are easily soluble in water. When this salt is fused with a fresh quantity of tungstic acid, it gives a ditungstate, which is soluble in water and separates from its solution in crystals containing water. The same salt is obtained by carefully adding hydrochloric acid to the solution of the normal salt so long as a precipitate does not appear, and the liquid still has an alkaline reaction. This salt was first supposed to have the composition Na2W2O7,4H2O, but it has since been found to contain (at 100°) Na6W7O24,16H2O—that is, it corresponds with the similar salt of molybdic acid.

(If this salt be heated to a red heat in a stream of hydrogen, it loses a portion of its oxygen, acquires a metallic lustre, and turns a golden yellow colour, and, after being treated with water, alkali, and acid, leaves golden yellow leaflets and cubes which are very like gold. This very remarkable substance, discovered by Wöhler, has, according to Malaguti's analysis, the composition Na2W3O9; that is, it, as it were, contains a double tungstate of tungsten oxide, WO2, and of sodium, Na2WO4,WO2WO3. The decomposition of the fused sodium salt is best effected by finely-divided tin. This substance has a sp. gr. 6·6; it conducts electricity like metals, and like them has a metallic lustre. When brought into contact with zinc and sulphuric acid it disengages hydrogen, and it becomes covered with a coating of copper in a solution of copper sulphate in the presence of zinc—that is, notwithstanding its complex composition it presents to a certain extent the appearance and reactions of the metals. It is not acted on by aqua regia or alkaline solutions, but it is oxidised when ignited in air.)

The ditungstate mentioned above, deprived of water (having undergone a modification similar to that of metaphosphoric acid), after being treated with water, leaves an anhydrous, sparingly soluble tetratungstate, Na2WO4,3WO3, which, when heated at 120° in a closed tube with water, passes into an easily soluble metatungstate. It may therefore be said that the metatungstates are hydrated compounds. On boiling a solution of the above-mentioned salts of sodium with the yellow hydrate of tungstic acid they give a solution of metatungstate, which is the hydrated tetratungstate. Its crystals contain Na2W4O13,10H2O. After the hydrate of tungstic acid (obtained from the ordinary tungstates by precipitation with an acid) has stood a long time in contact with a solution (hot or cold) of sodium tungstate, it gives a solution which is not precipitated by hydrochloric acid; this must be filtered and evaporated over sulphuric acid in a desiccator (it is decomposed by boiling). It first forms a very dense solution (aluminium floats in it) of sp. gr. 3·0, and octahedral crystals ofsodium metatungstate, Na2W4O13,10H2O, sp. gr. 3·85, then separate. It effloresces and loses water, and at 100° only two out of the ten equivalents of water remain, but the properties of the salt remain unaltered. If the salt be deprived of water by further heating, it becomes insoluble. At the ordinary temperature one part of water dissolves ten parts of the metatungstate. The other metatungstates are easily obtained from this salt. Thus a strong and hot solution, mixed with a like solution of barium chloride, gives on cooling crystals of barium metatungstate, BaW4O13,9H2O. These crystals are dissolved without change in water containing hydrochloric acid, and also in hot water, but they are partially decomposed by cold water, with the formation of a solution of metatungstic acid and of the normal barium salt BaWO4.

In order to explain the difference in the properties of the salts of tungstic acid, we may add that a mixture of a solution of tungstic acid with a solution of silicic acid does not coagulate when heated, although the silicic acid alone would do so; this is due to the formation of a silicotungstic acid, discovered by Marignac, which presents a fresh example of a complex acid. A solution of a tungstate dissolves gelatinous silica, just as it does gelatinous tungstic acid, and when evaporated deposits a crystalline salt of silicotungstic acid. This solution is not precipitated either by acids (a clear analogy to the metatungstates) or by sulphuretted hydrogen, and corresponds with a series of salts. These salts contain one equivalent of silica and 8 equivalents of hydrogen or metals, in the same form as in salts, to 12 or 10 equivalents of tungstic anhydride; for example the crystalline potassium salt has the composition K8W12SiO42,14H2O = 4K2O,12WO3,SiO2,14H2O. Acid salts are also known in which half of the metal is replaced by hydrogen. The complexity of the composition of such complex acids (for example, of the phosphomolybdic acid) involuntarily leads to the idea of polymerisation, which we were obliged to recognise for silica, lead oxide, and other compounds. This polymerisation, it seems to me, may be understood thus: a hydrate A (for example, tungstic acid) is capable of combining with a hydrate B (for example, silica or phosphoric acid, with or without the disengagement of water), and by reason of this faculty it is capable of polymerisation—that is, A combines with A—combines with itself—just as aldehyde, C2H4O, or the cyanogen compounds are able to combine with hydrogen, oxygen, &c., and are liable to polymerisation. On this view the molecule of tungstic acid is probably much more complex than we represent it; this agrees with the easy volatility of such compounds as the chloranhydrides, CrO2Cl2, MoO2Cl2, the analogues of the volatile sulphuryl chloride, SO2Cl2, and with the non-volatility, or difficult volatility, of chromic and molybdic anhydrides, the analogues of the volatile sulphuric anhydride. Such a view also finds a certain confirmation in the researches made by Graham on thecolloidalstate of tungstic acid, because colloidal properties only appertain to compounds of a very complex composition. The observations made by Graham on the colloidal state of tungstic and molybdic acids introduced much new matter into the history of these substances. When sodium tungstate, mixed in a dilute solution with an equivalent quantity of dilute hydrochloric acid, is placed in a dialyser, hydrochloric acid and sodium chloride pass through the membrane, and a solution of tungstic acid remains in the dialyser. Out of 100 parts of tungstic acid about 80 parts remain in the dialyser. The solution has a bitter, astringent taste, and does not yield gelatinous tungstic acid (hydrogel) either when heated or on the addition of acids or salts. It may also be evaporated to dryness; it then forms a vitreous mass of thehydrosoloftungstic acid, which adheres strongly to the walls of the vessel in which it has been evaporated, and is perfectly soluble in water. It does not even lose its solubility after having been heated to 200°, and only becomes insoluble when heated to a red heat, when it loses about 2½ p.c. of water. The dry acid, dissolved in a small quantity of water, forms a gluey mass, just like gum arabic, which is one of the representatives of the hydrosols of colloidal substances. The solution, containing 5 p.c of the anhydride, has a sp. gr. of 1·047; with 20 p.c., of 1·217; with 50 p.c., of 1·80; and with 80 p.c., of 3·24. The presence of a polymerised trioxide in the form of hydrate, H2OW3O9or H2O4WO3, must then be recognised in the solution: this is confirmed by Sabaneeff's cryoscopic determinations (1889). A similar stable solution of molybdic acid is obtained by the dialysis of a mixture of a strong solution of sodium molybdate with hydrochloric acid (the precipitate which is formed is re-dissolved). If MoCl4be precipitated by ammonia and washed with water, a point is reached at which perfect solution takes place, and the molybdic acid forms a colloid solution which is precipitated by the addition of ammonia (Muthmann). The addition of alkali to the solutions of the hydrosols of tungstic and molybdic acids immediately results in the re-formation of the ordinary tungstates and molybdates. There appears to be no doubt but that the same transformation is accomplished in the passage of the ordinary tungstates into the metatungstates as takes place in the passage of tungstic acid itself from an insoluble into a soluble state; but this may be even actually proved to be the case, because Scheibler obtained a solution of tungstic acid, before Graham, by decomposing barium metatungstate (BaO4WO3,9H2O) with sulphuric acid. By treating this salt with sulphuric acid in the amount required for the precipitation of the baryta, Scheibler obtained a solution of metatungstic acid which, when containing 43·75 p.c. of acid, had a sp. gr. of 1·634, and with 27·61 p.c. a sp. gr. of 1·327—that is, specific gravities corresponding with those found by Graham.

Péchard found that as much heat is evolved by neutralising metatungstic acid as with sulphuric acid.

Questions connected with the metamorphoses or modifications of tungstic and molybdic acids, and the polymerisation and colloidal state of substances, as well as the formation of complex acids, belong to that class of problems the solution of which will do much towards attaining a true comprehension of the mechanism of a number of chemical reactions. I think, moreover, that questions of this kind stand in intimate connection with the theory of the formation of solutions and alloys and other so-called indefinite compounds.


Back to IndexNext