Chapter 30

Footnotes:[1]The composition of meteoric iron is variable. It generally contains nickel, phosphorus, carbon, &c. The schreibersite of meteoric stones contains Fe4Ni2P.[2]Comets and the rings of Saturn ought now to be considered as consisting of an accumulation of such meteoric cosmic particles. Perhaps the part played by these minute bodies scattered throughout space is much more important in the formation of the largest celestial bodies than has hitherto been imagined. The investigation of this branch of astronomy, due to Schiaparelli, has a bearing on the whole of natural science.The question arises as to why the iron in meteorites is in a free state, whilst on earth it is in a state of combination. Does not this tend to show that the condition of our globe is very different from that of the rest? My answer to this question has been already given in Volume I. p. 377, Note57. It is my opinion that inside the earth there is a mass similar in composition to meteorites—that is, containing rocky matter and metallic iron, partly carburetted. In conclusion, I consider it will not be out of place to add the following explanations. According to the theory of the distribution of pressures (see my treatise,On Barometrical Levelling, 1876, pages 48et seq.) in an atmosphere of mixed gases, it follows that two gases, whose densities aredandd1, and whose relative quantities or partial pressures at a certain distance from the centre of gravity arehandh1, will, when at a greater distance from the centre of attraction, present a different ratio of their massesx:x1—that is, of their partial pressures—which may be found by the equationd1(log(h) - log(x)) =d(log(h1) - log(x1)). If, for instance,d:d1= 2 : 1, andh=h1(that is to say, the masses are equal at the lower height) = 1000, then whenx= 10 the magnitude ofx1will not be 10 (i.e.the mass of a gas at a higher level whose density = 1 will not be equal to the mass of a gas whose density = 2, as was the case at a lower level), but much greater—namely,x1= 100—that is, the lighter gas will predominate over a heavier one at a higher level. Therefore, when the whole mass of the earth was in a state of vapour, the substances having a greater vapour density accumulated about the centre and those with a lesser vapour density at the surface. And as the vapour densities depend on the atomic and molecular weights, those substances which have small atomic and molecular weights ought to have accumulated at the surface, and those with high atomic and molecular weights, which are the least volatile and the easiest to condense, at the centre. Thus it becomes apparent why such light elements as hydrogen, carbon, nitrogen, oxygen, sodium, magnesium, aluminium, silicon, phosphorus, sulphur, chlorine, potassium, calcium, and their compounds predominate at the surface and largely form the earth's crust. There is also now much iron in the sun, as spectrum analysis shows, and therefore it must have entered into the composition of the earth and other planets, but would have accumulated at the centre, because the density of its vapour is certainly large and it easily condenses. There was also oxygen near the centre of the earth, but not sufficient to combine with the iron. The former, as a much lighter element, principally accumulated at the surface, where we at the present time find all oxidised compounds and even a remnant of free oxygen. This gives the possibility not only of explaining in accordance with cosmogonic theories the predominance of oxygen compounds on the surface of the earth, with the occurrence of unoxidised iron in the interior of the earth and in meteorites, but also of understanding why the density of the whole earth (over 5) is far greater than that of the rocks (1 to 3) composing its crust. And if all the preceding arguments and theories (for instance the supposition that the sun, earth, and all the planets were formed of an elementary homogeneous mass, formerly composed of vapours and gases) be true, it must be admitted that the interior of the earth and other planets contains metallic (unoxidised) iron, which, however, is only found on the surface as aerolites. And then assuming that aerolites are the fragments of planets which have crumbled to pieces so to say during cooling (this has been held to be the case by astronomers, judging from the paths of aerolites), it is readily understood why they should be composed of metallic iron, and this would explain its occurrence in the depths of the earth, which we assumed as the basis of our theory of the formation of naphtha (Chapter VIII., Notes57–60).[2 bis]Immense deposits of iron pyrites are known in various parts of Russia. On the river Msta, near Borovitsi, thousands of tons are yearly collected from the detritus of the neighbouring rocks. In the Governments of Toula, Riazan, and in the Donets district continuous layers of pyrites occur among the coal seams. Very thick beds of pyrites are also known in many parts of the Caucasus. But the deposits of the Urals are particularly vast, and have been worked for a long time. Amongst these I will only indicate the deposits on the Soymensky estate near the Kishteimsky works; the Kaletinsky deposits near the Virhny-Isetsky works (containing 1–2 p.c. Cu); on the banks of the river Koushaivi near Koushvi (3–5 p.c. Cu), and the deposits near the Bogoslovsky works (3–5 p.c. Cu). Iron pyrites (especially that containing copper which is extracted after roasting) is now chiefly employed for roasting, as a source of SO2, for the manufacture of chamber sulphuric acid (Vol. I. p.291), but the remaining oxide of iron is perfectly suitable for smelting into pig iron, although it gives a sulphurous pig iron (the sulphur may be easily removed by subsequent treatment, especially with the aid of ferro-manganese in Bessemer's process). The great technical importance of iron pyrites leads to its sometimes being imported from great distances; for instance, into England from Spain. Besides which, when heated in closed retorts FeS2gives sulphur, and if allowed to oxidise in damp air, green vitriol, FeSO4.[3]The hydrated ferric oxide is found in nature in a dual form. It is somewhat rarely met with in the form of a crystalline mineral calledgöthite, whose specific gravity is 4·4 and composition Fe2H3O4, or FeHO2—that is, one of oxide of iron to one of water, Fe2O3,H2O; frequently found as brown ironstone, forming a dense mass of fibrous, reniform deposits containing 2Fe2O3,3H2O—that is, having a composition Fe4H6O9. In bog ore and other similar ores we most often find a mixture of this hydrated ferric oxide with clay and other impurities. The specific gravity of such formations is rarely as high as 4·0.[4]The ores of iron, similarly to all substances extracted from veins and deposits, are worked according to mining practice by means of vertical, horizontal, or inclined shafts which reach and penetrate the veins and strata containing the ore deposits. The mass of ore excavated is raised to the surface, then sorted either by hand or else in special sorting apparatus (generally acting with water to wash the ore), and is subjected to roasting and other treatment. In every case the ore contains foreign matter. In the extraction of iron, which is one of the cheapest metals, the dressing of an ore is in most cases unprofitable, and only ores rich in metal are worked—namely, those containing at least 20 p.c. It is often profitable to transport very rich and pure ores (with as much as 70 p.c. of iron) from long distances. The details concerning the working and extraction of metals will be found in special treatises on metallurgy and mining.[5]The reduction of iron oxides by hydrogen belongs to the order of reversible reactions (ChapterII.), and is therefore determined by a limit which is here expressed by the attainment of the same pressure as in the case where hydrogen acts on iron oxides, and as in the case where (at the same temperature) water is decomposed by metallic iron. The calculations referring to this matter were made by Henri Sainte-Claire Deville (1870). Spongy iron was placed in a tube having a temperaturet, one end of which was connected with a vessel containing water at 0° (vapour tension = 4·6 mm.) and the other end with a mercury pump and pressure gauge which determined the limiting tension attained by the dry hydrogenp(subtracting the tension of the water vapour from the tension observed). A tube was then taken containing an excess of iron oxide. It was filled with hydrogen, and the tensionp1observed of the residual hydrogen when the water was condensed at 0°.t=200°440°860°1040°p=95·925·812·89·2 mm.p1=——12·89·4 mm.The equality of the pressure (tension) of the hydrogen in the two cases is evident. The hydrogen here behaves like the vapour of iron or of its oxide.By taking ferric oxide, Fe2O3, Moissan observed that at 350° it passed into magnetic oxide, Fe3O4, at 500° into ferrous oxide, FeO, and at 600° into metallic iron. Wright and Luff (1878), whilst investigating the reduction of oxides, found that (a) the temperature of reaction depends on the condition of the oxide taken—for instance, precipitated ferric oxide is reduced by hydrogen at 85°, that obtained by oxidising the metal or from its nitrate at 175°; (b) when other conditions are the same, the reduction by carbonic oxide commences earlier than that by hydrogen, and the reduction by hydrogen still earlier than that by charcoal; (c) the reduction is effected with greater facility when a greater quantity of heat is evolved during the reaction. Ferric oxide obtained by heating ferrous sulphate to a red heat begins to be reduced by carbonic oxide at 202°, by hydrogen at 260°, by charcoal at 430°, whilst for magnetic oxide, Fe3O4, the temperatures are 200°, 290°, and 450° respectively.[6]The primitive methods of iron manufacture were conducted by intermittent processes in hearths resembling smiths' fires. As evidenced by the uninterrupted action of the steam boiler, or the process of lime burning, and the continuous preparation and condensation of sulphuric acid or the uninterrupted smelting of iron, every industrial process becomes increasingly profitable and complete under the condition of the continuous action, as far as possible, of all agencies concerned in the production. This continuous method of production is the first condition for the profitable production on the large scale of nearly all industrial products. This method lessens the cost of labour, simplifies the supervision of the work, renders the product uniform, and frequently introduces a very great economy in the expenditure of fuel and at the same time presents the simplicity and perfection of an equilibrated system. Hence every manufacturing operation should be a continuous one, and the manufacture of pig iron and sulphuric acid, which have long since become so, may be taken as examples in many respects. A study of these two manufactures should form the commencement of an acquaintance with all the contemporary methods of manufacturing both from a technical and economical point of view.[7]The composition of slag suitable for iron smelting most often approaches the following: 50 to 60 p.c. SiO2, 5 to 20 Al2O3, the rest of the mass consisting of MgO, CaO, MnO, FeO. Thus the most fusible slag (according to the observations of Bodeman) contains the alloy Al2O3,4CaO,7SiO2. On altering the quantity of magnesia and lime, and especially of the alkalis (which increases the fusibility) and of silica (which decreases it), the temperature of fusion changes with the relation between the total quantity of oxygen and that in the silica. Slags of the composition RO,SiO2are easily fusible, have a vitreous appearance, and are very common. Basic slags approach the composition 2RO,SiO2. Hence, knowing the composition and quantity of the foreign matter in the ore, it is at once easy to find the quantity and quality of the flux which must be added to form a suitable slag. The smelting of iron is rendered more complex by the fact that the silica, SiO2, which enters into the slag and fluxes is capable of forming a slag with the iron oxides. In order that the least quantity of iron may pass into the slag, it is necessary for it to be reduced before the temperature is attained at which the slags are formed (about 1000°), which is effected by reducing the iron, not with charcoal itself, but with carbonic oxide. From this it will be understood how the progress of the whole treatment may be judged by the properties of the slags. Details of this complicated and well-studied subject will be found in works on metallurgy.[8]The section of a blast furnace is represented by two truncated cones joined at their bases, the upper cone being longer than the lower one; the lower cone is terminated by the hearth, or almost cylindrical cavity in which the cast iron and slag collect, one side being provided with apertures for drawing off the iron and slag. The air is blown into the blast furnace through special pipes, situated over the hearth, as shown in the section. The air previously passes through a series of cast-iron pipes, heated by the combustion of the carbonic oxide obtained from the upper parts of the furnace, where it is formed as in a ‘gas-producer.’ The blast furnace acts continuously until it is worn out; the iron is tapped off twice a day, and the furnace is allowed to cool a little from time to time so as not to be spoilt by the increasing heat, and to enable it to withstand long usage.Blast furnaces worked with charcoal fuel are not so high, and in general give a smaller yield than those using coke, because the latter are worked with heavier charges than those in which charcoal is employed. Coke furnaces yield 20,000 tons and over of pig iron a year. In the United States there are blast furnaces 30 metres high, and upwards of 600 cubic metres capacity, yielding as much as 130,000 tons of pig iron, requiring a blast of about 750 cubic metres of air per minute, heated to 600°, and consuming about 0·85 part of coke per 1 part of pig iron produced. At the present time the world produces as much as 30 million tons of pig iron a year, about 9/10 of which is converted into wrought iron and steel. The chief producers are the United States (about 10 million tons a year) and England (about 9 million tons a year); Russia yields about 1⅕ million tons a year. The world's production has doubled during the last 20 years, and in this respect the United States have outrun all other countries. The reason of this increase of production must be looked for in the increased demand for iron and steel for railway purposes, for structures (especially ship-building), and in the fact that: (a) the cost of pig iron has fallen, thanks to the erection of large furnaces and a fuller study of the processes taking place in them, and (b) that every kind of iron ore (even sulphurous and phosphoritic) can now be converted into a homogeneous steel.see captionFig.93.—Vertical section of a modern Cleveland blast furnace capable of producing 300 to 1,000 tons of pig iron weekly. The outer casing is of riveted iron plates, the furnace being lined with refractory fire-brick. It is closed at the top by a ‘cap and cone’ arrangement, by means of which the charge can be fed into the furnace at suitable intervals by lowering the moveable cone.In order to more thoroughly grasp the chemical process which takes place in blast furnaces, it is necessary to follow the course of the material charged in at the top and of the air passing through the furnace. From 50 to 200 parts of carbon are expended on 100 parts of iron. The ore, flux, and coke are charged into the top of the furnace, in layers, as the cast iron is formed in the lower parts and flowing down to the bottom causes the whole contents of the furnace to subside, thus forming an empty space at the top, which is again filled up with the afore-mentioned mixture. During its downward course this mixture is subjected to increasing heat. This rise of temperature first drives off the moisture of the ore mixture, and then leads to the formation of the products of the dry distillation of coal or charcoal. Little by little the subsiding mass attains a temperature at which the heated carbon reacts with the carbonic anhydride passing upwards through the furnace and transforms it into carbonic oxide. This is the reason why carbonic anhydride is not evolved from the furnace, but only carbonic oxide. As regards the ore itself, on being heated to about 600° to 800° it is reduced at the expense of the carbonic oxide ascending the furnace, and formed by the contact of the carbonic anhydride with the incandescent charcoal, so that the reduction in the blast furnace is without doubt brought aboutbythe formation and decomposition ofcarbonic oxideand not by carbon itself—thus, Fe2O3+ 3CO = Fe2+ 3CO2. The reduced iron, on further subsidence and contact with carbon, forms cast iron, which flows to the bottom of the furnace. In these lower layers, where the temperature is highest (about 1,300°), the foreign matter of the ore finally forms slag, which also is fusible, with the aid of fluxes. The air blown in from below, through the so-calledtuyeres, encounters carbon in the lower layers of the furnace, and burns it, converting it into carbonic anhydride. It is evident that this develops the highest temperature in these lower layers of the furnace, because here the combustion of the carbon is effected by heated and compressed air. This is very essential, for it is by virtue of this high temperature that the process of forming the slag and of forming and fusing the cast iron are effected simultaneously in these lower portions of the furnace. The carbonic acid formed in these parts rises higher, encounters incandescent carbon, and forms with it carbonic oxide. This heated carbonic oxide acts as a reducing agent on the iron ore, and is reconverted by it into carbonic anhydride; this gas meets with more carbon, and again forms carbonic oxide, which again acts as a reducing agent. The final transformation of the carbonic anhydride into carbonic oxide is effected in those parts of the furnace where the reduction of the oxides of iron does not take place, but where the temperature is still high enough to reduce the carbonic anhydride. The ascending mixture of carbonic oxide and nitrogen, CO2, &c., is then withdrawn through special lateral apertures formed in the upper cold parts of the furnace walls, and is conducted through pipes to those stoves which are used for heating the air, and also sometimes into other furnaces used for the further processes of iron manufacture. The fuel of blast furnaces consists of wood charcoal (this is the most expensive material, but the pig iron produced is the purest, because charcoal does not contain any sulphur, while coke does), anthracite (for instance, in Pennsylvania, and in Russia at Pastouhoff's works in the Don district), coke, coal, and even wood and peat. It must be borne in mind that the utilisation of naphtha and naphtha refuse would probably give very profitable results in metallurgical processes.The process just described is accompanied by a series of other processes. Thus, for instance, in the blast furnace a considerable quantity of cyanogen compounds are formed. This takes place because the nitrogen of the air blast comes into contact with incandescent carbon and various alkaline matters contained in the foreign matter of the ores. A considerable quantity of potassium cyanide is formed when wood charcoal is employed for iron smelting, as its ash is rich in potash.[9]The specific gravity of white cast iron is about 7·5. Grey cast iron has a much lower specific gravity, namely, 7·0. Grey cast iron generally contains less manganese and more silica than white; but both contain from 2 to 3 p.c. of carbon. The difference between the varieties of cast iron depends on the condition of the carbon which enters into the composition of the iron. In white cast iron the carbon is in combination with the iron—in all probability, as the compound CFe4(Abel and Osmond and others extracted this compound, which is sometimes called ‘carbide,’ from tempered steel, which stands to unannealed steel as white cast iron does to grey), but perhaps in the state of an indefinite chemical compound resembling a solution. In any case the compound of the iron and carbon in white cast iron is chemically very unstable, because when slowly cooled it decomposes, with separation of graphite, just as a solution when slowly cooled yields a portion of the substance dissolved. The separation of carbon in the form of graphite on the conversion of white cast iron into grey is never complete, however slowly the separation be carried on; part of the carbon remains in combination with the iron in the same state in which it exists in white cast iron. Hence when grey cast iron is treated with acids, the whole of the carbon does not remain in the form of graphite, but a part of it is separated as hydrocarbons, which proves the existence of chemically-combined carbon in grey cast iron. It is sufficient to re-melt grey cast iron and to cool it quickly to transform it into white cast iron. It is not carbon alone that influences the properties of cast iron; when it contains a considerable amount of sulphur, cast iron remains white even after having been slowly cooled. The same is observed in cast iron very rich in manganese (5 to 7 p.c.), and in this latter case the fracture is very distinctly crystalline and brilliant. When cast iron contains a large amount of manganese, the quantity of carbon may also be increased. Crystalline varieties of cast iron rich in manganese are in practice called ferro-manganese (p.310), and are prepared for the Bessemer process. Grey cast iron not having an uniform structure is much more liable to various changes than dense and thoroughly uniform white cast iron, and the latter oxidises much more slowly in air than the former. White cast iron is not only used for conversion into wrought iron and steel, but also in those cases where great hardness is required, although it be accompanied by a certain brittleness; for instance, for making rollers, plough-shares, &c.[10]This direct process of separating the carbon from cast iron is termedpuddling. It is conducted in reverberatory furnaces. The cast iron is placed on the bed of the furnace and melted; through a special aperture, the puddler stirs up the oxidising mass of cast iron, pressing the oxides into the molten iron. This resembles kneading dough, and the process introduced in England became known as puddling. It is evident that the puddled mass, or bloom, is a heterogeneous substance obtained by mixing, and hence one part of the mass will still be rich in carbon, another will be poor, some parts will contain oxide not reduced, &c. The further treatment of the puddled mass consists in hammering and drawing it out into flat pieces, which on being hammered become more homogeneous, and when several pieces are welded together and again hammered out a still more homogeneous mass is obtained. The quality of the steel and iron thus formed depends principally on their uniformity. The want of uniformity depends on the oxides remaining inside the mass, and on the variable distribution of the carbon throughout the mass. In order to obtain a more homogeneous metal for manufacturing articles out of steel, it is drawn into thin rods, which are tied together in bundles and then again hammered out. As an example of what may be attained in this direction, imitation Damascus steel may be cited; it consists of twisted and plaited wire, which is then hammered into a dense mass. (Real damascened wootz steel may be made by melting a mixture of the best iron with graphite (1⁄12) and iron rust; the article is then corroded with acid, and the carbon remains in the form of a pattern.)Steel and wrought iron are manufactured from cast iron by puddling. They are, however, obtained not only by this method but also by thebloomery process, which is carried out in a fire similar to a blacksmith's forge, fed with charcoal and provided with a blast; a pig of cast iron is gradually pushed into the fire, and portions of it melt and fall to the bottom of the hearth, coming into contact with an air blast, and are thus oxidised. The bloom thus formed is then squeezed and hammered. It is evident that this process is only available when the charcoal used in the fire does not contain any foreign matter which might injure the quality of the iron or steel—for instance, sulphur or phosphorus—and therefore only wood charcoal may be used with impunity, from which it follows that this process can only be carried on where the manufacture of iron can be conducted with this fuel. Coal and coke contain the above-mentioned impurities, and would therefore produce iron of a brittle nature, and thus it would be necessary to have recourse to puddling, where the fuel is burnt on a special hearth, separate from the cast iron, whereby the impurities of the fuel do not come into contact with it. The manufacture of steel from cast iron may also be conducted in fires; but, in addition to this, it is also now prepared by many other methods. One of the long-known processes is calledcementation, by which steel is prepared from wrought iron but not from cast iron. For this process strips of iron are heated red-hot for a considerable time whilst immersed in powdered charcoal; during this operation the iron at the surface combines with the charcoal, which however does not penetrate; after this the iron strips are re-forged, drawn out again, and cemented anew, repeating this process until a steel of the desired quality is formed—that is, containing the requisite proportion of carbon. TheBessemerprocess occupies the front rank among the newer methods (since 1856); it is so called from the name of its inventor. This process consists in running melted cast iron into converters (holding about 6 tons of cast iron)—that is, egg-shaped receivers, fig.94, capable of revolving on trunnions (in order to charge in the cast iron and discharge the steel), and forcing a stream of air through small apertures at a considerable pressure. Combustion of the iron and carbon at an elevated temperature then takes place, resulting from the bubbles of oxygen thus penetrating the mass of the cast iron. The carbon, however, burns to a greater extent than the iron, and therefore a mass is obtained which is much poorer in carbon than cast iron. As the combustion proceeds very rapidly in the mass of metal, the temperature rises to such an extent that even the wrought iron which may be formed remains in a molten condition, whilst the steel, being more fusible than the wrought iron, remains very liquid. In half an hour the mass is ready. The purest possible cast iron is used in the Bessemer process, because sulphur and phosphorus do not burn out like carbon, silicon, and manganese.see captionFig.94.—Bessemer converter, constructed of iron plate and lined with ganister. The air is carried by the tubes, L, O, D to the bottom, M, from which it passes by a number of holes into the converter. The converter is rotated on the trunniondby means of the rack and pinion H, when it is required either to receive molten cast iron from the melting furnaces or to pour out the steel.The presence of manganese enables the sulphur to be removed with the slag, and the presence of lime or magnesia, which are introduced into the lining of the converter, facilitates the removal of the phosphorus. This basic Bessemer process, orThomas Gilchrist process, introduced about 1880, enables ores containing a considerable amount of phosphorus, which had hitherto only been used for cast iron, to be used for making wrought iron and steel. Naturally the greatest uniformity will be obtained by re-melting the metal. Steel is re-melted in small wind furnaces, in masses not exceeding 30 kilos; a liquid metal is formed, which may be cast in moulds. A mixture of wrought and cast iron is often used for making cast steel (the addition of a small amount of metallic Al improves the homogeneity of the castings, by facilitating the passage of the impurities into slag). Large steel castings are made by simultaneous fusion in several furnaces and crucibles; in this way, castings up to 80 tons or more, such as large ordnance, may be made. This molten, and therefore homogeneous, steel is calledcast steel. Of late years theMartin's processfor the manufacture of steel has come largely into use; it was invented in France about 1860, and with the use of regenerative furnaces it enables large quantities of cast steel to be made at a time. It is based on the melting of cast iron with iron oxides and iron itself—for instance, pure ores, scrap, &c. There the carbon of the cast iron and the oxygen of the oxide form carbonic oxide, and the carbon therefore burns out, and thus cast steel is obtained from cast iron, providing, naturally, that there is a requisite proportion and corresponding degree of heat. The advantage of this process is that not only do the carbon, silicon, and manganese, but also a great part of the sulphur and phosphorus of the cast iron burn out at the expense of the oxygen of the iron oxides. During the last decade the manufacture of steel and its application for rails, armour plate, guns, boilers, &c., has developed to an enormous extent, thanks to the invention of cheap processes for the manufacture of large masses of homogeneous cast steel. Wrought iron may also be melted, but the heat of a blast furnace is insufficient for this. It easily melts in the oxyhydrogen flame. It may be obtained in a molten state directly from cast iron, if the latter be melted with nitre and sufficiently stirred up. Considerable oxidation then takes place inside the mass of cast iron, and the temperature rises to such an extent that the wrought iron formed remains liquid. A method is also known for obtaining wrought iron directly from rich iron ores by the action of carbonic oxide: the wrought iron is then formed as a spongy mass (which forms an excellent filter for purifying water), and may be worked up into wrought iron or steel either by forging or by dissolving in molten cast iron.Everybody is more or less familiar with thedifference in the properties of steel and wrought iron. Iron is remarkable for its softness, pliability, and small elasticity, whilst steel may be characterised by its capability of attaining elasticity and hardness if it be cooled suddenly after having been heated to a definite temperature, or, as it is termed,tempered. But if tempered steel be re-heated and slowly cooled, it becomes as soft as wrought iron, and can then be cut with the file and forged, and in general can be made to assume any shape, like wrought iron. In this soft condition it is calledannealed steel. The transition from tempered to annealed steel thus takes place in a similar way to the transition from white to grey cast iron. Steel, when homogeneous, has considerable lustre, and such a fine granular structure that it takes a very high polish. Its fracture clearly shows the granular nature of its structure. The possibility of tempering steel enables it to be used for making all kinds of cutting instruments, because annealed steel can be forged, turned, drawn (under rollers, for instance, for making rails, bars, &c.), filed, &c., and it may then be tempered, ground and polished. The method and temperature of tempering and annealing steel determine its hardness and other qualities. Steel is generally tempered to the required degree of hardness in the following manner: It is first strongly heated (for instance, up to 600°), and then plunged into water—that is, hardened by rapid cooling (it then becomes as brittle as glass). It is then heated until the surface assumes a definite colour, and finally cooled either quickly or slowly. When steel is heated up to 220°, its surface acquires a yellow colour (surgical instruments); it first of all becomes straw-coloured (razors, &c.), and then gold-coloured; then at a temperature of 250° it becomes brown (scissors), then red, then light blue at 285° (springs), then indigo at 300° (files), and finally sea-green at about 340°. These colours are only the tints of thin films, like the hues of soap bubbles, and appear on the steel because a thin layer of oxides is formed over its surface. Steel rusts more slowly than wrought iron, and is more soluble in acids than cast iron, but less so than wrought iron. Its specific gravity is about 7·6 to 7·9.As regards the formation of steel, it was a long time before the process of cementation was thoroughly understood, because in this case infusible charcoal permeates unfused wrought iron. Caron showed that this permeation depends on the fact that the charcoal used in the process contains alkalis, which, in the presence of the nitrogen of the air, form metallic cyanides; these being volatile and fusible, permeate the iron, and, giving up their carbon to it, serve as the material for the formation of steel. This explanation is confirmed by the fact that charcoal without alkalis or without nitrogen will not cement iron. The charcoal used for cementation acts badly when used over again, as it has lost alkali. The very volatile ammonium cyanide easily conduces to the formation of steel. Although steel is also formed by the action of cyanogen compounds, nevertheless it does not contain more nitrogen than cast or wrought iron (0·01 p.c.), and these latter contain it because their ores contain titanium, which combines directly with nitrogen. Hence the part played by nitrogen in steel is but an insignificant one. It may be useful here to add some information taken from Caron's treatise concerning the influence of foreign matter on the quality of steel. The principal properties of steel are those of tempering and annealing. The compounds of iron with silicon and boron have not these properties. They are more stable than the carbon compound, and this latter is capable of changing its properties; because the carbon in it either enters into combination or else is disengaged, which determines the condition of hardness or softness of steel, as in white and grey cast iron. When slowly cooled, steel splits up into a mixture of soft and carburetted iron; but, nevertheless, the carbon does not separate from the iron. If such steel be again heated, it forms a uniform compound, and hardens when rapidly cooled. If the same steel as before be taken and heated a long time, then, after being slowly cooled, it becomes much more soluble in acid, and leaves a residue of pure carbon. This shows that the combination between the carbon and iron in steel becomes destroyed when subjected to heat, and the steel becomes iron mixed with carbon. Suchburntsteel cannot be tempered, but may be corrected by continued forging in a heated condition, which has the effect of redistributing the carbon equally throughout the whole mass. After the forging, if the iron is pure and the carbon has not been burnt out, steel is again formed, which may be tempered. If steel be repeatedly or strongly heated, it becomes burnt through and cannot be tempered or annealed; the carbon separates from the iron, and this is effected more easily if the steel contains other impurities which are capable of forming stable combinations with iron, such as silicon, sulphur, or phosphorus. If there be much silicon, it occupies the place of the carbon, and then continued forging will not induce the carbon once separated to re-enter into combination. Such steel is easily burnt through and cannot be corrected; when burnt through, it is hard and cannot be annealed—this is tough steel, an inferior kind. Iron which contains sulphur and phosphorus cements badly, combines but little with carbon, and steel of this kind is brittle, both hot and cold. Iron in combination with the above-mentioned substances cannot be annealed by slow cooling, showing that these compounds are more stable than those of carbon and iron, and therefore they prevent the formation of the latter. Such metals as tin and zinc combine with iron, but not with carbon, and form a brittle mass which cannot be annealed and is deleterious to steel. Manganese and tungsten, on the contrary, are capable of combining with charcoal; they do not hinder the formation of steel, but even remove the injurious effects of other admixtures (by transforming these admixed substances into new compounds and slags), and are therefore ranked with the substances which act beneficially on steel; but, nevertheless, the best steel, which is capable of renewing most often its primitive qualities after burning or hot forging, is the purest. The addition of Ni, Cr, W, and certain other metals to steel renders it very suitable for certain special purposes, and is therefore frequently made use of.It is worthy of attention that steel, besides temper, possesses many variable properties, a review of which may be made in the classification of thesorts of steel(1878, Cockerell). (1)Very mild steelcontains from 0·05 to 0·20 p.c. of carbon, breaks with a weight of 40 to 50 kilos per square millimetre, and has an extension of 20 to 30 p.c.; it may be welded, like wrought iron, but cannot be tempered; is used in sheets for boilers, armour plate and bridges, nails, rivets, &c., as a substitute for wrought iron; (2)mild steel, from 0·20 to 0·35 p.c. of carbon, resistance to tension 50 to 60 kilos, extension 15 to 20 p.c., not easily welded, and tempers badly, used for axles, rails, and railway tyres, for cannons and guns, and for parts of machines destined to resist bending and torsion; (3)hard steel, carbon 0·35 to 0·50 p.c., breaking weight 60 to 70 kilos per square millimetre, extension 10 to 15 p.c., cannot be welded, takes a temper; used for rails, all kinds of springs, swords, parts of machinery in motion subjected to friction, spindles of looms, hammers, spades, hoes, &c.; (4)very hard steel, carbon 0·5 to 0·65 p.c., tensile breaking weight 70 to 80 kilos, extension 5 to 10 p.c., does not weld, but tempers easily; used for small springs, saws, files, knives and similar instruments.The properties of ordinarywrought ironare well known. The best iron is the most tenacious—that is to say, that which does not break up when struck with the hammer or bent, and yet at the same time is sufficiently hard. There is, however, a distinction between hard and soft iron. Generally the softest iron is the most tenacious, and can best be welded, drawn into wire, sheets, &c. Hard, especially tough, iron is often characterised by its breaking when bent, and is therefore very difficult to work, and objects made from it are less serviceable in many respects. Soft iron is most adapted for making wire and sheet iron and such small objects as nails. Soft iron is characterised by its attaining a fibrous fracture after forging, whilst tough iron preserves its granular structure after this operation. Certain sorts of iron, although fairly soft at the ordinary temperature, become brittle when heated and are difficult to weld. These sorts are less suitable for being worked up into small objects. The variety of the properties of iron depends on the impurities which it contains. In general, the iron used in the arts still contains carbon and always a certain quantity of silicon, manganese, sulphur, phosphorus, &c. A variety in the proportion of these component parts changes the quality of the iron. In addition to this the change which soft wrought iron, having a fibrous structure, undergoes when subjected to repeated blows and vibrations is considerable; it then becomes granular and brittle. This to a certain degree explains the want of stability of some iron objects—such as truck axles, which must be renewed after a certain term of service, otherwise they become brittle. It is evident that there are innumerable intermediate transitions from wrought iron to steel and cast iron.At the present day the greater part of the cast iron manufactured is converted into steel, generally cast steel (Bessemer's and Martin's). I may add the Urals, Donetz district, and other parts of Russia offer the greatest advantages for the development of an iron industry, because these localities not only contain vast supplies of excellent iron ore, but also coal, which is necessary for smelting it.[11]According to information supplied by A. T. Skinder's experiments at the Oboukoff Steel Works, 140 volumes of liquid molten steel give 128 volumes of solid metal. By means of a galvanic current of great intensity and dense charcoal as one electrode, and iron as the other, Bernadoss welded iron and fused holes through sheet iron. Soft wrought iron, like steel and soft malleable cast iron, may be melted in Siemens' regenerative furnaces, and in furnaces heated with naphtha.[11 bis]Gore (1869), Tait, Barret, Tchernoff, Osmond, and others observed that at a temperature approaching 600°—that is, between dark and bright red heat—all kinds of wrought iron undergo a peculiar change calledrecalescence,i.e.a spontaneous rise of temperature. If iron be considerably heated and allowed to cool, it may be observed that at this temperature the cooling stops—that is, latent heat is disengaged, corresponding with a change in condition. The specific heat, electrical conductivity, magnetic, and other properties then also change. In tempering, the temperature of recalescence must not be reached, and so also in annealing, &c. It is evident that a change of the internal condition is here encountered, exactly similar to the transition from a solid to a liquid, although there is no evident physical change. It is probable that attentive study would lead to the discovery of a similar change in other substances.[12]The particles of steel are linked together or connected more closely than those of the other metals; this is shown by the fact that it only breaks with a tensile strain of 50–80 kilos per sq. mm., whilst wrought iron only withstands about 30 kilos, cast iron 10, copper 35, silver 23, platinum 30, wood 8. The elasticity of iron, steel, and other metals is expressed by the so-calledcoefficient of elasticity. Let a rod be taken whose length is L; if a weight, P, be hung from the extremity of it, it will lengthen tol. The less it lengthens under other equal conditions, the more elastic the material, if it resumes its original length when the weight is removed. It has been shown by experiment that the increase in lengthl, due to elasticity, is directly proportional to the length L and the weight P, and inversely proportional to the section, but changes with the material. The coefficient of elasticity expresses that weight (in kilos per sq. mm.) under which a rod having a square section taken as 1 (we take 1 sq. mm.) acquires double the length by tension. Naturally in practice materials do not withstand such a lengthening, under a certain weight they attain a limit of elasticity,i.e.they stretch permanently (undergo deformation). Neglecting fractions (as the elasticity of metals varies not only with the temperature, but also with forging, purity, &c.), the coefficient of elasticity of steel and iron is 20,000, copper and brass 10,000, silver 7,000, glass 6,000, lead 2,000, and wood 1,200.[13]Paraffin is one of the best preservatives for iron against oxidation in the air. I found this by experiments about 1860, and immediately published the fact. This method is now very generally applied.[14]See Chapter XVIII., Note34 bis. Based on the rapid oxidation of iron and its increase in volume in the presence of water and salts of ammonium, a packing is used for water mains and steam pipes which is tightly hammered into the socket joints. This packing consists of a mixture of iron filings and a small quantity of sal-ammoniac (and sulphur) moistened with water; after a certain lapse of time, especially after the pipes have been used, this mass swells to such an extent that it hermetically seals the joints of the pipes.

Footnotes:

[1]The composition of meteoric iron is variable. It generally contains nickel, phosphorus, carbon, &c. The schreibersite of meteoric stones contains Fe4Ni2P.

[1]The composition of meteoric iron is variable. It generally contains nickel, phosphorus, carbon, &c. The schreibersite of meteoric stones contains Fe4Ni2P.

[2]Comets and the rings of Saturn ought now to be considered as consisting of an accumulation of such meteoric cosmic particles. Perhaps the part played by these minute bodies scattered throughout space is much more important in the formation of the largest celestial bodies than has hitherto been imagined. The investigation of this branch of astronomy, due to Schiaparelli, has a bearing on the whole of natural science.The question arises as to why the iron in meteorites is in a free state, whilst on earth it is in a state of combination. Does not this tend to show that the condition of our globe is very different from that of the rest? My answer to this question has been already given in Volume I. p. 377, Note57. It is my opinion that inside the earth there is a mass similar in composition to meteorites—that is, containing rocky matter and metallic iron, partly carburetted. In conclusion, I consider it will not be out of place to add the following explanations. According to the theory of the distribution of pressures (see my treatise,On Barometrical Levelling, 1876, pages 48et seq.) in an atmosphere of mixed gases, it follows that two gases, whose densities aredandd1, and whose relative quantities or partial pressures at a certain distance from the centre of gravity arehandh1, will, when at a greater distance from the centre of attraction, present a different ratio of their massesx:x1—that is, of their partial pressures—which may be found by the equationd1(log(h) - log(x)) =d(log(h1) - log(x1)). If, for instance,d:d1= 2 : 1, andh=h1(that is to say, the masses are equal at the lower height) = 1000, then whenx= 10 the magnitude ofx1will not be 10 (i.e.the mass of a gas at a higher level whose density = 1 will not be equal to the mass of a gas whose density = 2, as was the case at a lower level), but much greater—namely,x1= 100—that is, the lighter gas will predominate over a heavier one at a higher level. Therefore, when the whole mass of the earth was in a state of vapour, the substances having a greater vapour density accumulated about the centre and those with a lesser vapour density at the surface. And as the vapour densities depend on the atomic and molecular weights, those substances which have small atomic and molecular weights ought to have accumulated at the surface, and those with high atomic and molecular weights, which are the least volatile and the easiest to condense, at the centre. Thus it becomes apparent why such light elements as hydrogen, carbon, nitrogen, oxygen, sodium, magnesium, aluminium, silicon, phosphorus, sulphur, chlorine, potassium, calcium, and their compounds predominate at the surface and largely form the earth's crust. There is also now much iron in the sun, as spectrum analysis shows, and therefore it must have entered into the composition of the earth and other planets, but would have accumulated at the centre, because the density of its vapour is certainly large and it easily condenses. There was also oxygen near the centre of the earth, but not sufficient to combine with the iron. The former, as a much lighter element, principally accumulated at the surface, where we at the present time find all oxidised compounds and even a remnant of free oxygen. This gives the possibility not only of explaining in accordance with cosmogonic theories the predominance of oxygen compounds on the surface of the earth, with the occurrence of unoxidised iron in the interior of the earth and in meteorites, but also of understanding why the density of the whole earth (over 5) is far greater than that of the rocks (1 to 3) composing its crust. And if all the preceding arguments and theories (for instance the supposition that the sun, earth, and all the planets were formed of an elementary homogeneous mass, formerly composed of vapours and gases) be true, it must be admitted that the interior of the earth and other planets contains metallic (unoxidised) iron, which, however, is only found on the surface as aerolites. And then assuming that aerolites are the fragments of planets which have crumbled to pieces so to say during cooling (this has been held to be the case by astronomers, judging from the paths of aerolites), it is readily understood why they should be composed of metallic iron, and this would explain its occurrence in the depths of the earth, which we assumed as the basis of our theory of the formation of naphtha (Chapter VIII., Notes57–60).

[2]Comets and the rings of Saturn ought now to be considered as consisting of an accumulation of such meteoric cosmic particles. Perhaps the part played by these minute bodies scattered throughout space is much more important in the formation of the largest celestial bodies than has hitherto been imagined. The investigation of this branch of astronomy, due to Schiaparelli, has a bearing on the whole of natural science.

The question arises as to why the iron in meteorites is in a free state, whilst on earth it is in a state of combination. Does not this tend to show that the condition of our globe is very different from that of the rest? My answer to this question has been already given in Volume I. p. 377, Note57. It is my opinion that inside the earth there is a mass similar in composition to meteorites—that is, containing rocky matter and metallic iron, partly carburetted. In conclusion, I consider it will not be out of place to add the following explanations. According to the theory of the distribution of pressures (see my treatise,On Barometrical Levelling, 1876, pages 48et seq.) in an atmosphere of mixed gases, it follows that two gases, whose densities aredandd1, and whose relative quantities or partial pressures at a certain distance from the centre of gravity arehandh1, will, when at a greater distance from the centre of attraction, present a different ratio of their massesx:x1—that is, of their partial pressures—which may be found by the equationd1(log(h) - log(x)) =d(log(h1) - log(x1)). If, for instance,d:d1= 2 : 1, andh=h1(that is to say, the masses are equal at the lower height) = 1000, then whenx= 10 the magnitude ofx1will not be 10 (i.e.the mass of a gas at a higher level whose density = 1 will not be equal to the mass of a gas whose density = 2, as was the case at a lower level), but much greater—namely,x1= 100—that is, the lighter gas will predominate over a heavier one at a higher level. Therefore, when the whole mass of the earth was in a state of vapour, the substances having a greater vapour density accumulated about the centre and those with a lesser vapour density at the surface. And as the vapour densities depend on the atomic and molecular weights, those substances which have small atomic and molecular weights ought to have accumulated at the surface, and those with high atomic and molecular weights, which are the least volatile and the easiest to condense, at the centre. Thus it becomes apparent why such light elements as hydrogen, carbon, nitrogen, oxygen, sodium, magnesium, aluminium, silicon, phosphorus, sulphur, chlorine, potassium, calcium, and their compounds predominate at the surface and largely form the earth's crust. There is also now much iron in the sun, as spectrum analysis shows, and therefore it must have entered into the composition of the earth and other planets, but would have accumulated at the centre, because the density of its vapour is certainly large and it easily condenses. There was also oxygen near the centre of the earth, but not sufficient to combine with the iron. The former, as a much lighter element, principally accumulated at the surface, where we at the present time find all oxidised compounds and even a remnant of free oxygen. This gives the possibility not only of explaining in accordance with cosmogonic theories the predominance of oxygen compounds on the surface of the earth, with the occurrence of unoxidised iron in the interior of the earth and in meteorites, but also of understanding why the density of the whole earth (over 5) is far greater than that of the rocks (1 to 3) composing its crust. And if all the preceding arguments and theories (for instance the supposition that the sun, earth, and all the planets were formed of an elementary homogeneous mass, formerly composed of vapours and gases) be true, it must be admitted that the interior of the earth and other planets contains metallic (unoxidised) iron, which, however, is only found on the surface as aerolites. And then assuming that aerolites are the fragments of planets which have crumbled to pieces so to say during cooling (this has been held to be the case by astronomers, judging from the paths of aerolites), it is readily understood why they should be composed of metallic iron, and this would explain its occurrence in the depths of the earth, which we assumed as the basis of our theory of the formation of naphtha (Chapter VIII., Notes57–60).

[2 bis]Immense deposits of iron pyrites are known in various parts of Russia. On the river Msta, near Borovitsi, thousands of tons are yearly collected from the detritus of the neighbouring rocks. In the Governments of Toula, Riazan, and in the Donets district continuous layers of pyrites occur among the coal seams. Very thick beds of pyrites are also known in many parts of the Caucasus. But the deposits of the Urals are particularly vast, and have been worked for a long time. Amongst these I will only indicate the deposits on the Soymensky estate near the Kishteimsky works; the Kaletinsky deposits near the Virhny-Isetsky works (containing 1–2 p.c. Cu); on the banks of the river Koushaivi near Koushvi (3–5 p.c. Cu), and the deposits near the Bogoslovsky works (3–5 p.c. Cu). Iron pyrites (especially that containing copper which is extracted after roasting) is now chiefly employed for roasting, as a source of SO2, for the manufacture of chamber sulphuric acid (Vol. I. p.291), but the remaining oxide of iron is perfectly suitable for smelting into pig iron, although it gives a sulphurous pig iron (the sulphur may be easily removed by subsequent treatment, especially with the aid of ferro-manganese in Bessemer's process). The great technical importance of iron pyrites leads to its sometimes being imported from great distances; for instance, into England from Spain. Besides which, when heated in closed retorts FeS2gives sulphur, and if allowed to oxidise in damp air, green vitriol, FeSO4.

[2 bis]Immense deposits of iron pyrites are known in various parts of Russia. On the river Msta, near Borovitsi, thousands of tons are yearly collected from the detritus of the neighbouring rocks. In the Governments of Toula, Riazan, and in the Donets district continuous layers of pyrites occur among the coal seams. Very thick beds of pyrites are also known in many parts of the Caucasus. But the deposits of the Urals are particularly vast, and have been worked for a long time. Amongst these I will only indicate the deposits on the Soymensky estate near the Kishteimsky works; the Kaletinsky deposits near the Virhny-Isetsky works (containing 1–2 p.c. Cu); on the banks of the river Koushaivi near Koushvi (3–5 p.c. Cu), and the deposits near the Bogoslovsky works (3–5 p.c. Cu). Iron pyrites (especially that containing copper which is extracted after roasting) is now chiefly employed for roasting, as a source of SO2, for the manufacture of chamber sulphuric acid (Vol. I. p.291), but the remaining oxide of iron is perfectly suitable for smelting into pig iron, although it gives a sulphurous pig iron (the sulphur may be easily removed by subsequent treatment, especially with the aid of ferro-manganese in Bessemer's process). The great technical importance of iron pyrites leads to its sometimes being imported from great distances; for instance, into England from Spain. Besides which, when heated in closed retorts FeS2gives sulphur, and if allowed to oxidise in damp air, green vitriol, FeSO4.

[3]The hydrated ferric oxide is found in nature in a dual form. It is somewhat rarely met with in the form of a crystalline mineral calledgöthite, whose specific gravity is 4·4 and composition Fe2H3O4, or FeHO2—that is, one of oxide of iron to one of water, Fe2O3,H2O; frequently found as brown ironstone, forming a dense mass of fibrous, reniform deposits containing 2Fe2O3,3H2O—that is, having a composition Fe4H6O9. In bog ore and other similar ores we most often find a mixture of this hydrated ferric oxide with clay and other impurities. The specific gravity of such formations is rarely as high as 4·0.

[3]The hydrated ferric oxide is found in nature in a dual form. It is somewhat rarely met with in the form of a crystalline mineral calledgöthite, whose specific gravity is 4·4 and composition Fe2H3O4, or FeHO2—that is, one of oxide of iron to one of water, Fe2O3,H2O; frequently found as brown ironstone, forming a dense mass of fibrous, reniform deposits containing 2Fe2O3,3H2O—that is, having a composition Fe4H6O9. In bog ore and other similar ores we most often find a mixture of this hydrated ferric oxide with clay and other impurities. The specific gravity of such formations is rarely as high as 4·0.

[4]The ores of iron, similarly to all substances extracted from veins and deposits, are worked according to mining practice by means of vertical, horizontal, or inclined shafts which reach and penetrate the veins and strata containing the ore deposits. The mass of ore excavated is raised to the surface, then sorted either by hand or else in special sorting apparatus (generally acting with water to wash the ore), and is subjected to roasting and other treatment. In every case the ore contains foreign matter. In the extraction of iron, which is one of the cheapest metals, the dressing of an ore is in most cases unprofitable, and only ores rich in metal are worked—namely, those containing at least 20 p.c. It is often profitable to transport very rich and pure ores (with as much as 70 p.c. of iron) from long distances. The details concerning the working and extraction of metals will be found in special treatises on metallurgy and mining.

[4]The ores of iron, similarly to all substances extracted from veins and deposits, are worked according to mining practice by means of vertical, horizontal, or inclined shafts which reach and penetrate the veins and strata containing the ore deposits. The mass of ore excavated is raised to the surface, then sorted either by hand or else in special sorting apparatus (generally acting with water to wash the ore), and is subjected to roasting and other treatment. In every case the ore contains foreign matter. In the extraction of iron, which is one of the cheapest metals, the dressing of an ore is in most cases unprofitable, and only ores rich in metal are worked—namely, those containing at least 20 p.c. It is often profitable to transport very rich and pure ores (with as much as 70 p.c. of iron) from long distances. The details concerning the working and extraction of metals will be found in special treatises on metallurgy and mining.

[5]The reduction of iron oxides by hydrogen belongs to the order of reversible reactions (ChapterII.), and is therefore determined by a limit which is here expressed by the attainment of the same pressure as in the case where hydrogen acts on iron oxides, and as in the case where (at the same temperature) water is decomposed by metallic iron. The calculations referring to this matter were made by Henri Sainte-Claire Deville (1870). Spongy iron was placed in a tube having a temperaturet, one end of which was connected with a vessel containing water at 0° (vapour tension = 4·6 mm.) and the other end with a mercury pump and pressure gauge which determined the limiting tension attained by the dry hydrogenp(subtracting the tension of the water vapour from the tension observed). A tube was then taken containing an excess of iron oxide. It was filled with hydrogen, and the tensionp1observed of the residual hydrogen when the water was condensed at 0°.t=200°440°860°1040°p=95·925·812·89·2 mm.p1=——12·89·4 mm.The equality of the pressure (tension) of the hydrogen in the two cases is evident. The hydrogen here behaves like the vapour of iron or of its oxide.By taking ferric oxide, Fe2O3, Moissan observed that at 350° it passed into magnetic oxide, Fe3O4, at 500° into ferrous oxide, FeO, and at 600° into metallic iron. Wright and Luff (1878), whilst investigating the reduction of oxides, found that (a) the temperature of reaction depends on the condition of the oxide taken—for instance, precipitated ferric oxide is reduced by hydrogen at 85°, that obtained by oxidising the metal or from its nitrate at 175°; (b) when other conditions are the same, the reduction by carbonic oxide commences earlier than that by hydrogen, and the reduction by hydrogen still earlier than that by charcoal; (c) the reduction is effected with greater facility when a greater quantity of heat is evolved during the reaction. Ferric oxide obtained by heating ferrous sulphate to a red heat begins to be reduced by carbonic oxide at 202°, by hydrogen at 260°, by charcoal at 430°, whilst for magnetic oxide, Fe3O4, the temperatures are 200°, 290°, and 450° respectively.

[5]The reduction of iron oxides by hydrogen belongs to the order of reversible reactions (ChapterII.), and is therefore determined by a limit which is here expressed by the attainment of the same pressure as in the case where hydrogen acts on iron oxides, and as in the case where (at the same temperature) water is decomposed by metallic iron. The calculations referring to this matter were made by Henri Sainte-Claire Deville (1870). Spongy iron was placed in a tube having a temperaturet, one end of which was connected with a vessel containing water at 0° (vapour tension = 4·6 mm.) and the other end with a mercury pump and pressure gauge which determined the limiting tension attained by the dry hydrogenp(subtracting the tension of the water vapour from the tension observed). A tube was then taken containing an excess of iron oxide. It was filled with hydrogen, and the tensionp1observed of the residual hydrogen when the water was condensed at 0°.

The equality of the pressure (tension) of the hydrogen in the two cases is evident. The hydrogen here behaves like the vapour of iron or of its oxide.

By taking ferric oxide, Fe2O3, Moissan observed that at 350° it passed into magnetic oxide, Fe3O4, at 500° into ferrous oxide, FeO, and at 600° into metallic iron. Wright and Luff (1878), whilst investigating the reduction of oxides, found that (a) the temperature of reaction depends on the condition of the oxide taken—for instance, precipitated ferric oxide is reduced by hydrogen at 85°, that obtained by oxidising the metal or from its nitrate at 175°; (b) when other conditions are the same, the reduction by carbonic oxide commences earlier than that by hydrogen, and the reduction by hydrogen still earlier than that by charcoal; (c) the reduction is effected with greater facility when a greater quantity of heat is evolved during the reaction. Ferric oxide obtained by heating ferrous sulphate to a red heat begins to be reduced by carbonic oxide at 202°, by hydrogen at 260°, by charcoal at 430°, whilst for magnetic oxide, Fe3O4, the temperatures are 200°, 290°, and 450° respectively.

[6]The primitive methods of iron manufacture were conducted by intermittent processes in hearths resembling smiths' fires. As evidenced by the uninterrupted action of the steam boiler, or the process of lime burning, and the continuous preparation and condensation of sulphuric acid or the uninterrupted smelting of iron, every industrial process becomes increasingly profitable and complete under the condition of the continuous action, as far as possible, of all agencies concerned in the production. This continuous method of production is the first condition for the profitable production on the large scale of nearly all industrial products. This method lessens the cost of labour, simplifies the supervision of the work, renders the product uniform, and frequently introduces a very great economy in the expenditure of fuel and at the same time presents the simplicity and perfection of an equilibrated system. Hence every manufacturing operation should be a continuous one, and the manufacture of pig iron and sulphuric acid, which have long since become so, may be taken as examples in many respects. A study of these two manufactures should form the commencement of an acquaintance with all the contemporary methods of manufacturing both from a technical and economical point of view.

[6]The primitive methods of iron manufacture were conducted by intermittent processes in hearths resembling smiths' fires. As evidenced by the uninterrupted action of the steam boiler, or the process of lime burning, and the continuous preparation and condensation of sulphuric acid or the uninterrupted smelting of iron, every industrial process becomes increasingly profitable and complete under the condition of the continuous action, as far as possible, of all agencies concerned in the production. This continuous method of production is the first condition for the profitable production on the large scale of nearly all industrial products. This method lessens the cost of labour, simplifies the supervision of the work, renders the product uniform, and frequently introduces a very great economy in the expenditure of fuel and at the same time presents the simplicity and perfection of an equilibrated system. Hence every manufacturing operation should be a continuous one, and the manufacture of pig iron and sulphuric acid, which have long since become so, may be taken as examples in many respects. A study of these two manufactures should form the commencement of an acquaintance with all the contemporary methods of manufacturing both from a technical and economical point of view.

[7]The composition of slag suitable for iron smelting most often approaches the following: 50 to 60 p.c. SiO2, 5 to 20 Al2O3, the rest of the mass consisting of MgO, CaO, MnO, FeO. Thus the most fusible slag (according to the observations of Bodeman) contains the alloy Al2O3,4CaO,7SiO2. On altering the quantity of magnesia and lime, and especially of the alkalis (which increases the fusibility) and of silica (which decreases it), the temperature of fusion changes with the relation between the total quantity of oxygen and that in the silica. Slags of the composition RO,SiO2are easily fusible, have a vitreous appearance, and are very common. Basic slags approach the composition 2RO,SiO2. Hence, knowing the composition and quantity of the foreign matter in the ore, it is at once easy to find the quantity and quality of the flux which must be added to form a suitable slag. The smelting of iron is rendered more complex by the fact that the silica, SiO2, which enters into the slag and fluxes is capable of forming a slag with the iron oxides. In order that the least quantity of iron may pass into the slag, it is necessary for it to be reduced before the temperature is attained at which the slags are formed (about 1000°), which is effected by reducing the iron, not with charcoal itself, but with carbonic oxide. From this it will be understood how the progress of the whole treatment may be judged by the properties of the slags. Details of this complicated and well-studied subject will be found in works on metallurgy.

[7]The composition of slag suitable for iron smelting most often approaches the following: 50 to 60 p.c. SiO2, 5 to 20 Al2O3, the rest of the mass consisting of MgO, CaO, MnO, FeO. Thus the most fusible slag (according to the observations of Bodeman) contains the alloy Al2O3,4CaO,7SiO2. On altering the quantity of magnesia and lime, and especially of the alkalis (which increases the fusibility) and of silica (which decreases it), the temperature of fusion changes with the relation between the total quantity of oxygen and that in the silica. Slags of the composition RO,SiO2are easily fusible, have a vitreous appearance, and are very common. Basic slags approach the composition 2RO,SiO2. Hence, knowing the composition and quantity of the foreign matter in the ore, it is at once easy to find the quantity and quality of the flux which must be added to form a suitable slag. The smelting of iron is rendered more complex by the fact that the silica, SiO2, which enters into the slag and fluxes is capable of forming a slag with the iron oxides. In order that the least quantity of iron may pass into the slag, it is necessary for it to be reduced before the temperature is attained at which the slags are formed (about 1000°), which is effected by reducing the iron, not with charcoal itself, but with carbonic oxide. From this it will be understood how the progress of the whole treatment may be judged by the properties of the slags. Details of this complicated and well-studied subject will be found in works on metallurgy.

[8]The section of a blast furnace is represented by two truncated cones joined at their bases, the upper cone being longer than the lower one; the lower cone is terminated by the hearth, or almost cylindrical cavity in which the cast iron and slag collect, one side being provided with apertures for drawing off the iron and slag. The air is blown into the blast furnace through special pipes, situated over the hearth, as shown in the section. The air previously passes through a series of cast-iron pipes, heated by the combustion of the carbonic oxide obtained from the upper parts of the furnace, where it is formed as in a ‘gas-producer.’ The blast furnace acts continuously until it is worn out; the iron is tapped off twice a day, and the furnace is allowed to cool a little from time to time so as not to be spoilt by the increasing heat, and to enable it to withstand long usage.Blast furnaces worked with charcoal fuel are not so high, and in general give a smaller yield than those using coke, because the latter are worked with heavier charges than those in which charcoal is employed. Coke furnaces yield 20,000 tons and over of pig iron a year. In the United States there are blast furnaces 30 metres high, and upwards of 600 cubic metres capacity, yielding as much as 130,000 tons of pig iron, requiring a blast of about 750 cubic metres of air per minute, heated to 600°, and consuming about 0·85 part of coke per 1 part of pig iron produced. At the present time the world produces as much as 30 million tons of pig iron a year, about 9/10 of which is converted into wrought iron and steel. The chief producers are the United States (about 10 million tons a year) and England (about 9 million tons a year); Russia yields about 1⅕ million tons a year. The world's production has doubled during the last 20 years, and in this respect the United States have outrun all other countries. The reason of this increase of production must be looked for in the increased demand for iron and steel for railway purposes, for structures (especially ship-building), and in the fact that: (a) the cost of pig iron has fallen, thanks to the erection of large furnaces and a fuller study of the processes taking place in them, and (b) that every kind of iron ore (even sulphurous and phosphoritic) can now be converted into a homogeneous steel.see captionFig.93.—Vertical section of a modern Cleveland blast furnace capable of producing 300 to 1,000 tons of pig iron weekly. The outer casing is of riveted iron plates, the furnace being lined with refractory fire-brick. It is closed at the top by a ‘cap and cone’ arrangement, by means of which the charge can be fed into the furnace at suitable intervals by lowering the moveable cone.In order to more thoroughly grasp the chemical process which takes place in blast furnaces, it is necessary to follow the course of the material charged in at the top and of the air passing through the furnace. From 50 to 200 parts of carbon are expended on 100 parts of iron. The ore, flux, and coke are charged into the top of the furnace, in layers, as the cast iron is formed in the lower parts and flowing down to the bottom causes the whole contents of the furnace to subside, thus forming an empty space at the top, which is again filled up with the afore-mentioned mixture. During its downward course this mixture is subjected to increasing heat. This rise of temperature first drives off the moisture of the ore mixture, and then leads to the formation of the products of the dry distillation of coal or charcoal. Little by little the subsiding mass attains a temperature at which the heated carbon reacts with the carbonic anhydride passing upwards through the furnace and transforms it into carbonic oxide. This is the reason why carbonic anhydride is not evolved from the furnace, but only carbonic oxide. As regards the ore itself, on being heated to about 600° to 800° it is reduced at the expense of the carbonic oxide ascending the furnace, and formed by the contact of the carbonic anhydride with the incandescent charcoal, so that the reduction in the blast furnace is without doubt brought aboutbythe formation and decomposition ofcarbonic oxideand not by carbon itself—thus, Fe2O3+ 3CO = Fe2+ 3CO2. The reduced iron, on further subsidence and contact with carbon, forms cast iron, which flows to the bottom of the furnace. In these lower layers, where the temperature is highest (about 1,300°), the foreign matter of the ore finally forms slag, which also is fusible, with the aid of fluxes. The air blown in from below, through the so-calledtuyeres, encounters carbon in the lower layers of the furnace, and burns it, converting it into carbonic anhydride. It is evident that this develops the highest temperature in these lower layers of the furnace, because here the combustion of the carbon is effected by heated and compressed air. This is very essential, for it is by virtue of this high temperature that the process of forming the slag and of forming and fusing the cast iron are effected simultaneously in these lower portions of the furnace. The carbonic acid formed in these parts rises higher, encounters incandescent carbon, and forms with it carbonic oxide. This heated carbonic oxide acts as a reducing agent on the iron ore, and is reconverted by it into carbonic anhydride; this gas meets with more carbon, and again forms carbonic oxide, which again acts as a reducing agent. The final transformation of the carbonic anhydride into carbonic oxide is effected in those parts of the furnace where the reduction of the oxides of iron does not take place, but where the temperature is still high enough to reduce the carbonic anhydride. The ascending mixture of carbonic oxide and nitrogen, CO2, &c., is then withdrawn through special lateral apertures formed in the upper cold parts of the furnace walls, and is conducted through pipes to those stoves which are used for heating the air, and also sometimes into other furnaces used for the further processes of iron manufacture. The fuel of blast furnaces consists of wood charcoal (this is the most expensive material, but the pig iron produced is the purest, because charcoal does not contain any sulphur, while coke does), anthracite (for instance, in Pennsylvania, and in Russia at Pastouhoff's works in the Don district), coke, coal, and even wood and peat. It must be borne in mind that the utilisation of naphtha and naphtha refuse would probably give very profitable results in metallurgical processes.The process just described is accompanied by a series of other processes. Thus, for instance, in the blast furnace a considerable quantity of cyanogen compounds are formed. This takes place because the nitrogen of the air blast comes into contact with incandescent carbon and various alkaline matters contained in the foreign matter of the ores. A considerable quantity of potassium cyanide is formed when wood charcoal is employed for iron smelting, as its ash is rich in potash.

[8]The section of a blast furnace is represented by two truncated cones joined at their bases, the upper cone being longer than the lower one; the lower cone is terminated by the hearth, or almost cylindrical cavity in which the cast iron and slag collect, one side being provided with apertures for drawing off the iron and slag. The air is blown into the blast furnace through special pipes, situated over the hearth, as shown in the section. The air previously passes through a series of cast-iron pipes, heated by the combustion of the carbonic oxide obtained from the upper parts of the furnace, where it is formed as in a ‘gas-producer.’ The blast furnace acts continuously until it is worn out; the iron is tapped off twice a day, and the furnace is allowed to cool a little from time to time so as not to be spoilt by the increasing heat, and to enable it to withstand long usage.

Blast furnaces worked with charcoal fuel are not so high, and in general give a smaller yield than those using coke, because the latter are worked with heavier charges than those in which charcoal is employed. Coke furnaces yield 20,000 tons and over of pig iron a year. In the United States there are blast furnaces 30 metres high, and upwards of 600 cubic metres capacity, yielding as much as 130,000 tons of pig iron, requiring a blast of about 750 cubic metres of air per minute, heated to 600°, and consuming about 0·85 part of coke per 1 part of pig iron produced. At the present time the world produces as much as 30 million tons of pig iron a year, about 9/10 of which is converted into wrought iron and steel. The chief producers are the United States (about 10 million tons a year) and England (about 9 million tons a year); Russia yields about 1⅕ million tons a year. The world's production has doubled during the last 20 years, and in this respect the United States have outrun all other countries. The reason of this increase of production must be looked for in the increased demand for iron and steel for railway purposes, for structures (especially ship-building), and in the fact that: (a) the cost of pig iron has fallen, thanks to the erection of large furnaces and a fuller study of the processes taking place in them, and (b) that every kind of iron ore (even sulphurous and phosphoritic) can now be converted into a homogeneous steel.

see captionFig.93.—Vertical section of a modern Cleveland blast furnace capable of producing 300 to 1,000 tons of pig iron weekly. The outer casing is of riveted iron plates, the furnace being lined with refractory fire-brick. It is closed at the top by a ‘cap and cone’ arrangement, by means of which the charge can be fed into the furnace at suitable intervals by lowering the moveable cone.

Fig.93.—Vertical section of a modern Cleveland blast furnace capable of producing 300 to 1,000 tons of pig iron weekly. The outer casing is of riveted iron plates, the furnace being lined with refractory fire-brick. It is closed at the top by a ‘cap and cone’ arrangement, by means of which the charge can be fed into the furnace at suitable intervals by lowering the moveable cone.

In order to more thoroughly grasp the chemical process which takes place in blast furnaces, it is necessary to follow the course of the material charged in at the top and of the air passing through the furnace. From 50 to 200 parts of carbon are expended on 100 parts of iron. The ore, flux, and coke are charged into the top of the furnace, in layers, as the cast iron is formed in the lower parts and flowing down to the bottom causes the whole contents of the furnace to subside, thus forming an empty space at the top, which is again filled up with the afore-mentioned mixture. During its downward course this mixture is subjected to increasing heat. This rise of temperature first drives off the moisture of the ore mixture, and then leads to the formation of the products of the dry distillation of coal or charcoal. Little by little the subsiding mass attains a temperature at which the heated carbon reacts with the carbonic anhydride passing upwards through the furnace and transforms it into carbonic oxide. This is the reason why carbonic anhydride is not evolved from the furnace, but only carbonic oxide. As regards the ore itself, on being heated to about 600° to 800° it is reduced at the expense of the carbonic oxide ascending the furnace, and formed by the contact of the carbonic anhydride with the incandescent charcoal, so that the reduction in the blast furnace is without doubt brought aboutbythe formation and decomposition ofcarbonic oxideand not by carbon itself—thus, Fe2O3+ 3CO = Fe2+ 3CO2. The reduced iron, on further subsidence and contact with carbon, forms cast iron, which flows to the bottom of the furnace. In these lower layers, where the temperature is highest (about 1,300°), the foreign matter of the ore finally forms slag, which also is fusible, with the aid of fluxes. The air blown in from below, through the so-calledtuyeres, encounters carbon in the lower layers of the furnace, and burns it, converting it into carbonic anhydride. It is evident that this develops the highest temperature in these lower layers of the furnace, because here the combustion of the carbon is effected by heated and compressed air. This is very essential, for it is by virtue of this high temperature that the process of forming the slag and of forming and fusing the cast iron are effected simultaneously in these lower portions of the furnace. The carbonic acid formed in these parts rises higher, encounters incandescent carbon, and forms with it carbonic oxide. This heated carbonic oxide acts as a reducing agent on the iron ore, and is reconverted by it into carbonic anhydride; this gas meets with more carbon, and again forms carbonic oxide, which again acts as a reducing agent. The final transformation of the carbonic anhydride into carbonic oxide is effected in those parts of the furnace where the reduction of the oxides of iron does not take place, but where the temperature is still high enough to reduce the carbonic anhydride. The ascending mixture of carbonic oxide and nitrogen, CO2, &c., is then withdrawn through special lateral apertures formed in the upper cold parts of the furnace walls, and is conducted through pipes to those stoves which are used for heating the air, and also sometimes into other furnaces used for the further processes of iron manufacture. The fuel of blast furnaces consists of wood charcoal (this is the most expensive material, but the pig iron produced is the purest, because charcoal does not contain any sulphur, while coke does), anthracite (for instance, in Pennsylvania, and in Russia at Pastouhoff's works in the Don district), coke, coal, and even wood and peat. It must be borne in mind that the utilisation of naphtha and naphtha refuse would probably give very profitable results in metallurgical processes.

The process just described is accompanied by a series of other processes. Thus, for instance, in the blast furnace a considerable quantity of cyanogen compounds are formed. This takes place because the nitrogen of the air blast comes into contact with incandescent carbon and various alkaline matters contained in the foreign matter of the ores. A considerable quantity of potassium cyanide is formed when wood charcoal is employed for iron smelting, as its ash is rich in potash.

[9]The specific gravity of white cast iron is about 7·5. Grey cast iron has a much lower specific gravity, namely, 7·0. Grey cast iron generally contains less manganese and more silica than white; but both contain from 2 to 3 p.c. of carbon. The difference between the varieties of cast iron depends on the condition of the carbon which enters into the composition of the iron. In white cast iron the carbon is in combination with the iron—in all probability, as the compound CFe4(Abel and Osmond and others extracted this compound, which is sometimes called ‘carbide,’ from tempered steel, which stands to unannealed steel as white cast iron does to grey), but perhaps in the state of an indefinite chemical compound resembling a solution. In any case the compound of the iron and carbon in white cast iron is chemically very unstable, because when slowly cooled it decomposes, with separation of graphite, just as a solution when slowly cooled yields a portion of the substance dissolved. The separation of carbon in the form of graphite on the conversion of white cast iron into grey is never complete, however slowly the separation be carried on; part of the carbon remains in combination with the iron in the same state in which it exists in white cast iron. Hence when grey cast iron is treated with acids, the whole of the carbon does not remain in the form of graphite, but a part of it is separated as hydrocarbons, which proves the existence of chemically-combined carbon in grey cast iron. It is sufficient to re-melt grey cast iron and to cool it quickly to transform it into white cast iron. It is not carbon alone that influences the properties of cast iron; when it contains a considerable amount of sulphur, cast iron remains white even after having been slowly cooled. The same is observed in cast iron very rich in manganese (5 to 7 p.c.), and in this latter case the fracture is very distinctly crystalline and brilliant. When cast iron contains a large amount of manganese, the quantity of carbon may also be increased. Crystalline varieties of cast iron rich in manganese are in practice called ferro-manganese (p.310), and are prepared for the Bessemer process. Grey cast iron not having an uniform structure is much more liable to various changes than dense and thoroughly uniform white cast iron, and the latter oxidises much more slowly in air than the former. White cast iron is not only used for conversion into wrought iron and steel, but also in those cases where great hardness is required, although it be accompanied by a certain brittleness; for instance, for making rollers, plough-shares, &c.

[9]The specific gravity of white cast iron is about 7·5. Grey cast iron has a much lower specific gravity, namely, 7·0. Grey cast iron generally contains less manganese and more silica than white; but both contain from 2 to 3 p.c. of carbon. The difference between the varieties of cast iron depends on the condition of the carbon which enters into the composition of the iron. In white cast iron the carbon is in combination with the iron—in all probability, as the compound CFe4(Abel and Osmond and others extracted this compound, which is sometimes called ‘carbide,’ from tempered steel, which stands to unannealed steel as white cast iron does to grey), but perhaps in the state of an indefinite chemical compound resembling a solution. In any case the compound of the iron and carbon in white cast iron is chemically very unstable, because when slowly cooled it decomposes, with separation of graphite, just as a solution when slowly cooled yields a portion of the substance dissolved. The separation of carbon in the form of graphite on the conversion of white cast iron into grey is never complete, however slowly the separation be carried on; part of the carbon remains in combination with the iron in the same state in which it exists in white cast iron. Hence when grey cast iron is treated with acids, the whole of the carbon does not remain in the form of graphite, but a part of it is separated as hydrocarbons, which proves the existence of chemically-combined carbon in grey cast iron. It is sufficient to re-melt grey cast iron and to cool it quickly to transform it into white cast iron. It is not carbon alone that influences the properties of cast iron; when it contains a considerable amount of sulphur, cast iron remains white even after having been slowly cooled. The same is observed in cast iron very rich in manganese (5 to 7 p.c.), and in this latter case the fracture is very distinctly crystalline and brilliant. When cast iron contains a large amount of manganese, the quantity of carbon may also be increased. Crystalline varieties of cast iron rich in manganese are in practice called ferro-manganese (p.310), and are prepared for the Bessemer process. Grey cast iron not having an uniform structure is much more liable to various changes than dense and thoroughly uniform white cast iron, and the latter oxidises much more slowly in air than the former. White cast iron is not only used for conversion into wrought iron and steel, but also in those cases where great hardness is required, although it be accompanied by a certain brittleness; for instance, for making rollers, plough-shares, &c.

[10]This direct process of separating the carbon from cast iron is termedpuddling. It is conducted in reverberatory furnaces. The cast iron is placed on the bed of the furnace and melted; through a special aperture, the puddler stirs up the oxidising mass of cast iron, pressing the oxides into the molten iron. This resembles kneading dough, and the process introduced in England became known as puddling. It is evident that the puddled mass, or bloom, is a heterogeneous substance obtained by mixing, and hence one part of the mass will still be rich in carbon, another will be poor, some parts will contain oxide not reduced, &c. The further treatment of the puddled mass consists in hammering and drawing it out into flat pieces, which on being hammered become more homogeneous, and when several pieces are welded together and again hammered out a still more homogeneous mass is obtained. The quality of the steel and iron thus formed depends principally on their uniformity. The want of uniformity depends on the oxides remaining inside the mass, and on the variable distribution of the carbon throughout the mass. In order to obtain a more homogeneous metal for manufacturing articles out of steel, it is drawn into thin rods, which are tied together in bundles and then again hammered out. As an example of what may be attained in this direction, imitation Damascus steel may be cited; it consists of twisted and plaited wire, which is then hammered into a dense mass. (Real damascened wootz steel may be made by melting a mixture of the best iron with graphite (1⁄12) and iron rust; the article is then corroded with acid, and the carbon remains in the form of a pattern.)Steel and wrought iron are manufactured from cast iron by puddling. They are, however, obtained not only by this method but also by thebloomery process, which is carried out in a fire similar to a blacksmith's forge, fed with charcoal and provided with a blast; a pig of cast iron is gradually pushed into the fire, and portions of it melt and fall to the bottom of the hearth, coming into contact with an air blast, and are thus oxidised. The bloom thus formed is then squeezed and hammered. It is evident that this process is only available when the charcoal used in the fire does not contain any foreign matter which might injure the quality of the iron or steel—for instance, sulphur or phosphorus—and therefore only wood charcoal may be used with impunity, from which it follows that this process can only be carried on where the manufacture of iron can be conducted with this fuel. Coal and coke contain the above-mentioned impurities, and would therefore produce iron of a brittle nature, and thus it would be necessary to have recourse to puddling, where the fuel is burnt on a special hearth, separate from the cast iron, whereby the impurities of the fuel do not come into contact with it. The manufacture of steel from cast iron may also be conducted in fires; but, in addition to this, it is also now prepared by many other methods. One of the long-known processes is calledcementation, by which steel is prepared from wrought iron but not from cast iron. For this process strips of iron are heated red-hot for a considerable time whilst immersed in powdered charcoal; during this operation the iron at the surface combines with the charcoal, which however does not penetrate; after this the iron strips are re-forged, drawn out again, and cemented anew, repeating this process until a steel of the desired quality is formed—that is, containing the requisite proportion of carbon. TheBessemerprocess occupies the front rank among the newer methods (since 1856); it is so called from the name of its inventor. This process consists in running melted cast iron into converters (holding about 6 tons of cast iron)—that is, egg-shaped receivers, fig.94, capable of revolving on trunnions (in order to charge in the cast iron and discharge the steel), and forcing a stream of air through small apertures at a considerable pressure. Combustion of the iron and carbon at an elevated temperature then takes place, resulting from the bubbles of oxygen thus penetrating the mass of the cast iron. The carbon, however, burns to a greater extent than the iron, and therefore a mass is obtained which is much poorer in carbon than cast iron. As the combustion proceeds very rapidly in the mass of metal, the temperature rises to such an extent that even the wrought iron which may be formed remains in a molten condition, whilst the steel, being more fusible than the wrought iron, remains very liquid. In half an hour the mass is ready. The purest possible cast iron is used in the Bessemer process, because sulphur and phosphorus do not burn out like carbon, silicon, and manganese.see captionFig.94.—Bessemer converter, constructed of iron plate and lined with ganister. The air is carried by the tubes, L, O, D to the bottom, M, from which it passes by a number of holes into the converter. The converter is rotated on the trunniondby means of the rack and pinion H, when it is required either to receive molten cast iron from the melting furnaces or to pour out the steel.The presence of manganese enables the sulphur to be removed with the slag, and the presence of lime or magnesia, which are introduced into the lining of the converter, facilitates the removal of the phosphorus. This basic Bessemer process, orThomas Gilchrist process, introduced about 1880, enables ores containing a considerable amount of phosphorus, which had hitherto only been used for cast iron, to be used for making wrought iron and steel. Naturally the greatest uniformity will be obtained by re-melting the metal. Steel is re-melted in small wind furnaces, in masses not exceeding 30 kilos; a liquid metal is formed, which may be cast in moulds. A mixture of wrought and cast iron is often used for making cast steel (the addition of a small amount of metallic Al improves the homogeneity of the castings, by facilitating the passage of the impurities into slag). Large steel castings are made by simultaneous fusion in several furnaces and crucibles; in this way, castings up to 80 tons or more, such as large ordnance, may be made. This molten, and therefore homogeneous, steel is calledcast steel. Of late years theMartin's processfor the manufacture of steel has come largely into use; it was invented in France about 1860, and with the use of regenerative furnaces it enables large quantities of cast steel to be made at a time. It is based on the melting of cast iron with iron oxides and iron itself—for instance, pure ores, scrap, &c. There the carbon of the cast iron and the oxygen of the oxide form carbonic oxide, and the carbon therefore burns out, and thus cast steel is obtained from cast iron, providing, naturally, that there is a requisite proportion and corresponding degree of heat. The advantage of this process is that not only do the carbon, silicon, and manganese, but also a great part of the sulphur and phosphorus of the cast iron burn out at the expense of the oxygen of the iron oxides. During the last decade the manufacture of steel and its application for rails, armour plate, guns, boilers, &c., has developed to an enormous extent, thanks to the invention of cheap processes for the manufacture of large masses of homogeneous cast steel. Wrought iron may also be melted, but the heat of a blast furnace is insufficient for this. It easily melts in the oxyhydrogen flame. It may be obtained in a molten state directly from cast iron, if the latter be melted with nitre and sufficiently stirred up. Considerable oxidation then takes place inside the mass of cast iron, and the temperature rises to such an extent that the wrought iron formed remains liquid. A method is also known for obtaining wrought iron directly from rich iron ores by the action of carbonic oxide: the wrought iron is then formed as a spongy mass (which forms an excellent filter for purifying water), and may be worked up into wrought iron or steel either by forging or by dissolving in molten cast iron.Everybody is more or less familiar with thedifference in the properties of steel and wrought iron. Iron is remarkable for its softness, pliability, and small elasticity, whilst steel may be characterised by its capability of attaining elasticity and hardness if it be cooled suddenly after having been heated to a definite temperature, or, as it is termed,tempered. But if tempered steel be re-heated and slowly cooled, it becomes as soft as wrought iron, and can then be cut with the file and forged, and in general can be made to assume any shape, like wrought iron. In this soft condition it is calledannealed steel. The transition from tempered to annealed steel thus takes place in a similar way to the transition from white to grey cast iron. Steel, when homogeneous, has considerable lustre, and such a fine granular structure that it takes a very high polish. Its fracture clearly shows the granular nature of its structure. The possibility of tempering steel enables it to be used for making all kinds of cutting instruments, because annealed steel can be forged, turned, drawn (under rollers, for instance, for making rails, bars, &c.), filed, &c., and it may then be tempered, ground and polished. The method and temperature of tempering and annealing steel determine its hardness and other qualities. Steel is generally tempered to the required degree of hardness in the following manner: It is first strongly heated (for instance, up to 600°), and then plunged into water—that is, hardened by rapid cooling (it then becomes as brittle as glass). It is then heated until the surface assumes a definite colour, and finally cooled either quickly or slowly. When steel is heated up to 220°, its surface acquires a yellow colour (surgical instruments); it first of all becomes straw-coloured (razors, &c.), and then gold-coloured; then at a temperature of 250° it becomes brown (scissors), then red, then light blue at 285° (springs), then indigo at 300° (files), and finally sea-green at about 340°. These colours are only the tints of thin films, like the hues of soap bubbles, and appear on the steel because a thin layer of oxides is formed over its surface. Steel rusts more slowly than wrought iron, and is more soluble in acids than cast iron, but less so than wrought iron. Its specific gravity is about 7·6 to 7·9.As regards the formation of steel, it was a long time before the process of cementation was thoroughly understood, because in this case infusible charcoal permeates unfused wrought iron. Caron showed that this permeation depends on the fact that the charcoal used in the process contains alkalis, which, in the presence of the nitrogen of the air, form metallic cyanides; these being volatile and fusible, permeate the iron, and, giving up their carbon to it, serve as the material for the formation of steel. This explanation is confirmed by the fact that charcoal without alkalis or without nitrogen will not cement iron. The charcoal used for cementation acts badly when used over again, as it has lost alkali. The very volatile ammonium cyanide easily conduces to the formation of steel. Although steel is also formed by the action of cyanogen compounds, nevertheless it does not contain more nitrogen than cast or wrought iron (0·01 p.c.), and these latter contain it because their ores contain titanium, which combines directly with nitrogen. Hence the part played by nitrogen in steel is but an insignificant one. It may be useful here to add some information taken from Caron's treatise concerning the influence of foreign matter on the quality of steel. The principal properties of steel are those of tempering and annealing. The compounds of iron with silicon and boron have not these properties. They are more stable than the carbon compound, and this latter is capable of changing its properties; because the carbon in it either enters into combination or else is disengaged, which determines the condition of hardness or softness of steel, as in white and grey cast iron. When slowly cooled, steel splits up into a mixture of soft and carburetted iron; but, nevertheless, the carbon does not separate from the iron. If such steel be again heated, it forms a uniform compound, and hardens when rapidly cooled. If the same steel as before be taken and heated a long time, then, after being slowly cooled, it becomes much more soluble in acid, and leaves a residue of pure carbon. This shows that the combination between the carbon and iron in steel becomes destroyed when subjected to heat, and the steel becomes iron mixed with carbon. Suchburntsteel cannot be tempered, but may be corrected by continued forging in a heated condition, which has the effect of redistributing the carbon equally throughout the whole mass. After the forging, if the iron is pure and the carbon has not been burnt out, steel is again formed, which may be tempered. If steel be repeatedly or strongly heated, it becomes burnt through and cannot be tempered or annealed; the carbon separates from the iron, and this is effected more easily if the steel contains other impurities which are capable of forming stable combinations with iron, such as silicon, sulphur, or phosphorus. If there be much silicon, it occupies the place of the carbon, and then continued forging will not induce the carbon once separated to re-enter into combination. Such steel is easily burnt through and cannot be corrected; when burnt through, it is hard and cannot be annealed—this is tough steel, an inferior kind. Iron which contains sulphur and phosphorus cements badly, combines but little with carbon, and steel of this kind is brittle, both hot and cold. Iron in combination with the above-mentioned substances cannot be annealed by slow cooling, showing that these compounds are more stable than those of carbon and iron, and therefore they prevent the formation of the latter. Such metals as tin and zinc combine with iron, but not with carbon, and form a brittle mass which cannot be annealed and is deleterious to steel. Manganese and tungsten, on the contrary, are capable of combining with charcoal; they do not hinder the formation of steel, but even remove the injurious effects of other admixtures (by transforming these admixed substances into new compounds and slags), and are therefore ranked with the substances which act beneficially on steel; but, nevertheless, the best steel, which is capable of renewing most often its primitive qualities after burning or hot forging, is the purest. The addition of Ni, Cr, W, and certain other metals to steel renders it very suitable for certain special purposes, and is therefore frequently made use of.It is worthy of attention that steel, besides temper, possesses many variable properties, a review of which may be made in the classification of thesorts of steel(1878, Cockerell). (1)Very mild steelcontains from 0·05 to 0·20 p.c. of carbon, breaks with a weight of 40 to 50 kilos per square millimetre, and has an extension of 20 to 30 p.c.; it may be welded, like wrought iron, but cannot be tempered; is used in sheets for boilers, armour plate and bridges, nails, rivets, &c., as a substitute for wrought iron; (2)mild steel, from 0·20 to 0·35 p.c. of carbon, resistance to tension 50 to 60 kilos, extension 15 to 20 p.c., not easily welded, and tempers badly, used for axles, rails, and railway tyres, for cannons and guns, and for parts of machines destined to resist bending and torsion; (3)hard steel, carbon 0·35 to 0·50 p.c., breaking weight 60 to 70 kilos per square millimetre, extension 10 to 15 p.c., cannot be welded, takes a temper; used for rails, all kinds of springs, swords, parts of machinery in motion subjected to friction, spindles of looms, hammers, spades, hoes, &c.; (4)very hard steel, carbon 0·5 to 0·65 p.c., tensile breaking weight 70 to 80 kilos, extension 5 to 10 p.c., does not weld, but tempers easily; used for small springs, saws, files, knives and similar instruments.The properties of ordinarywrought ironare well known. The best iron is the most tenacious—that is to say, that which does not break up when struck with the hammer or bent, and yet at the same time is sufficiently hard. There is, however, a distinction between hard and soft iron. Generally the softest iron is the most tenacious, and can best be welded, drawn into wire, sheets, &c. Hard, especially tough, iron is often characterised by its breaking when bent, and is therefore very difficult to work, and objects made from it are less serviceable in many respects. Soft iron is most adapted for making wire and sheet iron and such small objects as nails. Soft iron is characterised by its attaining a fibrous fracture after forging, whilst tough iron preserves its granular structure after this operation. Certain sorts of iron, although fairly soft at the ordinary temperature, become brittle when heated and are difficult to weld. These sorts are less suitable for being worked up into small objects. The variety of the properties of iron depends on the impurities which it contains. In general, the iron used in the arts still contains carbon and always a certain quantity of silicon, manganese, sulphur, phosphorus, &c. A variety in the proportion of these component parts changes the quality of the iron. In addition to this the change which soft wrought iron, having a fibrous structure, undergoes when subjected to repeated blows and vibrations is considerable; it then becomes granular and brittle. This to a certain degree explains the want of stability of some iron objects—such as truck axles, which must be renewed after a certain term of service, otherwise they become brittle. It is evident that there are innumerable intermediate transitions from wrought iron to steel and cast iron.At the present day the greater part of the cast iron manufactured is converted into steel, generally cast steel (Bessemer's and Martin's). I may add the Urals, Donetz district, and other parts of Russia offer the greatest advantages for the development of an iron industry, because these localities not only contain vast supplies of excellent iron ore, but also coal, which is necessary for smelting it.

[10]This direct process of separating the carbon from cast iron is termedpuddling. It is conducted in reverberatory furnaces. The cast iron is placed on the bed of the furnace and melted; through a special aperture, the puddler stirs up the oxidising mass of cast iron, pressing the oxides into the molten iron. This resembles kneading dough, and the process introduced in England became known as puddling. It is evident that the puddled mass, or bloom, is a heterogeneous substance obtained by mixing, and hence one part of the mass will still be rich in carbon, another will be poor, some parts will contain oxide not reduced, &c. The further treatment of the puddled mass consists in hammering and drawing it out into flat pieces, which on being hammered become more homogeneous, and when several pieces are welded together and again hammered out a still more homogeneous mass is obtained. The quality of the steel and iron thus formed depends principally on their uniformity. The want of uniformity depends on the oxides remaining inside the mass, and on the variable distribution of the carbon throughout the mass. In order to obtain a more homogeneous metal for manufacturing articles out of steel, it is drawn into thin rods, which are tied together in bundles and then again hammered out. As an example of what may be attained in this direction, imitation Damascus steel may be cited; it consists of twisted and plaited wire, which is then hammered into a dense mass. (Real damascened wootz steel may be made by melting a mixture of the best iron with graphite (1⁄12) and iron rust; the article is then corroded with acid, and the carbon remains in the form of a pattern.)

Steel and wrought iron are manufactured from cast iron by puddling. They are, however, obtained not only by this method but also by thebloomery process, which is carried out in a fire similar to a blacksmith's forge, fed with charcoal and provided with a blast; a pig of cast iron is gradually pushed into the fire, and portions of it melt and fall to the bottom of the hearth, coming into contact with an air blast, and are thus oxidised. The bloom thus formed is then squeezed and hammered. It is evident that this process is only available when the charcoal used in the fire does not contain any foreign matter which might injure the quality of the iron or steel—for instance, sulphur or phosphorus—and therefore only wood charcoal may be used with impunity, from which it follows that this process can only be carried on where the manufacture of iron can be conducted with this fuel. Coal and coke contain the above-mentioned impurities, and would therefore produce iron of a brittle nature, and thus it would be necessary to have recourse to puddling, where the fuel is burnt on a special hearth, separate from the cast iron, whereby the impurities of the fuel do not come into contact with it. The manufacture of steel from cast iron may also be conducted in fires; but, in addition to this, it is also now prepared by many other methods. One of the long-known processes is calledcementation, by which steel is prepared from wrought iron but not from cast iron. For this process strips of iron are heated red-hot for a considerable time whilst immersed in powdered charcoal; during this operation the iron at the surface combines with the charcoal, which however does not penetrate; after this the iron strips are re-forged, drawn out again, and cemented anew, repeating this process until a steel of the desired quality is formed—that is, containing the requisite proportion of carbon. TheBessemerprocess occupies the front rank among the newer methods (since 1856); it is so called from the name of its inventor. This process consists in running melted cast iron into converters (holding about 6 tons of cast iron)—that is, egg-shaped receivers, fig.94, capable of revolving on trunnions (in order to charge in the cast iron and discharge the steel), and forcing a stream of air through small apertures at a considerable pressure. Combustion of the iron and carbon at an elevated temperature then takes place, resulting from the bubbles of oxygen thus penetrating the mass of the cast iron. The carbon, however, burns to a greater extent than the iron, and therefore a mass is obtained which is much poorer in carbon than cast iron. As the combustion proceeds very rapidly in the mass of metal, the temperature rises to such an extent that even the wrought iron which may be formed remains in a molten condition, whilst the steel, being more fusible than the wrought iron, remains very liquid. In half an hour the mass is ready. The purest possible cast iron is used in the Bessemer process, because sulphur and phosphorus do not burn out like carbon, silicon, and manganese.

see captionFig.94.—Bessemer converter, constructed of iron plate and lined with ganister. The air is carried by the tubes, L, O, D to the bottom, M, from which it passes by a number of holes into the converter. The converter is rotated on the trunniondby means of the rack and pinion H, when it is required either to receive molten cast iron from the melting furnaces or to pour out the steel.

Fig.94.—Bessemer converter, constructed of iron plate and lined with ganister. The air is carried by the tubes, L, O, D to the bottom, M, from which it passes by a number of holes into the converter. The converter is rotated on the trunniondby means of the rack and pinion H, when it is required either to receive molten cast iron from the melting furnaces or to pour out the steel.

The presence of manganese enables the sulphur to be removed with the slag, and the presence of lime or magnesia, which are introduced into the lining of the converter, facilitates the removal of the phosphorus. This basic Bessemer process, orThomas Gilchrist process, introduced about 1880, enables ores containing a considerable amount of phosphorus, which had hitherto only been used for cast iron, to be used for making wrought iron and steel. Naturally the greatest uniformity will be obtained by re-melting the metal. Steel is re-melted in small wind furnaces, in masses not exceeding 30 kilos; a liquid metal is formed, which may be cast in moulds. A mixture of wrought and cast iron is often used for making cast steel (the addition of a small amount of metallic Al improves the homogeneity of the castings, by facilitating the passage of the impurities into slag). Large steel castings are made by simultaneous fusion in several furnaces and crucibles; in this way, castings up to 80 tons or more, such as large ordnance, may be made. This molten, and therefore homogeneous, steel is calledcast steel. Of late years theMartin's processfor the manufacture of steel has come largely into use; it was invented in France about 1860, and with the use of regenerative furnaces it enables large quantities of cast steel to be made at a time. It is based on the melting of cast iron with iron oxides and iron itself—for instance, pure ores, scrap, &c. There the carbon of the cast iron and the oxygen of the oxide form carbonic oxide, and the carbon therefore burns out, and thus cast steel is obtained from cast iron, providing, naturally, that there is a requisite proportion and corresponding degree of heat. The advantage of this process is that not only do the carbon, silicon, and manganese, but also a great part of the sulphur and phosphorus of the cast iron burn out at the expense of the oxygen of the iron oxides. During the last decade the manufacture of steel and its application for rails, armour plate, guns, boilers, &c., has developed to an enormous extent, thanks to the invention of cheap processes for the manufacture of large masses of homogeneous cast steel. Wrought iron may also be melted, but the heat of a blast furnace is insufficient for this. It easily melts in the oxyhydrogen flame. It may be obtained in a molten state directly from cast iron, if the latter be melted with nitre and sufficiently stirred up. Considerable oxidation then takes place inside the mass of cast iron, and the temperature rises to such an extent that the wrought iron formed remains liquid. A method is also known for obtaining wrought iron directly from rich iron ores by the action of carbonic oxide: the wrought iron is then formed as a spongy mass (which forms an excellent filter for purifying water), and may be worked up into wrought iron or steel either by forging or by dissolving in molten cast iron.

Everybody is more or less familiar with thedifference in the properties of steel and wrought iron. Iron is remarkable for its softness, pliability, and small elasticity, whilst steel may be characterised by its capability of attaining elasticity and hardness if it be cooled suddenly after having been heated to a definite temperature, or, as it is termed,tempered. But if tempered steel be re-heated and slowly cooled, it becomes as soft as wrought iron, and can then be cut with the file and forged, and in general can be made to assume any shape, like wrought iron. In this soft condition it is calledannealed steel. The transition from tempered to annealed steel thus takes place in a similar way to the transition from white to grey cast iron. Steel, when homogeneous, has considerable lustre, and such a fine granular structure that it takes a very high polish. Its fracture clearly shows the granular nature of its structure. The possibility of tempering steel enables it to be used for making all kinds of cutting instruments, because annealed steel can be forged, turned, drawn (under rollers, for instance, for making rails, bars, &c.), filed, &c., and it may then be tempered, ground and polished. The method and temperature of tempering and annealing steel determine its hardness and other qualities. Steel is generally tempered to the required degree of hardness in the following manner: It is first strongly heated (for instance, up to 600°), and then plunged into water—that is, hardened by rapid cooling (it then becomes as brittle as glass). It is then heated until the surface assumes a definite colour, and finally cooled either quickly or slowly. When steel is heated up to 220°, its surface acquires a yellow colour (surgical instruments); it first of all becomes straw-coloured (razors, &c.), and then gold-coloured; then at a temperature of 250° it becomes brown (scissors), then red, then light blue at 285° (springs), then indigo at 300° (files), and finally sea-green at about 340°. These colours are only the tints of thin films, like the hues of soap bubbles, and appear on the steel because a thin layer of oxides is formed over its surface. Steel rusts more slowly than wrought iron, and is more soluble in acids than cast iron, but less so than wrought iron. Its specific gravity is about 7·6 to 7·9.

As regards the formation of steel, it was a long time before the process of cementation was thoroughly understood, because in this case infusible charcoal permeates unfused wrought iron. Caron showed that this permeation depends on the fact that the charcoal used in the process contains alkalis, which, in the presence of the nitrogen of the air, form metallic cyanides; these being volatile and fusible, permeate the iron, and, giving up their carbon to it, serve as the material for the formation of steel. This explanation is confirmed by the fact that charcoal without alkalis or without nitrogen will not cement iron. The charcoal used for cementation acts badly when used over again, as it has lost alkali. The very volatile ammonium cyanide easily conduces to the formation of steel. Although steel is also formed by the action of cyanogen compounds, nevertheless it does not contain more nitrogen than cast or wrought iron (0·01 p.c.), and these latter contain it because their ores contain titanium, which combines directly with nitrogen. Hence the part played by nitrogen in steel is but an insignificant one. It may be useful here to add some information taken from Caron's treatise concerning the influence of foreign matter on the quality of steel. The principal properties of steel are those of tempering and annealing. The compounds of iron with silicon and boron have not these properties. They are more stable than the carbon compound, and this latter is capable of changing its properties; because the carbon in it either enters into combination or else is disengaged, which determines the condition of hardness or softness of steel, as in white and grey cast iron. When slowly cooled, steel splits up into a mixture of soft and carburetted iron; but, nevertheless, the carbon does not separate from the iron. If such steel be again heated, it forms a uniform compound, and hardens when rapidly cooled. If the same steel as before be taken and heated a long time, then, after being slowly cooled, it becomes much more soluble in acid, and leaves a residue of pure carbon. This shows that the combination between the carbon and iron in steel becomes destroyed when subjected to heat, and the steel becomes iron mixed with carbon. Suchburntsteel cannot be tempered, but may be corrected by continued forging in a heated condition, which has the effect of redistributing the carbon equally throughout the whole mass. After the forging, if the iron is pure and the carbon has not been burnt out, steel is again formed, which may be tempered. If steel be repeatedly or strongly heated, it becomes burnt through and cannot be tempered or annealed; the carbon separates from the iron, and this is effected more easily if the steel contains other impurities which are capable of forming stable combinations with iron, such as silicon, sulphur, or phosphorus. If there be much silicon, it occupies the place of the carbon, and then continued forging will not induce the carbon once separated to re-enter into combination. Such steel is easily burnt through and cannot be corrected; when burnt through, it is hard and cannot be annealed—this is tough steel, an inferior kind. Iron which contains sulphur and phosphorus cements badly, combines but little with carbon, and steel of this kind is brittle, both hot and cold. Iron in combination with the above-mentioned substances cannot be annealed by slow cooling, showing that these compounds are more stable than those of carbon and iron, and therefore they prevent the formation of the latter. Such metals as tin and zinc combine with iron, but not with carbon, and form a brittle mass which cannot be annealed and is deleterious to steel. Manganese and tungsten, on the contrary, are capable of combining with charcoal; they do not hinder the formation of steel, but even remove the injurious effects of other admixtures (by transforming these admixed substances into new compounds and slags), and are therefore ranked with the substances which act beneficially on steel; but, nevertheless, the best steel, which is capable of renewing most often its primitive qualities after burning or hot forging, is the purest. The addition of Ni, Cr, W, and certain other metals to steel renders it very suitable for certain special purposes, and is therefore frequently made use of.

It is worthy of attention that steel, besides temper, possesses many variable properties, a review of which may be made in the classification of thesorts of steel(1878, Cockerell). (1)Very mild steelcontains from 0·05 to 0·20 p.c. of carbon, breaks with a weight of 40 to 50 kilos per square millimetre, and has an extension of 20 to 30 p.c.; it may be welded, like wrought iron, but cannot be tempered; is used in sheets for boilers, armour plate and bridges, nails, rivets, &c., as a substitute for wrought iron; (2)mild steel, from 0·20 to 0·35 p.c. of carbon, resistance to tension 50 to 60 kilos, extension 15 to 20 p.c., not easily welded, and tempers badly, used for axles, rails, and railway tyres, for cannons and guns, and for parts of machines destined to resist bending and torsion; (3)hard steel, carbon 0·35 to 0·50 p.c., breaking weight 60 to 70 kilos per square millimetre, extension 10 to 15 p.c., cannot be welded, takes a temper; used for rails, all kinds of springs, swords, parts of machinery in motion subjected to friction, spindles of looms, hammers, spades, hoes, &c.; (4)very hard steel, carbon 0·5 to 0·65 p.c., tensile breaking weight 70 to 80 kilos, extension 5 to 10 p.c., does not weld, but tempers easily; used for small springs, saws, files, knives and similar instruments.

The properties of ordinarywrought ironare well known. The best iron is the most tenacious—that is to say, that which does not break up when struck with the hammer or bent, and yet at the same time is sufficiently hard. There is, however, a distinction between hard and soft iron. Generally the softest iron is the most tenacious, and can best be welded, drawn into wire, sheets, &c. Hard, especially tough, iron is often characterised by its breaking when bent, and is therefore very difficult to work, and objects made from it are less serviceable in many respects. Soft iron is most adapted for making wire and sheet iron and such small objects as nails. Soft iron is characterised by its attaining a fibrous fracture after forging, whilst tough iron preserves its granular structure after this operation. Certain sorts of iron, although fairly soft at the ordinary temperature, become brittle when heated and are difficult to weld. These sorts are less suitable for being worked up into small objects. The variety of the properties of iron depends on the impurities which it contains. In general, the iron used in the arts still contains carbon and always a certain quantity of silicon, manganese, sulphur, phosphorus, &c. A variety in the proportion of these component parts changes the quality of the iron. In addition to this the change which soft wrought iron, having a fibrous structure, undergoes when subjected to repeated blows and vibrations is considerable; it then becomes granular and brittle. This to a certain degree explains the want of stability of some iron objects—such as truck axles, which must be renewed after a certain term of service, otherwise they become brittle. It is evident that there are innumerable intermediate transitions from wrought iron to steel and cast iron.

At the present day the greater part of the cast iron manufactured is converted into steel, generally cast steel (Bessemer's and Martin's). I may add the Urals, Donetz district, and other parts of Russia offer the greatest advantages for the development of an iron industry, because these localities not only contain vast supplies of excellent iron ore, but also coal, which is necessary for smelting it.

[11]According to information supplied by A. T. Skinder's experiments at the Oboukoff Steel Works, 140 volumes of liquid molten steel give 128 volumes of solid metal. By means of a galvanic current of great intensity and dense charcoal as one electrode, and iron as the other, Bernadoss welded iron and fused holes through sheet iron. Soft wrought iron, like steel and soft malleable cast iron, may be melted in Siemens' regenerative furnaces, and in furnaces heated with naphtha.

[11]According to information supplied by A. T. Skinder's experiments at the Oboukoff Steel Works, 140 volumes of liquid molten steel give 128 volumes of solid metal. By means of a galvanic current of great intensity and dense charcoal as one electrode, and iron as the other, Bernadoss welded iron and fused holes through sheet iron. Soft wrought iron, like steel and soft malleable cast iron, may be melted in Siemens' regenerative furnaces, and in furnaces heated with naphtha.

[11 bis]Gore (1869), Tait, Barret, Tchernoff, Osmond, and others observed that at a temperature approaching 600°—that is, between dark and bright red heat—all kinds of wrought iron undergo a peculiar change calledrecalescence,i.e.a spontaneous rise of temperature. If iron be considerably heated and allowed to cool, it may be observed that at this temperature the cooling stops—that is, latent heat is disengaged, corresponding with a change in condition. The specific heat, electrical conductivity, magnetic, and other properties then also change. In tempering, the temperature of recalescence must not be reached, and so also in annealing, &c. It is evident that a change of the internal condition is here encountered, exactly similar to the transition from a solid to a liquid, although there is no evident physical change. It is probable that attentive study would lead to the discovery of a similar change in other substances.

[11 bis]Gore (1869), Tait, Barret, Tchernoff, Osmond, and others observed that at a temperature approaching 600°—that is, between dark and bright red heat—all kinds of wrought iron undergo a peculiar change calledrecalescence,i.e.a spontaneous rise of temperature. If iron be considerably heated and allowed to cool, it may be observed that at this temperature the cooling stops—that is, latent heat is disengaged, corresponding with a change in condition. The specific heat, electrical conductivity, magnetic, and other properties then also change. In tempering, the temperature of recalescence must not be reached, and so also in annealing, &c. It is evident that a change of the internal condition is here encountered, exactly similar to the transition from a solid to a liquid, although there is no evident physical change. It is probable that attentive study would lead to the discovery of a similar change in other substances.

[12]The particles of steel are linked together or connected more closely than those of the other metals; this is shown by the fact that it only breaks with a tensile strain of 50–80 kilos per sq. mm., whilst wrought iron only withstands about 30 kilos, cast iron 10, copper 35, silver 23, platinum 30, wood 8. The elasticity of iron, steel, and other metals is expressed by the so-calledcoefficient of elasticity. Let a rod be taken whose length is L; if a weight, P, be hung from the extremity of it, it will lengthen tol. The less it lengthens under other equal conditions, the more elastic the material, if it resumes its original length when the weight is removed. It has been shown by experiment that the increase in lengthl, due to elasticity, is directly proportional to the length L and the weight P, and inversely proportional to the section, but changes with the material. The coefficient of elasticity expresses that weight (in kilos per sq. mm.) under which a rod having a square section taken as 1 (we take 1 sq. mm.) acquires double the length by tension. Naturally in practice materials do not withstand such a lengthening, under a certain weight they attain a limit of elasticity,i.e.they stretch permanently (undergo deformation). Neglecting fractions (as the elasticity of metals varies not only with the temperature, but also with forging, purity, &c.), the coefficient of elasticity of steel and iron is 20,000, copper and brass 10,000, silver 7,000, glass 6,000, lead 2,000, and wood 1,200.

[12]The particles of steel are linked together or connected more closely than those of the other metals; this is shown by the fact that it only breaks with a tensile strain of 50–80 kilos per sq. mm., whilst wrought iron only withstands about 30 kilos, cast iron 10, copper 35, silver 23, platinum 30, wood 8. The elasticity of iron, steel, and other metals is expressed by the so-calledcoefficient of elasticity. Let a rod be taken whose length is L; if a weight, P, be hung from the extremity of it, it will lengthen tol. The less it lengthens under other equal conditions, the more elastic the material, if it resumes its original length when the weight is removed. It has been shown by experiment that the increase in lengthl, due to elasticity, is directly proportional to the length L and the weight P, and inversely proportional to the section, but changes with the material. The coefficient of elasticity expresses that weight (in kilos per sq. mm.) under which a rod having a square section taken as 1 (we take 1 sq. mm.) acquires double the length by tension. Naturally in practice materials do not withstand such a lengthening, under a certain weight they attain a limit of elasticity,i.e.they stretch permanently (undergo deformation). Neglecting fractions (as the elasticity of metals varies not only with the temperature, but also with forging, purity, &c.), the coefficient of elasticity of steel and iron is 20,000, copper and brass 10,000, silver 7,000, glass 6,000, lead 2,000, and wood 1,200.

[13]Paraffin is one of the best preservatives for iron against oxidation in the air. I found this by experiments about 1860, and immediately published the fact. This method is now very generally applied.

[13]Paraffin is one of the best preservatives for iron against oxidation in the air. I found this by experiments about 1860, and immediately published the fact. This method is now very generally applied.

[14]See Chapter XVIII., Note34 bis. Based on the rapid oxidation of iron and its increase in volume in the presence of water and salts of ammonium, a packing is used for water mains and steam pipes which is tightly hammered into the socket joints. This packing consists of a mixture of iron filings and a small quantity of sal-ammoniac (and sulphur) moistened with water; after a certain lapse of time, especially after the pipes have been used, this mass swells to such an extent that it hermetically seals the joints of the pipes.

[14]See Chapter XVIII., Note34 bis. Based on the rapid oxidation of iron and its increase in volume in the presence of water and salts of ammonium, a packing is used for water mains and steam pipes which is tightly hammered into the socket joints. This packing consists of a mixture of iron filings and a small quantity of sal-ammoniac (and sulphur) moistened with water; after a certain lapse of time, especially after the pipes have been used, this mass swells to such an extent that it hermetically seals the joints of the pipes.


Back to IndexNext