[25]In a dialyser, Vol. I. p. 63, Note18.[25 bis]The different states in which the hydrates of alumina occur and are prepared resemble similar varieties of the hydrates of the oxides of iron and chromium, of molybdic and tungstic acids, as well as of phosphoric and silicic acids, of many sulphides, proteid substances, &c. We shall therefore have occasion to recur to this subject in the further course of this work.The most remarkable peculiarity of Graham's solution is that it solidifies on litmus paper, and leaves a blue ring on it, which shows the alkaline—that is, basic—character of the alumina in such a solution. If in the dialysis the basic hydrochloric acid salt be replaced by a similar acetic acid salt, a hydrosol of alumina is obtained which does not act upon litmus.[26]Compounds of alumina with bases (aluminates,seeNote21) are sometimes met with in nature. Such are spinel (seep.65), MgO,Al2O3= MgAl2O4, chrysoberyl, BeAl2O4, and others. Magnetic oxide of iron, FeO,Fe2O3= Fe3O4, and compounds like it, belong to the same class. Here we evidently have a case of combination ‘by analogy,’ as in solutions and alloys, accompanied by the formation of strictly definite saline compounds, and such instances form a clear transition from so-called solutions and certain mixtures to the type of true salts.[27]Not only aluminium acetate (Note24), but also every other aluminium salt with a volatile acid, parts with its acid on heating an aqueous solution—that is, is decomposed by water, and forms either basic salts or a hydrate of alumina. By dissolving aluminium hydroxide in nitric acid we may easily obtain a well-crystallisingaluminium nitrate, Al(NO3)3,9H2O, which fuses at 73° without decomposing (Ordway), gives a basic salt, 2Al2O3,6HNO3, at 100°, and at 140° leaves the aluminium hydroxide perfectly free from the elements of nitric acid. But the solutions of this salt, like those of the acetate, are also able to yield aluminium hydroxide. From all this it is evident that we must suppose that the solutions of this and similar salts contain an equilibrated dissociated system, containing the salt, the acid, and the base, and their compounds with water, as well as partly the molecules of water itself. Such examples much more clearly confirm those conceptions of solutions which are given in the first chapter than a general preliminary acquaintance with the subject can do.[28]As an example of native basic salts we may citealunite, or alum-stone (sp. gr. 2·6), which sometimes occurs in crystals, but more frequently in fibrous masses. It has been found in masses in the Caucasus (at Zaglik, forty versts distance from Elizabetpol), and at Tolfa, near Rome. Its composition is K2O,3Al2O3,4SO3,6H2O (alunite contains 9H2O). It is soluble in water but not decomposed by it, but after being slightly ignited it gives up alum to it. It may be artificially prepared by heating a mixture of alum with aluminium sulphate in a closed tube at 230°.[29]As the colloidal properties are particularly sharply developed in those oxides (Al2O3, SiO2, MoO3, SnO2, &c.) which show (like water also) the properties of feeble bases and feeble acids, there is probably some causal reason for this coincidence, all the more so since among organic substances—gelatins, albumins, &c.—the representatives of the colloids also have the property of feebly combining with bases and acids.[30]Since Deville's experiments the question of the density of aluminium chloride has been frequently re-investigated. The subject has more especially occupied the attention of Nilson, Pettersson, Friedel and Crafts, and V. Meyer and his collaborators. In general, it has been found that at low temperatures (up to 440°) the density is constant, and indicates a molecule Al2Cl6; whilst depolymerisation probably (although it is not yet certain) takes place at higher temperatures, and the molecule AlCl3is obtained. Along with this there has been, and still is, a difference of opinion as to the vapour density of aluminium ethyl and methyl—whether for instance, Al(CH3)3or Al2(CH3)6expresses the molecule of the latter. The interest of these researches is intimately connected with the question of the valency of aluminium, if we hold to the opinion that elements in their various compounds have a constant and strictly definite valency. In this case the formula AlCl3or Al(CH3)3would show that Al is trivalent, and that consequently the compounds of aluminium are Al(OH)3, AlO3Al, and, in general, AlX3. But if the molecule be Al2Cl6, it is—for the followers of the doctrine of the invariable valency of the elements—incompatible with the idea of the trivalency of aluminium, and they assume it to be quadrivalent like carbon, likening Al2Cl6to ethane C2H6= CH3CH3, although this does not explain why Al does not form AlCl4, or, in general, AlX4. In this work another supposition is introduced; according to this, although aluminium, as an element of group III., gives compounds of the type AlX5, this does not exclude the possibility of these molecules combining with others, and consequently witheach other—that is, forming Al2X6; just as the molecules of univalent elements exist either as H2, Cl2, &c., or as Na, and the molecules of bivalent elements either as Zn, or as S2, or even S6. In the first place it must be recognised that the limiting form does not exhaust all power of combination, it only exhausts the capacity of the element for combining with X's, but the saturated substance may afterwards combine withwhole molecules, which fact is best proved by the capacity of substances to form crystalline compounds with water, ammonia, &c. But in some substances this faculty for further combinations is less developed (for instance, in carbon tetrachloride, CCl4), whilst in others it is more so. AlX3combines with many other molecules. Now if a limiting form, which does not combine with new X's, nevertheless combines with other whole molecules, it will naturally in some instances combine with itself, will polymerise. In this manner the mind clearly grasps the idea that the same forces which cause S2to unite itself to Cl2, or C2H4to Cl2, &c., also unite molecules of a similar kind together; thuspolymerisationceases to be an isolated fragmentary phenomenon, and chemical combinations ‘by analogy’ acquire a particular and important interest. In conformity with these views the following proposition may be made concerning the compounds of aluminium. They are of the type AlX3in the limit, like BX3, but those limiting forms are still able to combine to form AlX3,RZ, and the aluminium chloride is a compound of this kind—i.e.(AlX3)2. In boron, for example, in BCl3, this tendency to form further compounds is less developed. Hence boron chloride appears as BCl3, and not (BCl3)2. Polymerisation is not only possible when a substance has not attained the limit (although it is more probable then), but also when the limiting form has been reached, if only the latter has the faculty of combining with other whole molecules. We may therefore conclude that aluminium, like boron, is trivalent in the same sense that lithium and sodium are univalent, magnesium bivalent, and carbon tetravalent. In a word, there is no reason to consider that aluminium is capable of forming compounds AlX4, and in that way to explain the existence of the molecule Al2Cl6. Furthermore, there are many reasons for thinking that AlF3, Al2O3, and other empirical formulæ do not express the molecular weights of these compounds, but that they are much higher: AlnF3n, Al2nO3n. In recent years convincing proofs of the truth of the above statements have been obtained, and of the independent existence of AlX3in a state of vapour; for Comb has determined the vapour density of the volatile acetyl of aluminium acetate Al(C3H7O2)3(which melts at 193°, boils at 315°, and distils without a trace of decomposition), and has found that it exactly corresponds to the above molecular composition. On the other hand, Louise and Roux (1889) by employing the method of ‘freezing point depression’ of solutions (Chapter I., Note49) found that the molecules Al2(C2H5)6and Al2(C5H11)6, &c., correspond to the type Al2X6. Thus it may now be accepted that the molecular composition of the compounds of aluminium in their simplest form is AlX3, but that they may polymerise and give Al2X6or, in general, Al2X3n.[31]In the case of gallium, as a close analogue of aluminium, Lecoq de Boisbaudran (1880) showed that probably the molecule gallium chloride contains Ga2Cl6at low temperatures and high pressures, and that it dissociates into GaCl3at high temperatures and low pressures. The molecule of indium chloride seems to exist only in the simplest form, InCl3.[32]The pure salt (16H2O) is not hygroscopic. In the presence of impurities the amount of water increases to 18H2O, and the salt becomes hygroscopic.[33]The common form of crystals of alums is octahedral, but if this solution contains a certain small excess of alumina above the ratio 2Al(OH)3to K2SO4, and not more sulphuric acid than 3H2SO4to 2Al(OH)3, then it easily forms combinations of the cube and octahedron, and these alums are called ‘cubic’ alums. They are valued by the dyer because they can contain no iron in solution, for oxide of iron is precipitated before alumina, and if the latter be in excess there can be no oxide of iron present. These alums were long exported from Italy, where they were prepared from alunite (Note28).[33 bis]It is also formed by the action of hydrochloric acid upon metallic aluminium (Nilson and Pettersson), by heating alumina in a mixture of the vapours of naphthaline and HCl (Faure, 1889), and by the action of dry HCl upon an alloy of 14 p.c., or more of Al and copper (Mobery).[34]Aluminium chloride fuses at 178°, boils at 183° (pressure 755 mm., at 168° under a pressure of 250 mm., and at 213° under 2,278 mm.), according to Friedel and Crafts, so that it boils immediately after fusion. According to Seubert and Pallard (1892), Al2Cl6fuses at 193°. Aluminium bromide fuses at about 92°, and the iodide at 185° according to Weber, at 125° according to Deville and Troost.All these halogen compounds of aluminium are soluble in water.Aluminium fluoride, AlF3(AlnF3n), is insoluble in water. It is obtained by dissolving alumina in hydrofluoric acid; a solution is then formed, but it contains an excess of hydrofluoric acid. When this solution is evaporated, crystals containing Al2F6,HF,H2O are obtained. They are also insoluble in water. By saturating the above solution with a large quantity of alumina, and then evaporating, we obtain crystals having the composition Al2F6,7H2O. All these compounds, when ignited, leave insoluble anhydrous aluminium fluoride. It forms colourless rhombohedra, which are non-volatile, of sp. gr. 3·1, and are decomposed by steam into alumina and hydrofluoric acid. The acid solution apparently contains a compound which has its corresponding salts; by the addition of a solution of potassium fluoride, a gelatinous precipitate of AlK3F6is obtained. A similar compound occurs in nature—namely, AlNa3F6, orcryolite, sp. gr. 3·0.[34 bis]In this respect aluminium chloride resembles the chloranhydrides of the acids, and probably in the aqueous solution the elements of the hydrochloric acid are already separated, at least partially, from the aluminium hydroxide. The solution may also be obtained by the action of aluminium hydroxide on hydrochloric acid.[35]Here we see an instance in confirmation of what has been said in Note30—i.e.the action of the molecule AlCl3. We will cite still another instance confirming the power of alumina to enter into complex combinations. Alumina, moistened with a solution of calcium chloride, gives, when ignited, an anhydrous crystalline substance (tetrahedral), which is soluble in acids, and contains (Al2O3)6(CaO)10CaCl2. Even clay forms a similar stony substance, which might be of practical use.Among the most complex compounds of aluminium,ultramarine, orlapis lazuli, must be mentioned. It occurs in nature near Lake Baikal, in crystals, some colourless and others of various tints—green, blue, and violet. When heated it becomes dull and acquires a very brilliant blue colour. In this form it is used for ornaments (like malachite), and as a brilliant blue pigment. At the present time ultramarine is prepared artificially in large quantities, and this process is one of the most important conquests of science; for the blue tint of ultramarine has been the object of many scientific researches, which have culminated in the manufacture of this native substance. The most characteristic property of ultramarine is that when placed in sulphuric acid it evolves hydrogen sulphide and becomes colourless. This shows that the blue colour of ultramarine is due to the presence of sulphides. If clay be heated in a furnace with sodium sulphate and charcoal (forming sodium sulphide) without access of air, a white mass is obtained, which becomes green when heated in the air, and when treated with water leaves a colourless substance known as ‘white ultramarine.’ When ignited in the air it absorbs oxygen and turns blue. The coloration is ascribed to the presence of metallic sulphides or polysulphides, but it is most probable that silicon sulphide, or its oxysulphide, SiOS, is present. At all events the sulphides play an important part, but the problem is not yet quite settled. The formula Na8Al6Si6O24S is ascribed to white ultramarine. The green probably contains more sulphur, and the blue a still larger quantity. The last is supposed to contain Na8Al6Si6O24S3. It is more probable (according to Guckelberger, 1882) that the composition of the blue varies between Si18Al18Na20S6O71and Si18Al12Na20S6O69. The latter may be expressed as (Al2O3)6(SiO2)18(Na2O)10S6O5, which would indicate the presence of insufficiently-oxidised sulphur in ultramarine.[36]At the ordinary temperature aluminium does not decompose water, but if a small quantity of iodine, or of hydriodic acid and iodine, or of aluminium iodide and iodine, is added to the water, then hydrogen is abundantly evolved. It is evident that here the reaction proceeds at the expense of the formation of Al2I6, and that this substance, with water, gives aluminium hydroxide and hydriodic acid, which, with aluminium, evolves hydrogen. Aluminium probably belongs to those metals having a greater affinity for oxygen than for the halogens (Note36 tri).[36 bis]As an example we may mention that if mercury comes in contact with metallic aluminium and especially if it be rubbed upon the surface of aluminium moistened with a dilute acid, the Al becomes rapidly oxidised (Al2O3being formed). The oxidation is accompanied by a very curious appearance, as it were of wool (or fur) formed by threads of oxide of aluminium growing upon the metal. This was first pointed out by Cass in 1870, and subsequently by A. Sokoleff in 1892. This interesting and curious phenomenon has not to my knowledge been further studied.I think it necessary, however, to add that according to Lubbert and Rascher's researches (1891), wine, coffee, milk, oil, urine, earth, &c., have no more action upon aluminium vessels than upon copper, tin, and other similar articles. In the course of four months ordinary vinegar dissolved 0·35 grm. of Al per sq. centimetre, whilst a 5 per cent. solution of common salt dissolved about 0·05 grm. of aluminium. Ditte (1890) showed that Al is acted upon by nitric and sulphuric acids, although only slowly (owing to the formation of a layer of gas, as in ChapterXVI., Note10) and that the reaction proceeds much more rapidly in vacuo or in the presence of oxidising agents. Al is even oxidised by water on the surface, but the thin coating of alumina formed prevents further action. In the course of twelve hours nitric acid sp. gr. 1·383 dissolved at 17° about 20 grms. of aluminium (containing only a small amount of Si, 1¼ p.c.) from a sq. metre of surface (Le Rouart, 1891).[36 tri]In addition to the data given in ChaptersXI.,XIII., and in Chapter XV., Note19, the following are the amounts of heat in thousands of units, evolved in the formation of the oxides and chlorides from the metals taken in gram-atomic quantities:Na2O 100;MgO 140*;⅓Al2O3120*;⅓Fe2O363*;Na2Cl2195;MgCl2151;⅓Al2Cl6107;⅓Fe2Cl664.The asterisks following the oxides of Mg, Al and Fe call attention to the fact that the existing data refer to the formation of the hydrates of these metals, from which the heat of formation of the anhydrous oxides may easily be assumed, because the heat of hydration (for example, MgO + H2O) has not yet been determined.[37]Cryolite under the action of the current at about 1,000° gives off the vapour of Na which reduces the Al, but it recombines with the liberated fluorine and again passes into the fused mass. It is important to obtain aluminium at as low a temperature as possible, but the action proceeds far more easily with the solution (alloy) of oxide of aluminium in cryolite.[37 bis]The cost of working this process can be brought as low as 20 cents per lb. or about 2½ fcs. per kilo. In England, Castner, prior to the introduction of the electric method, obtained Al by taking a mixture of 1,200 parts of the double salt NaAlCl4, 600 parts of cryolite, and 350 parts of Na, and obtained about 120 parts of Al, so that the cost of this process is about 1½ time that of the electric method.Buchner found that sulphide of aluminium, Al2S3, is more suitable for the preparation of Al by the electrolytic method than Al2O3, but since the formation of Al2S3by heating a mixture of Al2O3, and charcoal in sulphur vapour proceeds with difficulty, Gray (1894) proposed to prepare Al2S3by heating a mixture of charcoal, sulphate of aluminium, and sodium fluoride. The resultant molten mixture of NaF and Al2S3gives aluminium directly under the action of an electric current.[38]Aluminium, when heated to the high temperature of the electric furnace, dissolves carbon and forms an alloy which, according to Moissan, when rapidly treated withcoldhydrochloric acid leaves a compound C3Al4in the form of a yellow crystalline transparent powder, sp. gr. 2·36 (seeChapter VIII. Note12 bis). Thiscarbide of aluminiumC3Al4corresponds to methane CH4, for Al replaces H3and carbon O2or H4, that is, it is equal to three molecules of CH4with the substitution of twelve atoms of H in it by four of Al, or, what is the same thing, it is the duplicated molecule of Al2O3with the substitution of O6by C3. And indeed C3Al4under the action of water forms marsh gas and hydrate of alumina: C3Al4+ 12H2O = 3CH4+ 4Al(OH)3. This decomposition gives a new aspect of the synthesis of hydrocarbons, and quite agrees with what should follow from the action of water upon the metallic carbides as applied by me for explaining the origin of naphtha (Chapter VIII., Notes57,58, and59). Frank (1894) by heating Al with carbon obtained a similar although not quite pure compound, which (like CaC2) evolves acetylene with hydrochloric acidi.e.probably has the composition AlC3.[38 bis]The same is the case in group IV. of the uneven series, where tin is the most fusible. Thus the temperature of fusion rises on both sides of tin (silicon is very infusible; germanium, 900°; tin, 230°; lead, 326°); as it also does in group III., starting from gallium, for indium fuses at 176°, less easily than gallium but more easily than thallium (294°). Aluminium also fuses with greater difficulty than gallium.[39]The spectrum of gallium is characterised by a brilliant violet line of wave-length = 417 millionths of a millimetre. The metal can be separated from the solution, containing a mixture of the many metals occurring in the zinc blende, by making use of the following reactions: it is precipitated by sodium carbonate in the first portions; it gives a sulphate which, on boiling, easily decomposes into a basic salt, very slightly soluble in water; and it is deposited in a metallic state from its solutions by the action of a galvanic current. It fuses at +30°, and, when once fused, remains liquid for some time. It oxidises with difficulty, evolves hydrogen from hydrochloric acid and from potassium hydroxide, and, like all feeble bases (for instance, alumina and indium oxide), it easily forms basic salts. The hydroxide is soluble in a solution of caustic potash, and slightly so in caustic ammonia. Gallium forms volatile GaCl3and GaCl2(Nilson and Pettersson).[40]The vapour density of indium chloride, InCl3(Note31), determined by Nilson and Pettersson, confirms this atomic weight. Indium is separated from zinc and cadmium, with which it occurs, by taking advantage of the fact that its hydroxide is insoluble in ammonia, that the solutions of its salts give indium when treated with zinc (hence indium is dissolved after zinc by acids) and that they give a precipitate with hydrogen sulphide even in acid solutions. Metallic indium is grey, has a sp. gr. of 7·42, fuses at 176°, and does not oxidise in the air; when ignited, it first gives a black suboxide, In4O3, then volatilises and gives a brown oxide, In2O3, whose salts, InX3, are also formed by the direct action of acids on the metal, hydrogen being evolved. Caustic alkalis do not act on indium, from which it is evident that it is less capable of forming alkaline compounds than aluminium is; however, with potassium and sodium hydroxides, solutions of indium salts give a colourless precipitate of the hydroxide, which is soluble in an excess of the alkali, like the hydroxides of aluminium and zinc. Its salts do not crystallise. Nilson and Pettersson (1889), by the action of HCl upon In, obtained volatile crystalline, InCl2, and by treating this compound with In, InCl also.[41]Thallium was afterwards found in certain micas and in the rare mineral crookesite, containing lead, silver, thallium, and selenium. Its isolation depends on the fact that in the presence of acids thallium forms thallous compounds, TlX. Among these compounds the chloride and sulphate are only slightly soluble, and give with hydrogen sulphide a black precipitate of the sulphide Tl2S, which is soluble in an excess of acid, but insoluble in ammonium sulphide.[41 bis]The best method of preparing thallous hydroxide, TlOH, is by the decomposition of the requisite quantity of baryta by thallous sulphate, which is slightly soluble in water; barium sulphate is then obtained in the precipitate and thallous hydroxide in solution. This solubility of the hydroxide is exceedingly characteristic, and forms one of the most important properties of thallium. These lower (thallous) compounds are of the type TlX, and recall the salts of the alkalis. The salts TlX are colourless, do not give a precipitate with the alkalis or ammonia, but are precipitated by ammonium carbonate, because thallous carbonate, Tl2CO3, is sparingly soluble in water. Platinic chloride gives the same kind of precipitate as it does with the salts of potassium—that is, thallous platinochloride, PtTl2Cl6. All these facts, together with the isomorphism of the salts TlX with those of potassium, again point out what an important significance the types of compounds have in the determination of the character of a given series of substances. Although thallium has a greater atomic weight and greater density than potassium, and although it has a less atomic volume, nevertheless thallous oxide is analogous to potassium oxide in many respects, for they both give compounds of the same type, RX. We may further remark that thallous fluoride, TlF, is easily soluble in water as well as thallous silicofluoride, SiTl2F6, but that thallous cyanide, TlCN, is sparingly soluble in water. This, together with the slight solubility of thallous chloride, TlCl, and sulphate, Tl2SO4, indicates an analogy between TlX and the salts of silver, AgX.As regards the higher oxide or thethallic oxide, Tl2O3, the thallium is trivalent in it—that is, it forms compounds of the type TlX3. The hydroxide, TlO(OH), is formed by the action of hydrogen peroxide on thallous oxide, or by the action of ammonia on a solution of thallic chloride, TlCl3. It is obtained as a brown precipitate, insoluble in water but easily soluble in acids, with which it gives thallic salts, TlX3. Thallic chloride, which is obtained by cautiously heating the metal in a stream of chlorine, forms an easily fusible white mass, which is soluble in water and able to part with two-thirds of its chlorine when heated. An aqueous solution of this salt yields colourless crystals containing one equivalent of water. It is evident from the above that all the thallic salts can easily be reduced to thallous salts by reducing agents such as sulphurous anhydride, zinc, &c. Besides these salts, thallic sulphate, Tl2(SO4)3,7H2O, thallic nitrate Tl(NO3)3,4H2O, &c., are known. These salts are decomposed by water, like the salts of many feeble basic metals—for example, aluminium.[42]The specific heat of cerium determined (1870) by me, and afterwards confirmed by Hillebrand, corresponds with that atomic weight of cerium according to which the composition of two oxides should be Ce2O3and CeO2. Hillebrand also obtained metallic lanthanum and didymium by decomposing their salts by a galvanic current, and he found their specific heats to be near that of cerium and about 0·04, and it is therefore justifiable to give them an atomic weight near that of cerium, as was done on the basis of the periodic law. Up to 1870 yttrium oxide was also given the formula RO. Having re-determined the equivalent of yttrium oxide (with respect to water), and found it to be 74·6, I considered it necessary to also ascribe to it the composition Y2O3, because then it falls into its proper place in the periodic system. If the equivalent of the oxide to water be 74·6, it contains 58·6 of metal per 16 of oxygen, and consequently one part by weight of hydrogen replaces 29·3 of yttrium, and if it be regarded as bivalent (oxide RO), it would not, by its atomic weight 58·6, find a place in the second group. But if it be taken as trivalent—that is, if the formula of its oxide be R2O3and salts RX3—then Y = 88, and a position is open for it in the third group in the sixth series after rubidium and strontium. These alterations in the atomic weights of the cerite and gadolinite metals were afterwards accepted by Clève and other investigators, who now ascribe a formula R2O3to all the newly discovered oxides of these metals. But still the position in the periodic system of certain elements—for example of holmium, thulium, samarium, and others—has not yet been determined for want of a sufficient knowledge of their properties in a state of purity.[43]So, for example, in 1871, in theJournal of the Russian Physico-Chemical Society(p. 45) and in Liebig'sAnnalen, Supt. Band viii. 198, I deduced, on the basis of the periodic law, an atomic weight 44 for ekaboron, and Nilson in 1888 found that of scandium, which is ekaboron, to be Sc = 44·03, The periodic law showed that the specific gravity of the ekaboron oxide would be about 8·5, that it would have decided but feeble basic properties and that it would give colourless salts. And this proved to be the case with scandium oxide. In describing scandium, Clève and Nilson acknowledge that the particular interest attached to this element is due to its complete identity with the expected element ekaboron. And this accurate foretelling of properties could only be arrived at by admitting that alteration of the atomic weights of the cerite and gadolinite metals which was one of the first results of the application of the periodic system of the elements to the interpretation of chemical facts. In my first memoirs, namely, in theBulletin of the St. Petersburg Academy of Sciences, vol. viii. (1870), and in Liebig'sAnnalen(l. c.p. 168) and others, I particularly insisted on the necessity of altering the then accepted atomic weights of cerium, lanthanum, and didymium. Clève, Höglund, Hillebrand and Norton, and more especially Brauner, and others accepted the proposed alteration, and gave fresh proofs in favour of the proposed alterations of these atomic weights. The study of the fluorides was particularly important. Placing cerium in the fourth group, the composition of its highest oxide would then be CeO2, and its compounds CeX4and the lower oxide, Ce2O3or CeX3. Brauner obtained the fluoride CeF4,H2O corresponding with the first, and a double crystalline salt, 3KF,2CeF4,2H2O, without any admixture of compound of the lower grade CeX3, which generally occur together with the majority of salts corresponding with CeX4. It will be seen from these formulæ and from the tables of the elements, that cerium and didymium do not belong to the third group, which is now being described, but we mention them here for convenience, as all the cerite and gadolinite metals have much in common. These metals, which are rare in nature, resemble each other in many respects, always accompany each other, are with difficulty isolated from each other, and stand together in the periodic system of the elements; they have acquired a peculiar interest owing to their having been in 1870 the objects of the study of Marignac, Delafontaine, Soret, Lecoq de Boisbaudran, Brauner, Clève, Nilson, the professors of Upsala, and others.The cerite and gadolinite metals occur in rare siliceous minerals from Sweden, America, the Urals, and Baikal, such as cerite (in Sweden), gadolinite, and orthite; and in still rarer minerals formed by titanic, niobic, and tantalic acids, such as euxenite in Norway and America, and samarskite in Norway, the Urals and America, and in a few rare fluorides and phosphates. Among the latter, monazite is found in somewhat considerable quantities in Brazil and North Carolina; this contains the phosphate of cerium, CePO4(= Ce2O3P2O3), together with didymium, thorium and lanthanum (according to W. Edron and Shapleigh's analyses), and is now used for preparing that mixture of the oxides of the rare metals (especially ThO2, Ce2O3, La2O3, &c.), which is employed for incandescent burners (Auer von Welsbach), as it has been found by experiment that these oxides when raised to incandescence in a non-luminous gas flame, give a far more brilliant flame with a smaller consumption of gas, besides being suitable for such non-luminous gases as water gas. The insufficiency of material to work upon, and the difficulty of separating the oxides from each other, are the chief reasons why the composition of the compounds of these rare metals is so imperfectly known. Cerite is the most accessible of these minerals. Besides silica it contains more than 50 p.c. of the oxides of cerium, lanthanum (from 4 p.c.), and didymium. The decomposition of its powder by sulphuric acid gives sulphates, all of which are soluble in water. The other minerals mentioned above are also decomposed in the same manner. The solution of sulphates is precipitated with free oxalic acid, which forms salts insoluble in water and dilute acids with all the cerite and gadolinite oxides. The oxides themselves are obtained by igniting the oxalates. When ignited in the air the cerium passes from its ordinary oxide Ce2O3into the higher oxide CeO2, which is so feeble a base that its salts are decomposed by water, and it is insoluble in dilute nitric acid. Therefore it is always possible to remove all the cerium oxide by repeated ignitions and solutions in sulphuric acid. The further separation of the metals is mainly based on four methods employed by many investigators.(a) A solution of the mixed salts is treated with an excess of solid potassium sulphate. Double salts, such as Ce2(SO4)3,3K2SO4, are thus formed. The gadolinite metals, namely yttrium, ytterbium, and erbium, then remain in solution—that is, their double salts are soluble in a solution of potassium sulphate, whilst the cerite metals—namely, cerium, lanthanum, and didymium—are precipitated, that is, their double salts are insoluble in a saturated solution of potassium sulphate. This ordinary method of separation, however, appears from the researches of Marignac to be so untrustworthy that a considerable amount of didymium and the other metals remain in the soluble portion, owing to the fact that, although individually insoluble, they are dissolved when mixed together. Thus erbium and terbium occur both in the solution and precipitate. Nevertheless, beryllium, yttrium, erbium, and ytterbium belong to the soluble, and scandium, cerium, lanthanum, didymium, and thorium to the insoluble portion. The insoluble salt of scandium, for example (i.e.insoluble in a solution of potassium sulphate), has a composition Sc2(SO4)3,3K2SO4.(b) The oxides obtained by the ignition of the oxalates are dissolved in nitric acid (the nitrates of the cerite metals easily form double salts with those of the alkali metals, and as some—for example, the ammonio-lanthanum salt—crystallise very well, they should be studied and applied to the analytical separation of these metals), the solution is then evaporated to dryness, and the residue fused. All nitrates are destroyed by heat; those of aluminium and iron, &c., very easily, those of the cerite and gadolinite metals also easily (although not so easily as the above) but in different degrees and sequence; so that by carrying on the decomposition carefully from the beginning it is possible to destroy the nitrate of only one metal without touching the others, or leaving them as insoluble basic salts. This method, like the preceding and the two following, must be repeated as many as seventy times to attain a really constant product of fixed properties, that is, one in which the decomposed and undecomposed portions contain one and the same oxide. This method, due to Berlin and worked out by Bunsen, has given in the hands of Marignac and Nilson the best results, especially for the separation of the gadolinite metals, ytterbium and scandium.(c) A solution of the salts is partially precipitated by ammonia; that is, the solution is mixed with a small quantity of ammonia insufficient for the precipitation of the entire quantity of the bases (fractional precipitation). Thus, the didymium hydroxide is first precipitated from a mixture of the salts of didymium and lanthanum. A partial separation may be effected by repeating the solution of the precipitate and fractional precipitation, but a perfectly pure product is scarcely attainable.(d) The formates having different degrees of solubility (lanthanum formate 420 parts of water per one of salt, didymium formate 221, cerium formate 360, yttrium and erbium formates easily soluble) give a possible means of separating certain of the gadolinite metals from each other by a method of fractional solution and precipitation, as Bunsen, Bahr, Clève, and others have pointed out.(e) Crookes (1893) took advantage of the fractional precipitation of alcoholic solutions of the chlorides by amylene, and by this means separated, for example, erbium, terbium, and others.(f) Lastly, oxide of thorium ThO2(Chapter VIII., Note59) is separated by means of its solubility in a solution of sodium carbonate.A good method of separating these metals is not known, for they are so like each other. There are also only a fewmethods of distinguishingthem from each other, and we can only add the following four to the above.aThe faculty of oxidising into a higher oxide. This is very characteristic for cerium, which gives the oxides Ce2O3and CeO2or Ce2O4. Didymium also gives one colourless oxide, Di2O3, which is capable of forming salts (of a lilac colour), and another, according to Brauner, Di2O5which is dark brown and does not form salts, so far as is known, and (like ceric oxide) acts as an oxidising agent, like the higher oxides of tellurium, manganese, lead, and others. Lanthanum, yttrium, and many others are not capable of such oxidation. The presence of the higher oxides may be recognised by ignition in a stream of hydrogen, by which means the higher oxides are reduced to the lower, which then remain unaltered.bThe majority of the salts of the gadolinite and cerite metals are colourless, but those of didymium and erbium are rose-coloured, the salts of the higher oxide of cerium, CeX4, yellow, of the higher oxide of terbium, yellow, &c. Thus, the first metals obtained from gadolinite were yttrium, giving colourless, and erbium, giving rose-coloured, salts. Afterwards it was found that the salts of erbium of former investigators contained numerous colourless salts of scandium, ytterbium, &c., so that a coloration sometimes indicates the presence of a small impurity, as was long known to be the case in minerals, and therefore this point of distinction cannot be considered trustworthy.cIn a solid state and in solutions, the salts of didymium, samarium, holmium, &c., give characteristic absorption spectra, as we pointed out in ChapterXIII., and this naturally is connected with the colour of these salts. The most important point is, that those metals which do not give an absorption spectrum—for example, lanthanum, yttrium, scandium, and ytterbium—may be obtained free from didymium, samarium, and the other metals giving absorption spectra, because the presence of the latter may be easily recognised by means of the spectroscope, whilst the presence of the former in the latter cannot be distinguished, and therefore the purification of the former can be carried further than that of the latter. We may further remark that the sensitiveness of the spectrum reaction for didymium is so great that it is possible with a layer of solution half a metre thick to recognise the presence of 1 part of didymium oxide (as salt) in 40,000 parts of water. Cossa determined the presence of didymium (together with cerium and lanthanum) in apatites, limestones, bones, and the ashes of plants by this method. The main group of dark lines of didymium correspond with wave-lengths of from 580 to 570 millionths mm.; and the secondary to about 520, 730, 480, &c. The chief absorption bands of samarium are 472–486, 417, 500, and 559. Besides which, Crookes applied the investigation of the spectra of the phosphorescent light which is emitted by certain earths in an almost perfect vacuum, when an electric discharge is passed through it, to the discovery and characterisation of these rare metals. But it would seem that the smallest admixture of other oxides (for example, bismuth, uranium) so powerfully influences these spectra that the fundamental distinctions of the oxides cannot be determined by this method. Besides which, the spectra obtained by the passage of sparks through solutions or powders of the salts are determined and applied to distinguishing the elements, but as spectra vary with the temperature and elasticity (concentration) this method cannot be considered as trustworthy.dThe most important point of distinction of individual metallic oxides is given by the directdetermination of their equivalent with respect to water—that is, the amount of the oxide by weight which combines (like water) with 80 parts by weight of sulphuric anhydride, SO3, for the formation of a normal salt. For this purpose the oxide is weighed and dissolved in nitric acid, sulphuric acid is then added, and the whole is evaporated to dryness over a water-bath and then heated over a naked flame sufficiently strongly to drive off the excess of sulphuric acid, but so as not to decompose the salt (the product would in that case not be perfectly soluble in water); then, knowing the weight of the oxide and of the anhydrous sulphate, we can find the equivalent of the oxide. The following are the most trustworthy figures in this connection: scandium oxide 45·35 (Nilson), yttrium oxide 75·7 (Clève; according to my determination, 1871—74·6), cerous oxide—that is, the lower form of oxidation of cerium, according to various investigators (Bunsen, Brauner, and others) from 108 to 111, the higher oxide of cerium from 85 to 87, lanthanum oxide, according to Brauner, 108, didymium oxide (in salts of the ordinary lower form of oxidation) about 112 (Marignac, Brauner, Clève), samarium oxide about 116 (Clève), ytterbium oxide 131·3 (Nilson). It may not be superfluous here to draw attention to the fact that the equivalent of the oxides of all the gadolinite and cerite metals for water distribute themselves into four groups with a somewhat constant difference of nearly 30. In the first group is scandium oxide with equivalent 45, in the second, yttrium oxide 76, in the third, lanthanum, cerium, didymium, and samarium oxides with equivalent about 110, and, in the fourth, erbium, ytterbium, and thorium oxides with equivalent about 131. The common difference of period is nearly 45. And if we ascribe the type R2O3to all the oxides—that is, if we triple the weight of the equivalent of the oxide—we shall obtain a difference of the groups nearly equal to 90, which, for two atoms of the metal, forms the ordinary periodic difference of 45. If one and the same type of oxide R2O3be ascribed to all these elements (as now generally accepted, in many cases there being insufficiently trustworthy data), then the atomic weights should be Sc = 44, Y = 89, La = 138, Ce = 140, Di = 144, (neodymium 140, praseodymium 144), Sm = 150, Yb = 173, also terbium 147, holmium 162, alphayttrium 157, erbium 166, thulium 170, decipium 171. It should be observed that there may be instances of basic salts. If, for example, an element with an atomic weight 90 gave an oxide RO2, but salts ROX2, then by counting its oxide as R2O3its atomic weight would be 159.All the points distinguishing many gadolinite and cerite elements have not been sufficiently well established in certain cases (for example, with decipium, thulium, holmium, and others). At present the most certain are yttrium, scandium, cerium, and lanthanum. In the case of didymium, for example, there is still much that is doubtful. Didymium, discovered in 1842 by Mosander after lanthanum, differs from the latter in its absorption spectrum and the lilac-rose colour of its salts. Delafontaine (1878) separated samarium from it. Welsbach showed that it contains two particular elements, neodymium (salts bluish-red) and praseodymium (salts apple-green), and Becquerel (1887) by investigating the spectra of crystals, recognised the presence of six individual elements. Probably, therefore, many of the now recognised elements contain a mixture of various others, and as yet there is not enough confirmation of their individuality. As regards yttrium, scandium, cerium, and lanthanum, which have been established without doubt, I think that, owing to their great rarity in nature and chemical art, it would be superfluous to describe them further in so elementary a work as the present. We may add that Winkler (1891) obtained a hydrogen compound of lanthanum, whose composition (according to Brauner) is La2H3, as would be expected from the composition of Na2H, Mg2H2, &c. C. Winkler (1891), on reducing CeO2with magnesium, also remarked a rapid absorption of hydrogen, and showed that ahydride of cerium, CeH2, corresponding to CaH, and the other similar hydrides of metals of the alkaline earths, is formed (Chapter XIV., Note63).
[25]In a dialyser, Vol. I. p. 63, Note18.
[25]In a dialyser, Vol. I. p. 63, Note18.
[25 bis]The different states in which the hydrates of alumina occur and are prepared resemble similar varieties of the hydrates of the oxides of iron and chromium, of molybdic and tungstic acids, as well as of phosphoric and silicic acids, of many sulphides, proteid substances, &c. We shall therefore have occasion to recur to this subject in the further course of this work.The most remarkable peculiarity of Graham's solution is that it solidifies on litmus paper, and leaves a blue ring on it, which shows the alkaline—that is, basic—character of the alumina in such a solution. If in the dialysis the basic hydrochloric acid salt be replaced by a similar acetic acid salt, a hydrosol of alumina is obtained which does not act upon litmus.
[25 bis]The different states in which the hydrates of alumina occur and are prepared resemble similar varieties of the hydrates of the oxides of iron and chromium, of molybdic and tungstic acids, as well as of phosphoric and silicic acids, of many sulphides, proteid substances, &c. We shall therefore have occasion to recur to this subject in the further course of this work.
The most remarkable peculiarity of Graham's solution is that it solidifies on litmus paper, and leaves a blue ring on it, which shows the alkaline—that is, basic—character of the alumina in such a solution. If in the dialysis the basic hydrochloric acid salt be replaced by a similar acetic acid salt, a hydrosol of alumina is obtained which does not act upon litmus.
[26]Compounds of alumina with bases (aluminates,seeNote21) are sometimes met with in nature. Such are spinel (seep.65), MgO,Al2O3= MgAl2O4, chrysoberyl, BeAl2O4, and others. Magnetic oxide of iron, FeO,Fe2O3= Fe3O4, and compounds like it, belong to the same class. Here we evidently have a case of combination ‘by analogy,’ as in solutions and alloys, accompanied by the formation of strictly definite saline compounds, and such instances form a clear transition from so-called solutions and certain mixtures to the type of true salts.
[26]Compounds of alumina with bases (aluminates,seeNote21) are sometimes met with in nature. Such are spinel (seep.65), MgO,Al2O3= MgAl2O4, chrysoberyl, BeAl2O4, and others. Magnetic oxide of iron, FeO,Fe2O3= Fe3O4, and compounds like it, belong to the same class. Here we evidently have a case of combination ‘by analogy,’ as in solutions and alloys, accompanied by the formation of strictly definite saline compounds, and such instances form a clear transition from so-called solutions and certain mixtures to the type of true salts.
[27]Not only aluminium acetate (Note24), but also every other aluminium salt with a volatile acid, parts with its acid on heating an aqueous solution—that is, is decomposed by water, and forms either basic salts or a hydrate of alumina. By dissolving aluminium hydroxide in nitric acid we may easily obtain a well-crystallisingaluminium nitrate, Al(NO3)3,9H2O, which fuses at 73° without decomposing (Ordway), gives a basic salt, 2Al2O3,6HNO3, at 100°, and at 140° leaves the aluminium hydroxide perfectly free from the elements of nitric acid. But the solutions of this salt, like those of the acetate, are also able to yield aluminium hydroxide. From all this it is evident that we must suppose that the solutions of this and similar salts contain an equilibrated dissociated system, containing the salt, the acid, and the base, and their compounds with water, as well as partly the molecules of water itself. Such examples much more clearly confirm those conceptions of solutions which are given in the first chapter than a general preliminary acquaintance with the subject can do.
[27]Not only aluminium acetate (Note24), but also every other aluminium salt with a volatile acid, parts with its acid on heating an aqueous solution—that is, is decomposed by water, and forms either basic salts or a hydrate of alumina. By dissolving aluminium hydroxide in nitric acid we may easily obtain a well-crystallisingaluminium nitrate, Al(NO3)3,9H2O, which fuses at 73° without decomposing (Ordway), gives a basic salt, 2Al2O3,6HNO3, at 100°, and at 140° leaves the aluminium hydroxide perfectly free from the elements of nitric acid. But the solutions of this salt, like those of the acetate, are also able to yield aluminium hydroxide. From all this it is evident that we must suppose that the solutions of this and similar salts contain an equilibrated dissociated system, containing the salt, the acid, and the base, and their compounds with water, as well as partly the molecules of water itself. Such examples much more clearly confirm those conceptions of solutions which are given in the first chapter than a general preliminary acquaintance with the subject can do.
[28]As an example of native basic salts we may citealunite, or alum-stone (sp. gr. 2·6), which sometimes occurs in crystals, but more frequently in fibrous masses. It has been found in masses in the Caucasus (at Zaglik, forty versts distance from Elizabetpol), and at Tolfa, near Rome. Its composition is K2O,3Al2O3,4SO3,6H2O (alunite contains 9H2O). It is soluble in water but not decomposed by it, but after being slightly ignited it gives up alum to it. It may be artificially prepared by heating a mixture of alum with aluminium sulphate in a closed tube at 230°.
[28]As an example of native basic salts we may citealunite, or alum-stone (sp. gr. 2·6), which sometimes occurs in crystals, but more frequently in fibrous masses. It has been found in masses in the Caucasus (at Zaglik, forty versts distance from Elizabetpol), and at Tolfa, near Rome. Its composition is K2O,3Al2O3,4SO3,6H2O (alunite contains 9H2O). It is soluble in water but not decomposed by it, but after being slightly ignited it gives up alum to it. It may be artificially prepared by heating a mixture of alum with aluminium sulphate in a closed tube at 230°.
[29]As the colloidal properties are particularly sharply developed in those oxides (Al2O3, SiO2, MoO3, SnO2, &c.) which show (like water also) the properties of feeble bases and feeble acids, there is probably some causal reason for this coincidence, all the more so since among organic substances—gelatins, albumins, &c.—the representatives of the colloids also have the property of feebly combining with bases and acids.
[29]As the colloidal properties are particularly sharply developed in those oxides (Al2O3, SiO2, MoO3, SnO2, &c.) which show (like water also) the properties of feeble bases and feeble acids, there is probably some causal reason for this coincidence, all the more so since among organic substances—gelatins, albumins, &c.—the representatives of the colloids also have the property of feebly combining with bases and acids.
[30]Since Deville's experiments the question of the density of aluminium chloride has been frequently re-investigated. The subject has more especially occupied the attention of Nilson, Pettersson, Friedel and Crafts, and V. Meyer and his collaborators. In general, it has been found that at low temperatures (up to 440°) the density is constant, and indicates a molecule Al2Cl6; whilst depolymerisation probably (although it is not yet certain) takes place at higher temperatures, and the molecule AlCl3is obtained. Along with this there has been, and still is, a difference of opinion as to the vapour density of aluminium ethyl and methyl—whether for instance, Al(CH3)3or Al2(CH3)6expresses the molecule of the latter. The interest of these researches is intimately connected with the question of the valency of aluminium, if we hold to the opinion that elements in their various compounds have a constant and strictly definite valency. In this case the formula AlCl3or Al(CH3)3would show that Al is trivalent, and that consequently the compounds of aluminium are Al(OH)3, AlO3Al, and, in general, AlX3. But if the molecule be Al2Cl6, it is—for the followers of the doctrine of the invariable valency of the elements—incompatible with the idea of the trivalency of aluminium, and they assume it to be quadrivalent like carbon, likening Al2Cl6to ethane C2H6= CH3CH3, although this does not explain why Al does not form AlCl4, or, in general, AlX4. In this work another supposition is introduced; according to this, although aluminium, as an element of group III., gives compounds of the type AlX5, this does not exclude the possibility of these molecules combining with others, and consequently witheach other—that is, forming Al2X6; just as the molecules of univalent elements exist either as H2, Cl2, &c., or as Na, and the molecules of bivalent elements either as Zn, or as S2, or even S6. In the first place it must be recognised that the limiting form does not exhaust all power of combination, it only exhausts the capacity of the element for combining with X's, but the saturated substance may afterwards combine withwhole molecules, which fact is best proved by the capacity of substances to form crystalline compounds with water, ammonia, &c. But in some substances this faculty for further combinations is less developed (for instance, in carbon tetrachloride, CCl4), whilst in others it is more so. AlX3combines with many other molecules. Now if a limiting form, which does not combine with new X's, nevertheless combines with other whole molecules, it will naturally in some instances combine with itself, will polymerise. In this manner the mind clearly grasps the idea that the same forces which cause S2to unite itself to Cl2, or C2H4to Cl2, &c., also unite molecules of a similar kind together; thuspolymerisationceases to be an isolated fragmentary phenomenon, and chemical combinations ‘by analogy’ acquire a particular and important interest. In conformity with these views the following proposition may be made concerning the compounds of aluminium. They are of the type AlX3in the limit, like BX3, but those limiting forms are still able to combine to form AlX3,RZ, and the aluminium chloride is a compound of this kind—i.e.(AlX3)2. In boron, for example, in BCl3, this tendency to form further compounds is less developed. Hence boron chloride appears as BCl3, and not (BCl3)2. Polymerisation is not only possible when a substance has not attained the limit (although it is more probable then), but also when the limiting form has been reached, if only the latter has the faculty of combining with other whole molecules. We may therefore conclude that aluminium, like boron, is trivalent in the same sense that lithium and sodium are univalent, magnesium bivalent, and carbon tetravalent. In a word, there is no reason to consider that aluminium is capable of forming compounds AlX4, and in that way to explain the existence of the molecule Al2Cl6. Furthermore, there are many reasons for thinking that AlF3, Al2O3, and other empirical formulæ do not express the molecular weights of these compounds, but that they are much higher: AlnF3n, Al2nO3n. In recent years convincing proofs of the truth of the above statements have been obtained, and of the independent existence of AlX3in a state of vapour; for Comb has determined the vapour density of the volatile acetyl of aluminium acetate Al(C3H7O2)3(which melts at 193°, boils at 315°, and distils without a trace of decomposition), and has found that it exactly corresponds to the above molecular composition. On the other hand, Louise and Roux (1889) by employing the method of ‘freezing point depression’ of solutions (Chapter I., Note49) found that the molecules Al2(C2H5)6and Al2(C5H11)6, &c., correspond to the type Al2X6. Thus it may now be accepted that the molecular composition of the compounds of aluminium in their simplest form is AlX3, but that they may polymerise and give Al2X6or, in general, Al2X3n.
[30]Since Deville's experiments the question of the density of aluminium chloride has been frequently re-investigated. The subject has more especially occupied the attention of Nilson, Pettersson, Friedel and Crafts, and V. Meyer and his collaborators. In general, it has been found that at low temperatures (up to 440°) the density is constant, and indicates a molecule Al2Cl6; whilst depolymerisation probably (although it is not yet certain) takes place at higher temperatures, and the molecule AlCl3is obtained. Along with this there has been, and still is, a difference of opinion as to the vapour density of aluminium ethyl and methyl—whether for instance, Al(CH3)3or Al2(CH3)6expresses the molecule of the latter. The interest of these researches is intimately connected with the question of the valency of aluminium, if we hold to the opinion that elements in their various compounds have a constant and strictly definite valency. In this case the formula AlCl3or Al(CH3)3would show that Al is trivalent, and that consequently the compounds of aluminium are Al(OH)3, AlO3Al, and, in general, AlX3. But if the molecule be Al2Cl6, it is—for the followers of the doctrine of the invariable valency of the elements—incompatible with the idea of the trivalency of aluminium, and they assume it to be quadrivalent like carbon, likening Al2Cl6to ethane C2H6= CH3CH3, although this does not explain why Al does not form AlCl4, or, in general, AlX4. In this work another supposition is introduced; according to this, although aluminium, as an element of group III., gives compounds of the type AlX5, this does not exclude the possibility of these molecules combining with others, and consequently witheach other—that is, forming Al2X6; just as the molecules of univalent elements exist either as H2, Cl2, &c., or as Na, and the molecules of bivalent elements either as Zn, or as S2, or even S6. In the first place it must be recognised that the limiting form does not exhaust all power of combination, it only exhausts the capacity of the element for combining with X's, but the saturated substance may afterwards combine withwhole molecules, which fact is best proved by the capacity of substances to form crystalline compounds with water, ammonia, &c. But in some substances this faculty for further combinations is less developed (for instance, in carbon tetrachloride, CCl4), whilst in others it is more so. AlX3combines with many other molecules. Now if a limiting form, which does not combine with new X's, nevertheless combines with other whole molecules, it will naturally in some instances combine with itself, will polymerise. In this manner the mind clearly grasps the idea that the same forces which cause S2to unite itself to Cl2, or C2H4to Cl2, &c., also unite molecules of a similar kind together; thuspolymerisationceases to be an isolated fragmentary phenomenon, and chemical combinations ‘by analogy’ acquire a particular and important interest. In conformity with these views the following proposition may be made concerning the compounds of aluminium. They are of the type AlX3in the limit, like BX3, but those limiting forms are still able to combine to form AlX3,RZ, and the aluminium chloride is a compound of this kind—i.e.(AlX3)2. In boron, for example, in BCl3, this tendency to form further compounds is less developed. Hence boron chloride appears as BCl3, and not (BCl3)2. Polymerisation is not only possible when a substance has not attained the limit (although it is more probable then), but also when the limiting form has been reached, if only the latter has the faculty of combining with other whole molecules. We may therefore conclude that aluminium, like boron, is trivalent in the same sense that lithium and sodium are univalent, magnesium bivalent, and carbon tetravalent. In a word, there is no reason to consider that aluminium is capable of forming compounds AlX4, and in that way to explain the existence of the molecule Al2Cl6. Furthermore, there are many reasons for thinking that AlF3, Al2O3, and other empirical formulæ do not express the molecular weights of these compounds, but that they are much higher: AlnF3n, Al2nO3n. In recent years convincing proofs of the truth of the above statements have been obtained, and of the independent existence of AlX3in a state of vapour; for Comb has determined the vapour density of the volatile acetyl of aluminium acetate Al(C3H7O2)3(which melts at 193°, boils at 315°, and distils without a trace of decomposition), and has found that it exactly corresponds to the above molecular composition. On the other hand, Louise and Roux (1889) by employing the method of ‘freezing point depression’ of solutions (Chapter I., Note49) found that the molecules Al2(C2H5)6and Al2(C5H11)6, &c., correspond to the type Al2X6. Thus it may now be accepted that the molecular composition of the compounds of aluminium in their simplest form is AlX3, but that they may polymerise and give Al2X6or, in general, Al2X3n.
[31]In the case of gallium, as a close analogue of aluminium, Lecoq de Boisbaudran (1880) showed that probably the molecule gallium chloride contains Ga2Cl6at low temperatures and high pressures, and that it dissociates into GaCl3at high temperatures and low pressures. The molecule of indium chloride seems to exist only in the simplest form, InCl3.
[31]In the case of gallium, as a close analogue of aluminium, Lecoq de Boisbaudran (1880) showed that probably the molecule gallium chloride contains Ga2Cl6at low temperatures and high pressures, and that it dissociates into GaCl3at high temperatures and low pressures. The molecule of indium chloride seems to exist only in the simplest form, InCl3.
[32]The pure salt (16H2O) is not hygroscopic. In the presence of impurities the amount of water increases to 18H2O, and the salt becomes hygroscopic.
[32]The pure salt (16H2O) is not hygroscopic. In the presence of impurities the amount of water increases to 18H2O, and the salt becomes hygroscopic.
[33]The common form of crystals of alums is octahedral, but if this solution contains a certain small excess of alumina above the ratio 2Al(OH)3to K2SO4, and not more sulphuric acid than 3H2SO4to 2Al(OH)3, then it easily forms combinations of the cube and octahedron, and these alums are called ‘cubic’ alums. They are valued by the dyer because they can contain no iron in solution, for oxide of iron is precipitated before alumina, and if the latter be in excess there can be no oxide of iron present. These alums were long exported from Italy, where they were prepared from alunite (Note28).
[33]The common form of crystals of alums is octahedral, but if this solution contains a certain small excess of alumina above the ratio 2Al(OH)3to K2SO4, and not more sulphuric acid than 3H2SO4to 2Al(OH)3, then it easily forms combinations of the cube and octahedron, and these alums are called ‘cubic’ alums. They are valued by the dyer because they can contain no iron in solution, for oxide of iron is precipitated before alumina, and if the latter be in excess there can be no oxide of iron present. These alums were long exported from Italy, where they were prepared from alunite (Note28).
[33 bis]It is also formed by the action of hydrochloric acid upon metallic aluminium (Nilson and Pettersson), by heating alumina in a mixture of the vapours of naphthaline and HCl (Faure, 1889), and by the action of dry HCl upon an alloy of 14 p.c., or more of Al and copper (Mobery).
[33 bis]It is also formed by the action of hydrochloric acid upon metallic aluminium (Nilson and Pettersson), by heating alumina in a mixture of the vapours of naphthaline and HCl (Faure, 1889), and by the action of dry HCl upon an alloy of 14 p.c., or more of Al and copper (Mobery).
[34]Aluminium chloride fuses at 178°, boils at 183° (pressure 755 mm., at 168° under a pressure of 250 mm., and at 213° under 2,278 mm.), according to Friedel and Crafts, so that it boils immediately after fusion. According to Seubert and Pallard (1892), Al2Cl6fuses at 193°. Aluminium bromide fuses at about 92°, and the iodide at 185° according to Weber, at 125° according to Deville and Troost.All these halogen compounds of aluminium are soluble in water.Aluminium fluoride, AlF3(AlnF3n), is insoluble in water. It is obtained by dissolving alumina in hydrofluoric acid; a solution is then formed, but it contains an excess of hydrofluoric acid. When this solution is evaporated, crystals containing Al2F6,HF,H2O are obtained. They are also insoluble in water. By saturating the above solution with a large quantity of alumina, and then evaporating, we obtain crystals having the composition Al2F6,7H2O. All these compounds, when ignited, leave insoluble anhydrous aluminium fluoride. It forms colourless rhombohedra, which are non-volatile, of sp. gr. 3·1, and are decomposed by steam into alumina and hydrofluoric acid. The acid solution apparently contains a compound which has its corresponding salts; by the addition of a solution of potassium fluoride, a gelatinous precipitate of AlK3F6is obtained. A similar compound occurs in nature—namely, AlNa3F6, orcryolite, sp. gr. 3·0.
[34]Aluminium chloride fuses at 178°, boils at 183° (pressure 755 mm., at 168° under a pressure of 250 mm., and at 213° under 2,278 mm.), according to Friedel and Crafts, so that it boils immediately after fusion. According to Seubert and Pallard (1892), Al2Cl6fuses at 193°. Aluminium bromide fuses at about 92°, and the iodide at 185° according to Weber, at 125° according to Deville and Troost.
All these halogen compounds of aluminium are soluble in water.Aluminium fluoride, AlF3(AlnF3n), is insoluble in water. It is obtained by dissolving alumina in hydrofluoric acid; a solution is then formed, but it contains an excess of hydrofluoric acid. When this solution is evaporated, crystals containing Al2F6,HF,H2O are obtained. They are also insoluble in water. By saturating the above solution with a large quantity of alumina, and then evaporating, we obtain crystals having the composition Al2F6,7H2O. All these compounds, when ignited, leave insoluble anhydrous aluminium fluoride. It forms colourless rhombohedra, which are non-volatile, of sp. gr. 3·1, and are decomposed by steam into alumina and hydrofluoric acid. The acid solution apparently contains a compound which has its corresponding salts; by the addition of a solution of potassium fluoride, a gelatinous precipitate of AlK3F6is obtained. A similar compound occurs in nature—namely, AlNa3F6, orcryolite, sp. gr. 3·0.
[34 bis]In this respect aluminium chloride resembles the chloranhydrides of the acids, and probably in the aqueous solution the elements of the hydrochloric acid are already separated, at least partially, from the aluminium hydroxide. The solution may also be obtained by the action of aluminium hydroxide on hydrochloric acid.
[34 bis]In this respect aluminium chloride resembles the chloranhydrides of the acids, and probably in the aqueous solution the elements of the hydrochloric acid are already separated, at least partially, from the aluminium hydroxide. The solution may also be obtained by the action of aluminium hydroxide on hydrochloric acid.
[35]Here we see an instance in confirmation of what has been said in Note30—i.e.the action of the molecule AlCl3. We will cite still another instance confirming the power of alumina to enter into complex combinations. Alumina, moistened with a solution of calcium chloride, gives, when ignited, an anhydrous crystalline substance (tetrahedral), which is soluble in acids, and contains (Al2O3)6(CaO)10CaCl2. Even clay forms a similar stony substance, which might be of practical use.Among the most complex compounds of aluminium,ultramarine, orlapis lazuli, must be mentioned. It occurs in nature near Lake Baikal, in crystals, some colourless and others of various tints—green, blue, and violet. When heated it becomes dull and acquires a very brilliant blue colour. In this form it is used for ornaments (like malachite), and as a brilliant blue pigment. At the present time ultramarine is prepared artificially in large quantities, and this process is one of the most important conquests of science; for the blue tint of ultramarine has been the object of many scientific researches, which have culminated in the manufacture of this native substance. The most characteristic property of ultramarine is that when placed in sulphuric acid it evolves hydrogen sulphide and becomes colourless. This shows that the blue colour of ultramarine is due to the presence of sulphides. If clay be heated in a furnace with sodium sulphate and charcoal (forming sodium sulphide) without access of air, a white mass is obtained, which becomes green when heated in the air, and when treated with water leaves a colourless substance known as ‘white ultramarine.’ When ignited in the air it absorbs oxygen and turns blue. The coloration is ascribed to the presence of metallic sulphides or polysulphides, but it is most probable that silicon sulphide, or its oxysulphide, SiOS, is present. At all events the sulphides play an important part, but the problem is not yet quite settled. The formula Na8Al6Si6O24S is ascribed to white ultramarine. The green probably contains more sulphur, and the blue a still larger quantity. The last is supposed to contain Na8Al6Si6O24S3. It is more probable (according to Guckelberger, 1882) that the composition of the blue varies between Si18Al18Na20S6O71and Si18Al12Na20S6O69. The latter may be expressed as (Al2O3)6(SiO2)18(Na2O)10S6O5, which would indicate the presence of insufficiently-oxidised sulphur in ultramarine.
[35]Here we see an instance in confirmation of what has been said in Note30—i.e.the action of the molecule AlCl3. We will cite still another instance confirming the power of alumina to enter into complex combinations. Alumina, moistened with a solution of calcium chloride, gives, when ignited, an anhydrous crystalline substance (tetrahedral), which is soluble in acids, and contains (Al2O3)6(CaO)10CaCl2. Even clay forms a similar stony substance, which might be of practical use.
Among the most complex compounds of aluminium,ultramarine, orlapis lazuli, must be mentioned. It occurs in nature near Lake Baikal, in crystals, some colourless and others of various tints—green, blue, and violet. When heated it becomes dull and acquires a very brilliant blue colour. In this form it is used for ornaments (like malachite), and as a brilliant blue pigment. At the present time ultramarine is prepared artificially in large quantities, and this process is one of the most important conquests of science; for the blue tint of ultramarine has been the object of many scientific researches, which have culminated in the manufacture of this native substance. The most characteristic property of ultramarine is that when placed in sulphuric acid it evolves hydrogen sulphide and becomes colourless. This shows that the blue colour of ultramarine is due to the presence of sulphides. If clay be heated in a furnace with sodium sulphate and charcoal (forming sodium sulphide) without access of air, a white mass is obtained, which becomes green when heated in the air, and when treated with water leaves a colourless substance known as ‘white ultramarine.’ When ignited in the air it absorbs oxygen and turns blue. The coloration is ascribed to the presence of metallic sulphides or polysulphides, but it is most probable that silicon sulphide, or its oxysulphide, SiOS, is present. At all events the sulphides play an important part, but the problem is not yet quite settled. The formula Na8Al6Si6O24S is ascribed to white ultramarine. The green probably contains more sulphur, and the blue a still larger quantity. The last is supposed to contain Na8Al6Si6O24S3. It is more probable (according to Guckelberger, 1882) that the composition of the blue varies between Si18Al18Na20S6O71and Si18Al12Na20S6O69. The latter may be expressed as (Al2O3)6(SiO2)18(Na2O)10S6O5, which would indicate the presence of insufficiently-oxidised sulphur in ultramarine.
[36]At the ordinary temperature aluminium does not decompose water, but if a small quantity of iodine, or of hydriodic acid and iodine, or of aluminium iodide and iodine, is added to the water, then hydrogen is abundantly evolved. It is evident that here the reaction proceeds at the expense of the formation of Al2I6, and that this substance, with water, gives aluminium hydroxide and hydriodic acid, which, with aluminium, evolves hydrogen. Aluminium probably belongs to those metals having a greater affinity for oxygen than for the halogens (Note36 tri).
[36]At the ordinary temperature aluminium does not decompose water, but if a small quantity of iodine, or of hydriodic acid and iodine, or of aluminium iodide and iodine, is added to the water, then hydrogen is abundantly evolved. It is evident that here the reaction proceeds at the expense of the formation of Al2I6, and that this substance, with water, gives aluminium hydroxide and hydriodic acid, which, with aluminium, evolves hydrogen. Aluminium probably belongs to those metals having a greater affinity for oxygen than for the halogens (Note36 tri).
[36 bis]As an example we may mention that if mercury comes in contact with metallic aluminium and especially if it be rubbed upon the surface of aluminium moistened with a dilute acid, the Al becomes rapidly oxidised (Al2O3being formed). The oxidation is accompanied by a very curious appearance, as it were of wool (or fur) formed by threads of oxide of aluminium growing upon the metal. This was first pointed out by Cass in 1870, and subsequently by A. Sokoleff in 1892. This interesting and curious phenomenon has not to my knowledge been further studied.I think it necessary, however, to add that according to Lubbert and Rascher's researches (1891), wine, coffee, milk, oil, urine, earth, &c., have no more action upon aluminium vessels than upon copper, tin, and other similar articles. In the course of four months ordinary vinegar dissolved 0·35 grm. of Al per sq. centimetre, whilst a 5 per cent. solution of common salt dissolved about 0·05 grm. of aluminium. Ditte (1890) showed that Al is acted upon by nitric and sulphuric acids, although only slowly (owing to the formation of a layer of gas, as in ChapterXVI., Note10) and that the reaction proceeds much more rapidly in vacuo or in the presence of oxidising agents. Al is even oxidised by water on the surface, but the thin coating of alumina formed prevents further action. In the course of twelve hours nitric acid sp. gr. 1·383 dissolved at 17° about 20 grms. of aluminium (containing only a small amount of Si, 1¼ p.c.) from a sq. metre of surface (Le Rouart, 1891).
[36 bis]As an example we may mention that if mercury comes in contact with metallic aluminium and especially if it be rubbed upon the surface of aluminium moistened with a dilute acid, the Al becomes rapidly oxidised (Al2O3being formed). The oxidation is accompanied by a very curious appearance, as it were of wool (or fur) formed by threads of oxide of aluminium growing upon the metal. This was first pointed out by Cass in 1870, and subsequently by A. Sokoleff in 1892. This interesting and curious phenomenon has not to my knowledge been further studied.
I think it necessary, however, to add that according to Lubbert and Rascher's researches (1891), wine, coffee, milk, oil, urine, earth, &c., have no more action upon aluminium vessels than upon copper, tin, and other similar articles. In the course of four months ordinary vinegar dissolved 0·35 grm. of Al per sq. centimetre, whilst a 5 per cent. solution of common salt dissolved about 0·05 grm. of aluminium. Ditte (1890) showed that Al is acted upon by nitric and sulphuric acids, although only slowly (owing to the formation of a layer of gas, as in ChapterXVI., Note10) and that the reaction proceeds much more rapidly in vacuo or in the presence of oxidising agents. Al is even oxidised by water on the surface, but the thin coating of alumina formed prevents further action. In the course of twelve hours nitric acid sp. gr. 1·383 dissolved at 17° about 20 grms. of aluminium (containing only a small amount of Si, 1¼ p.c.) from a sq. metre of surface (Le Rouart, 1891).
[36 tri]In addition to the data given in ChaptersXI.,XIII., and in Chapter XV., Note19, the following are the amounts of heat in thousands of units, evolved in the formation of the oxides and chlorides from the metals taken in gram-atomic quantities:Na2O 100;MgO 140*;⅓Al2O3120*;⅓Fe2O363*;Na2Cl2195;MgCl2151;⅓Al2Cl6107;⅓Fe2Cl664.The asterisks following the oxides of Mg, Al and Fe call attention to the fact that the existing data refer to the formation of the hydrates of these metals, from which the heat of formation of the anhydrous oxides may easily be assumed, because the heat of hydration (for example, MgO + H2O) has not yet been determined.
[36 tri]In addition to the data given in ChaptersXI.,XIII., and in Chapter XV., Note19, the following are the amounts of heat in thousands of units, evolved in the formation of the oxides and chlorides from the metals taken in gram-atomic quantities:
The asterisks following the oxides of Mg, Al and Fe call attention to the fact that the existing data refer to the formation of the hydrates of these metals, from which the heat of formation of the anhydrous oxides may easily be assumed, because the heat of hydration (for example, MgO + H2O) has not yet been determined.
[37]Cryolite under the action of the current at about 1,000° gives off the vapour of Na which reduces the Al, but it recombines with the liberated fluorine and again passes into the fused mass. It is important to obtain aluminium at as low a temperature as possible, but the action proceeds far more easily with the solution (alloy) of oxide of aluminium in cryolite.
[37]Cryolite under the action of the current at about 1,000° gives off the vapour of Na which reduces the Al, but it recombines with the liberated fluorine and again passes into the fused mass. It is important to obtain aluminium at as low a temperature as possible, but the action proceeds far more easily with the solution (alloy) of oxide of aluminium in cryolite.
[37 bis]The cost of working this process can be brought as low as 20 cents per lb. or about 2½ fcs. per kilo. In England, Castner, prior to the introduction of the electric method, obtained Al by taking a mixture of 1,200 parts of the double salt NaAlCl4, 600 parts of cryolite, and 350 parts of Na, and obtained about 120 parts of Al, so that the cost of this process is about 1½ time that of the electric method.Buchner found that sulphide of aluminium, Al2S3, is more suitable for the preparation of Al by the electrolytic method than Al2O3, but since the formation of Al2S3by heating a mixture of Al2O3, and charcoal in sulphur vapour proceeds with difficulty, Gray (1894) proposed to prepare Al2S3by heating a mixture of charcoal, sulphate of aluminium, and sodium fluoride. The resultant molten mixture of NaF and Al2S3gives aluminium directly under the action of an electric current.
[37 bis]The cost of working this process can be brought as low as 20 cents per lb. or about 2½ fcs. per kilo. In England, Castner, prior to the introduction of the electric method, obtained Al by taking a mixture of 1,200 parts of the double salt NaAlCl4, 600 parts of cryolite, and 350 parts of Na, and obtained about 120 parts of Al, so that the cost of this process is about 1½ time that of the electric method.
Buchner found that sulphide of aluminium, Al2S3, is more suitable for the preparation of Al by the electrolytic method than Al2O3, but since the formation of Al2S3by heating a mixture of Al2O3, and charcoal in sulphur vapour proceeds with difficulty, Gray (1894) proposed to prepare Al2S3by heating a mixture of charcoal, sulphate of aluminium, and sodium fluoride. The resultant molten mixture of NaF and Al2S3gives aluminium directly under the action of an electric current.
[38]Aluminium, when heated to the high temperature of the electric furnace, dissolves carbon and forms an alloy which, according to Moissan, when rapidly treated withcoldhydrochloric acid leaves a compound C3Al4in the form of a yellow crystalline transparent powder, sp. gr. 2·36 (seeChapter VIII. Note12 bis). Thiscarbide of aluminiumC3Al4corresponds to methane CH4, for Al replaces H3and carbon O2or H4, that is, it is equal to three molecules of CH4with the substitution of twelve atoms of H in it by four of Al, or, what is the same thing, it is the duplicated molecule of Al2O3with the substitution of O6by C3. And indeed C3Al4under the action of water forms marsh gas and hydrate of alumina: C3Al4+ 12H2O = 3CH4+ 4Al(OH)3. This decomposition gives a new aspect of the synthesis of hydrocarbons, and quite agrees with what should follow from the action of water upon the metallic carbides as applied by me for explaining the origin of naphtha (Chapter VIII., Notes57,58, and59). Frank (1894) by heating Al with carbon obtained a similar although not quite pure compound, which (like CaC2) evolves acetylene with hydrochloric acidi.e.probably has the composition AlC3.
[38]Aluminium, when heated to the high temperature of the electric furnace, dissolves carbon and forms an alloy which, according to Moissan, when rapidly treated withcoldhydrochloric acid leaves a compound C3Al4in the form of a yellow crystalline transparent powder, sp. gr. 2·36 (seeChapter VIII. Note12 bis). Thiscarbide of aluminiumC3Al4corresponds to methane CH4, for Al replaces H3and carbon O2or H4, that is, it is equal to three molecules of CH4with the substitution of twelve atoms of H in it by four of Al, or, what is the same thing, it is the duplicated molecule of Al2O3with the substitution of O6by C3. And indeed C3Al4under the action of water forms marsh gas and hydrate of alumina: C3Al4+ 12H2O = 3CH4+ 4Al(OH)3. This decomposition gives a new aspect of the synthesis of hydrocarbons, and quite agrees with what should follow from the action of water upon the metallic carbides as applied by me for explaining the origin of naphtha (Chapter VIII., Notes57,58, and59). Frank (1894) by heating Al with carbon obtained a similar although not quite pure compound, which (like CaC2) evolves acetylene with hydrochloric acidi.e.probably has the composition AlC3.
[38 bis]The same is the case in group IV. of the uneven series, where tin is the most fusible. Thus the temperature of fusion rises on both sides of tin (silicon is very infusible; germanium, 900°; tin, 230°; lead, 326°); as it also does in group III., starting from gallium, for indium fuses at 176°, less easily than gallium but more easily than thallium (294°). Aluminium also fuses with greater difficulty than gallium.
[38 bis]The same is the case in group IV. of the uneven series, where tin is the most fusible. Thus the temperature of fusion rises on both sides of tin (silicon is very infusible; germanium, 900°; tin, 230°; lead, 326°); as it also does in group III., starting from gallium, for indium fuses at 176°, less easily than gallium but more easily than thallium (294°). Aluminium also fuses with greater difficulty than gallium.
[39]The spectrum of gallium is characterised by a brilliant violet line of wave-length = 417 millionths of a millimetre. The metal can be separated from the solution, containing a mixture of the many metals occurring in the zinc blende, by making use of the following reactions: it is precipitated by sodium carbonate in the first portions; it gives a sulphate which, on boiling, easily decomposes into a basic salt, very slightly soluble in water; and it is deposited in a metallic state from its solutions by the action of a galvanic current. It fuses at +30°, and, when once fused, remains liquid for some time. It oxidises with difficulty, evolves hydrogen from hydrochloric acid and from potassium hydroxide, and, like all feeble bases (for instance, alumina and indium oxide), it easily forms basic salts. The hydroxide is soluble in a solution of caustic potash, and slightly so in caustic ammonia. Gallium forms volatile GaCl3and GaCl2(Nilson and Pettersson).
[39]The spectrum of gallium is characterised by a brilliant violet line of wave-length = 417 millionths of a millimetre. The metal can be separated from the solution, containing a mixture of the many metals occurring in the zinc blende, by making use of the following reactions: it is precipitated by sodium carbonate in the first portions; it gives a sulphate which, on boiling, easily decomposes into a basic salt, very slightly soluble in water; and it is deposited in a metallic state from its solutions by the action of a galvanic current. It fuses at +30°, and, when once fused, remains liquid for some time. It oxidises with difficulty, evolves hydrogen from hydrochloric acid and from potassium hydroxide, and, like all feeble bases (for instance, alumina and indium oxide), it easily forms basic salts. The hydroxide is soluble in a solution of caustic potash, and slightly so in caustic ammonia. Gallium forms volatile GaCl3and GaCl2(Nilson and Pettersson).
[40]The vapour density of indium chloride, InCl3(Note31), determined by Nilson and Pettersson, confirms this atomic weight. Indium is separated from zinc and cadmium, with which it occurs, by taking advantage of the fact that its hydroxide is insoluble in ammonia, that the solutions of its salts give indium when treated with zinc (hence indium is dissolved after zinc by acids) and that they give a precipitate with hydrogen sulphide even in acid solutions. Metallic indium is grey, has a sp. gr. of 7·42, fuses at 176°, and does not oxidise in the air; when ignited, it first gives a black suboxide, In4O3, then volatilises and gives a brown oxide, In2O3, whose salts, InX3, are also formed by the direct action of acids on the metal, hydrogen being evolved. Caustic alkalis do not act on indium, from which it is evident that it is less capable of forming alkaline compounds than aluminium is; however, with potassium and sodium hydroxides, solutions of indium salts give a colourless precipitate of the hydroxide, which is soluble in an excess of the alkali, like the hydroxides of aluminium and zinc. Its salts do not crystallise. Nilson and Pettersson (1889), by the action of HCl upon In, obtained volatile crystalline, InCl2, and by treating this compound with In, InCl also.
[40]The vapour density of indium chloride, InCl3(Note31), determined by Nilson and Pettersson, confirms this atomic weight. Indium is separated from zinc and cadmium, with which it occurs, by taking advantage of the fact that its hydroxide is insoluble in ammonia, that the solutions of its salts give indium when treated with zinc (hence indium is dissolved after zinc by acids) and that they give a precipitate with hydrogen sulphide even in acid solutions. Metallic indium is grey, has a sp. gr. of 7·42, fuses at 176°, and does not oxidise in the air; when ignited, it first gives a black suboxide, In4O3, then volatilises and gives a brown oxide, In2O3, whose salts, InX3, are also formed by the direct action of acids on the metal, hydrogen being evolved. Caustic alkalis do not act on indium, from which it is evident that it is less capable of forming alkaline compounds than aluminium is; however, with potassium and sodium hydroxides, solutions of indium salts give a colourless precipitate of the hydroxide, which is soluble in an excess of the alkali, like the hydroxides of aluminium and zinc. Its salts do not crystallise. Nilson and Pettersson (1889), by the action of HCl upon In, obtained volatile crystalline, InCl2, and by treating this compound with In, InCl also.
[41]Thallium was afterwards found in certain micas and in the rare mineral crookesite, containing lead, silver, thallium, and selenium. Its isolation depends on the fact that in the presence of acids thallium forms thallous compounds, TlX. Among these compounds the chloride and sulphate are only slightly soluble, and give with hydrogen sulphide a black precipitate of the sulphide Tl2S, which is soluble in an excess of acid, but insoluble in ammonium sulphide.
[41]Thallium was afterwards found in certain micas and in the rare mineral crookesite, containing lead, silver, thallium, and selenium. Its isolation depends on the fact that in the presence of acids thallium forms thallous compounds, TlX. Among these compounds the chloride and sulphate are only slightly soluble, and give with hydrogen sulphide a black precipitate of the sulphide Tl2S, which is soluble in an excess of acid, but insoluble in ammonium sulphide.
[41 bis]The best method of preparing thallous hydroxide, TlOH, is by the decomposition of the requisite quantity of baryta by thallous sulphate, which is slightly soluble in water; barium sulphate is then obtained in the precipitate and thallous hydroxide in solution. This solubility of the hydroxide is exceedingly characteristic, and forms one of the most important properties of thallium. These lower (thallous) compounds are of the type TlX, and recall the salts of the alkalis. The salts TlX are colourless, do not give a precipitate with the alkalis or ammonia, but are precipitated by ammonium carbonate, because thallous carbonate, Tl2CO3, is sparingly soluble in water. Platinic chloride gives the same kind of precipitate as it does with the salts of potassium—that is, thallous platinochloride, PtTl2Cl6. All these facts, together with the isomorphism of the salts TlX with those of potassium, again point out what an important significance the types of compounds have in the determination of the character of a given series of substances. Although thallium has a greater atomic weight and greater density than potassium, and although it has a less atomic volume, nevertheless thallous oxide is analogous to potassium oxide in many respects, for they both give compounds of the same type, RX. We may further remark that thallous fluoride, TlF, is easily soluble in water as well as thallous silicofluoride, SiTl2F6, but that thallous cyanide, TlCN, is sparingly soluble in water. This, together with the slight solubility of thallous chloride, TlCl, and sulphate, Tl2SO4, indicates an analogy between TlX and the salts of silver, AgX.As regards the higher oxide or thethallic oxide, Tl2O3, the thallium is trivalent in it—that is, it forms compounds of the type TlX3. The hydroxide, TlO(OH), is formed by the action of hydrogen peroxide on thallous oxide, or by the action of ammonia on a solution of thallic chloride, TlCl3. It is obtained as a brown precipitate, insoluble in water but easily soluble in acids, with which it gives thallic salts, TlX3. Thallic chloride, which is obtained by cautiously heating the metal in a stream of chlorine, forms an easily fusible white mass, which is soluble in water and able to part with two-thirds of its chlorine when heated. An aqueous solution of this salt yields colourless crystals containing one equivalent of water. It is evident from the above that all the thallic salts can easily be reduced to thallous salts by reducing agents such as sulphurous anhydride, zinc, &c. Besides these salts, thallic sulphate, Tl2(SO4)3,7H2O, thallic nitrate Tl(NO3)3,4H2O, &c., are known. These salts are decomposed by water, like the salts of many feeble basic metals—for example, aluminium.
[41 bis]The best method of preparing thallous hydroxide, TlOH, is by the decomposition of the requisite quantity of baryta by thallous sulphate, which is slightly soluble in water; barium sulphate is then obtained in the precipitate and thallous hydroxide in solution. This solubility of the hydroxide is exceedingly characteristic, and forms one of the most important properties of thallium. These lower (thallous) compounds are of the type TlX, and recall the salts of the alkalis. The salts TlX are colourless, do not give a precipitate with the alkalis or ammonia, but are precipitated by ammonium carbonate, because thallous carbonate, Tl2CO3, is sparingly soluble in water. Platinic chloride gives the same kind of precipitate as it does with the salts of potassium—that is, thallous platinochloride, PtTl2Cl6. All these facts, together with the isomorphism of the salts TlX with those of potassium, again point out what an important significance the types of compounds have in the determination of the character of a given series of substances. Although thallium has a greater atomic weight and greater density than potassium, and although it has a less atomic volume, nevertheless thallous oxide is analogous to potassium oxide in many respects, for they both give compounds of the same type, RX. We may further remark that thallous fluoride, TlF, is easily soluble in water as well as thallous silicofluoride, SiTl2F6, but that thallous cyanide, TlCN, is sparingly soluble in water. This, together with the slight solubility of thallous chloride, TlCl, and sulphate, Tl2SO4, indicates an analogy between TlX and the salts of silver, AgX.
As regards the higher oxide or thethallic oxide, Tl2O3, the thallium is trivalent in it—that is, it forms compounds of the type TlX3. The hydroxide, TlO(OH), is formed by the action of hydrogen peroxide on thallous oxide, or by the action of ammonia on a solution of thallic chloride, TlCl3. It is obtained as a brown precipitate, insoluble in water but easily soluble in acids, with which it gives thallic salts, TlX3. Thallic chloride, which is obtained by cautiously heating the metal in a stream of chlorine, forms an easily fusible white mass, which is soluble in water and able to part with two-thirds of its chlorine when heated. An aqueous solution of this salt yields colourless crystals containing one equivalent of water. It is evident from the above that all the thallic salts can easily be reduced to thallous salts by reducing agents such as sulphurous anhydride, zinc, &c. Besides these salts, thallic sulphate, Tl2(SO4)3,7H2O, thallic nitrate Tl(NO3)3,4H2O, &c., are known. These salts are decomposed by water, like the salts of many feeble basic metals—for example, aluminium.
[42]The specific heat of cerium determined (1870) by me, and afterwards confirmed by Hillebrand, corresponds with that atomic weight of cerium according to which the composition of two oxides should be Ce2O3and CeO2. Hillebrand also obtained metallic lanthanum and didymium by decomposing their salts by a galvanic current, and he found their specific heats to be near that of cerium and about 0·04, and it is therefore justifiable to give them an atomic weight near that of cerium, as was done on the basis of the periodic law. Up to 1870 yttrium oxide was also given the formula RO. Having re-determined the equivalent of yttrium oxide (with respect to water), and found it to be 74·6, I considered it necessary to also ascribe to it the composition Y2O3, because then it falls into its proper place in the periodic system. If the equivalent of the oxide to water be 74·6, it contains 58·6 of metal per 16 of oxygen, and consequently one part by weight of hydrogen replaces 29·3 of yttrium, and if it be regarded as bivalent (oxide RO), it would not, by its atomic weight 58·6, find a place in the second group. But if it be taken as trivalent—that is, if the formula of its oxide be R2O3and salts RX3—then Y = 88, and a position is open for it in the third group in the sixth series after rubidium and strontium. These alterations in the atomic weights of the cerite and gadolinite metals were afterwards accepted by Clève and other investigators, who now ascribe a formula R2O3to all the newly discovered oxides of these metals. But still the position in the periodic system of certain elements—for example of holmium, thulium, samarium, and others—has not yet been determined for want of a sufficient knowledge of their properties in a state of purity.
[42]The specific heat of cerium determined (1870) by me, and afterwards confirmed by Hillebrand, corresponds with that atomic weight of cerium according to which the composition of two oxides should be Ce2O3and CeO2. Hillebrand also obtained metallic lanthanum and didymium by decomposing their salts by a galvanic current, and he found their specific heats to be near that of cerium and about 0·04, and it is therefore justifiable to give them an atomic weight near that of cerium, as was done on the basis of the periodic law. Up to 1870 yttrium oxide was also given the formula RO. Having re-determined the equivalent of yttrium oxide (with respect to water), and found it to be 74·6, I considered it necessary to also ascribe to it the composition Y2O3, because then it falls into its proper place in the periodic system. If the equivalent of the oxide to water be 74·6, it contains 58·6 of metal per 16 of oxygen, and consequently one part by weight of hydrogen replaces 29·3 of yttrium, and if it be regarded as bivalent (oxide RO), it would not, by its atomic weight 58·6, find a place in the second group. But if it be taken as trivalent—that is, if the formula of its oxide be R2O3and salts RX3—then Y = 88, and a position is open for it in the third group in the sixth series after rubidium and strontium. These alterations in the atomic weights of the cerite and gadolinite metals were afterwards accepted by Clève and other investigators, who now ascribe a formula R2O3to all the newly discovered oxides of these metals. But still the position in the periodic system of certain elements—for example of holmium, thulium, samarium, and others—has not yet been determined for want of a sufficient knowledge of their properties in a state of purity.
[43]So, for example, in 1871, in theJournal of the Russian Physico-Chemical Society(p. 45) and in Liebig'sAnnalen, Supt. Band viii. 198, I deduced, on the basis of the periodic law, an atomic weight 44 for ekaboron, and Nilson in 1888 found that of scandium, which is ekaboron, to be Sc = 44·03, The periodic law showed that the specific gravity of the ekaboron oxide would be about 8·5, that it would have decided but feeble basic properties and that it would give colourless salts. And this proved to be the case with scandium oxide. In describing scandium, Clève and Nilson acknowledge that the particular interest attached to this element is due to its complete identity with the expected element ekaboron. And this accurate foretelling of properties could only be arrived at by admitting that alteration of the atomic weights of the cerite and gadolinite metals which was one of the first results of the application of the periodic system of the elements to the interpretation of chemical facts. In my first memoirs, namely, in theBulletin of the St. Petersburg Academy of Sciences, vol. viii. (1870), and in Liebig'sAnnalen(l. c.p. 168) and others, I particularly insisted on the necessity of altering the then accepted atomic weights of cerium, lanthanum, and didymium. Clève, Höglund, Hillebrand and Norton, and more especially Brauner, and others accepted the proposed alteration, and gave fresh proofs in favour of the proposed alterations of these atomic weights. The study of the fluorides was particularly important. Placing cerium in the fourth group, the composition of its highest oxide would then be CeO2, and its compounds CeX4and the lower oxide, Ce2O3or CeX3. Brauner obtained the fluoride CeF4,H2O corresponding with the first, and a double crystalline salt, 3KF,2CeF4,2H2O, without any admixture of compound of the lower grade CeX3, which generally occur together with the majority of salts corresponding with CeX4. It will be seen from these formulæ and from the tables of the elements, that cerium and didymium do not belong to the third group, which is now being described, but we mention them here for convenience, as all the cerite and gadolinite metals have much in common. These metals, which are rare in nature, resemble each other in many respects, always accompany each other, are with difficulty isolated from each other, and stand together in the periodic system of the elements; they have acquired a peculiar interest owing to their having been in 1870 the objects of the study of Marignac, Delafontaine, Soret, Lecoq de Boisbaudran, Brauner, Clève, Nilson, the professors of Upsala, and others.The cerite and gadolinite metals occur in rare siliceous minerals from Sweden, America, the Urals, and Baikal, such as cerite (in Sweden), gadolinite, and orthite; and in still rarer minerals formed by titanic, niobic, and tantalic acids, such as euxenite in Norway and America, and samarskite in Norway, the Urals and America, and in a few rare fluorides and phosphates. Among the latter, monazite is found in somewhat considerable quantities in Brazil and North Carolina; this contains the phosphate of cerium, CePO4(= Ce2O3P2O3), together with didymium, thorium and lanthanum (according to W. Edron and Shapleigh's analyses), and is now used for preparing that mixture of the oxides of the rare metals (especially ThO2, Ce2O3, La2O3, &c.), which is employed for incandescent burners (Auer von Welsbach), as it has been found by experiment that these oxides when raised to incandescence in a non-luminous gas flame, give a far more brilliant flame with a smaller consumption of gas, besides being suitable for such non-luminous gases as water gas. The insufficiency of material to work upon, and the difficulty of separating the oxides from each other, are the chief reasons why the composition of the compounds of these rare metals is so imperfectly known. Cerite is the most accessible of these minerals. Besides silica it contains more than 50 p.c. of the oxides of cerium, lanthanum (from 4 p.c.), and didymium. The decomposition of its powder by sulphuric acid gives sulphates, all of which are soluble in water. The other minerals mentioned above are also decomposed in the same manner. The solution of sulphates is precipitated with free oxalic acid, which forms salts insoluble in water and dilute acids with all the cerite and gadolinite oxides. The oxides themselves are obtained by igniting the oxalates. When ignited in the air the cerium passes from its ordinary oxide Ce2O3into the higher oxide CeO2, which is so feeble a base that its salts are decomposed by water, and it is insoluble in dilute nitric acid. Therefore it is always possible to remove all the cerium oxide by repeated ignitions and solutions in sulphuric acid. The further separation of the metals is mainly based on four methods employed by many investigators.(a) A solution of the mixed salts is treated with an excess of solid potassium sulphate. Double salts, such as Ce2(SO4)3,3K2SO4, are thus formed. The gadolinite metals, namely yttrium, ytterbium, and erbium, then remain in solution—that is, their double salts are soluble in a solution of potassium sulphate, whilst the cerite metals—namely, cerium, lanthanum, and didymium—are precipitated, that is, their double salts are insoluble in a saturated solution of potassium sulphate. This ordinary method of separation, however, appears from the researches of Marignac to be so untrustworthy that a considerable amount of didymium and the other metals remain in the soluble portion, owing to the fact that, although individually insoluble, they are dissolved when mixed together. Thus erbium and terbium occur both in the solution and precipitate. Nevertheless, beryllium, yttrium, erbium, and ytterbium belong to the soluble, and scandium, cerium, lanthanum, didymium, and thorium to the insoluble portion. The insoluble salt of scandium, for example (i.e.insoluble in a solution of potassium sulphate), has a composition Sc2(SO4)3,3K2SO4.(b) The oxides obtained by the ignition of the oxalates are dissolved in nitric acid (the nitrates of the cerite metals easily form double salts with those of the alkali metals, and as some—for example, the ammonio-lanthanum salt—crystallise very well, they should be studied and applied to the analytical separation of these metals), the solution is then evaporated to dryness, and the residue fused. All nitrates are destroyed by heat; those of aluminium and iron, &c., very easily, those of the cerite and gadolinite metals also easily (although not so easily as the above) but in different degrees and sequence; so that by carrying on the decomposition carefully from the beginning it is possible to destroy the nitrate of only one metal without touching the others, or leaving them as insoluble basic salts. This method, like the preceding and the two following, must be repeated as many as seventy times to attain a really constant product of fixed properties, that is, one in which the decomposed and undecomposed portions contain one and the same oxide. This method, due to Berlin and worked out by Bunsen, has given in the hands of Marignac and Nilson the best results, especially for the separation of the gadolinite metals, ytterbium and scandium.(c) A solution of the salts is partially precipitated by ammonia; that is, the solution is mixed with a small quantity of ammonia insufficient for the precipitation of the entire quantity of the bases (fractional precipitation). Thus, the didymium hydroxide is first precipitated from a mixture of the salts of didymium and lanthanum. A partial separation may be effected by repeating the solution of the precipitate and fractional precipitation, but a perfectly pure product is scarcely attainable.(d) The formates having different degrees of solubility (lanthanum formate 420 parts of water per one of salt, didymium formate 221, cerium formate 360, yttrium and erbium formates easily soluble) give a possible means of separating certain of the gadolinite metals from each other by a method of fractional solution and precipitation, as Bunsen, Bahr, Clève, and others have pointed out.(e) Crookes (1893) took advantage of the fractional precipitation of alcoholic solutions of the chlorides by amylene, and by this means separated, for example, erbium, terbium, and others.(f) Lastly, oxide of thorium ThO2(Chapter VIII., Note59) is separated by means of its solubility in a solution of sodium carbonate.A good method of separating these metals is not known, for they are so like each other. There are also only a fewmethods of distinguishingthem from each other, and we can only add the following four to the above.aThe faculty of oxidising into a higher oxide. This is very characteristic for cerium, which gives the oxides Ce2O3and CeO2or Ce2O4. Didymium also gives one colourless oxide, Di2O3, which is capable of forming salts (of a lilac colour), and another, according to Brauner, Di2O5which is dark brown and does not form salts, so far as is known, and (like ceric oxide) acts as an oxidising agent, like the higher oxides of tellurium, manganese, lead, and others. Lanthanum, yttrium, and many others are not capable of such oxidation. The presence of the higher oxides may be recognised by ignition in a stream of hydrogen, by which means the higher oxides are reduced to the lower, which then remain unaltered.bThe majority of the salts of the gadolinite and cerite metals are colourless, but those of didymium and erbium are rose-coloured, the salts of the higher oxide of cerium, CeX4, yellow, of the higher oxide of terbium, yellow, &c. Thus, the first metals obtained from gadolinite were yttrium, giving colourless, and erbium, giving rose-coloured, salts. Afterwards it was found that the salts of erbium of former investigators contained numerous colourless salts of scandium, ytterbium, &c., so that a coloration sometimes indicates the presence of a small impurity, as was long known to be the case in minerals, and therefore this point of distinction cannot be considered trustworthy.cIn a solid state and in solutions, the salts of didymium, samarium, holmium, &c., give characteristic absorption spectra, as we pointed out in ChapterXIII., and this naturally is connected with the colour of these salts. The most important point is, that those metals which do not give an absorption spectrum—for example, lanthanum, yttrium, scandium, and ytterbium—may be obtained free from didymium, samarium, and the other metals giving absorption spectra, because the presence of the latter may be easily recognised by means of the spectroscope, whilst the presence of the former in the latter cannot be distinguished, and therefore the purification of the former can be carried further than that of the latter. We may further remark that the sensitiveness of the spectrum reaction for didymium is so great that it is possible with a layer of solution half a metre thick to recognise the presence of 1 part of didymium oxide (as salt) in 40,000 parts of water. Cossa determined the presence of didymium (together with cerium and lanthanum) in apatites, limestones, bones, and the ashes of plants by this method. The main group of dark lines of didymium correspond with wave-lengths of from 580 to 570 millionths mm.; and the secondary to about 520, 730, 480, &c. The chief absorption bands of samarium are 472–486, 417, 500, and 559. Besides which, Crookes applied the investigation of the spectra of the phosphorescent light which is emitted by certain earths in an almost perfect vacuum, when an electric discharge is passed through it, to the discovery and characterisation of these rare metals. But it would seem that the smallest admixture of other oxides (for example, bismuth, uranium) so powerfully influences these spectra that the fundamental distinctions of the oxides cannot be determined by this method. Besides which, the spectra obtained by the passage of sparks through solutions or powders of the salts are determined and applied to distinguishing the elements, but as spectra vary with the temperature and elasticity (concentration) this method cannot be considered as trustworthy.dThe most important point of distinction of individual metallic oxides is given by the directdetermination of their equivalent with respect to water—that is, the amount of the oxide by weight which combines (like water) with 80 parts by weight of sulphuric anhydride, SO3, for the formation of a normal salt. For this purpose the oxide is weighed and dissolved in nitric acid, sulphuric acid is then added, and the whole is evaporated to dryness over a water-bath and then heated over a naked flame sufficiently strongly to drive off the excess of sulphuric acid, but so as not to decompose the salt (the product would in that case not be perfectly soluble in water); then, knowing the weight of the oxide and of the anhydrous sulphate, we can find the equivalent of the oxide. The following are the most trustworthy figures in this connection: scandium oxide 45·35 (Nilson), yttrium oxide 75·7 (Clève; according to my determination, 1871—74·6), cerous oxide—that is, the lower form of oxidation of cerium, according to various investigators (Bunsen, Brauner, and others) from 108 to 111, the higher oxide of cerium from 85 to 87, lanthanum oxide, according to Brauner, 108, didymium oxide (in salts of the ordinary lower form of oxidation) about 112 (Marignac, Brauner, Clève), samarium oxide about 116 (Clève), ytterbium oxide 131·3 (Nilson). It may not be superfluous here to draw attention to the fact that the equivalent of the oxides of all the gadolinite and cerite metals for water distribute themselves into four groups with a somewhat constant difference of nearly 30. In the first group is scandium oxide with equivalent 45, in the second, yttrium oxide 76, in the third, lanthanum, cerium, didymium, and samarium oxides with equivalent about 110, and, in the fourth, erbium, ytterbium, and thorium oxides with equivalent about 131. The common difference of period is nearly 45. And if we ascribe the type R2O3to all the oxides—that is, if we triple the weight of the equivalent of the oxide—we shall obtain a difference of the groups nearly equal to 90, which, for two atoms of the metal, forms the ordinary periodic difference of 45. If one and the same type of oxide R2O3be ascribed to all these elements (as now generally accepted, in many cases there being insufficiently trustworthy data), then the atomic weights should be Sc = 44, Y = 89, La = 138, Ce = 140, Di = 144, (neodymium 140, praseodymium 144), Sm = 150, Yb = 173, also terbium 147, holmium 162, alphayttrium 157, erbium 166, thulium 170, decipium 171. It should be observed that there may be instances of basic salts. If, for example, an element with an atomic weight 90 gave an oxide RO2, but salts ROX2, then by counting its oxide as R2O3its atomic weight would be 159.All the points distinguishing many gadolinite and cerite elements have not been sufficiently well established in certain cases (for example, with decipium, thulium, holmium, and others). At present the most certain are yttrium, scandium, cerium, and lanthanum. In the case of didymium, for example, there is still much that is doubtful. Didymium, discovered in 1842 by Mosander after lanthanum, differs from the latter in its absorption spectrum and the lilac-rose colour of its salts. Delafontaine (1878) separated samarium from it. Welsbach showed that it contains two particular elements, neodymium (salts bluish-red) and praseodymium (salts apple-green), and Becquerel (1887) by investigating the spectra of crystals, recognised the presence of six individual elements. Probably, therefore, many of the now recognised elements contain a mixture of various others, and as yet there is not enough confirmation of their individuality. As regards yttrium, scandium, cerium, and lanthanum, which have been established without doubt, I think that, owing to their great rarity in nature and chemical art, it would be superfluous to describe them further in so elementary a work as the present. We may add that Winkler (1891) obtained a hydrogen compound of lanthanum, whose composition (according to Brauner) is La2H3, as would be expected from the composition of Na2H, Mg2H2, &c. C. Winkler (1891), on reducing CeO2with magnesium, also remarked a rapid absorption of hydrogen, and showed that ahydride of cerium, CeH2, corresponding to CaH, and the other similar hydrides of metals of the alkaline earths, is formed (Chapter XIV., Note63).
[43]So, for example, in 1871, in theJournal of the Russian Physico-Chemical Society(p. 45) and in Liebig'sAnnalen, Supt. Band viii. 198, I deduced, on the basis of the periodic law, an atomic weight 44 for ekaboron, and Nilson in 1888 found that of scandium, which is ekaboron, to be Sc = 44·03, The periodic law showed that the specific gravity of the ekaboron oxide would be about 8·5, that it would have decided but feeble basic properties and that it would give colourless salts. And this proved to be the case with scandium oxide. In describing scandium, Clève and Nilson acknowledge that the particular interest attached to this element is due to its complete identity with the expected element ekaboron. And this accurate foretelling of properties could only be arrived at by admitting that alteration of the atomic weights of the cerite and gadolinite metals which was one of the first results of the application of the periodic system of the elements to the interpretation of chemical facts. In my first memoirs, namely, in theBulletin of the St. Petersburg Academy of Sciences, vol. viii. (1870), and in Liebig'sAnnalen(l. c.p. 168) and others, I particularly insisted on the necessity of altering the then accepted atomic weights of cerium, lanthanum, and didymium. Clève, Höglund, Hillebrand and Norton, and more especially Brauner, and others accepted the proposed alteration, and gave fresh proofs in favour of the proposed alterations of these atomic weights. The study of the fluorides was particularly important. Placing cerium in the fourth group, the composition of its highest oxide would then be CeO2, and its compounds CeX4and the lower oxide, Ce2O3or CeX3. Brauner obtained the fluoride CeF4,H2O corresponding with the first, and a double crystalline salt, 3KF,2CeF4,2H2O, without any admixture of compound of the lower grade CeX3, which generally occur together with the majority of salts corresponding with CeX4. It will be seen from these formulæ and from the tables of the elements, that cerium and didymium do not belong to the third group, which is now being described, but we mention them here for convenience, as all the cerite and gadolinite metals have much in common. These metals, which are rare in nature, resemble each other in many respects, always accompany each other, are with difficulty isolated from each other, and stand together in the periodic system of the elements; they have acquired a peculiar interest owing to their having been in 1870 the objects of the study of Marignac, Delafontaine, Soret, Lecoq de Boisbaudran, Brauner, Clève, Nilson, the professors of Upsala, and others.
The cerite and gadolinite metals occur in rare siliceous minerals from Sweden, America, the Urals, and Baikal, such as cerite (in Sweden), gadolinite, and orthite; and in still rarer minerals formed by titanic, niobic, and tantalic acids, such as euxenite in Norway and America, and samarskite in Norway, the Urals and America, and in a few rare fluorides and phosphates. Among the latter, monazite is found in somewhat considerable quantities in Brazil and North Carolina; this contains the phosphate of cerium, CePO4(= Ce2O3P2O3), together with didymium, thorium and lanthanum (according to W. Edron and Shapleigh's analyses), and is now used for preparing that mixture of the oxides of the rare metals (especially ThO2, Ce2O3, La2O3, &c.), which is employed for incandescent burners (Auer von Welsbach), as it has been found by experiment that these oxides when raised to incandescence in a non-luminous gas flame, give a far more brilliant flame with a smaller consumption of gas, besides being suitable for such non-luminous gases as water gas. The insufficiency of material to work upon, and the difficulty of separating the oxides from each other, are the chief reasons why the composition of the compounds of these rare metals is so imperfectly known. Cerite is the most accessible of these minerals. Besides silica it contains more than 50 p.c. of the oxides of cerium, lanthanum (from 4 p.c.), and didymium. The decomposition of its powder by sulphuric acid gives sulphates, all of which are soluble in water. The other minerals mentioned above are also decomposed in the same manner. The solution of sulphates is precipitated with free oxalic acid, which forms salts insoluble in water and dilute acids with all the cerite and gadolinite oxides. The oxides themselves are obtained by igniting the oxalates. When ignited in the air the cerium passes from its ordinary oxide Ce2O3into the higher oxide CeO2, which is so feeble a base that its salts are decomposed by water, and it is insoluble in dilute nitric acid. Therefore it is always possible to remove all the cerium oxide by repeated ignitions and solutions in sulphuric acid. The further separation of the metals is mainly based on four methods employed by many investigators.
(a) A solution of the mixed salts is treated with an excess of solid potassium sulphate. Double salts, such as Ce2(SO4)3,3K2SO4, are thus formed. The gadolinite metals, namely yttrium, ytterbium, and erbium, then remain in solution—that is, their double salts are soluble in a solution of potassium sulphate, whilst the cerite metals—namely, cerium, lanthanum, and didymium—are precipitated, that is, their double salts are insoluble in a saturated solution of potassium sulphate. This ordinary method of separation, however, appears from the researches of Marignac to be so untrustworthy that a considerable amount of didymium and the other metals remain in the soluble portion, owing to the fact that, although individually insoluble, they are dissolved when mixed together. Thus erbium and terbium occur both in the solution and precipitate. Nevertheless, beryllium, yttrium, erbium, and ytterbium belong to the soluble, and scandium, cerium, lanthanum, didymium, and thorium to the insoluble portion. The insoluble salt of scandium, for example (i.e.insoluble in a solution of potassium sulphate), has a composition Sc2(SO4)3,3K2SO4.
(b) The oxides obtained by the ignition of the oxalates are dissolved in nitric acid (the nitrates of the cerite metals easily form double salts with those of the alkali metals, and as some—for example, the ammonio-lanthanum salt—crystallise very well, they should be studied and applied to the analytical separation of these metals), the solution is then evaporated to dryness, and the residue fused. All nitrates are destroyed by heat; those of aluminium and iron, &c., very easily, those of the cerite and gadolinite metals also easily (although not so easily as the above) but in different degrees and sequence; so that by carrying on the decomposition carefully from the beginning it is possible to destroy the nitrate of only one metal without touching the others, or leaving them as insoluble basic salts. This method, like the preceding and the two following, must be repeated as many as seventy times to attain a really constant product of fixed properties, that is, one in which the decomposed and undecomposed portions contain one and the same oxide. This method, due to Berlin and worked out by Bunsen, has given in the hands of Marignac and Nilson the best results, especially for the separation of the gadolinite metals, ytterbium and scandium.
(c) A solution of the salts is partially precipitated by ammonia; that is, the solution is mixed with a small quantity of ammonia insufficient for the precipitation of the entire quantity of the bases (fractional precipitation). Thus, the didymium hydroxide is first precipitated from a mixture of the salts of didymium and lanthanum. A partial separation may be effected by repeating the solution of the precipitate and fractional precipitation, but a perfectly pure product is scarcely attainable.
(d) The formates having different degrees of solubility (lanthanum formate 420 parts of water per one of salt, didymium formate 221, cerium formate 360, yttrium and erbium formates easily soluble) give a possible means of separating certain of the gadolinite metals from each other by a method of fractional solution and precipitation, as Bunsen, Bahr, Clève, and others have pointed out.
(e) Crookes (1893) took advantage of the fractional precipitation of alcoholic solutions of the chlorides by amylene, and by this means separated, for example, erbium, terbium, and others.
(f) Lastly, oxide of thorium ThO2(Chapter VIII., Note59) is separated by means of its solubility in a solution of sodium carbonate.
A good method of separating these metals is not known, for they are so like each other. There are also only a fewmethods of distinguishingthem from each other, and we can only add the following four to the above.
aThe faculty of oxidising into a higher oxide. This is very characteristic for cerium, which gives the oxides Ce2O3and CeO2or Ce2O4. Didymium also gives one colourless oxide, Di2O3, which is capable of forming salts (of a lilac colour), and another, according to Brauner, Di2O5which is dark brown and does not form salts, so far as is known, and (like ceric oxide) acts as an oxidising agent, like the higher oxides of tellurium, manganese, lead, and others. Lanthanum, yttrium, and many others are not capable of such oxidation. The presence of the higher oxides may be recognised by ignition in a stream of hydrogen, by which means the higher oxides are reduced to the lower, which then remain unaltered.
bThe majority of the salts of the gadolinite and cerite metals are colourless, but those of didymium and erbium are rose-coloured, the salts of the higher oxide of cerium, CeX4, yellow, of the higher oxide of terbium, yellow, &c. Thus, the first metals obtained from gadolinite were yttrium, giving colourless, and erbium, giving rose-coloured, salts. Afterwards it was found that the salts of erbium of former investigators contained numerous colourless salts of scandium, ytterbium, &c., so that a coloration sometimes indicates the presence of a small impurity, as was long known to be the case in minerals, and therefore this point of distinction cannot be considered trustworthy.
cIn a solid state and in solutions, the salts of didymium, samarium, holmium, &c., give characteristic absorption spectra, as we pointed out in ChapterXIII., and this naturally is connected with the colour of these salts. The most important point is, that those metals which do not give an absorption spectrum—for example, lanthanum, yttrium, scandium, and ytterbium—may be obtained free from didymium, samarium, and the other metals giving absorption spectra, because the presence of the latter may be easily recognised by means of the spectroscope, whilst the presence of the former in the latter cannot be distinguished, and therefore the purification of the former can be carried further than that of the latter. We may further remark that the sensitiveness of the spectrum reaction for didymium is so great that it is possible with a layer of solution half a metre thick to recognise the presence of 1 part of didymium oxide (as salt) in 40,000 parts of water. Cossa determined the presence of didymium (together with cerium and lanthanum) in apatites, limestones, bones, and the ashes of plants by this method. The main group of dark lines of didymium correspond with wave-lengths of from 580 to 570 millionths mm.; and the secondary to about 520, 730, 480, &c. The chief absorption bands of samarium are 472–486, 417, 500, and 559. Besides which, Crookes applied the investigation of the spectra of the phosphorescent light which is emitted by certain earths in an almost perfect vacuum, when an electric discharge is passed through it, to the discovery and characterisation of these rare metals. But it would seem that the smallest admixture of other oxides (for example, bismuth, uranium) so powerfully influences these spectra that the fundamental distinctions of the oxides cannot be determined by this method. Besides which, the spectra obtained by the passage of sparks through solutions or powders of the salts are determined and applied to distinguishing the elements, but as spectra vary with the temperature and elasticity (concentration) this method cannot be considered as trustworthy.
dThe most important point of distinction of individual metallic oxides is given by the directdetermination of their equivalent with respect to water—that is, the amount of the oxide by weight which combines (like water) with 80 parts by weight of sulphuric anhydride, SO3, for the formation of a normal salt. For this purpose the oxide is weighed and dissolved in nitric acid, sulphuric acid is then added, and the whole is evaporated to dryness over a water-bath and then heated over a naked flame sufficiently strongly to drive off the excess of sulphuric acid, but so as not to decompose the salt (the product would in that case not be perfectly soluble in water); then, knowing the weight of the oxide and of the anhydrous sulphate, we can find the equivalent of the oxide. The following are the most trustworthy figures in this connection: scandium oxide 45·35 (Nilson), yttrium oxide 75·7 (Clève; according to my determination, 1871—74·6), cerous oxide—that is, the lower form of oxidation of cerium, according to various investigators (Bunsen, Brauner, and others) from 108 to 111, the higher oxide of cerium from 85 to 87, lanthanum oxide, according to Brauner, 108, didymium oxide (in salts of the ordinary lower form of oxidation) about 112 (Marignac, Brauner, Clève), samarium oxide about 116 (Clève), ytterbium oxide 131·3 (Nilson). It may not be superfluous here to draw attention to the fact that the equivalent of the oxides of all the gadolinite and cerite metals for water distribute themselves into four groups with a somewhat constant difference of nearly 30. In the first group is scandium oxide with equivalent 45, in the second, yttrium oxide 76, in the third, lanthanum, cerium, didymium, and samarium oxides with equivalent about 110, and, in the fourth, erbium, ytterbium, and thorium oxides with equivalent about 131. The common difference of period is nearly 45. And if we ascribe the type R2O3to all the oxides—that is, if we triple the weight of the equivalent of the oxide—we shall obtain a difference of the groups nearly equal to 90, which, for two atoms of the metal, forms the ordinary periodic difference of 45. If one and the same type of oxide R2O3be ascribed to all these elements (as now generally accepted, in many cases there being insufficiently trustworthy data), then the atomic weights should be Sc = 44, Y = 89, La = 138, Ce = 140, Di = 144, (neodymium 140, praseodymium 144), Sm = 150, Yb = 173, also terbium 147, holmium 162, alphayttrium 157, erbium 166, thulium 170, decipium 171. It should be observed that there may be instances of basic salts. If, for example, an element with an atomic weight 90 gave an oxide RO2, but salts ROX2, then by counting its oxide as R2O3its atomic weight would be 159.
All the points distinguishing many gadolinite and cerite elements have not been sufficiently well established in certain cases (for example, with decipium, thulium, holmium, and others). At present the most certain are yttrium, scandium, cerium, and lanthanum. In the case of didymium, for example, there is still much that is doubtful. Didymium, discovered in 1842 by Mosander after lanthanum, differs from the latter in its absorption spectrum and the lilac-rose colour of its salts. Delafontaine (1878) separated samarium from it. Welsbach showed that it contains two particular elements, neodymium (salts bluish-red) and praseodymium (salts apple-green), and Becquerel (1887) by investigating the spectra of crystals, recognised the presence of six individual elements. Probably, therefore, many of the now recognised elements contain a mixture of various others, and as yet there is not enough confirmation of their individuality. As regards yttrium, scandium, cerium, and lanthanum, which have been established without doubt, I think that, owing to their great rarity in nature and chemical art, it would be superfluous to describe them further in so elementary a work as the present. We may add that Winkler (1891) obtained a hydrogen compound of lanthanum, whose composition (according to Brauner) is La2H3, as would be expected from the composition of Na2H, Mg2H2, &c. C. Winkler (1891), on reducing CeO2with magnesium, also remarked a rapid absorption of hydrogen, and showed that ahydride of cerium, CeH2, corresponding to CaH, and the other similar hydrides of metals of the alkaline earths, is formed (Chapter XIV., Note63).