CHAPTER VIIICARBON AND THE HYDROCARBONS

It is necessary to clearly distinguish between the two closely-allied terms, charcoal and carbon. Charcoal is well known to everybody, although it is no easy matter to obtain it in a chemically pure state. Pure charcoal is a simple, insoluble, infusible, combustible substance produced by heating organic matter, and has the familiar aspect of a black mass, devoid of any crystalline structure, and completely insoluble. Charcoal is a substance possessing a peculiar combination of physical and chemical properties. This substance, whilst in a state of ignition, combines directly with oxygen; in organic substances it is found in combination with hydrogen, oxygen, nitrogen, and sulphur. But in all these combinations there is no real charcoal, as in the same sense there is no ice in steam. What is found in such combinations is termed ‘carbon’—that is, an element common to charcoal, to those substances which can be formed from it, and also to those substances from which it can be obtained. Carbon may take the form of charcoal, but occurs also as diamond and as graphite. Truly no other element has such a wide terminology. Oxygen is always called ‘oxygen,’ whether it is in a free gaseous state, or in the form of ozone, or oxygen in water, or in nitric acid or in carbonic anhydride. But here there is some confusion. In water it is evident that there is no oxygen in a gaseous form, such as can be obtained in a free state, no oxygen in the form of ozone, but a substance which is capable of producing both oxygen, ozone, and water. As an element, oxygen possesses a known chemical individuality, and an influence on the properties of those combinations into which it enters. Hydrogen gas is a substance which reacts with difficulty, but the element hydrogen represents in its combinations an easily displaceable component part. Carbon may be considered as an atom of carbon matter, and charcoal as a collection of such atoms forming a whole substance, or mass of molecules of the substance. The accepted atomic weight of carbon is 12, because that is the least quantity of carbon which entersinto combination in molecules of its compounds; but the weight of the molecules of charcoal is probably very much greater. This weight remains unknown because charcoal is capable of but few direct reactions and those only at a high temperature (when the weight of its molecules probably changes, as when ozone changes into oxygen), and it does not turn into vapour. Carbon exists in nature, both in a free and combined state, in most varied forms and aspects. Carbon in a free state is found in at least three different forms, as charcoal, graphite, and the diamond. In a combined state it enters into the composition of what are called organic substances—a multitude of substances which are found in all plants and animals. It exists as carbonic anhydride both in air and in water, and in the soil and crust of the earth as salts of carbonic acid and as organic remains.

The variety of the substances of which the structure of plants and animals is built up is familiar to all. Wax, oil, turpentine, and tar, cotton and albumin, the tissue of plants and the muscular fibre of animals, vinegar and starch, are all vegetable and animal matters, and all carbon compounds.[1]The class of carbon compounds is so vastthat it forms a separate branch of chemistry, known under the name of organic chemistry—that is, the chemistry of carbon compounds, or, more strictly, of the hydrocarbons and their derivatives.

If any one of these organic compounds be strongly heated without free access of air—or, better still, in a vacuum—it decomposes with more or less facility. If the supply of air be insufficient, or the temperature be too low for combustion (seeChapterIII.), and if the first volatile products of transformation of the organic matter are subjected to condensation (for example, if the door of a stove be opened), an imperfect combustion takes place, and smoke, with charcoal or soot, is formed.[2]The nature of the phenomenon, and the products arising from it, are the same as those produced by heating alone, since that part which is in a state of combustion serves to heat the remainder of the fuel. The decomposition which takes place on heating a compound composed of carbon, hydrogen, and oxygen is as follows:—A part of the hydrogen is separated in a gaseous state, another part in combination with oxygen, and a third part separates in combination with carbon, and sometimes in combination with carbon and oxygen in the form of gaseous or volatile products, or, as they are also called, the products of dry distillation. If the vapours of these products are passed through a strongly heated tube, they are changed again in a similar manner and finally resolve themselves into hydrogen and charcoal. Altogether these various products of decomposition contain a smaller amount of carbon than the original organic matter; part of the carbon remains in a free state, forming charcoal.[3]It remains in that space where the decomposition took place, in the shape of the black, infusible, non-volatile charcoal familiar to all. The earthy matter and all non-volatilesubstances (ash) forming a part of the organic matter, remain behind with the charcoal. The tar-like substances, which require a high temperature in order to decompose them, also remain mixed with charcoal. If a volatile organic substance, such as a gaseous compound containing oxygen and hydrogen, be taken, the carbon separates on passing the vapour through a tube heated to a high temperature. Organic substances when burning with an insufficient supply of air give off soot—that is, charcoal—proceeding from carbon compounds in a state of vapour, the hydrogen of which has, by combustion, been converted into water; so, for instance, turpentine, naphthalene, and other hydrocarbons which are with difficulty decomposed by heat, easily yield carbon in the form of soot during combustion. Chlorine and other substances which, like oxygen, are capable of taking up hydrogen, and also substances which are capable of taking up water, can also separate carbon from (or char) most organic substances.

Wood charcoal is prepared in large quantities in a similar manner—that is, by the partial combustion of wood.[4]In nature a similarprocess of carbonisation of vegetable refuse takes place in its transformation under water, as shown by the marshy vegetation which forms peat.[5]In this manner doubtless the enormous masses of coal were formed[6]which, following the example set by England, are now utilised everywhere as the principal material for heating steamboilers, and in general for all purposes of heating and burning.[7]Russia possesses many very rich coalfields, amongst which the Donetz district is most worthy of remark.[8]

During the imperfect combustion of volatile substances containingcarbon and hydrogen, the hydrogen and part of the carbon first burn, and the remainder of the carbon forms soot. Tar, pitch, and similar substances for this reason burn with a smoky flame. Thus soot is finely-divided charcoal separated during the imperfect combustion of the vapours and gases of carbonaceous substances rich in carbon. Specially-prepared soot (lampblack) is very largely used as a black paint and a large quantity goes for the manufacture of printers' ink. It is prepared by burning tar, oil, natural gas, naphtha, &c. The quantity of organic matter remaining undecomposed in the charcoal depends on the temperature to which it has been submitted. Charcoal prepared at the lowest temperature still contains a considerable quantity of hydrogen and oxygen—even as much as 4 p.c. of hydrogen and 20 p.c. of oxygen. Such charcoal still preserves the structure of the substance from which it was obtained. Ordinary charcoal, for instance, in which the structure of the tree is still visible, is of this kind. On submitting it to further heating, a fresh quantity of hydrogen with carbon and oxygen (in the form of gases or volatile matter) may be separated, and the purest charcoal will be obtained on submitting it to the greatest heat.[9]If it be required to prepare pure charcoal from soot it is necessary first to wash it with alcohol and ether in order to remove the soluble tarry products, and then submit it to a powerful heat to drive off the impurities containing hydrogen and oxygen. Charcoal however when completely purified does not change in appearance. Its porosity,[10]bad conducting power for heat,capability of absorbing the luminous rays (hence its blackness and opacity), and many other qualities, are familiar from everyday experience.[11]The specific gravity of charcoal varies from 1·4 to 1·9, and that it floats on water is due to the air contained in its pores. If charcoal is reduced to a powder and moistened with spirit, it immediately sinks in water. It isinfusiblein the furnace and even at the temperature of the oxyhydrogen flame. In the heat generated by means of a powerful galvanic current charcoal only softens but does not completely melt, and on cooling it is found to have undergone a complete change both in properties and appearance, and is more or less transformed into graphite. The physical stability of charcoal is without doubt allied to its chemical stability. It is evidently a substance devoid of energy, for it is insoluble in all known liquids,andat an ordinary temperature does not combine with anything; it is an inactive substance, like nitrogen.[12]But these properties of charcoal change with a rise of temperature; thus, unlike nitrogen, charcoal, at a high temperature, combines directly with oxygen. This is well known, as charcoal burns in air. Indeed, not only does oxygencombine with charcoal at a red heat, but sulphur, hydrogen, silicon, and also iron and some other metals[12 bis]do so at a very high temperature—that is, when the molecules of the charcoal have reached a state of great instability—whilst at ordinary temperatures neither oxygen, sulphur, nor metals act on charcoal in any way. When burning in oxygen, charcoal forms carbonic anhydride, CO2, whilst in the vapours of sulphur, carbon bisulphide, CS2, is formed, and wrought iron, when acted on by carbon, becomes cast iron. At the great heat obtained by passing the galvanic current through carbon electrodes, charcoal combines with hydrogen, forming acetylene, C2H2. Charcoal does not combine directly with nitrogen, but in the presence of metals and alkaline oxides, nitrogen is absorbed, forming a metallic cyanide, as, for instance, potassium cyanide, KCN. From these few direct combinations which charcoal is capable of entering into, may be derived those numerous carbonaceous compounds which enter into the composition of plants and animals, and can be thus obtained artificially. Certain substances containing oxygen give up apart of it to charcoal at a relatively low temperature. For instance, nitric acid when boiled with charcoal gives carbonic anhydride and nitric peroxide. Sulphuric acid is reduced to sulphurous anhydride when heated with carbon. When heated to redness charcoal absorbs oxygen from a large number of the oxides. Even such oxides as those of sodium and potassium, when heated to redness, yield their oxygen to charcoal although they do not part with it to hydrogen. Only a few of the oxides, like silica (oxide of silicon) and lime (calcium oxide) resist the reducing action of charcoal. Charcoal is capable of changing its physical condition without undergoing any alteration in its essential chemical properties—that is, it passes intoisomericorallotropic forms. The two other particular forms in which carbon appears are thediamondandgraphite. The identity of composition of these with charcoal is proved by burning an equal quantity of all three separately in oxygen (at a very high temperature), when each gives the same quantity of carbonic anhydride—namely, 12 parts of charcoal, diamond, or graphite in a pure state, yield on burning 44 parts by weight of carbonic anhydride. The physical properties present a marked contrast; the densest sorts of charcoal have a density of only 1·9, whilst the density of graphite is about 2·3, and that of the diamond 3·5. A great many other properties depend on the density, for instance combustibility. The lighter charcoal is, the more easily it burns; graphite burns with considerable difficulty even in oxygen, and the diamond burns only in oxygen and at a very high temperature. On burning, charcoal, the diamond, and graphite develop different quantities of heat. One part by weight of wood charcoal converted by burning into carbonic anhydride develops 8,080 heat units; dense charcoal separated in gas retorts develops 8,050 heat units; natural graphite, 7,800 heat units; and the diamond 7,770. The greater the density the less the heat evolved by the combustion of the carbon.[13]

By means of intense heat charcoal may be transformed into graphite. If a charcoal rod 4 mm. in diameter and 5 mm. long be enclosed in an exhausted receiver and the current from 600 Bunsen's elements, placed in parallel series of 100, be passed through it, the charcoalbecomes strongly incandescent, partially volatilises, and is deposited in the form of graphite. If sugar be placed in a charcoal crucible and a powerful galvanic current passed through it, it is baked into a mass similar to graphite. If charcoal be mixed with wrought iron and heated, cast iron is formed, which contains as much as five per cent. of charcoal. If molten cast iron be suddenly chilled, the carbon remains in combination with the iron, forming so called white cast iron; but if the cooling proceeds slowly, the greater part of the carbon separates in the form of graphite, and if such cast iron (so called grey cast iron) be dissolved in acid, the carbon remains in the form of graphite. Graphite is met with in nature, sometimes in the form of large compact masses, sometimes permeating rocky formations like the schists or slates, and in fact is met with in those places which, in all probability, have been subjected to the action of subterranean heat.[14]The graphite in cast iron, and sometimes also natural graphite, occasionally appears in a crystalline form in the shape of six-sided plates, but more often it occurs as a compact amorphous mass having the characteristic properties of the familiar black-lead pencil.[15]

The diamond is a crystalline and transparent form of carbon. It isof rare occurrence in nature, and is found in the alluvial deposits of the diamond mines of Brazil, India, South Africa, &c. It has also been found in meteorites.[15 bis]It crystallises in octahedra, dodecahedra, cubes, and other forms of the regular system.[16]The efforts which have been made to produce diamonds artificially, although they have not been fruitless, have not as yet led to the production of large-sized crystals, because those means by which crystals are generally formed are inapplicable to carbon. Indeed, carbon in all its forms being insoluble and infusible does not pass into a liquid condition by means of which crystallisation could take place. Diamonds have several times been successfully produced in the shape of minute crystals having the appearance of a black powder, but when viewed under the microscope appearing transparent, and possessing that hardness which is the peculiar characteristic of the diamond. This diamond powder is deposited on the negative electrode, when a weak galvanic current is passed through liquid chloride of carbon.[16 bis]

Moissan (Paris, 1893) produced diamonds artificially by means of the high temperature attained in the electrical furnace[17]by dissolvingcarbon in molten cast iron, and allowing the solution with an excess of carbon, to cool under the powerful pressure exerted by rapidly cooling the metal.[17 bis]K. Chroustchoff attained the same end by means of silver, which dissolves carbon to the extent of 6 p.c.at a high temperature. Rousseau, for the same purpose, heated carbide of calcium in the electric furnace. There is no doubt that all these investigators obtained the diamond as a transparent body, which burnt into CO2, and possessed an exceptional hardness, but only in the form of a fine powder.

Judging from the fact that carbon forms a number of gaseous bodies (carbonic oxide, carbonic anhydride, methane, ethylene, acetylene, &c.) and volatile substances (for example, many hydrocarbons and their most simple derivatives), and considering that the atomic weight of carbon, C = 12, approaches that of nitrogen, N = 14, and that of oxygen, O = 16, and that the compounds CO (carbonic oxide) and N2C2(cyanogen) are gases, it may be argued that if carbon formed the molecule C2, like N2and O2, it would be a gas. And as through polymerism or the combination of like molecules (as O2passes into O3or NO2into N2O4) the temperatures of ebullition and fusion rise (which is particularly clearly proved with the hydrocarbons of the CnH2nseries), it ought to be considered thatthe molecules of charcoal, graphite, and the diamond are very complex, seeing that they are insoluble, non-volatile, and infusible. The aptitude which the atoms of carbon show for combining together and forming complex molecules appears in all carbon compounds. Among the volatile compounds of carbon many are well known the molecules of which contain C5... C10... C20... C30, &c., in general Cnwhere n may be very large, and in none of the other elements is this faculty of complexity so developed as in carbon.[18]Up to the present time there are no grounds for determining the degree of polymerism of the charcoal, graphite, or diamond molecules, and it can only be supposed that they contain Cnwhere n is a large quantity. Charcoal and those complex non-volatile organic substances which represent the gradual transitions to charcoal[19]and form the principalsolid substances of organisms, contain a store or accumulation of internal power in the form of the energy binding the atoms into complex molecules. When charcoal or complex compounds of carbon burn, the energy of the carbon and oxygen is turned into heat, and this fact is taken advantage of at every turn for the generation of heat from fuel.[20]

No other two elements are capable of combining together in such variety as carbon and hydrogen. The hydrocarbons of the CnH2mseries in many cases differ widely from each other, although they have some properties in common. All hydrocarbons, whether gaseous, liquid or solid, are combustible substances sparingly soluble or insoluble in water. The liquefied gaseous hydrocarbons, as well as those which are liquid at ordinary temperatures, and those solid hydrocarbons which have been liquefied by fusion, have the appearance and property of oily liquors, more or less viscid, or fluid.[21]The solid hydrocarbons more or less resemble wax in their properties, although ordinary oilsand wax generally contain oxygen in addition to carbon and hydrogen, but in relatively small proportion. There are also many hydrocarbons which have the appearance of tar—as, for instance, metacinnamene and gutta-percha. Those liquid hydrocarbons which boil at a high temperature are like oils, and those which have a low boiling point resemble ether, whilst the gaseous hydrocarbons in many of their properties are akin to hydrogen. All this tends to show that in hydrocarbons physically considered the properties of solid non-volatile charcoal are strongly modified and hidden, whilst those of the hydrogen predominate. All hydrocarbons are neutral substances (neither basic nor acid), but under certain conditions they enter into peculiar reactions. It has been seen in those hydrogen compounds which have been already considered (water, nitric acid, ammonia) that the hydrogen in almost all cases enters into reaction, being displaced by metals. The hydrogen of the hydrocarbons, it may be said, has no metallic character that is to say, it is not directly[22]displaced by metals, even by such as sodium and potassium. On the application of more or less heat all hydrocarbons decompose[23]forming charcoal and hydrogen. The majority of hydrocarbons do not combine with the oxygen of the air or oxidise at ordinary temperatures, but under the action of nitric acid and many other oxidising substances most of them undergo oxidation, in which either a portion of the hydrogen and carbon is separated, or the oxygen enters into combination, or else the elements of hydrogen peroxide enter into combination with the hydrocarbon.[24]When heated in air, hydrocarbonsburn, and, according to the amount of carbon they contain, their combustion is attended more or less with a separation of soot—that is, finely divided charcoal—which imparts great brilliancy to the flame, and on this account many of them are used for the purposes of illumination—as, for instance, kerosene, coal gas, oil of turpentine. As hydrocarbons contain reducing elements (that is, those capable of combining with oxygen), they often act as reducing agents—as, for instance, when heated with oxide of copper, they burn, forming carbonic anhydride and water, and leave metallic copper. Gerhardt proved that all hydrocarbons contain an even number of hydrogen atoms. Therefore, the general formula for all hydrocarbons is CnH2mwherenandmare whole numbers. This fact is known asthe law of even numbers. Hence, the simplest possible hydrocarbons ought to be: CH2, CH4, CH6... C2H2, C2H4, C2H6, C2H8... but they do not all exist, since the quantity of H which can combine with a certain amount of carbon is limited, as we shall learn directly.

Some of the hydrocarbons are capable of combination, whilst others do not show that power. Those which contain less hydrogen belong to the former category, and those which, for a given quantity of carbon, contain the maximum amount of hydrogen, belong to the latter. The composition of those last mentioned is expressed by the general formula CnH2n+ 2. These so-calledsaturated hydrocarbonsare incapable of combination.[25]The hydrocarbons CH6, C2H8, C3H10, &c.... do not exist. Those containing the maximum amount of hydrogen will be represented by CH4(n= 1, 2n+ 2 = 4), C2H6(n= 2), C3H8(n = 3), C4H10, &c. This may be termed thelaw of limits. Placing this in juxtaposition with the law of even numbers, it is easy to perceive that the possible hydrocarbons can be ranged in series, the terms of which may be expressed by the general formulæ CnH2n+2, CnH2n, CnH2n-2, &c.... Those hydrocarbons which belong to any one of the seriesexpressible by a general formula are said to behomologous0 with one another. Thus, the hydrocarbons CH4, C2H6, C3H8, C4H10, &c.... are members of the limiting (saturated) homologous series CnH2n+2. That is, the difference between the members of the series is CH2.[26]Not only the composition but also the properties of the members of a series tend to classification in one group. For instance, the members of the series CnH2n+2are not capable of forming additive compounds, whilst those of the series CnH2nare capable of combining with chlorine, sulphuric anhydride, &c.; and the members of the CnH2n-6group, belonging to the coal tar series, are easily nitrated (give nitro-compounds, ChapterVI.), and have other properties in common. The physical properties of the members of a given homologous series vary in some such manner as this; the boiling point generally rises and the internal friction increases asnincreases[27]—that is, with an increase in the relative amount of carbon and the atomic weight; the specific gravity also regularly changes asnbecomes greater.[28]

Many of the hydrocarbons met with in nature are the products of organisms, and do not belong to the mineral kingdom. A still greater number are produced artificially. These are formed by what is termedthe combination of residues. For instance, if a mixture of the vapours of hydrogen sulphide and carbon bisulphide be passed through a tube in which copper is heated, this latter absorbs the sulphur from both the compounds, and the liberated carbon and hydrogen combine to form a hydrocarbon, methane. If carbon be combined with any metal and this compound MCnbe treated with an acid HX, then the haloid X will give a salt with the metal and the residual carbon and hydrogen will give a hydrocarbon. Thus cast iron which contains a compound of iron and carbon gives liquid hydrocarbons like naphtha under the action of acids. If a mixture of bromo-benzene, C6H5Br, and ethyl bromide, C2H5Br, be heated with metallic sodium, the sodium combines with the bromine of both compounds, forming sodium bromide, NaBr. From the first combination the group C6H5remains, and from the second C2H5. Having an odd number of hydrogen atoms, they, in virtue of the law of even numbers, cannot exist alone, and therefore combine together forming the compound C6H5.C2H5or C8H10(ethylbenzene). Hydrocarbons are also produced by the breaking up of more complex organic or hydrocarbon compounds, especially by heating—that is, by dry distillation. For instance, gum-benzoin contains an acid called benzoic acid, C7H6O2, the vapours of which, when passed through a heated tube, split up into carbonic anhydride, CO2, and benzene, C6H6. Carbon and hydrogen only unite directly in one ratio of combination—namely, to form acetylene, having the composition C2H2, which, as compared with other hydrocarbons, exhibits a very great stability at a somewhat high temperature.[29]

There is one substance known among the saturated hydrocarbons composed of 1 atom of carbon and 4 atoms of hydrogen; this is a compound containing the highest percentage of hydrogen (CH4contains 25 per cent. of hydrogen), and at the same time it is the only hydrocarbon whose molecule contains but a single atom of carbon. This saturated hydrocarbon, CH4, is calledmarsh gasormethane. If vegetable or animal refuse suffers decomposition in a space where the air has not free access, or no access at all, then the decomposition is accompanied with the formation of marsh gas, and this either at the ordinary temperature, or at a comparatively much higher one. On this accountplants, when decomposing under water inmarshes, give out this gas.[29 bis]It is well known that if the mud in bogs be stirred up, the act is accompanied with the evolution of a large quantity of gas bubbles; these may, although slowly, also separate of their ownaccord. The gas which is evolved consists principally of marsh gas.[30]If wood, coal, or many other vegetable or animal substances are decomposed by theaction of heatwithout access of air—that is, are subjected to dry distillation—they, in addition to many other gaseous products of decomposition (carbonic anhydride, hydrogen, and various other substances), evolve a great deal of methane. Generally the gas which is used for lighting purposes is obtained by this means and therefore always contains marsh gas, mixed with dry hydrogen and other vapours and gases, although it is subsequently purified from many of them.[31]As the decomposition of the organic matter, which forms coal, is still going on underground, the evolution of large quantities of marsh gas frequently occurs in coal-mines.[32]When mixed with air it forms an explosive mixture, which forms one of the great dangers of coal mining, as subterranean work has always to be carried on by lamp-light. This danger is, however, overcome by the use of Humphry Davy's safety lamp.[33]Sir Humphry Davy observed that on introducing a piece of wire gauze into a flame, it absorbs so much heat that combustion does not proceed beyond it (the unburnt gases which pass through it may be ignited on the other side). In accordance with this, the flame of the Davy lamp is surrounded with a thick glass (as shown in the drawing), and has no communication whatever with the explosive mixture except through a wire gauze which prevents it igniting the mixture of the marsh-gas issuing from the coal with air. In some districts, particularly in those where petroleum is found—as, for instance, near Baku, where a temple of the Indian fire-worshippers was built, and in Pennsylvania, and other places—marsh gas in abundance issues from the earth, and it is used, like coal gas, for the purposes of lighting and warming.[34]Tolerably pure marsh gas[35]may be obtained by heating a mixture of an acetate with an alkali. Acetic acid, C2H4O2, on being heated is decomposed into marsh gas and carbonic anhydride, C2H4O2= CH4+ CO2.

An alkali—for instance, NaHO—gives with acetic acid a salt, C2H3NaO2, which on decomposition retains carbonic anhydride, forming a carbonate, Na2CO3, and marsh gas is given off:

C2H3NaO2+ NaHO = Na2CO3+ CH4

Marsh gas is difficult to liquefy; it is almost insoluble in water, and is without taste or smell. The most important point in connection with its chemical reactions is that it does not combine directly with anything, whilst the other hydrocarbons which contain less hydrogen than expressed by the formula CnH2n+ 2are capable of combining with hydrogen, chlorine, certain acids, &c.

If the law of substitution gives a very simple explanation of the formation of hydrogen peroxide as a compound containing two aqueous residues (OH)(OH), then on the basis of this law all hydrocarbons ought to be derived from methane, CH4, as being the simplest hydrocarbon.[36]The increase in complexity of a molecule of methane is brought about by the faculty of mutual combination which exists in the atoms of carbon, and, as a consequence of the most detailed study of the subject, much that might have been foreseen and conjectured from the law of substitution has been actually brought about in such a manner as might have been predicted, and although this subject on account of its magnitude really belongs, as has been already stated, to the sphere of organic chemistry, it has been alluded to here in order to show, although only in part, the best investigated example of the application of the law of substitution. According to this law, a molecule of methane, CH4, is capable of undergoing substitution in the four following ways:—(1) Methyl substitution, when the radicle, equivalent to hydrogen, calledmethylCH3, replaces hydrogen. In CH4this radicle is combined with H and therefore can replace it, as (OH) replaces H because with it it gives water; (2) methylene substitution, or the exchange between H2and CH2(this radicle is called methylene), is founded on a similar division of the molecule CH4into two equivalentparts, H2and CH2; (3) acetylene substitution, or the exchange between CH on the one hand and H3on the other; and (4) carbon substitution—that is, the substitution of H4by an atom of carbon C, which is founded on the law of substitution just as is the methyl substitution. These four cases of substitution render it possible to understand the principal relations of the hydrocarbons. For instance, thelaw of even numbersis seen from the fact that in all the cases of substitution mentioned the hydrogen atoms increase or decrease by an even number; but as in CH4they are likewise even, it follows that no matter how many substitutions are effected there will always be obtained an even number of hydrogen atoms. When H is replaced by CH3there is an increase of CH2; when H2is replaced by CH2there is no increase of hydrogen; in the acetylene substitution CH replaces H3, therefore there is an increase of C and a decrease of H2; in the carbon substitution there is a decrease of H4. In a similar way thelaw of limitmay be deduced as a corollary of the law of substitution. For the largest possible quantity of hydrogen is introduced by the methyl substitution, since it leads to the addition of CH2; starting from CH4we obtain C2H6, C3H8, and in general, CnH2n+2, and these contain the greatest possible amount of hydrogen. Unsaturated hydrocarbons, containing less hydrogen, are evidently only formed when the increase of the new molecule derived from methane proceeds from one of the other forms of substitution. When the methyl substitution alone takes place in methane, CH4, it is evident that the saturated hydrocarbon formed is C2H6or (CH3)(CH3).[37]This is calledethane. By means of the methylene substitution alone,ethylene, C2H4, or (CH2)(CH2) may be directly obtained from CH4, and by the acetylene substitution C2H2or(CH)(CH), oracetylene, both the latter being unsaturated hydrocarbons. Thus we have all the possible hydrocarbons with two atoms of carbon in the molecule, C2H6, ethane, C2H4, ethylene, and C2H2, acetylene. But in them, according to the law of substitution, the same forms of substitution may be repeated—that is, the methyl, methylene, acetylene, and even carbon substitutions (because C2H6will still contain hydrogen when C replaces H4) and therefore further substitutions will serve as a source for the production of a fresh series of saturated and unsaturated hydrocarbons, containing more and more carbon in the molecule and, in the case of the acetylene substitution and carbon substitution, containing less and less hydrogen. Thusby means of the law of substitution we can foreseenot only the limit CnH2n+2, but an unlimited number of unsaturated hydrocarbons, CnH2n, CnH2n-2... CnH2(n-m), wheremvaries from 0 ton-1,[38]and wherenincreases indefinitely. From these facts not only does the existence of a multitude of polymeric hydrocarbons, differing in molecular weight, become intelligible, but it is also seen that there is a possibility of cases of isomerism with the same molecular weight. Thispolymerismso common to hydrocarbon compounds is already apparent in the first unsaturated series CnH2n, because all the terms of this series C2H4, C3H6, C4H8... C30H60... have one and the same composition CH2, but different molecular weights, as has been already explained in ChapterVII. The differences in the vapour density, boiling points, and melting points, of the quantities entering into reactions,[39]and the methods of preparation[40]also so clearly tally with the conception of polymerism, that this example will always be the clearest and most conclusive for the illustration of polymerism and molecular weight. Such a case is also met with among other hydrocarbons. Thus benzene, C6H6, and cinnamene, C8H8, correspond with the composition of acetylene or to a compound of the composition CH.[41]The first boils at 81°, the second at 144°;the specific gravity of the first is 0·899; that of the second, 0·925, at 0°—that is, here also the boiling point rises with the increase of molecular weight, and so also, as might be expected, does the density.

Cases of isomerism in the restricted sense of the word—that is, when with an identity of composition and of molecular weight, the properties of the substances are different—are very numerous among the hydrocarbons and their derivatives. Such cases are particularly important for the comprehension of molecular structure and they also, like the polymerides, may be predicted from the above-mentioned conceptions, expressing the principles of the structure of the carbon compounds[42]based on the law of substitution. According to it, for example, it is evident that there can be no isomerism in the cases of the saturated hydrocarbons C2H6and C3H8, because the former is CH4, in which methyl has taken the place of H, and as all the hydrogen atoms of methane must be supposed to have the same relation to the carbon, it is all the same which of them be subjected to the methyl substitution—the resulting product can only be ethane, CH3CH3;[43]the same argument also applies in the case of propane, CH3CH2CH3, where one compound only can be imagined. Itis to be expected, however, that there should be two butanes, C4H10, and this is actually the case. In one, methyl may be considered as replacing the hydrogen of one of the methyls, CH3CH2CH2CH3; and in the other CH3may be considered as substituted for H in CH3, and there it will consist of CH3CHCH3/CH3. The latter may also be regarded as methane in which three of hydrogen are exchanged for three of methyl. On going further in the series it is evident that the number of possible isomerides will be still greater, but we have limited ourselves to the simplest examples, showing the possibility and actual existence of isomerides. C2H4and CH2CH2are, it is evident, identical; but there ought to be, and are, two hydrocarbons of the composition C3H6, propylene and trimethylene; the first is ethylene, CH2CH2, in which one atom of hydrogen is exchanged for methyl, CH2CHCH3, and trimethylene is ethane, CH3CH3, with the substitution of methylene for two hydrogen atoms from two methyl groups—that is, CH2CH2/CH2,[44]where the methylene introduced is united to both the atoms of carbon in CH3CH3. It is evident that the cause of isomerism here is, on the one hand, the difference of the amount of hydrogen in union with the particular atoms of carbon, and, on the other, the different connection between the several atoms of carbon. In the first case they may be said to be chained together (more usually to form an ‘open chain’), and in the second case, to be locked together (to form a ‘closed chai’ or ‘ring’). Here also it is easily understood that on increasing the quantity of carbon atoms the number of possible and existing isomerides will greatly increase. If, at the same time, in addition to the substitution of one of the radicles of methane for hydrogen a further exchange of part of the hydrogen for some of the other groups of elements X, Y ... occurs, the quantity of possible isomerides still further increases in a considerable degree. For instance, there are even two possible isomerides for the derivatives of ethane, C2H6: if two atoms of the hydrogen be exchanged for X2,one will have the ethylene structure, CH2XCH2X, and the other an ethylidene structure, CH3CHX2; such are, for instance, ethylene chloride, CH2ClCH2Cl, and ethylidene chloride, CH3CHCl2. And as in the place of the first atom of hydrogen not only metals may be substituted, but Cl, Br, I, OH (the water radicle), NH2(the ammonia radicle), NO2(the radicle of nitric acid), &c., so also in exchange for two atoms of hydrogen O, NH, S, &c., may be substituted; hence it will be understood that the quantity of isomerides is sometimes very great. It is impossible here to describe how the isomerides are distinguished from each other, in what reactions they occur, how and when one changes into another, &c.; for this, taken together with the description of the hydrocarbons already known, and their derivatives, forms a very extensive and very thoroughly investigated branch of chemistry, calledorganic chemistry. Enriched with a mass of closely observed phenomena and strictly deduced generalisations, this branch of chemistry has been treated separately for the reason that in it the hydrocarbon groups are subjected to transformations which are not met with in such quantity in dealing with any of the other elements or their hydrogen compounds. It was important for us to show that notwithstanding the great variety of the hydrocarbons and their products,[45]they are all of them governed by the law of substitution, and referring our readers for detailed information to works on organic chemistry, we will limit ourselves to a short exposition of the properties of the two simplest unsaturated hydrocarbons: ethylene, CH2CH2, and acetylene, CHCH, and a short acquaintance with petroleum as the natural source of a mass of hydrocarbons.Ethylene, or olefiant gas, C2H4,is the lowest known member of the unsaturated hydrocarbon series of the composition CnH2n. As in composition it is equal to two molecules of marsh gas deprived of two molecules of hydrogen, it is evident that it might be, and it actually can be, produced, although but in small quantities, together with hydrogen, by heating marsh gas. On being heated, however, olefiant gas splits up, first into acetylene and methane (3C2H4= 2C2H2+ 2CH4, Lewes, 1894), and at a higher temperature into carbon and hydrogen; and therefore in those cases where marsh gas is produced by heating, olefiant gas, hydrogen, and charcoal will also be formed, although only in small quantities. The lower the temperature at which complex organic substances are heated, the greater the quantity of olefiant gas found in the gases given off; at a white heat it is entirely decomposed into charcoal and marsh gas. If coal, wood, and more particularly petroleum, tars, and fatty substances, are subjected to dry distillation, they give off illuminating gas, which contains more or less olefiant gas.

Olefiant gas, almost free from other gases,[46]may be obtained from ordinary alcohol (if possible, free from water) if it be mixed with five parts of strong sulphuric acid and the mixture heated to slightly above 100°. Under these conditions, the sulphuric acid removes the elements of water from the alcohol, C2H5(OH), and gives olefiant gas; C2H6O = H2O + C2H4. The greater molecular weight of olefiant gas compared with marsh gas indicates that it may be comparatively easily converted into a liquid by means of pressure or great cold; this may be effected, for example, by the evaporation of liquid nitrous oxide. Its absolute boiling point is +10°, it boils at -103° (1 atmosphere), liquefies at 0°, at a pressure of 43 atmospheres, and solidifies at -160°. Ethylene is colourless, has a slight ethereal smell, is slightly soluble in water, and somewhat more soluble in alcohol and in ether (in five volumes of spirit and six volumes of ether).[47]

Like other unsaturated hydrocarbons, olefiant gas readily enters into combination with certain substances, such as chlorine, bromine, iodine, fuming sulphuric acid, or sulphuric anhydride, &c. If olefiant gas be sealed up with a small quantity of sulphuric acid in a glass vessel, and constantly agitated (as, for instance, by attaching it to the moving part of a machine), the prolonged contact and repeated mixing causes the olefiant gas, little by little, to combine with the sulphuric acid, forming C2H4H2SO4. If, after this absorption, the sulphuric acid be diluted with water and distilled, alcohol separates, which is produced in this case by the olefiant gas combining with the elements of water, C2H4+ H2O = C2H6O. In this reaction (Berthelot) we see an excellent example of the fact that if a given substance, like olefiant gas, is produced by the decomposition of another, then in the reverse way this substance, entering into combination, is capable of forming the original substance—in our example, alcohol. In combination with various molecules, X2, ethylene gives saturated compounds, C2H4X2or CH2XCH2X (for example, C2H4Cl2), which correspond with ethane, CH3CH3or C2H6.[48]

Acetylene, C2H2= CHCH, is a gas; it was first prepared by Berthelot (1857). It has a very pungent smell, is characterised by its great stability under the action of heat, and is obtained as the only product of the direct combination of carbon with hydrogen when a luminous arc (voltaic) is formed between carbon electrodes. This arc contains particles of carbon passing from one pole to the other. If the carbons be surrounded with an atmosphere of hydrogen, the carbon in part combines with the hydrogen, forming C2H2.[48 bis]Acetylene may be formed from olefiant gas if two atoms of hydrogen be taken from it. This may be effected in the following way: the olefiant gas is first made to combine with bromine, giving C2H4Br2; from this the hydrobromic acid is removed by means of an alcoholic solution of caustic potash, leaving the volatile product C2H3Br; and from this yet another part of hydrobromic acid is withdrawn by passing it through anhydrous alcohol in which metallic sodium has been dissolved, or by heating it with a strong alcoholic solution of caustic potash. Under these circumstances (Berthelot, Sawitsch, Miasnikoff) the alkali takes up the hydrobromic acid from CnH2n-1Br, forming CnH2n-2.

Acetylene is also produced in all those cases where organic substances are decomposed by the action of a high temperature—for example, by dry distillation. On this account a certain quantity is always found in coal gas, and gives to it, at all events in part, its peculiar smell, but the quantity of acetylene in coal gas is very small. If the vapour of alcohol be passed through a heated tube a certain quantity of acetylene is formed. It is also produced by the imperfect combustion of olefiant and marsh gas—for example, if the flame of coal gas has not free access to air.[49]The inner part of every flame contains gases in imperfect combustion, and in them some amount of acetylene.

Acetylene, being further removed than ethylene from the limit CnH2n+2of hydrocarbon compounds, has a still greater faculty of combination than is shown by olefiant gas, and therefore can be more readily separated from any mixture containing it. Actually, acetylene not only combines with one and two molecules of I2, HI, H2SO4, Cl2, Br2, &c.... (many other unsaturated hydrocarbons combine with them), but also with cuprous chloride, CuCl, forming a red precipitate. If a gaseous mixture containing acetylene be passed through an ammoniacal solution of cuprous chloride (or silver nitrate), the other gases do not combine, but the acetylene gives a red precipitate (or grey with silver), which detonates when struck with a hammer. This red precipitate gives off acetylene under the action of acids. In this manner pure acetylene may be obtained. Acetylene and its homologues also readily react with corrosive sublimate, HgCl2(Koucheroff, Favorsky). Acetylene burns with a very brilliant flame, which is accounted for by the comparatively large amount of carbon it contains.[50]

The formation and existence in nature of large masses of petroleum or a mixture of liquid hydrocarbons, principally of the series CnH2n+2and CnH2nis in many respects remarkable.[51]In some mountainousdistricts—as, for instance, by the slopes of the Caucasian chain, on inclines lying in a direction parallel to the range—an oily liquid issues from the earth together with salt water and hot gases (methane and others); it has a tarry smell and dark brown colour, and is lighter than water. This liquid is called naphtha or rock oil (petroleum) and is obtained in large quantities by sinking wells and deep bore-holes in those places where traces of naphtha are observed, the naphtha being sometimes thrown up from the wells in fountains of considerable height.[52]The evolution of naphtha is always accompanied by salt water and marsh gas. Naphtha has from ancient times been worked in Russia in the Apsheron peninsula near Baku, and is also now worked in Burmah (India), in Galicia near the Carpathians, and in America, especially in Pennsylvania and Canada, &c. Naphtha does not consist of one definite hydrocarbon, but of a mixture of several, and its density, external appearance, and other qualities vary with the amount of the different hydrocarbons of which it is composed. The light kinds of naphtha have a specific gravity about 0·8 and the heavy kinds up to 0·98. The former are very mobile liquids, and more volatile; the latter contain less of the volatile hydrocarbons and are less mobile. When the light kinds of naphtha are distilled, the boiling point taken in the vapours constantly changes, beginning at 0° and going up to above 350°. That which passes over first is a very mobile, colourless ethereal liquid (forming gazolene, ligroin, benzoline, &c.), from which the hydrocarbons whose boiling points start from 0° may be extracted—namely, the hydrocarbons C4H10, C5H12(which boils at 30°), C6H14(boils at 62°), C7H16(boils about 90°), &c. Those fractions of the naphtha distillate which boil above 130°, and contain hydrocarbons with C9, C10, C11, &c., enter into the composition of theoily substance, universally used for lighting, called kerosene or photogen or photonaphthalene, and by other names. The specific gravity of kerosene is from 0·78 to 0·84, and it smells like naphtha. Those products of the distillation of naphtha which pass off below 130° and have a specific gravity below 0·75, enter into the composition of light petroleum (benzoline, ligroin, petroleum spirit, &c.); which is used as a solvent for india-rubber, for removing grease spots, &c. Those portions of naphtha (which can only be distilled without change by means of superheated steam, otherwise they are largely decomposed) which boil above 275° and up to 300° and have a specific gravity higher than 0·85, form an excellent oil,[53]safe as regards inflammability (which is very important as diminishing the risks of fire), and may be used in lamps as an effective substitute for kerosene.[54]Those portions of naphtha which pass over at a still higher temperature and have a higher specific gravity than 0·9, which are found in abundance (about 30 p.c.) in the Baku naphtha, make excellent lubricating or machine oils. Naphtha has many important applications, and the naphtha industry is now of great commercial importance, especially as naphthaand its refuse may be used as fuel.[55]Whether naphtha was formed from organic matter is very doubtful, as it is found in the most ancient Silurian strata which correspond with epochs of the earth's existence when there was little organic matter; it could not penetrate from the higher to the lower (more ancient) strata as it floats on water (and water penetrates through all strata). It therefore tends to rise to the surface of the earth, and it is always found in highlands parallel to the direction of the mountains.[56]Much more probably its formation may be attributed to the action of water penetrating through the crevasses formed on the mountain slopes and reaching to the heart of the earth, to that kernel of heated metallic matter which must be accepted as existing in the interior of the earth. And as meteoric iron often contains carbon (like cast iron), so, accepting the existence of such carburetted iron at unattainable depths in the interior of the earth, it may be supposed that naphtha was produced by the action of water penetrating through the crevices of the strata during the upheaval ofmountain chains,[57]because water with iron carbide ought to give iron oxide and hydrocarbons.[58]Direct experiment proves that the so-calledspiegeleisen(manganiferous iron, rich in chemically combined carbon) when treated with acids gives liquid hydrocarbons[59]which in composition,appearance, and properties are completely identical with naphtha.[60]


Back to IndexNext