Chapter 14

III.NATURALHISTORY.◊1.On the Supposed Influence of the Moon, by M. Arago.—There is an impression very general with gardeners, that the moon has a particular effect on plants, especially in certain months. The gardeners near Paris gave the name of thelune rousseto the moon, which, beginning in April, becomes full either at the end of the month, or more generally in May. According to them the light of the moon, in the months of April and May, injures the shoots of plants, and that, when the sky is clear, the leaves and buds exposed to this light become red or brown, and are killed, though the thermometer in the atmosphere is several degrees above the freezing point: they confirm this observation, by remarking that, when the rays of the moon are stopped in consequence of the existence of clouds in the air, that then the plants are not injured, although the temperature and other circumstances are the same.M. Arago explains this observation of practical men, by a reference to the facts and principles established by Dr. Wells. He has shown that, in a clear night, exposed bodies may frequently have their temperatures reduced below that of the surrounding atmosphere, solely by the effect of radiation, the difference being as much as 6, 7, 10, or more degrees, but that it does not take place when the heavens are obscured. M. Arago then observes, that the temperature is often not more than 4, 5, or 6 degrees above the freezing point during the nights of April and May, and that when the night is clear, consequently when the moon is bright, the temperature of the leaves and buds may often be brought by radiation below the freezing point, whilst the air remains above it, and consequently an effect be produced, which, though not dependent upon, accompanies the brilliant unobscured state of the moon—the absence of these injurious effects, when the moon is obscured, being also as perfectly accounted for by these principles, from the knowledge that the same clouds which obscure the moon will prevent the radiation of heat from the plants. Hence, as M. Arago observes, the observation of the gardener is correct as far as it goes, though the interpretation of the effect which he generally gives is incorrect.—Annuaire du Bureau des Long.1827, p. 162.2.Luminous Appearances in the Atmosphere.—An account is given at page 242 of our last volume, from Silliman’s Journal, of certain spots in the air near the horizon, which have been seen highly luminous in Ohio, United States, by Mr. Atwater, and which often induce the supposition that fires exist in their direction. Mr. Webster says—“I have observed similar phenomena in New England: I recollect one instance, when I resided at Amherst, in Hampshire County, Mass., a bright light in the north-east, near[p223]the horizon, appeared as the light of a building on fire appears at night, at the distance of several miles. I expected, in that instance, every hour to hear that some building in Shutesbury, or New Salem, had been burnt, and, so strong was my belief of it, that I repeatedly asked my neighbours whether they had heard of any such event. At last, I met a gentleman who had just come from one of those towns, who told me he had heard of no fire from that quarter, which convinced me the phenomenon was merely atmospheric.”—Silliman’s Journal, xii. 380.3.On the Determination of the Mean Temperature of the Air.—This subject has been investigated by M. G. G. Hallstrœm, who gives the following algebraic formula, which correctly represents the mean temperature for all Europe.v=12(xf+xe)−0.33+0.41 sin. [(n−1) 30° + 124° 8′]v= mean temperature.n= the ordinal number of the month for which the temperature is to be calculated (thus, for March,n= 3).12(xf+xe) =the mean temperature taken as the mean of observations taken at ten o’clock in the morning and evening. In winter12(xf+xe) =vvery nearly; whilst, in summer, this quantity is34of a degree greater thanvat Paris, Halle, and Abo.—Annal. der Phys. und Chem.1825, p. 373.4.Indelible Writing.—As the art of man can unmake whatever the art of man can make, we have no right to expect anindelible ink: however, a sort of approximation to it may be made as follows:—Let a saturated solution of indigo and madder in boiling water be made, in such proportions as give a purple tint; add to it from one sixth to one eighth of its weight of sulphuric acid, according to the thickness and strength of the paper to be used: this makes an ink which flows pretty freely from the pen, and when writing, which has been executed with it, is exposed to a considerable, but gradual, heat from the fire, it becomes completely black, the letters being burnt in and charred by the action of the sulphuric acid.If the acid has not been used in sufficient quantity to destroy the texture of the paper, and reduce it to the state of tinder, the colour may be discharged by the oxymuriatic and oxalic acids, and their compounds, though not without great difficulty. When the full proportion of acid has been employed, a little crumpling and rubbing of the paper reduces the carbonaceous matter of the letters to powder; but by putting a black ground behind them, they may be preserved, and thus a species ofindelible writingis procured, (for the letters are, in a manner, stamped out of the paper,) which might be useful for some purposes, perhaps for the signature of bank-notes.5.Peculiar Crystals of Quartz.—Mr. W. Phillips has met with some remarkable crystals of quartz, which occurred imbedded in the[p224]limestone of the Black-rock, near Cork. They are from the fourth to the half of an inch in length, and about half their length in width: they are smooth, externally, for the most part, and sometimes considerably bright; they are of the colour termed smoky, or brown quartz, externally, and may easily be separated from the limestone, leaving a cavity of their exact form. On trying to cleave them, they yielded parallel to one or other of the planes of the pyramid, like common quartz, but at such fractures appeared to consist of alternate and concentric prisms of smoky transparent quartz, and of gray opaque, and somewhat granular limestone. On applying muriatic acid to the surface, effervescence occurred along the gray parts, proving the presence of limestone, but soon ceased: after an action continued for some weeks, the gray parts became cellular, and so soft, as to admit of being scraped by a knife. Mr. Phillips says, it seems reasonable to conclude that such part of the gray substance as does not yield to the action of the acid is siliceous or quartzose; and that the prime difference between it and the smoky quartz surrounding it consists in the different circumstances of crystalline aggregation under which they are deposited. The crystals, with the somewhat analogous case of the Fontainebleau sandstone, may serve to assist in the illustration of some points relative to the laws of affinity, as operating in the formation of crystals.—Phil. Mag.N. S., ii. 123.6.Native Iron not Meteoric.—The following notice is by Mr. C. A. Lee. Native iron, on Canaan mountain, a mile and a half from the South Meetinghouse (Conn. U. S.). This is particularly interesting, as it is the first instance in which native iron, not meteoric, has been found in America. It was discovered by Major Barrall, of Canaan, while employed in surveying, many years ago. It formed a thin stratum, or plate, in a mass of mica slate, which seemed to have been broken from an adjoining ledge. It presents the usual characters of native iron, and is easily malleable. For some distance around the place where it was found the needle will not traverse, and a great proportion of the tallest trees have been struck with lightning. Whether these phenomena are connected with the existence of a large mass of native iron, I leave for others to determine: the facts, however, may be relied on.The specimen has been examined chemically, by Mr. Shepherd, at Yale College. It is invested with highly crystalline plumbago, and splits by the intervention of plates of plumbago into pyramidal and tetrahedral masses. It is not equal to meteoric iron in malleability, toughness, and flexibility, and has not the silvery white appearance of that iron. Its specific gravity is from 5.95 to 6.72. It has native steel intermingled in it, but contains no nickel, or any other alloy.Major Barrall has only been to the place where this iron occurredonce, and no other person has ever been to the place, or knows where it is.—Silliman’s Journal, xii. 154.[p225]7.Native Argentiferous Gold.—M. Boussingault, who has had the opportunity of examining numerous specimens of argentiferous native gold from the Columbian mines, thinks that they are atomic; he has found 1 atom of silver united to 2, 3, 5, 6, and 8 atoms of gold, and considers it probable that the other combinations to complete the series may occur. He has assumed 24.86 as the number for gold, and 27.03 as the number for silver. The following are some of the experimental results:—Native Gold of Marmato.—Pale yellow octoedral crystals:Gold73.453 atoms73.40Silver26.481   "26.60Loss00.07Native Gold of Titiribi:Gold74.003 atoms73.40Silver26.001   "26.60Native Gold of Malpaso.—Yellow irregular flattened grains:Gold88.248 atoms88.04Silver11.761   "11.96Native Gold of Rio-Sucio.—Deep-coloured large irregular grains:Gold87.948 atoms88.04Silver12.061   "11.96Native Gold of the Otra Mina.—Pale yellow octoedral crystals:Gold73.43 atoms73.40Silver26.61   "26.60Native Gold of Guamo.—Brass-yellow indeterminate crystals:Gold73.683 atoms73.40Silver26.321   "26.60Native Gold of Llano.—Small flattened grains—reddish:Gold88.588 atoms88.04Silver11.421   "11.96Native Gold of Baja.—Porous:Gold88.158 atoms88.04Silver11.851   "11.96Native Gold of Ojas-Anchas.—Yellowish red plates:Gold84.56 atoms84.71Silver15.51   "15.29Native Gold of Trinidad, near Santa Rosa de Osos.—A solid piece of 50 grains:Gold82.44 atoms82.14Silver17.61   "17.86Native Gold of Transylvania (Europe).—Pale yellow cubic crystals:Gold64.522 atoms64.77Silver35.481   "35.23Native Gold of Santa Rosa de Osos.—A mass weighing 710 grains:Gold64.932 atoms64.77Silver35.071   "35.23M. Boussingault has remarked a singlar deficiency in the[p226]specific gravity of the native alloys of gold and silver when compared with calculation, or with the results obtained from an alloy similar in composition prepared by fusion; thus the native gold of Marmato has a specific gravity of 12.666, whereas, by calculation, it ought to be 16.931. The gold of Malpaso, by experiment, is 14.706, by calculation, 18.223, and by fusion, 18.1. The gold of Santa Rosa, by experiment, is 14.149, and by calculation, 16.175. This difference, M. Boussingault says, is not due to porosity in the native gold, as he has observed it in the granular and fine varieties, but a peculiar character of the metal in this state. Such an enormous difference, however, is one that can be admitted only upon repeated experimental proofs, made in the most unexceptionable manner; and, considering that it is only in some of the metals that any permanent difference in specific gravity can be established, and even with them to but a small extent, would be a fact so important as to be worth extreme trouble in the verification.—Annales de Chimie, xxxiv. 408.8.Prothéeïte—a new Mineral.—This mineral was discovered in 1826, at Rothenkoph, in the valley of Zillerthal, Tyrol. It occurs in rectangular prisms, generally without distinct summits, and rough at both ends. The angles are very seldom truncated, the faces are striated longitudinally. The crystals are of various sizes, some being very small, but they have occurred 5 inches in length, and two in width; the longitudinal fracture is lamellar, the cross-fracture conchoidal. The substance is usually fissured, nearly opaque in large specimens, translucent or diaphanous in small masses. Its colour is crysolite green or white, or between the two; its lustre between that of glass and the diamond; it is heavy; a good conductor of heat; hard enough to scratch glass; infusible before the blowpipe; highly electric by friction. The white crystals have a fibrous texture, which, as well as the colour, seems the result of decomposition. When cut and polished, the mineral assumes a great variety of aspects; the green parts then resemble the finest crysolites, but the fibrous white parts, when cut of a round form, present one or two reflections on a transparent ground which move as the stone is moved, just like those from the cat’s eye; these reflections are very brilliant, and are accompanied by numerous iris colours, which move like those on the opal. This phenomenon is often observed in the rough stone, which, when exposed to light, exhibit certain deep red tints of a cupreous colour, and metallic lustre on all the faces.—Bull. Univ.B. xi. 42.9.Volcanic Bisulphuret of Copper.—M. N. Covelli, during his examinations of Mount Vesuvius, has observed some particular actions going on, especially in the fumeroles on the eastern side of the mountain, and within the crater. Speaking of the former, he says, “Here there are fumeroles in which pure chloride of lead[p227]sublimes into white and yellow crystallizations, which fusing in the hotter places form nacres, gum, and stalactites. In many parts the sulphuretted hydrogen, evolved within the fumeroles, reacts on the chloride, and forms sulphuret of lead, dispersed in small scales through the scoria. Other fumeroles produce very thin scales of the black oxide of copper; these are very brilliant, metalloidal, and flexible, and are produced by the action of the vapour of water at a red heat on the chloride of copper, which may be observed on disturbing the fumeroles. Here and there the reaction of aqueous vapour on the perchloride of iron produces metalloidal scales of the peroxide of iron; whilst further on, the same vapour, acting on mixtures of the two chlorides, produces oligiste iron in small crystals, aggregated on the scoria. The muriatic acid resulting from these actions, and the sulphuric acid which is formed by the decomposition of hydrosulphurets and sulphates, attack the iron, lime, copper, alumine, potash, &c., in the lavas and scoria, and hence result a number of other productions which line the passages of the fumeroles”.M. Covelli descended into the crater, until within 300 feet of the edge of the large eastern opening, from which the great current of lava flowed in 1822. Here the fumeroles presented the most beautiful crystallizations of sulphate of lime and sulphur. On examining the scoria they were found incrusted and covered with a substance, having all the shades of colour belonging to blue, green, and black. Sometimes it resembled a spider’s web in appearance, sometimes soot deposited in the cavities of the scoria. Many specimens were collected, and also a portion of water condensed from the vapours which issued forth, and which evidently contained sulphuretted hydrogen and muriatic acid. The temperature of the vapour was as high as 85° C., in some places, and even up to 90°, at half a foot beneath the surface.The water being examined was found to contain only a little sulphuretted hydrogen, and a little muriatic acid. The black substance was soon ascertained to be a pure sulphuret of copper. Being analyzed, 100 parts yielded 32 parts of sulphur, and 66 of copper, a loss of two parts being incurred, which accords very nearly with the composition of the bi-sulphuret of copper. The blue and bluish-green substances were found to be mixtures of this sulphuret with sulphate and hydro-sulphuret of copper.M. Covelli concludes that this substance has been formed by the action of sulphuretted hydrogen on the sulphate and muriate of copper evolved by these fumeroles; and observes, that its composition accords with such an opinion, the deutoxide being that which forms the Vesuvian cupreous salts.—Ann. de Chimie, xxxv. 105.10.Fall of the Lake Souwando in Russia.—This lake, situated in the parish of Sakkola, in the Russian government of Wibourg, and surrounded by the lands of the Barons Friedrichs, was near[p228]40 versts in length, and had the form of a Γ, or Greek G. Before the year 1818, it was separated from the lake of Ladoga by an interval about a verst in width, called Taipale, on which was a sandy hill; its waters flowed into the river Wuoxa, which united the lakes of Saima and Ladoga. On the 14th May, 1818, the waters of the lake Souwando, increased by the thaw and the tempests, overcame the natural dyke at the foot of the lake, threw down the hill of sand, rapidly flowed into the lower lake, carrying away all the surrounding grounds, and for ever destroyed the barrier which had previously separated them. A chapel and a countryman’s house were carried away with the pastures and meadows; the waters of the lower lake were much disturbed, and the surface covered with ruins. The level of the lake Souwando fell1212archines, and its length is now only 15 versts. Its waters no longer flow off by the Wuoxa, but pass into the lower lake by several falls through a deep canal. The land which has been uncovered by the water is already cultivated, and the beauty of the surrounding country said to be increased.—Bull. Univ., F. x. 133.11.Vegetable Torpor observed in the Roots of the Black Mulberry-tree.—A very old mulberry-tree was broken into four quarters by the wind in 1790. Two of the quarters were destroyed, the other two remained growing for a few years, but the last of them was removed in 1802. An elder-tree grew in the place of the mulberry-tree, without doubt from berries which had fallen into the middle of the old trunk of the latter. This elder-tree died in 1826, and at the time of its languishing about a dozen of mulberry shoots started forth to the day. M. Dureau de la Malle ascertained that these did not spring from seeds, but from the roots of the old mulberry-tree, which had thus lain in the ground in an apparently inactive state, for 24 years, to send forth shoots at last.—Ann. de Sciences Nat.ix. 338.12.Method of increasing the Odour of Roses.—For this purpose, according to the author of the method, a large onion is to be planted by the side of the rose tree in such a manner that it shall touch the foot of the latter. The roses which will be produced will have an odour much stronger and more agreeable than such as have not been thus treated, and the water distilled from these roses is equally superior to that prepared by means of ordinary rose leaves.—Œkonom. Neuigk.;—Bull. Univ.13.Pine Apples.—A great improvement may be made in keeping pine apples by twisting off their crowns, which are generally suffered to remain and to live upon the fruit till they have sucked out all the goodness. It will be very easy for fruiterers to keep a few crowns by them in water, which can be pegged or stuck on with dough, for show, when the fruit is served up, or artificial ones[p229]may be made. A pine apple will keep for a long time when its crown is removed, and will also be greatly improved in flavour, for the more aqueous parts of the fruit gradually evaporate, and leave it much more saccharine and vinous in its flavour; which natural process is totally destroyed by the vegetation of the crown, just upon the same principle that an onion or carrot loses its flavour when it begins to sprout in the spring.14.Mode of Condensing and Preserving Vegetable Substances for Ships’ Provision, &c.—The quantity of liquid matter which enters into the constitution of vegetables is very great; when they are deprived of it their bulk is very trifling. That preparation of animal food calledpemmican, in which six pounds of meat are condensed into the space of one, is mainly effected by abstracting all the fluid from it. Vegetables may be treated in the same way: let them undergo the process of boiling over a fierce wood fire, so as to preserve their colour whencompletelycooked; grind them into a complete pulp by some such means as are used to crush apples for cider, &c.; then let them be subjected to the action of the press, (being first put into hair bags, or treated as grapes are in wine countries,) till all the fluid matter is separated from them; the remainder of their substance becomes wonderfully condensed, and as hard as themarcfrom the wine press. Then let it be rammed hard into carefully glazed air-tight jars, (or tin cases, if preferred,) and subjected to the Appertian process for preserving animal and vegetable matters, (well known, by-the-by, to our grandmothers, who preserved gooseberries in this way from time immemorial.) If jars are used, they may be sufficiently secured by having two pieces of bladder tied successively over them; when the air within is absorbed by heating the inclosed substance, their surface becomes concave by the pressure of the atmosphere, and as long as it remains in this state the matter within is safe. If it should be thought requisite to preserve the flavour of the vegetables entire, an extract should be made from the expressed liquid, and added to themarc. But spinage, cabbage, and many others, have abundance of flavour in them in their dry state without this addition. The preparation of the vegetable matter for use is accomplished by adding a sufficient quantity of milk, water, gravy, lime juice, &c., to themarc, and warming it up. Let the government, and the dealers in ships’ provision, look to this; a sufficient quantity of thisvegetable pemmicanwould be the greatest luxury to a ship’s crew, and render the scurvy utterly obsolete. It is worthy of remark, that the most irritable stomach is not offended by vegetables treated in this way.15.Rewards for the Discovery of Quinia, and for Lithotrity.—The Académie des Sciences has adjudged a prize of 10,000 francs toMM. Pelletier and Caventou, for their discovery and introduction[p230]into use of sulphate of quinia; and another prize of 10,000 francs to M. Civiale, for having been the first to practise lithotrity on the living body, and for having successfully operated by his method on a great number of persons afflicted with the stone in the bladder.16.Upon the Gaseous Exhalations of the Skin.—M. Collard de Martigny, having experimented on this subject, has obtained results which tend to reconcile the differences existing between previous observers. The Count de Milly first announced, in the year 1777, that an aëriform fluid escapes in great quantity from the surface of the skin, and he considered the gas as carbonic acid. Cruikshank, Jurene, and Abernethy participated in this opinion. Ingenhouz, on the other hand, maintained that the air so secreted was azote. M. Frousset adopted the opinion of Ingenhouz, and endeavoured to confirm it by experiments. Lastly, Priestley and Fontana questioned the reality of a gaseous exhalation from the skin; and Fourcroy positively denied it.From the experiments of M. Collard de Martigny, he deduces,i. That a gaseous exhalation really takes place from the skin.ii. This exhalation is not morbid: it is observable in health.iii. It is composed of carbonic acid and azote, in very variable proportions. The following experiment was frequently made. The bubbles of air which are disengaged from the skin were received into a funnel, the top of which was closed: they were then passed into a graduated tube, and agitated with a solution of potash. The height to which the solution rose in the tube indicated the quantities of carbonic acid that had been absorbed. All these operations were made at the same temperature and pressure. Neither hydrogen nor oxygen gas were discovered in this air.iv. It does occur continually; but very often we may vainly attempt to discover it, which has been the cause of error in the results of Priestley, Fontana and Fourcroy. It is especially suspended after exercise long continued in the middle of the day, or immediately after taking an abundant meal. Sometimes it is suspended without any apparent cause.v. The quantity also is very variable; but it was observed to be constantly in an inverse ratio to the cutaneous absorption.vi. The proportions of the two gases vary very much, and sometimes the exhaled gas consists almost entirely of azote: in other instances the predominance of carbonic acid is so great that it appears to be the only product.—Med. Rep., N. S. v. 75.17.Effects of Galvanism in Cases of Asphyxia by submersion.—M. Leroy d’Etioles has addressed a letter to the Académie de Médecine, in reply to an assertion made by M. Thillaye respecting the inutility of galvanism in cases of asphyxia. The former says, that when a short and fine needle is inserted in the sides of the body between the eighth and ninth ribs so as to come in contact with[p231]the attachment of the diaphragm, and then the current of electricity from 25 or 30 pair of inch plates passed through them, that the diaphragm immediately contracts, and an inspiration is effected. Upon breaking the communication, and again completing it, a second inspiration is occasioned, and by continuing these means, a regular respiration may ultimately be occasioned. This power thus applied has always succeeded with him in experiments on drowned animals.—Bull. Univ., C. xi. 213.18.Recovery from Drowning.—M. Bourgeois had occasion accidentally to give assistance in a case where, after a person had been twenty minutes under water, he was taken out, and by a very common but serious mistake, carried with his head downwards. The usual means were tried unremittingly, but unsuccessfully, for a whole hour, but at the end of that time a little blood flowed from a vein that had been opened, and a ligature being placed on the arm, ten ounces of blood were withdrawn: the circulation and respiration were then gradually re-established, horrible convulsions, and a frightful state of tetanus coming on at the same time; copious bleeding was again effected, after which a propensity to sleep came on: a third bleeding the following morning was followed by the recovery of the patient. Hence M. Bourgeois concludes that the means of recovering a drowned person should never be abandoned until the decomposition of the body has commenced.—Bull. Univ., C. xi. 213.19.Preservation of Cantharides.—It is stated by M. Farines that the active part of cantharides exists only in the soft organs of the insect; that these are the parts which are attacked by a species of acarus, and that in this way the cantharides are injured. Camphor has no power of preventing the attacks of the acarus; but M. Farines believes that pyroligneous acid will be found effectual, and proposes to prepare cantharides with it, and even to kill them at the time when they are collected by submersion in it.20.Chloride of Lime in cases of Burns.—The good effect of chloride of lime in cases of burns is confirmed by the experience of M. Lisfranc. He has applied it in many cases of that kind, sometimes immediately after the accident, sometimes after the application of emollient cataplasms. Lint is moistened in a solution more or less strong of chloride of lime, and then applied to the place, being covered over with waxed cloth. The cure has been singularly hastened under its influence and in one case where almost the whole of the lower limbs, the arms and face, had been burnt, the use of the chloride recovered the patient from the stupor into which he had fallen at the end of four days, and a perfect recovery was effected two months after the accident.—Bull. Univ., C. xi. 77.[p232]21.Cure of Nasal Polypi.—Dr. Primus of Babenhausen asserts, that the saffronised tincture of opium (of the Prussian Pharmacopœia) possesses the property of gradually destroying nasal polypi when applied to them. Certain cures, which have been thus effected, have already been published, and a striking one occurred in January, 1826. A man, 46 years of age, had one in each nostril. The tincture was applied several times a day to the bases of the polypi, by means of a small hair-brush or lint roll. In eight days the tumours had assumed a paler appearance, and lost a little in volume; a serous secretion from the nose, which had existed for a long time, was diminished, and the pituitary membrane had acquired a more lively tint, as if in a sub-inflammatory state. The application was continued, the tumours continued to decrease, and at the end of three weeks had entirely disappeared.—Mediz. Chirurg. Zeitung, 1826, p. 13.22.Bite of the Viper.—M. Jacopo Sacchi, of Barzio in Valsasina, having had occasion to take charge of some cases in which injury had been inflicted by the bite of a viper (Coluber Berus), transferred his observations upon them into the hands of Professor Paletta. From these it appears that ammonia, recommended by Dr. Mangili, in 1813, although an excellent remedy in many cases, is by no means sufficient in all, but must occasionally be seconded by every possible means. Although sometimes nature alone has power sufficient to overcome the bite of a viper, yet, at other times, the injury is so great and sudden as to resemble the effects of hydrocyanic acid. In these cases he recommends that the patient should be put into a hot bed covered with woollen clothes, and the most powerful sudorifics with some tonics administered internally. Friction should be applied all over the body, and at the same time the wounds are to be enlarged, cupping-glasses applied, and tow, dipped in ammonia, applied to the spot.23.Experiments on the Poison of the Viper.—M. Desaulx confirms the fact that dogs can swallow with impunity even large quantities of the poison of vipers. He observed also that when this poison was withdrawn from the vesicles it soon lost in power, and after a certain time became inert: a portion ten days old being introduced into a fresh wound of a living animal, only caused slight tumefaction on the part. Mangili, on the contrary, found it, when hermetically sealed up, to retain its virulence for many months. The species of viper from which M. Desaulx obtained his poison is not mentioned.—Bull. Univ.C. xi. 142.24.Destruction of Moles.—The following method of destroying moles is asserted, by the Count de Boisseulh, to be excellent. Grounds much infested by these animals have been perfectly freed from them by means of it. A number of worms must be procured, killed, and powdered with pulverised vomica-nut; the whole is to[p233]be mixed and left for twenty-four hours. The mole-tracks are then to be opened, and two or three of these worms placed in each hole. If the meadow is large, they cannot be placed in every hole; but by multiplying them as much as possible, a good result is sure to be obtained.—Ann. de Agricul. de la Charente.25.On growing Salad-herbs at Sea.—On long sea-voyages, whatever esculent roots, or fruit, or whatever vegetable essences may be stowed in the steward’s stores, whether for the use of the officers or crew, nothing can be a greater treat to the former, especially within the tropics, than a dish of fresh salubrious salad-herbs. The want of such an addition to the ordinary fare on board a ship has often been a cause of disease, and misfortune, and even death!—it is needless, therefore, to insist on the usefulness, or to state the antiscorbutic, and consequently sanatory qualities, of fresh vegetables in such situations; and however limited the means to supply such a want as is described below, yet, as it may be highly useful to convalescents, and in individual cases, the publication may not be deemed altogether valueless.Provide one, two, or three deal boards, made of well-seasoned inch stuff, sixteen inches square, with a ledge all round, rising one inch above the smooth surface of the board; and as it is intended to hold water, the ledges must be closely and neatly fitted: at each corner a nail, or small hook, should be placed, with strings tied into a loop above, by which the board may be slung in the necessary horizontal position; a thin covering-board, made of the same material and dimensions, is also necessary, and which will serve for all the boards.Pieces of thethickestflannel must be had for each board, cut so as to fit exactly within the ledges. These flannels require to be well soaked, and repeatedly washed in boiling water, before they can be used, to discharge from them whatever is pernicious to vegetation as they come from the manufacturer’s hands.The board and flannel thus prepared, dip the flannel in water, and place on the boards; sow the seeds pretty thick and regularly; sprinkle them lightly with the hand, till all are moistened and the flannel completely saturated; in which state it should always be kept during the growth of the plants. Too much water floats the seeds when first put on, and are thereby shifted from their places by the motion of the ship. The cover-board must now be put on, and the whole hung up in its place. The use of this board is to assist the vegetation of the seeds, which it will do sufficiently in the course of twenty-four hours; after which it may be laid aside.The board must be frequently examined, and when the moisture thereon is diminished by evaporation, or imbibed by the crop, a supply must be given, just enough to keep the flannel in the proper saturated state.In six or seven days the crop will be (if the weather has been favourable) two inches high,—it is then fit for use. The produce[p234]of one board yields about as much as will fill a middle-sized salad-bowl, and when dressed up with the usual condiments of onion, salt, vinegar, and oil, a most agreeable salad will be composed, and a most acceptable treat to the guests at the captain’s table.It is necessary that the board, as well as the flannel, be scalded, well washed, and dried in the sun, before it can be used again;—and as one board yields one crop per week, two, or even three boards may be used at the same time, in order to secure a regular supply. Larger boards are not so convenient, because they can only be hung in some by-corner of a cabin, quarter-gallery, or state-room, where they may not only be out of the way, but out of the sun and currents of air.The herbs suitable to be raised in this way are, radish, mustard, and common garden-cress. The two first answer best within the tropics; the last does not, being too delicate and diminutive;—but this does very well when the ship is no nearer the equator than thirty degrees of latitude. One peck of radish, another of mustard, and two quarts of cress, will be sufficient for an India and China voyage,—a supply of which may be had in China.I. M.26.Chinese Method of fattening Fish.—The Chinese are celebrated for their commercial acumen, indefatigable industry, and natural adroitness,—in making the most of every gift of nature bestowed on their fertile country. Useful as well as ornamental vegetables engross their every care; and animals which are the most profitably reared, and which yield the greatest quantity of rich and savoury food, are preferred by them for supplying their larders and stews. Theirhortus dieteticawould form a considerable list; and though they do not use such a variety of butcher’s meat and fowl as Europeans do, yet in the articles of pork, geese, and ducks, they surpass, in the use of fish they equal, us, and in their domestication and management of them they excel all other nations.A few observations on theirpiscinas, or fish-stews, is the design of this paper; not merely as an historical description, but as an object for imitation in this or any other country.For twenty or thirty miles round Canton, and as far as the eye can reach on each side of the river on which that city stands, the general face of the country appears nearly a level plain, with but little undulation of surface. The level is, however, richly studded with beautiful hills, which diversify the landscape, and seem to rise out of the plain so abruptly, that they form the most picturesque features, united with the most pleasing combinations. The soil of the plain consists of a pure alluvial earth of great fertility and depth, and very retentive of water; which, by the by, is a proof that, notwithstanding their claim to high chronological antiquity, the waters of the deluge remained much longer (perhaps for ages) on this portion of the continent of Asia, than it did in the interior: and the circumstance of many of their hills being cultivated to the[p235]very top, their numerous water-plants, and their almost amphibious habits as to their domiciles, are still further proofs that the country was, once, more of an aquaium than it now is. Hence the facility of making canals, which are their high-roads (as wheel-carriages, and beasts of draught, are too expensive appendages, for the systematic economy of the celestial empire!) and hence the ease with which a pond may be made in any otherwise useless corner. Such tanks, or ponds, are generally met with in market-garden grounds, where they serve the double purpose of a reservoir, and a stew for rearing and fattening fish.When a pond is made for this purpose, and filled with water, the owner goes to market, and buys as many young store-fish as his pond can conveniently hold; this he can easily do, as almost all their fish are brought to market alive. Placed in the stew, they are regularly fed morning and evening, or as often as the feeder finds it necessary; their food is chiefly boiled rice, to which is added, the blood of any animals they may kill, wash from their stewing-pots and dishes, &c., indeed any animal offal or vegetable matter which the fish will eat. It is said, they also use some oleaceous medicament in the food, to make the fish more voracious, in order to accelerate their fattening; but of this the writer could obtain no authentic account.Fish so fed and treated, advance in size rapidly, though not to any great weight; as the kind (a species of perch) which came under observation, never arrive at much more than a pound avoirdupois; but from the length of three or four inches, when first put in, they grow to eight or nine in a few months, and are then marketable. Drafts from the pond are then occasionally made; the largest are first taken off, and conveyed in large shallow tubs of water to market: if sold, well; if not, they are brought back and replaced in the stew, until they can be disposed of.This business of fish-feeding is so managed that the stock are all fattened off about the time the water is most wanted for the garden-crops. The pond is then cleaned out, the mud carefully saved, or spread as manure,—again filled with water, stocked with young fry, and fed as before.An intelligent Chinaman, from whom the writer had the above detail, and who showed him as much of the process as could be seen during a residence of three months, declared as his belief, that a spot of ground, containing from twenty to thirty square yards, would yield a greater annual profit as a stew, than it would in any other way to which it could possibly be applied.That fish may be tamed, suffer themselves to be caressed, and even raised out of their natural element by the hand, has been long known to naturalists; witness the famous old carp formerly in the pond of some religious house at Chantilly, in France, with many other instances on record. But it is probable no people has carried the art of stew-feeding fish, and practising it as a profitable concern, to such lengths, as is done by the Chinese at this day.I. M.

1.On the Supposed Influence of the Moon, by M. Arago.—There is an impression very general with gardeners, that the moon has a particular effect on plants, especially in certain months. The gardeners near Paris gave the name of thelune rousseto the moon, which, beginning in April, becomes full either at the end of the month, or more generally in May. According to them the light of the moon, in the months of April and May, injures the shoots of plants, and that, when the sky is clear, the leaves and buds exposed to this light become red or brown, and are killed, though the thermometer in the atmosphere is several degrees above the freezing point: they confirm this observation, by remarking that, when the rays of the moon are stopped in consequence of the existence of clouds in the air, that then the plants are not injured, although the temperature and other circumstances are the same.

M. Arago explains this observation of practical men, by a reference to the facts and principles established by Dr. Wells. He has shown that, in a clear night, exposed bodies may frequently have their temperatures reduced below that of the surrounding atmosphere, solely by the effect of radiation, the difference being as much as 6, 7, 10, or more degrees, but that it does not take place when the heavens are obscured. M. Arago then observes, that the temperature is often not more than 4, 5, or 6 degrees above the freezing point during the nights of April and May, and that when the night is clear, consequently when the moon is bright, the temperature of the leaves and buds may often be brought by radiation below the freezing point, whilst the air remains above it, and consequently an effect be produced, which, though not dependent upon, accompanies the brilliant unobscured state of the moon—the absence of these injurious effects, when the moon is obscured, being also as perfectly accounted for by these principles, from the knowledge that the same clouds which obscure the moon will prevent the radiation of heat from the plants. Hence, as M. Arago observes, the observation of the gardener is correct as far as it goes, though the interpretation of the effect which he generally gives is incorrect.—Annuaire du Bureau des Long.1827, p. 162.

2.Luminous Appearances in the Atmosphere.—An account is given at page 242 of our last volume, from Silliman’s Journal, of certain spots in the air near the horizon, which have been seen highly luminous in Ohio, United States, by Mr. Atwater, and which often induce the supposition that fires exist in their direction. Mr. Webster says—“I have observed similar phenomena in New England: I recollect one instance, when I resided at Amherst, in Hampshire County, Mass., a bright light in the north-east, near[p223]the horizon, appeared as the light of a building on fire appears at night, at the distance of several miles. I expected, in that instance, every hour to hear that some building in Shutesbury, or New Salem, had been burnt, and, so strong was my belief of it, that I repeatedly asked my neighbours whether they had heard of any such event. At last, I met a gentleman who had just come from one of those towns, who told me he had heard of no fire from that quarter, which convinced me the phenomenon was merely atmospheric.”—Silliman’s Journal, xii. 380.

3.On the Determination of the Mean Temperature of the Air.—This subject has been investigated by M. G. G. Hallstrœm, who gives the following algebraic formula, which correctly represents the mean temperature for all Europe.

v=12(xf+xe)−0.33+0.41 sin. [(n−1) 30° + 124° 8′]v= mean temperature.n= the ordinal number of the month for which the temperature is to be calculated (thus, for March,n= 3).12(xf+xe) =the mean temperature taken as the mean of observations taken at ten o’clock in the morning and evening. In winter12(xf+xe) =vvery nearly; whilst, in summer, this quantity is34of a degree greater thanvat Paris, Halle, and Abo.—Annal. der Phys. und Chem.1825, p. 373.

v=12(xf+xe)−0.33+0.41 sin. [(n−1) 30° + 124° 8′]v= mean temperature.n= the ordinal number of the month for which the temperature is to be calculated (thus, for March,n= 3).12(xf+xe) =the mean temperature taken as the mean of observations taken at ten o’clock in the morning and evening. In winter12(xf+xe) =vvery nearly; whilst, in summer, this quantity is34of a degree greater thanvat Paris, Halle, and Abo.—Annal. der Phys. und Chem.1825, p. 373.

4.Indelible Writing.—As the art of man can unmake whatever the art of man can make, we have no right to expect anindelible ink: however, a sort of approximation to it may be made as follows:—Let a saturated solution of indigo and madder in boiling water be made, in such proportions as give a purple tint; add to it from one sixth to one eighth of its weight of sulphuric acid, according to the thickness and strength of the paper to be used: this makes an ink which flows pretty freely from the pen, and when writing, which has been executed with it, is exposed to a considerable, but gradual, heat from the fire, it becomes completely black, the letters being burnt in and charred by the action of the sulphuric acid.If the acid has not been used in sufficient quantity to destroy the texture of the paper, and reduce it to the state of tinder, the colour may be discharged by the oxymuriatic and oxalic acids, and their compounds, though not without great difficulty. When the full proportion of acid has been employed, a little crumpling and rubbing of the paper reduces the carbonaceous matter of the letters to powder; but by putting a black ground behind them, they may be preserved, and thus a species ofindelible writingis procured, (for the letters are, in a manner, stamped out of the paper,) which might be useful for some purposes, perhaps for the signature of bank-notes.

5.Peculiar Crystals of Quartz.—Mr. W. Phillips has met with some remarkable crystals of quartz, which occurred imbedded in the[p224]limestone of the Black-rock, near Cork. They are from the fourth to the half of an inch in length, and about half their length in width: they are smooth, externally, for the most part, and sometimes considerably bright; they are of the colour termed smoky, or brown quartz, externally, and may easily be separated from the limestone, leaving a cavity of their exact form. On trying to cleave them, they yielded parallel to one or other of the planes of the pyramid, like common quartz, but at such fractures appeared to consist of alternate and concentric prisms of smoky transparent quartz, and of gray opaque, and somewhat granular limestone. On applying muriatic acid to the surface, effervescence occurred along the gray parts, proving the presence of limestone, but soon ceased: after an action continued for some weeks, the gray parts became cellular, and so soft, as to admit of being scraped by a knife. Mr. Phillips says, it seems reasonable to conclude that such part of the gray substance as does not yield to the action of the acid is siliceous or quartzose; and that the prime difference between it and the smoky quartz surrounding it consists in the different circumstances of crystalline aggregation under which they are deposited. The crystals, with the somewhat analogous case of the Fontainebleau sandstone, may serve to assist in the illustration of some points relative to the laws of affinity, as operating in the formation of crystals.—Phil. Mag.N. S., ii. 123.

6.Native Iron not Meteoric.—The following notice is by Mr. C. A. Lee. Native iron, on Canaan mountain, a mile and a half from the South Meetinghouse (Conn. U. S.). This is particularly interesting, as it is the first instance in which native iron, not meteoric, has been found in America. It was discovered by Major Barrall, of Canaan, while employed in surveying, many years ago. It formed a thin stratum, or plate, in a mass of mica slate, which seemed to have been broken from an adjoining ledge. It presents the usual characters of native iron, and is easily malleable. For some distance around the place where it was found the needle will not traverse, and a great proportion of the tallest trees have been struck with lightning. Whether these phenomena are connected with the existence of a large mass of native iron, I leave for others to determine: the facts, however, may be relied on.

The specimen has been examined chemically, by Mr. Shepherd, at Yale College. It is invested with highly crystalline plumbago, and splits by the intervention of plates of plumbago into pyramidal and tetrahedral masses. It is not equal to meteoric iron in malleability, toughness, and flexibility, and has not the silvery white appearance of that iron. Its specific gravity is from 5.95 to 6.72. It has native steel intermingled in it, but contains no nickel, or any other alloy.

Major Barrall has only been to the place where this iron occurredonce, and no other person has ever been to the place, or knows where it is.—Silliman’s Journal, xii. 154.[p225]

7.Native Argentiferous Gold.—M. Boussingault, who has had the opportunity of examining numerous specimens of argentiferous native gold from the Columbian mines, thinks that they are atomic; he has found 1 atom of silver united to 2, 3, 5, 6, and 8 atoms of gold, and considers it probable that the other combinations to complete the series may occur. He has assumed 24.86 as the number for gold, and 27.03 as the number for silver. The following are some of the experimental results:—Native Gold of Marmato.—Pale yellow octoedral crystals:Gold73.453 atoms73.40Silver26.481   "26.60Loss00.07Native Gold of Titiribi:Gold74.003 atoms73.40Silver26.001   "26.60Native Gold of Malpaso.—Yellow irregular flattened grains:Gold88.248 atoms88.04Silver11.761   "11.96Native Gold of Rio-Sucio.—Deep-coloured large irregular grains:Gold87.948 atoms88.04Silver12.061   "11.96Native Gold of the Otra Mina.—Pale yellow octoedral crystals:Gold73.43 atoms73.40Silver26.61   "26.60Native Gold of Guamo.—Brass-yellow indeterminate crystals:Gold73.683 atoms73.40Silver26.321   "26.60Native Gold of Llano.—Small flattened grains—reddish:Gold88.588 atoms88.04Silver11.421   "11.96Native Gold of Baja.—Porous:Gold88.158 atoms88.04Silver11.851   "11.96Native Gold of Ojas-Anchas.—Yellowish red plates:Gold84.56 atoms84.71Silver15.51   "15.29Native Gold of Trinidad, near Santa Rosa de Osos.—A solid piece of 50 grains:Gold82.44 atoms82.14Silver17.61   "17.86Native Gold of Transylvania (Europe).—Pale yellow cubic crystals:Gold64.522 atoms64.77Silver35.481   "35.23Native Gold of Santa Rosa de Osos.—A mass weighing 710 grains:Gold64.932 atoms64.77Silver35.071   "35.23

7.Native Argentiferous Gold.—M. Boussingault, who has had the opportunity of examining numerous specimens of argentiferous native gold from the Columbian mines, thinks that they are atomic; he has found 1 atom of silver united to 2, 3, 5, 6, and 8 atoms of gold, and considers it probable that the other combinations to complete the series may occur. He has assumed 24.86 as the number for gold, and 27.03 as the number for silver. The following are some of the experimental results:—

Native Gold of Marmato.—Pale yellow octoedral crystals:Gold73.453 atoms73.40Silver26.481   "26.60Loss00.07Native Gold of Titiribi:Gold74.003 atoms73.40Silver26.001   "26.60Native Gold of Malpaso.—Yellow irregular flattened grains:Gold88.248 atoms88.04Silver11.761   "11.96Native Gold of Rio-Sucio.—Deep-coloured large irregular grains:Gold87.948 atoms88.04Silver12.061   "11.96Native Gold of the Otra Mina.—Pale yellow octoedral crystals:Gold73.43 atoms73.40Silver26.61   "26.60Native Gold of Guamo.—Brass-yellow indeterminate crystals:Gold73.683 atoms73.40Silver26.321   "26.60Native Gold of Llano.—Small flattened grains—reddish:Gold88.588 atoms88.04Silver11.421   "11.96Native Gold of Baja.—Porous:Gold88.158 atoms88.04Silver11.851   "11.96Native Gold of Ojas-Anchas.—Yellowish red plates:Gold84.56 atoms84.71Silver15.51   "15.29Native Gold of Trinidad, near Santa Rosa de Osos.—A solid piece of 50 grains:Gold82.44 atoms82.14Silver17.61   "17.86Native Gold of Transylvania (Europe).—Pale yellow cubic crystals:Gold64.522 atoms64.77Silver35.481   "35.23Native Gold of Santa Rosa de Osos.—A mass weighing 710 grains:Gold64.932 atoms64.77Silver35.071   "35.23

M. Boussingault has remarked a singlar deficiency in the[p226]specific gravity of the native alloys of gold and silver when compared with calculation, or with the results obtained from an alloy similar in composition prepared by fusion; thus the native gold of Marmato has a specific gravity of 12.666, whereas, by calculation, it ought to be 16.931. The gold of Malpaso, by experiment, is 14.706, by calculation, 18.223, and by fusion, 18.1. The gold of Santa Rosa, by experiment, is 14.149, and by calculation, 16.175. This difference, M. Boussingault says, is not due to porosity in the native gold, as he has observed it in the granular and fine varieties, but a peculiar character of the metal in this state. Such an enormous difference, however, is one that can be admitted only upon repeated experimental proofs, made in the most unexceptionable manner; and, considering that it is only in some of the metals that any permanent difference in specific gravity can be established, and even with them to but a small extent, would be a fact so important as to be worth extreme trouble in the verification.—Annales de Chimie, xxxiv. 408.

8.Prothéeïte—a new Mineral.—This mineral was discovered in 1826, at Rothenkoph, in the valley of Zillerthal, Tyrol. It occurs in rectangular prisms, generally without distinct summits, and rough at both ends. The angles are very seldom truncated, the faces are striated longitudinally. The crystals are of various sizes, some being very small, but they have occurred 5 inches in length, and two in width; the longitudinal fracture is lamellar, the cross-fracture conchoidal. The substance is usually fissured, nearly opaque in large specimens, translucent or diaphanous in small masses. Its colour is crysolite green or white, or between the two; its lustre between that of glass and the diamond; it is heavy; a good conductor of heat; hard enough to scratch glass; infusible before the blowpipe; highly electric by friction. The white crystals have a fibrous texture, which, as well as the colour, seems the result of decomposition. When cut and polished, the mineral assumes a great variety of aspects; the green parts then resemble the finest crysolites, but the fibrous white parts, when cut of a round form, present one or two reflections on a transparent ground which move as the stone is moved, just like those from the cat’s eye; these reflections are very brilliant, and are accompanied by numerous iris colours, which move like those on the opal. This phenomenon is often observed in the rough stone, which, when exposed to light, exhibit certain deep red tints of a cupreous colour, and metallic lustre on all the faces.—Bull. Univ.B. xi. 42.

9.Volcanic Bisulphuret of Copper.—M. N. Covelli, during his examinations of Mount Vesuvius, has observed some particular actions going on, especially in the fumeroles on the eastern side of the mountain, and within the crater. Speaking of the former, he says, “Here there are fumeroles in which pure chloride of lead[p227]sublimes into white and yellow crystallizations, which fusing in the hotter places form nacres, gum, and stalactites. In many parts the sulphuretted hydrogen, evolved within the fumeroles, reacts on the chloride, and forms sulphuret of lead, dispersed in small scales through the scoria. Other fumeroles produce very thin scales of the black oxide of copper; these are very brilliant, metalloidal, and flexible, and are produced by the action of the vapour of water at a red heat on the chloride of copper, which may be observed on disturbing the fumeroles. Here and there the reaction of aqueous vapour on the perchloride of iron produces metalloidal scales of the peroxide of iron; whilst further on, the same vapour, acting on mixtures of the two chlorides, produces oligiste iron in small crystals, aggregated on the scoria. The muriatic acid resulting from these actions, and the sulphuric acid which is formed by the decomposition of hydrosulphurets and sulphates, attack the iron, lime, copper, alumine, potash, &c., in the lavas and scoria, and hence result a number of other productions which line the passages of the fumeroles”.

M. Covelli descended into the crater, until within 300 feet of the edge of the large eastern opening, from which the great current of lava flowed in 1822. Here the fumeroles presented the most beautiful crystallizations of sulphate of lime and sulphur. On examining the scoria they were found incrusted and covered with a substance, having all the shades of colour belonging to blue, green, and black. Sometimes it resembled a spider’s web in appearance, sometimes soot deposited in the cavities of the scoria. Many specimens were collected, and also a portion of water condensed from the vapours which issued forth, and which evidently contained sulphuretted hydrogen and muriatic acid. The temperature of the vapour was as high as 85° C., in some places, and even up to 90°, at half a foot beneath the surface.

The water being examined was found to contain only a little sulphuretted hydrogen, and a little muriatic acid. The black substance was soon ascertained to be a pure sulphuret of copper. Being analyzed, 100 parts yielded 32 parts of sulphur, and 66 of copper, a loss of two parts being incurred, which accords very nearly with the composition of the bi-sulphuret of copper. The blue and bluish-green substances were found to be mixtures of this sulphuret with sulphate and hydro-sulphuret of copper.

M. Covelli concludes that this substance has been formed by the action of sulphuretted hydrogen on the sulphate and muriate of copper evolved by these fumeroles; and observes, that its composition accords with such an opinion, the deutoxide being that which forms the Vesuvian cupreous salts.—Ann. de Chimie, xxxv. 105.

10.Fall of the Lake Souwando in Russia.—This lake, situated in the parish of Sakkola, in the Russian government of Wibourg, and surrounded by the lands of the Barons Friedrichs, was near[p228]40 versts in length, and had the form of a Γ, or Greek G. Before the year 1818, it was separated from the lake of Ladoga by an interval about a verst in width, called Taipale, on which was a sandy hill; its waters flowed into the river Wuoxa, which united the lakes of Saima and Ladoga. On the 14th May, 1818, the waters of the lake Souwando, increased by the thaw and the tempests, overcame the natural dyke at the foot of the lake, threw down the hill of sand, rapidly flowed into the lower lake, carrying away all the surrounding grounds, and for ever destroyed the barrier which had previously separated them. A chapel and a countryman’s house were carried away with the pastures and meadows; the waters of the lower lake were much disturbed, and the surface covered with ruins. The level of the lake Souwando fell1212archines, and its length is now only 15 versts. Its waters no longer flow off by the Wuoxa, but pass into the lower lake by several falls through a deep canal. The land which has been uncovered by the water is already cultivated, and the beauty of the surrounding country said to be increased.—Bull. Univ., F. x. 133.

11.Vegetable Torpor observed in the Roots of the Black Mulberry-tree.—A very old mulberry-tree was broken into four quarters by the wind in 1790. Two of the quarters were destroyed, the other two remained growing for a few years, but the last of them was removed in 1802. An elder-tree grew in the place of the mulberry-tree, without doubt from berries which had fallen into the middle of the old trunk of the latter. This elder-tree died in 1826, and at the time of its languishing about a dozen of mulberry shoots started forth to the day. M. Dureau de la Malle ascertained that these did not spring from seeds, but from the roots of the old mulberry-tree, which had thus lain in the ground in an apparently inactive state, for 24 years, to send forth shoots at last.—Ann. de Sciences Nat.ix. 338.

12.Method of increasing the Odour of Roses.—For this purpose, according to the author of the method, a large onion is to be planted by the side of the rose tree in such a manner that it shall touch the foot of the latter. The roses which will be produced will have an odour much stronger and more agreeable than such as have not been thus treated, and the water distilled from these roses is equally superior to that prepared by means of ordinary rose leaves.—Œkonom. Neuigk.;—Bull. Univ.

13.Pine Apples.—A great improvement may be made in keeping pine apples by twisting off their crowns, which are generally suffered to remain and to live upon the fruit till they have sucked out all the goodness. It will be very easy for fruiterers to keep a few crowns by them in water, which can be pegged or stuck on with dough, for show, when the fruit is served up, or artificial ones[p229]may be made. A pine apple will keep for a long time when its crown is removed, and will also be greatly improved in flavour, for the more aqueous parts of the fruit gradually evaporate, and leave it much more saccharine and vinous in its flavour; which natural process is totally destroyed by the vegetation of the crown, just upon the same principle that an onion or carrot loses its flavour when it begins to sprout in the spring.

14.Mode of Condensing and Preserving Vegetable Substances for Ships’ Provision, &c.—The quantity of liquid matter which enters into the constitution of vegetables is very great; when they are deprived of it their bulk is very trifling. That preparation of animal food calledpemmican, in which six pounds of meat are condensed into the space of one, is mainly effected by abstracting all the fluid from it. Vegetables may be treated in the same way: let them undergo the process of boiling over a fierce wood fire, so as to preserve their colour whencompletelycooked; grind them into a complete pulp by some such means as are used to crush apples for cider, &c.; then let them be subjected to the action of the press, (being first put into hair bags, or treated as grapes are in wine countries,) till all the fluid matter is separated from them; the remainder of their substance becomes wonderfully condensed, and as hard as themarcfrom the wine press. Then let it be rammed hard into carefully glazed air-tight jars, (or tin cases, if preferred,) and subjected to the Appertian process for preserving animal and vegetable matters, (well known, by-the-by, to our grandmothers, who preserved gooseberries in this way from time immemorial.) If jars are used, they may be sufficiently secured by having two pieces of bladder tied successively over them; when the air within is absorbed by heating the inclosed substance, their surface becomes concave by the pressure of the atmosphere, and as long as it remains in this state the matter within is safe. If it should be thought requisite to preserve the flavour of the vegetables entire, an extract should be made from the expressed liquid, and added to themarc. But spinage, cabbage, and many others, have abundance of flavour in them in their dry state without this addition. The preparation of the vegetable matter for use is accomplished by adding a sufficient quantity of milk, water, gravy, lime juice, &c., to themarc, and warming it up. Let the government, and the dealers in ships’ provision, look to this; a sufficient quantity of thisvegetable pemmicanwould be the greatest luxury to a ship’s crew, and render the scurvy utterly obsolete. It is worthy of remark, that the most irritable stomach is not offended by vegetables treated in this way.

15.Rewards for the Discovery of Quinia, and for Lithotrity.—The Académie des Sciences has adjudged a prize of 10,000 francs toMM. Pelletier and Caventou, for their discovery and introduction[p230]into use of sulphate of quinia; and another prize of 10,000 francs to M. Civiale, for having been the first to practise lithotrity on the living body, and for having successfully operated by his method on a great number of persons afflicted with the stone in the bladder.

16.Upon the Gaseous Exhalations of the Skin.—M. Collard de Martigny, having experimented on this subject, has obtained results which tend to reconcile the differences existing between previous observers. The Count de Milly first announced, in the year 1777, that an aëriform fluid escapes in great quantity from the surface of the skin, and he considered the gas as carbonic acid. Cruikshank, Jurene, and Abernethy participated in this opinion. Ingenhouz, on the other hand, maintained that the air so secreted was azote. M. Frousset adopted the opinion of Ingenhouz, and endeavoured to confirm it by experiments. Lastly, Priestley and Fontana questioned the reality of a gaseous exhalation from the skin; and Fourcroy positively denied it.

From the experiments of M. Collard de Martigny, he deduces,

i. That a gaseous exhalation really takes place from the skin.

ii. This exhalation is not morbid: it is observable in health.

iii. It is composed of carbonic acid and azote, in very variable proportions. The following experiment was frequently made. The bubbles of air which are disengaged from the skin were received into a funnel, the top of which was closed: they were then passed into a graduated tube, and agitated with a solution of potash. The height to which the solution rose in the tube indicated the quantities of carbonic acid that had been absorbed. All these operations were made at the same temperature and pressure. Neither hydrogen nor oxygen gas were discovered in this air.

iv. It does occur continually; but very often we may vainly attempt to discover it, which has been the cause of error in the results of Priestley, Fontana and Fourcroy. It is especially suspended after exercise long continued in the middle of the day, or immediately after taking an abundant meal. Sometimes it is suspended without any apparent cause.

v. The quantity also is very variable; but it was observed to be constantly in an inverse ratio to the cutaneous absorption.

vi. The proportions of the two gases vary very much, and sometimes the exhaled gas consists almost entirely of azote: in other instances the predominance of carbonic acid is so great that it appears to be the only product.—Med. Rep., N. S. v. 75.

17.Effects of Galvanism in Cases of Asphyxia by submersion.—M. Leroy d’Etioles has addressed a letter to the Académie de Médecine, in reply to an assertion made by M. Thillaye respecting the inutility of galvanism in cases of asphyxia. The former says, that when a short and fine needle is inserted in the sides of the body between the eighth and ninth ribs so as to come in contact with[p231]the attachment of the diaphragm, and then the current of electricity from 25 or 30 pair of inch plates passed through them, that the diaphragm immediately contracts, and an inspiration is effected. Upon breaking the communication, and again completing it, a second inspiration is occasioned, and by continuing these means, a regular respiration may ultimately be occasioned. This power thus applied has always succeeded with him in experiments on drowned animals.—Bull. Univ., C. xi. 213.

18.Recovery from Drowning.—M. Bourgeois had occasion accidentally to give assistance in a case where, after a person had been twenty minutes under water, he was taken out, and by a very common but serious mistake, carried with his head downwards. The usual means were tried unremittingly, but unsuccessfully, for a whole hour, but at the end of that time a little blood flowed from a vein that had been opened, and a ligature being placed on the arm, ten ounces of blood were withdrawn: the circulation and respiration were then gradually re-established, horrible convulsions, and a frightful state of tetanus coming on at the same time; copious bleeding was again effected, after which a propensity to sleep came on: a third bleeding the following morning was followed by the recovery of the patient. Hence M. Bourgeois concludes that the means of recovering a drowned person should never be abandoned until the decomposition of the body has commenced.—Bull. Univ., C. xi. 213.

19.Preservation of Cantharides.—It is stated by M. Farines that the active part of cantharides exists only in the soft organs of the insect; that these are the parts which are attacked by a species of acarus, and that in this way the cantharides are injured. Camphor has no power of preventing the attacks of the acarus; but M. Farines believes that pyroligneous acid will be found effectual, and proposes to prepare cantharides with it, and even to kill them at the time when they are collected by submersion in it.

20.Chloride of Lime in cases of Burns.—The good effect of chloride of lime in cases of burns is confirmed by the experience of M. Lisfranc. He has applied it in many cases of that kind, sometimes immediately after the accident, sometimes after the application of emollient cataplasms. Lint is moistened in a solution more or less strong of chloride of lime, and then applied to the place, being covered over with waxed cloth. The cure has been singularly hastened under its influence and in one case where almost the whole of the lower limbs, the arms and face, had been burnt, the use of the chloride recovered the patient from the stupor into which he had fallen at the end of four days, and a perfect recovery was effected two months after the accident.—Bull. Univ., C. xi. 77.[p232]

21.Cure of Nasal Polypi.—Dr. Primus of Babenhausen asserts, that the saffronised tincture of opium (of the Prussian Pharmacopœia) possesses the property of gradually destroying nasal polypi when applied to them. Certain cures, which have been thus effected, have already been published, and a striking one occurred in January, 1826. A man, 46 years of age, had one in each nostril. The tincture was applied several times a day to the bases of the polypi, by means of a small hair-brush or lint roll. In eight days the tumours had assumed a paler appearance, and lost a little in volume; a serous secretion from the nose, which had existed for a long time, was diminished, and the pituitary membrane had acquired a more lively tint, as if in a sub-inflammatory state. The application was continued, the tumours continued to decrease, and at the end of three weeks had entirely disappeared.—Mediz. Chirurg. Zeitung, 1826, p. 13.

22.Bite of the Viper.—M. Jacopo Sacchi, of Barzio in Valsasina, having had occasion to take charge of some cases in which injury had been inflicted by the bite of a viper (Coluber Berus), transferred his observations upon them into the hands of Professor Paletta. From these it appears that ammonia, recommended by Dr. Mangili, in 1813, although an excellent remedy in many cases, is by no means sufficient in all, but must occasionally be seconded by every possible means. Although sometimes nature alone has power sufficient to overcome the bite of a viper, yet, at other times, the injury is so great and sudden as to resemble the effects of hydrocyanic acid. In these cases he recommends that the patient should be put into a hot bed covered with woollen clothes, and the most powerful sudorifics with some tonics administered internally. Friction should be applied all over the body, and at the same time the wounds are to be enlarged, cupping-glasses applied, and tow, dipped in ammonia, applied to the spot.

23.Experiments on the Poison of the Viper.—M. Desaulx confirms the fact that dogs can swallow with impunity even large quantities of the poison of vipers. He observed also that when this poison was withdrawn from the vesicles it soon lost in power, and after a certain time became inert: a portion ten days old being introduced into a fresh wound of a living animal, only caused slight tumefaction on the part. Mangili, on the contrary, found it, when hermetically sealed up, to retain its virulence for many months. The species of viper from which M. Desaulx obtained his poison is not mentioned.—Bull. Univ.C. xi. 142.

24.Destruction of Moles.—The following method of destroying moles is asserted, by the Count de Boisseulh, to be excellent. Grounds much infested by these animals have been perfectly freed from them by means of it. A number of worms must be procured, killed, and powdered with pulverised vomica-nut; the whole is to[p233]be mixed and left for twenty-four hours. The mole-tracks are then to be opened, and two or three of these worms placed in each hole. If the meadow is large, they cannot be placed in every hole; but by multiplying them as much as possible, a good result is sure to be obtained.—Ann. de Agricul. de la Charente.

25.On growing Salad-herbs at Sea.—On long sea-voyages, whatever esculent roots, or fruit, or whatever vegetable essences may be stowed in the steward’s stores, whether for the use of the officers or crew, nothing can be a greater treat to the former, especially within the tropics, than a dish of fresh salubrious salad-herbs. The want of such an addition to the ordinary fare on board a ship has often been a cause of disease, and misfortune, and even death!—it is needless, therefore, to insist on the usefulness, or to state the antiscorbutic, and consequently sanatory qualities, of fresh vegetables in such situations; and however limited the means to supply such a want as is described below, yet, as it may be highly useful to convalescents, and in individual cases, the publication may not be deemed altogether valueless.

Provide one, two, or three deal boards, made of well-seasoned inch stuff, sixteen inches square, with a ledge all round, rising one inch above the smooth surface of the board; and as it is intended to hold water, the ledges must be closely and neatly fitted: at each corner a nail, or small hook, should be placed, with strings tied into a loop above, by which the board may be slung in the necessary horizontal position; a thin covering-board, made of the same material and dimensions, is also necessary, and which will serve for all the boards.

Pieces of thethickestflannel must be had for each board, cut so as to fit exactly within the ledges. These flannels require to be well soaked, and repeatedly washed in boiling water, before they can be used, to discharge from them whatever is pernicious to vegetation as they come from the manufacturer’s hands.

The board and flannel thus prepared, dip the flannel in water, and place on the boards; sow the seeds pretty thick and regularly; sprinkle them lightly with the hand, till all are moistened and the flannel completely saturated; in which state it should always be kept during the growth of the plants. Too much water floats the seeds when first put on, and are thereby shifted from their places by the motion of the ship. The cover-board must now be put on, and the whole hung up in its place. The use of this board is to assist the vegetation of the seeds, which it will do sufficiently in the course of twenty-four hours; after which it may be laid aside.

The board must be frequently examined, and when the moisture thereon is diminished by evaporation, or imbibed by the crop, a supply must be given, just enough to keep the flannel in the proper saturated state.

In six or seven days the crop will be (if the weather has been favourable) two inches high,—it is then fit for use. The produce[p234]of one board yields about as much as will fill a middle-sized salad-bowl, and when dressed up with the usual condiments of onion, salt, vinegar, and oil, a most agreeable salad will be composed, and a most acceptable treat to the guests at the captain’s table.

It is necessary that the board, as well as the flannel, be scalded, well washed, and dried in the sun, before it can be used again;—and as one board yields one crop per week, two, or even three boards may be used at the same time, in order to secure a regular supply. Larger boards are not so convenient, because they can only be hung in some by-corner of a cabin, quarter-gallery, or state-room, where they may not only be out of the way, but out of the sun and currents of air.

The herbs suitable to be raised in this way are, radish, mustard, and common garden-cress. The two first answer best within the tropics; the last does not, being too delicate and diminutive;—but this does very well when the ship is no nearer the equator than thirty degrees of latitude. One peck of radish, another of mustard, and two quarts of cress, will be sufficient for an India and China voyage,—a supply of which may be had in China.

I. M.

26.Chinese Method of fattening Fish.—The Chinese are celebrated for their commercial acumen, indefatigable industry, and natural adroitness,—in making the most of every gift of nature bestowed on their fertile country. Useful as well as ornamental vegetables engross their every care; and animals which are the most profitably reared, and which yield the greatest quantity of rich and savoury food, are preferred by them for supplying their larders and stews. Theirhortus dieteticawould form a considerable list; and though they do not use such a variety of butcher’s meat and fowl as Europeans do, yet in the articles of pork, geese, and ducks, they surpass, in the use of fish they equal, us, and in their domestication and management of them they excel all other nations.

A few observations on theirpiscinas, or fish-stews, is the design of this paper; not merely as an historical description, but as an object for imitation in this or any other country.

For twenty or thirty miles round Canton, and as far as the eye can reach on each side of the river on which that city stands, the general face of the country appears nearly a level plain, with but little undulation of surface. The level is, however, richly studded with beautiful hills, which diversify the landscape, and seem to rise out of the plain so abruptly, that they form the most picturesque features, united with the most pleasing combinations. The soil of the plain consists of a pure alluvial earth of great fertility and depth, and very retentive of water; which, by the by, is a proof that, notwithstanding their claim to high chronological antiquity, the waters of the deluge remained much longer (perhaps for ages) on this portion of the continent of Asia, than it did in the interior: and the circumstance of many of their hills being cultivated to the[p235]very top, their numerous water-plants, and their almost amphibious habits as to their domiciles, are still further proofs that the country was, once, more of an aquaium than it now is. Hence the facility of making canals, which are their high-roads (as wheel-carriages, and beasts of draught, are too expensive appendages, for the systematic economy of the celestial empire!) and hence the ease with which a pond may be made in any otherwise useless corner. Such tanks, or ponds, are generally met with in market-garden grounds, where they serve the double purpose of a reservoir, and a stew for rearing and fattening fish.

When a pond is made for this purpose, and filled with water, the owner goes to market, and buys as many young store-fish as his pond can conveniently hold; this he can easily do, as almost all their fish are brought to market alive. Placed in the stew, they are regularly fed morning and evening, or as often as the feeder finds it necessary; their food is chiefly boiled rice, to which is added, the blood of any animals they may kill, wash from their stewing-pots and dishes, &c., indeed any animal offal or vegetable matter which the fish will eat. It is said, they also use some oleaceous medicament in the food, to make the fish more voracious, in order to accelerate their fattening; but of this the writer could obtain no authentic account.

Fish so fed and treated, advance in size rapidly, though not to any great weight; as the kind (a species of perch) which came under observation, never arrive at much more than a pound avoirdupois; but from the length of three or four inches, when first put in, they grow to eight or nine in a few months, and are then marketable. Drafts from the pond are then occasionally made; the largest are first taken off, and conveyed in large shallow tubs of water to market: if sold, well; if not, they are brought back and replaced in the stew, until they can be disposed of.

This business of fish-feeding is so managed that the stock are all fattened off about the time the water is most wanted for the garden-crops. The pond is then cleaned out, the mud carefully saved, or spread as manure,—again filled with water, stocked with young fry, and fed as before.

An intelligent Chinaman, from whom the writer had the above detail, and who showed him as much of the process as could be seen during a residence of three months, declared as his belief, that a spot of ground, containing from twenty to thirty square yards, would yield a greater annual profit as a stew, than it would in any other way to which it could possibly be applied.

That fish may be tamed, suffer themselves to be caressed, and even raised out of their natural element by the hand, has been long known to naturalists; witness the famous old carp formerly in the pond of some religious house at Chantilly, in France, with many other instances on record. But it is probable no people has carried the art of stew-feeding fish, and practising it as a profitable concern, to such lengths, as is done by the Chinese at this day.I. M.


Back to IndexNext