Chapter 30

III.NATURALHISTORY.◊1.Squalls of Wind on the African Shores.—The following description is by D. M. Milnegraden, from the relations of his father. “The approach of the squall is generally foreboded by the appearance of jet black clouds over the land, moving in a direction towards the sea, at the same time that a gentle breeze blows towards the shore. In these circumstances, the precaution which my father usually adopted, was to take in immediately all sail, so as to leave the ship under bare poles, and send the whole of the crew below decks. As the tornado approaches nearer, the rain is observed to be gushing down in torrents, and the lightning darting down from the clouds with such profusion, as to resemble continued showers of electric matter. When, however, the squall comes within the distance of about half a mile from the ship, these electric appearances altogether cease; the rain only continues in the same manner. As the tornado is passing over the ship, a loud crackling noise is distinctly heard among the rigging, occasioned by the electric matter streaming down the masts, whose points serve to attract it, and I think that I have been told, that when this phenomenon takes place at night, a glimmering of light is observed over every part of the rigging. But when the squall has removed to about half a mile beyond the ship, exactly the same appearances return by which the squall was characterised in coming off the shore, and before reaching the same distance from the ship. The lightning is again seen to be descending in continued sheets and in such abundance as even to resemble the torrents of rain themselves which accompany the squall. These squalls take place every day during a certain season of the year called the Harmatan season. The jet black clouds begin to appear moving from the mountains about nine in the morning, and reach the sea about two in the afternoon. Another very singular fact attending these tornados is, that, after they have moved out eight or nine leagues to sea, where[p487]they become apparently expended, the lightning is seen to rise up from the sea. The violence of the wind during the continuance of the storm is excessive.”—Jameson’s Journal, 1823, p. 367.2.Destruction of an Oak by Lightning.—M. Muncke describes a case in which an oak, being struck by lightning, was rent and destroyed in an extraordinary manner. The trunk of the tree was about fifteen feet in height, a foot and a half or two feet in diameter at the branches, and three feet in diameter at the root. The top of the tree was separated as if by the stroke of a hatchet, and without any appearance of carbonization: the trunk was torn into a thousand pieces, exceedingly small in size when compared with the original mass, and thrown to a great distance. The division and destruction was such as to sustain the thought, that in certain cases the lightning might cause the entire dispersion of the tree, an opinion which was suggested by the circumstance that lightning which had fallen at Le Chateau de Marbourg left no traces of a rafter that had occurred in its course.—Bull. Univ.A. viii. 194.3.Description of a Meteoric Fire-Ball seen at New Haven by the Rev. S. E. Dwight.—The meteor appeared on Saturday evening, March 21, 1813, a little before ten o’clock. The sky was much overcast, but the covering thin, and the stars were in full view towards the north where the meteor appeared. Dr. Dwight was standing on a platform on the north side of the house looking eastward, when the light first broke upon him, and for a moment supposed it to be lightning, but was instantly induced by its continuance to look at the luminary. The following are the observations made at the time.i. The meteor was at first about 35° above the horizon, and, judging from the course of a fence near at hand, its direction about N. 20°. E.ii. Its figure nearly that of an ellipse, with the ends in a slight degree sharpened or angular.iii. The length of its transverse diameter appeared to be about equal to the apparent diameter of the moon when on the meridian, and that of the conjugate about three fourths of the transverse.iv. The colour rather more yellow than that of the moon.v. A tail of light, ten or twelve degrees in length, was formed behind it; broadest near the body; decreasing in breadth very slowly for about two-fifths of its length, after which it was uniform, and about as wide as the apparent diameter of Venus. The direction of the tail was coincident with that of the transverse diameter.vi. The ball was far more luminous than the tail, and the part connected with the tail scarcely less distinct than the opposite part.vii. The light was such that all objects cast distinct shadows, though less strongly marked than when the moon is full.viii. Numerous sparks continually issued from the ball of the[p488]meteor; they were of the apparent size, but much more brilliant than the smaller stars, and after descending a little distance, disappeared.ix. The meteor was visible for about eight or perhaps ten seconds.x. A second or two before its disappearance, three much larger sparks or luminous fragments were thrown off at once, two of them the apparent size of Venus, the third larger. These were the last pieces which were seen to leave the body. Their paths were at first nearly parallel with that of the meteor, yet beneath it. From this direction, however, they all deviated constantly and rapidly, in parabolic curves, until they seemed falling perpendicularly towards the earth. Each fragment became less and less distinct until it disappeared. The largest continued visible until about 20° from the horizon.xi. The meteor itself disappeared as suddenly as if, in one indivisible moment, it had passed into a medium absolutely opaque, or as if, at a given moment, it had left the atmosphere; but a few moments afterwards there was a distinct and somewhat extensive illumination over that part of the sky for about a second.xii. When the meteor disappeared, it was about 30° above the horizon in the direction of N. 45° E. or 25° east of the place where it was first seen. The direction of the path was probably from W. by S. to E. by N. The meteor was obviously going from the observer, its path making an angle with the optic axis of about 60°.xiii. Between eight and ten minutes after the disappearance of the meteor, there was a loud and heavy report, accompanied by a very sensible jar; it did not much resemble either thunder or the report of a cannon, but was louder, shorter, and sharper than either, and was followed by no perceptible echo.xiv. A friend of Dr. Dwight’s, who was in Berlin at the time, about twenty-three miles due N. of Newhaven, saw the meteor distinctly, but made no particular observations. His account accorded generally with that given; but the meteor appeared to him larger, more elevated, and somewhat more to the east in its apparent place. No account could be obtained of any fragments which had fallen from it.—Silliman’s Journal, xiii. 35.4.Remarkable Meteoric Phenomenon, described byChladni.—A noise, resembling thunder in its rolling nature, was heard at Saarbruck and the environs, about four o’clock on the 1st of April, 1826, the atmosphere being clear, and the sun shining brightly. During the sound, a greyish object, apparently about three feet and a half in height, was seen in the air, rapidly approaching the earth, and there expanding itself like a sheet; there was then silence for about a minute, after which another sound, resembling thunder, was heard, as if it had originated at the place where the meteor fell. Nothing was found when the place was afterwards examined.—Bull. Univ.A. viii. 143.[p489]5.Aurora Borealis seen in the Day-time at Canonmills.—The morning of Sunday, September 9th, was rainy, with a light gale from the N.E. Before mid-day the wind began to veer to the west, and the clouds in the north-western horizon cleared away: the blue sky in that quarter assumed the form of the segment of a very large circle, with a well-defined line, the clouds above continuing dense, and covering the rest of the heavens. The centre of the azure arch gradually inclined more to the north, and reached an elevation of nearly 20°. In a short time very thin fleecy clouds began to rise from the horizon within the blue arch; and through these very faint perpendicular streaks, of a sort of milky light, could be perceived shooting; the eye being thus guided, could likewise detect the same pale streaks passing over the intense azure arch, but they were extremely slight and evanescent. Between nine and ten in the evening of the same day, the aurora borealis was very brilliant: so that there is no reason to doubt that the azure arch in the morning, and the pale light seen shooting across it, were connected with the same phenomenon.—Jameson’s Jour.1827, p. 378.6.Aurora Borealis in Siberia.—Baron Wrangle says, that in Siberia, when shooting stars pass across the space occupied by polar lights, fiery beams suddenly arise in the place traversed by the shooting star: further, that when a polar beam rises high towards the zenith, the full moon also being high, it gradually forms a luminous circle around the moon, at a distance of 20° or 30° from her, remains in this form for a short time, and then disappears.7.On the Presence of Ammonia in Argillaceous Minerals.—Being engaged in the examination of different specimens of gypsum, M. Bouis observed, that traces of ammonia were evident in one containing much argillaceous matter. The peculiar odour common to argillaceous minerals when breathed upon, was very striking in this specimen of gypsum; when a portion of it was moistened with solution of potash, and muriatic acid brought near, white vapours were produced, and reddened litmus paper was very quickly rendered of a blue colour in its vicinity.It was now suspected that all mineral substances, emitting an argillaceous odour, contained ammonia; a great number of specimens were tried, being moistened with solution of caustic potash, and examined by litmus paper. In no case was ammonia absent, and with common clay it continued to be evolved for more than two days. Amongst the substances tried, were pipe clay, other clays, numerous gypsums, Paris plaster, steatite, &c. The antiquity of the mineral seemed to have no relation to the ammonia.M. Bouis concludes that, in all cases, the argillaceous smell of minerals is connected with, and dependent upon, the presence of ammonia, the latter being the vehicle of this particular odour.—Annales de Chimie, xxxv. 333.[p490]8.Composition of Apatite.—According to M. Rose, the apatite from the following localities gave the annexed proportions of chloride and fluoride of calcium, the rest being phosphate of lime with occasional traces of iron and magnesia:—S. G.Chlo.Calc.Fluor.Calc.Apatite from Suarum in Norway3.1744.2804.590Cabo de Gota in Spain3.2350.8857.049Arendal3.1940.8017.010Greiner in the Tyrol3.1750.1507.690Faldigl, ditto3.1660.1007.620St. Gothard3.197trace7.690Ehrenfriedersdorf3.211trace7.690Annales de Chimie.9.Burmese Petroleum Wells.—“The gentlemen of the mission examined carefully the celebrated Petroleum Wells, near which they remained for eight days, owing to the accident of the steam-vessel taking the ground in their vicinity. Some of the wells are from thirty-seven to fifty-three fathoms in depth, and are said to yield at an average, daily, from 130 to 185 gallons of the earth-oil. The wells are scattered over an area of about sixteen square miles. The wells are private property, the owners paying a tax of five per cent. of the produce to the state. This commodity is almost universally used by the Burmans as lamp oil. Its price on the spot does not, on an average, exceed from fivepence to sevenpence halfpenny per cwt. The other useful mineral or saline productions of the Burman empire are coal, saltpetre, soda, and culinary salt. One of the lakes affording the latter, which is within six or seven miles of the capital, was examined by the gentlemen of the mission.” Crawford’s Mission to Ava.—Jameson’s Journal, 1827, p. 366.10.Direction of the Branches of Trees.—Professor Eaton remarks that all trees with spreading branches accommodate the direction of the lower branches to the surface of the earth over which they extend, as may be seen in orchards growing on the sides of hills, and in all open forests; and inquires what influence can the earth have upon the branches on the upper side of a tree, which causes them to form a different angle with the body of the tree from the angle formed by the branches on the lower side, so that all the branches hold a parallel direction to the earth’s surface.—Silliman’s Journal, xiii. 194.11.Effects of Light on Vegetation.—The following observations by Professor Eaton are dated Rensselaer school, Troy, April 30, 1827. “Clouds and rain have obscured the hemisphere during the last six days. In that time the leaves of all the forests which are seen from this place have greatly expanded. But they were all of a pallid hue until this afternoon. Within the period of about six hours, they have all changed their colour to a beautiful green. As the only efficient change which has taken place, is that we have a[p491]serene sky, and a bright sun, we may say with confidence that this change of colour is produced by the action of the sun’s rays.”“Seven years ago, next month, I had a still more favourable opportunity to observe this phenomenon in company with the Hon. J. Lansing, late Chancellor of this State. While we were engaged in taking a geological survey of his manor of Blenheim, the leaves of the forest had expanded to almost the common size in cloudy weather. I believe the sun had scarcely shone upon them in twenty days. Standing upon a hill, we observed that the dense forests upon the opposite side of the Schoharie were almost white. The sun now began to shine in full brightness. The colour of the forest absolutely changed so fast that we could perceive its progress. By the middle of the afternoon, the whole of these extensive forests, many miles in length, presented their usual summer dress.”—Silliman’s Journal, xiii. 193.12.Organization and Reproduction of the Trufle.—The trufle, according to the account given of it by M. Turpin, in a memoir read to the Academy of Sciences, is a vegetable entirely destitute of leafy appendages or of roots; it is nothing more than a rounded subterraneous mass, absorbing nourishment upon every point of its surface, and the reproduction of which is dependent upon bodies generated within its substance. The trufle is composed of, i. globular vesicles, destined, to the reproduction of the vegetable; ii. short and barren filaments, called by M. Turpin,tigellules. The whole forms a substance, at first white, but which becomes brown by age, with the exception of particular white veins. This change of colour is dependent upon the presence of the reproductive bodies ortrufinelles. Each globular vesicle is fitted to give birth, on its internal surface, to a multitude of these reproductive bodies, but there are only a few of them which perfect the young vegetable. These dilate considerably, and produce internally other smaller vesicles, of which, two, three, or four increase in size, become brown, are beset with small points on their exterior surface, and fill the interior of the larger vesicle. The small masses thus formed, are thetrufinelles, and become trufles after the death of their parent. Thus the brown parts of the trufle are those which contain the trufinelles, and the interposed white veins are the parts which are destitute of trufinelles. The parent trufle, having accomplished its growth and the formation of the reproductive bodies within, gradually dissolves and supplies that aliment to the young vegetable which is proper for them; the cavity originally occupied by it in the earth is then left occupied by a multitude of young trufles, of which the stronger starve or destroy the others, whilst they frequently adhere together, and, enlarging in size, reproduce the phenomena already described.The reporters of this memoir to the Academy state that they have verified M. Turpin’s account, but point out a circumstance in the natural history of the trufle, which is still unexplained. If the[p492]method described be the only mode in which the trufle is reproduced, then it is difficult to comprehend the enormous multiplication of that vegetable in certain parts of France, where immense quantities are annually collected without exhausting or even diminishing the race. If the plant has no means of progression, how can the young trufles leave the place of their birth, and become disseminated over the soil? The Mémoire received the approbation of the Academy.—Revue Ency.xxxv. 794.13.Alteration of Corn in a subterraneous Repository.—An inhabitant of Deneuvre in the department of Merthe, whilst excavating in the locality of the ancient citadel of that town, found a large quantity of corn which appeared to have been carbonized. A portion was sent to M. Braconnot for examination, but without any particulars of the cavity containing it. The grain was smooth on the exterior, and unchanged in form, but its aspect announced the entire destruction of its proximate principles. It floated on water, could be crushed between the finger to a black powder, and when rubbed on paper left traces resembling those of black chalk.Being analysed, it was found to consist principally of a substance resembling ulmine in its properties, ulmate of lime and carbonaceous matter: the proportions wereUlmine26.5Ulmate of lime, containing some phosphate of lime and a little oxide of iron42.0Carbonaceous matter30.0Muriates of potash and lime1.5Nitrates of potash and lime1.5Fatty matter of the consistency of wax, undetermined.100.0Although the time during which this corn has been stored up is probably very long, still M. Braconnot thinks the principal cause of the change in it has been humidity; and thinks also that the same may have been the case with the corn lately found in an Egyptian tomb135, and quotes the known fact of corn having been found at Scarpone, an ancient Roman station, preserved in good condition, during eighteen centuries, in a reservoir constructed of Roman mortar.The best use that could be made of the carbonized corn of Deneuvre was to apply it as a manure, for it contained the best elements of a substance of this kind, and M. Braconnot had long since observed the presence of ulmine in good manure, its acid properties, and its effects on vegetation. He adds also that Bruyères earth of excellent quality gave one-fourth of a combustible matter formed of ulmine and a carbonaceous body but little soluble in potash, the remaining three-fourths being a pure siliceous sand without a trace of lime. Yet so effectual is this earth, that, where it cannot be obtained, certain exotics cannot be cultivated.—Annales de Chimie, xxxv. 262.[p493]135See p. 210 of the last Number.14.Quick Method of putting Insects to Death.—The following method is by M. Ricord, for the use of naturalists. The insect is to be fixed on a piece of cork and put under a jar or vessel with a little ether; the latter being placed either in a capsule, or on the plate on which the jar or glass is placed: the vessel should apply closely, that the vapour of the ether may be retained, and the air within be prevented from changing its place. The insect thus immersed in the ethereal atmosphere will soon die without having time to hurt its form or appearance by violence.—Bull. Univ.B. xii. 295.15.Destruction of Snails by common Salt.—M. Em. Rousseau had applied common salt as a manure to a small piece of garden, and remarked that where snails had come in contact with the salt they quickly died. Wishing to confirm the fact, he strewed some salt upon the ground and placed a number of snails amongst it; all those which came out of their shells and touched the salt immediately threw out a greenish globular froth, and in a few minutes were dead. The fact may be turned to account by agriculturists and gardeners.—Bull. Univ.D. viii. 276.16.Remarkable Hairy Man.—The following account is given of an individual of this kind in Crawford’s Mission to Ava. “As connected with this department may be mentioned the existence at Ava of a man covered from head to foot with hair, whose history is not less remarkable than that of the celebrated porcupine man who excited so much curiosity in England and other parts of Europe near a century ago. The hair on the face of this singular being, the ears included, is shaggy, and about eight inches long. On the breast and shoulders it is from four to five. It is singular that the teeth of this individual are defective in number, the molares or grinders being entirely wanting. This person is a native of the Shan country, or Lao, and from the banks of the upper portion of the Saluen, or Martaban river; he was presented to the king of Ava as a curiosity, by the prince of that country. At Ava he married a Burmese woman, by whom he has two daughters; the eldest resembles her mother, the youngest is covered with hair like her father, only that it is white or fair, whereas his is now brown or black, having, however, been fair when a child, like that of the infant. With the exceptions mentioned, both the father and his child are perfectly well-formed, and, indeed, for the Burman race, rather handsome. The whole family were sent by the king to the residence of the Mission, where drawings and descriptions of them were taken.”—Jameson’s Jour.1827, p. 368.17.Application of Remedies by Absorption from the Surface.—The following are the results obtained by M. Bailly, who has been assiduously engaged in trying this plan.Salts of Morphia, applied in this manner, speedily exhibit their[p494]action upon the brain and nervous system, by the contraction of the pupils, and often by dysuria and ischuria; nausea and vomiting are rare; sometimes a sensation of itching is felt in the nasal cavities, and papular eruptions not unfrequently appear upon the skin.Extract of Belladonna, applied upon the upper surface of the feet, produced all the consequences derived from its internal exhibition; such as dilatation of the pupil and impaired vision.Extract of Squill, while it augments transpiration, promotes the urinary secretion, and facilitates expectoration.Well powdered Strychninesupports the suppuration of wounds tolerably well, and stimulates the locomotive system without inconveniently exciting the brain. It happens also in certain palsies, such as those which are caused by the carbonate of lead, that the power of motion is restored without the production of those violent shocks which have been so unpleasant to patients. M. Bailly has observed, with respect to this medicine in general, that it often excites a marked turgescence about the head, heightening the colour of the face, which demands the suspension of the remedy, if not the intervention of blood-letting.Perchloride of Mercury(corrosive sublimate) produces an intense sensation of heat, and corrodes the parts with which it comes in contact. Sometimes, however, it has been known to relieve the pains of exostoses, &c.The proto-chloride(calomel) also excites pain, particularly if rubbed upon a recently blistered surface. In this way it may cure old syphilitic affections; but as a set-off against these advantages, there is sometimes a difficulty in keeping up the action, as the absorbent powers of the surface wear out by long continued contact.One great advantage of theendermicpractice is the exemption of the digestive organs from an inconvenient or unaccustomed stimulus; and its importance must be apparent where the stomach is incapable of retaining medicines, or the power of deglutition is lost.—Nouv. Bib. Med.—Med. Rep.v. 341.18.On the Strix Cunicularia, or Coquimbo Owl.—Captain Head, and every reader of his “Rough Notes,” will, we are sure thank us for any hint tending to throw light on facts related in that spirited and interesting narrative; particularly as, in the course of his adventures, circumstances are occasionally recorded somewhat startling to those who are in the habit of considering whatever surpasses their ken or comprehension as a travellers’ tale. Thus the concluding part of the following passage, however true to the very letter, as we shall show, has we know excited considerable surprise, and possibly considerable doubt as to its accuracy.“The Biscacho136is found all over the plains of the Pampas; like rabbits they live in holes, which are in groups in every[p495]direction, and which make galloping over these plains very dangerous. These animals are never seen in the day, but as soon as the lower limb of the sun reaches the horizon, they are seen issuing from their holes in all directions, which are scattered in groups like little villages, all over the Pampas. The biscachos, when full grown, are nearly as large as badgers, but their head resembles a rabbit, excepting that they have large bushy whiskers. In the evening they sit outside their holes, and they all appear to be moralising. They are the most serious looking animals I ever saw; and even the young ones are grey headed, have mustachios, and look thoughtful and grave.In the day time their holes are always guarded by two little owls, who are never an instant away from their post. As one gallops by these owls, they always stand looking at the stranger and then at each other, moving their old-fashioned heads in a manner which is quite ridiculous, until one rushes by them, when fear gets the better of their dignified looks, and they both run into the biscachos’ “hole.”—(Head’s Rough Notes, p. 82.)Captain Head has not given us the name of this owl, but in all probability it was the Strix Cunicularia, or Coquimbo Owl, which is described as flyingin pairs, sometimes by day, and making its nestin long subterraneous burrows137. In the singular motion of its head, it however corresponds with the Strix Brasiliana, or Brownish Horned Owl, mentioned by Maregrave in his History of Brazil, which he says is easily tamed, and can soturn about its neckthat the tip of the beak shall exactly point at the middle of the back; that it also plays with men like an ape,making many mowes, (as Willoughby translates it,)and antic mimical faces, and snapping with its bill. But for the best account we have met with, we are indebted to the splendid continuation of Wilson’s American Ornithology by Lucien Bonaparte, under the title “Burrowing Owl—a bird,” he says, “that so far from seeking refuge in the ruined habitations of man, fixes his residence within the earth; instead of concealing itself in solitary recesses of the forests, delights to dwell on open plains, in company with animals remarkable for their social disposition, neatness, and order. Instead of sailing heavily forth in the obscurity of the evening or morning twilight, and then retreating to its secluded abode, this bird enjoys the broadest glare of the noon-day sun, and flying rapidly along, searches for food or pleasure during the cheerful light of the day. In the trans-Mississippian territories of the United States, this very singular birdresides exclusively in the villages of the Marmot, or Prairie Dog, whose excavations are so commodious, as to render it unnecessary that it should dig for itself, as it is said to do in other parts of the world, where no burrowing animals exist. These villages are very numerous, and variable in their extent, sometimes covering only a few acres, and at others spreading over the surface of the country for miles together. They are composed of slightly[p496]elevated mounds, about two feet in width at the base, and seldom exceeding eighteen inches in height. In all these Prairie dog villages, the burrowing owl is seen moving briskly about, or else in small flocks scattered among the mounds, and at a distance it may be mistaken for the marmot itself when sitting erect. They manifestbut little timidity, and allow themselves to be approached sufficiently close for shooting; but if alarmed, some or all of them soar away, and settle down again at a short distance: if further disturbed, their flight is continued until they are no longer in view,or they descend into their dwellings, whence they are difficult to dislodge. The burrows into which these owls have been seen to descend on the plains of the river Platte, where they are the most numerous, were evidently excavated by the marmot, whence it has been interred by the learned and indefatigable Say138, that they were either common, though unfriendly residents of the same habitation, or that the owl was the sole occupant by right of conquest.” We have in the statements of Captain Head, however, a proof that both tenants habitually resort at the same time to one burrow; and we are assured by Pike and others, that a common danger often drives them into the same excavation where lizards and rattlesnakes also enter for concealment and safety.In the above extracts we have noted in italics the striking similarity to the account given by Captain Head.E. S.136This animal is probably either the Cavia Paca, Spotted Cavy, or Arctomys Monax, Ferruginous Brown Marmot, though the latter is described as principally found in North America.137Turton, Lin. vol. i. 169.138We have had no opportunity of consulting Say, and therefore can only refer our readers to an author who has collected an interesting store of facts relative to natural science, and particularly with regard to this bird.19.Naturalisation of Fish.—We have received the following from Mr. Arnold of Guernsey.16thAugust, 1827.Sir,Having understood that the correctness of Dr. Mac Culloch’s statements respecting my pond, and the attempts to propagate sea fish in it, have been questioned, I beg to say that his statements are perfectly correct; and to add further, that during nearly four months of the year the water is perfectly fresh, and is drunk by cattle.In summer, the saltness varies; but no examination yet made has discovered in it more than half as much salt as is contained in the neighbouring sea-water.I further beg leave to add, that the general size of the pond in summer is about four acres and a half; in winter, when swelled by the rains, it is extended to upwards of fifteen acres; which will account for the freshness of the water.I remain, Sir, your obedient humble servant,To the Editor of the Quarterly Journal.J. B.ARNOLD.20.Mode of keeping Apples.—It seems not to be generally known, that apples may be kept the whole year round by being[p497]immersed in corn, which receives no injury from their contact. If the American apples were packed among grain, they would arrive here in much finer condition. In Portugal it is customary to have a small ledge in every apartment, (immediately under the cornice,) barely wide enough to hold an apple: in this way the ceilings are fringed with fruit, which are not easily got at without a ladder; while one glance of the eye serves to shew if any depredations have been committed.21.On the Cultivation and Forcing Sea Kale.—The Crambe maritima, or Sea Kale, is an indigenous plant of this and other countries of Europe, and found on the sandy beach of the sea-shore.It has been long introduced into our gardens as a culinary vegetable, but it is only within the last thirty years, that it has been brought into general use, and subjected to a mode of cultivation, very different from that which was first bestowed upon it.The principal value of this plant is its property of early growth; appearing at table at a time when few such things can be had. It precedes asparagus, for which it is no bad substitute; and as it makes a dish of itself, it gives a variety to the delicacies of the table; and if the opinions given of its medicinal virtues be correct, it is well worth cultivation, and the notice we are about to take of it, in describing an easy method of having it in great perfection throughout the winter months, and up to the time it may be gathered from the natural ground.Prepare one or more beds (with alleys two feet wide between) for the reception of the seeds, in the following manner: mark out the bed or beds two and a half feet wide, and of any required length, as near as can be from east to west; line off the sides and ends, driving a stake at each corner to ascertain the boundaries; dig out the earth of the bed one spade deep, removing it to some distance; fill this excavation with the purest and finest sand which can be procured in the neighbourhood, either from the sea-shore, the bed of a river, or from a pit. It signifies nothing of what colour it is, so it be pure, and as free from loam as it can be had; for in proportion as the soil of the bed is poor or rich, so will the flavour of the plant be when dressed. When this precaution is not taken, and when the plants are suffered to enjoy the rich and cultivated soil of a kitchen garden, or the situation made so, by rich dressings or coverings of fresh manure, the plants are stimulated into an unnatural luxuriance, which deteriorates the flavour, imparting to them that strong disagreeable scent and taste, resembling common cabbage, than which nothing can be a greater drawback on the value of the vegetable; but when grown entirely in pure sand, the flavour is mild and pleasant, and is relished by most palates.When the bed is filled with sand and raised therewith about six inches above the natural level of the ground, (and this should be done previous to the end of March, which is the sowing season,) draw a drill along the middle, from end to end, about three inches[p498]deep, in which drop the seeds pretty thickly, as they can be thinned out to the proper distance after they come up. If the sand or weather be dry at the time of sowing, give a little water in the drill and immediately cover up. If the seed be good, the plants will soon appear, and when they are advanced to a size large enough to enable the gardener to choose the most promising, let them be thinned out to the distance of six or seven inches, the distance at which they may remain. During the summer, the bed should be occasionally watered withdung water; and this for the purpose of encouraging the growth of the plants on their first setting off; and as manure given in this shape is more fugitive than when applied in a more solid or concentrated state, it cannot impart rankness to the plants when they arrive at that age fit to be brought to table.The plants cannot be forced, nor should any of their shoots be cut, the first winter after sowing; but should be suffered and assisted to establish themselves, and gain sufficient strength to yield adequate crops, in the succeeding years.About the month of November in the second winter after sowing, a part at one end of the bed should be prepared for forcing. For this purpose, and in order that it may be done with facility and effect, a rough wooden frame or frames should be made, eighteen inches high behind, and one foot high in front, shaped like a common hot-bed frame, and of any convenient and portable length; and in width, the same as the bed. Light wooden covers in convenient lengths should be fixed by hinges to the back; these may be raised at will for admission of light and air, and, in fine weather, may be thrown entirely back. When the frames are placed, dig out the alleys one foot deep to receive linings of hot dung, which may be banked op against both the back and front of the frame. The surface of the bed within the frame must be covered with soft, short straw, or hay, nine inches thick, to arrest the heat which rises from the linings, and form that warm humid region into which the shoots will advance. The temperature of these dark frames must be regulated by due attendance; and in intensely cold or frosty weather, the frames at night will require coverings of mats and litter, to prevent the plants receiving a check.The required supply of the family—the time for it—and the length or number of the frames, must be judged of by the gardener, and who will act accordingly; but two frames are indispensable; because the second should be considerably advanced by the time the crop in the first is all cut.Young plants may be transplanted; and if they are to be had, may be tried; but the safer way is to sow and plant both, to prevent disappointment; and in order that the roots be not too much exhausted by forcing, one bed should be forced in one year, and another the next.The crowns of the roots have a tendency to rise; and as annual[p499]additions of sand will be required after the autumnal dressing, the beds by these additions become unsightly; but cutting off the most aspiring (with its flowering stem) every summer, will keep the whole within proper bounds. Instead of covering with dung or litter, to protect from winter’s frost, the frames may be set on those parts intended to be forced, to answer that purpose; and the uncovered parts of the beds may receive a coat of mould out of the alleys, to be drawn back off the sand in the spring.The writer of this began to force Sea Kale as long ago as 1798, using hot dung within, as well as without, a frame with glazed lights; but soon found that, neither the glass nor dunginsidewas necessary or suitable; he, therefore, afterwards succeeded, by the above plan, to produce the finest crops of this vegetable, at any time in the winter months; and can confidently recommend such management, especially to those who have no hot-house or hot-bed frames; because when there is any early forced house or frames, if old roots are properly selected and potted in the autumn, and placed in such house or frame, where there is sufficient heat, and well shut up from light by whelming other empty pots over them, a crop may be had in this way, without the trouble and expense of out-door forcing.J. M.

1.Squalls of Wind on the African Shores.—The following description is by D. M. Milnegraden, from the relations of his father. “The approach of the squall is generally foreboded by the appearance of jet black clouds over the land, moving in a direction towards the sea, at the same time that a gentle breeze blows towards the shore. In these circumstances, the precaution which my father usually adopted, was to take in immediately all sail, so as to leave the ship under bare poles, and send the whole of the crew below decks. As the tornado approaches nearer, the rain is observed to be gushing down in torrents, and the lightning darting down from the clouds with such profusion, as to resemble continued showers of electric matter. When, however, the squall comes within the distance of about half a mile from the ship, these electric appearances altogether cease; the rain only continues in the same manner. As the tornado is passing over the ship, a loud crackling noise is distinctly heard among the rigging, occasioned by the electric matter streaming down the masts, whose points serve to attract it, and I think that I have been told, that when this phenomenon takes place at night, a glimmering of light is observed over every part of the rigging. But when the squall has removed to about half a mile beyond the ship, exactly the same appearances return by which the squall was characterised in coming off the shore, and before reaching the same distance from the ship. The lightning is again seen to be descending in continued sheets and in such abundance as even to resemble the torrents of rain themselves which accompany the squall. These squalls take place every day during a certain season of the year called the Harmatan season. The jet black clouds begin to appear moving from the mountains about nine in the morning, and reach the sea about two in the afternoon. Another very singular fact attending these tornados is, that, after they have moved out eight or nine leagues to sea, where[p487]they become apparently expended, the lightning is seen to rise up from the sea. The violence of the wind during the continuance of the storm is excessive.”—Jameson’s Journal, 1823, p. 367.

2.Destruction of an Oak by Lightning.—M. Muncke describes a case in which an oak, being struck by lightning, was rent and destroyed in an extraordinary manner. The trunk of the tree was about fifteen feet in height, a foot and a half or two feet in diameter at the branches, and three feet in diameter at the root. The top of the tree was separated as if by the stroke of a hatchet, and without any appearance of carbonization: the trunk was torn into a thousand pieces, exceedingly small in size when compared with the original mass, and thrown to a great distance. The division and destruction was such as to sustain the thought, that in certain cases the lightning might cause the entire dispersion of the tree, an opinion which was suggested by the circumstance that lightning which had fallen at Le Chateau de Marbourg left no traces of a rafter that had occurred in its course.—Bull. Univ.A. viii. 194.

3.Description of a Meteoric Fire-Ball seen at New Haven by the Rev. S. E. Dwight.—The meteor appeared on Saturday evening, March 21, 1813, a little before ten o’clock. The sky was much overcast, but the covering thin, and the stars were in full view towards the north where the meteor appeared. Dr. Dwight was standing on a platform on the north side of the house looking eastward, when the light first broke upon him, and for a moment supposed it to be lightning, but was instantly induced by its continuance to look at the luminary. The following are the observations made at the time.

i. The meteor was at first about 35° above the horizon, and, judging from the course of a fence near at hand, its direction about N. 20°. E.

ii. Its figure nearly that of an ellipse, with the ends in a slight degree sharpened or angular.

iii. The length of its transverse diameter appeared to be about equal to the apparent diameter of the moon when on the meridian, and that of the conjugate about three fourths of the transverse.

iv. The colour rather more yellow than that of the moon.

v. A tail of light, ten or twelve degrees in length, was formed behind it; broadest near the body; decreasing in breadth very slowly for about two-fifths of its length, after which it was uniform, and about as wide as the apparent diameter of Venus. The direction of the tail was coincident with that of the transverse diameter.

vi. The ball was far more luminous than the tail, and the part connected with the tail scarcely less distinct than the opposite part.

vii. The light was such that all objects cast distinct shadows, though less strongly marked than when the moon is full.

viii. Numerous sparks continually issued from the ball of the[p488]meteor; they were of the apparent size, but much more brilliant than the smaller stars, and after descending a little distance, disappeared.

ix. The meteor was visible for about eight or perhaps ten seconds.

x. A second or two before its disappearance, three much larger sparks or luminous fragments were thrown off at once, two of them the apparent size of Venus, the third larger. These were the last pieces which were seen to leave the body. Their paths were at first nearly parallel with that of the meteor, yet beneath it. From this direction, however, they all deviated constantly and rapidly, in parabolic curves, until they seemed falling perpendicularly towards the earth. Each fragment became less and less distinct until it disappeared. The largest continued visible until about 20° from the horizon.

xi. The meteor itself disappeared as suddenly as if, in one indivisible moment, it had passed into a medium absolutely opaque, or as if, at a given moment, it had left the atmosphere; but a few moments afterwards there was a distinct and somewhat extensive illumination over that part of the sky for about a second.

xii. When the meteor disappeared, it was about 30° above the horizon in the direction of N. 45° E. or 25° east of the place where it was first seen. The direction of the path was probably from W. by S. to E. by N. The meteor was obviously going from the observer, its path making an angle with the optic axis of about 60°.

xiii. Between eight and ten minutes after the disappearance of the meteor, there was a loud and heavy report, accompanied by a very sensible jar; it did not much resemble either thunder or the report of a cannon, but was louder, shorter, and sharper than either, and was followed by no perceptible echo.

xiv. A friend of Dr. Dwight’s, who was in Berlin at the time, about twenty-three miles due N. of Newhaven, saw the meteor distinctly, but made no particular observations. His account accorded generally with that given; but the meteor appeared to him larger, more elevated, and somewhat more to the east in its apparent place. No account could be obtained of any fragments which had fallen from it.—Silliman’s Journal, xiii. 35.

4.Remarkable Meteoric Phenomenon, described byChladni.—A noise, resembling thunder in its rolling nature, was heard at Saarbruck and the environs, about four o’clock on the 1st of April, 1826, the atmosphere being clear, and the sun shining brightly. During the sound, a greyish object, apparently about three feet and a half in height, was seen in the air, rapidly approaching the earth, and there expanding itself like a sheet; there was then silence for about a minute, after which another sound, resembling thunder, was heard, as if it had originated at the place where the meteor fell. Nothing was found when the place was afterwards examined.—Bull. Univ.A. viii. 143.[p489]

5.Aurora Borealis seen in the Day-time at Canonmills.—The morning of Sunday, September 9th, was rainy, with a light gale from the N.E. Before mid-day the wind began to veer to the west, and the clouds in the north-western horizon cleared away: the blue sky in that quarter assumed the form of the segment of a very large circle, with a well-defined line, the clouds above continuing dense, and covering the rest of the heavens. The centre of the azure arch gradually inclined more to the north, and reached an elevation of nearly 20°. In a short time very thin fleecy clouds began to rise from the horizon within the blue arch; and through these very faint perpendicular streaks, of a sort of milky light, could be perceived shooting; the eye being thus guided, could likewise detect the same pale streaks passing over the intense azure arch, but they were extremely slight and evanescent. Between nine and ten in the evening of the same day, the aurora borealis was very brilliant: so that there is no reason to doubt that the azure arch in the morning, and the pale light seen shooting across it, were connected with the same phenomenon.—Jameson’s Jour.1827, p. 378.

6.Aurora Borealis in Siberia.—Baron Wrangle says, that in Siberia, when shooting stars pass across the space occupied by polar lights, fiery beams suddenly arise in the place traversed by the shooting star: further, that when a polar beam rises high towards the zenith, the full moon also being high, it gradually forms a luminous circle around the moon, at a distance of 20° or 30° from her, remains in this form for a short time, and then disappears.

7.On the Presence of Ammonia in Argillaceous Minerals.—Being engaged in the examination of different specimens of gypsum, M. Bouis observed, that traces of ammonia were evident in one containing much argillaceous matter. The peculiar odour common to argillaceous minerals when breathed upon, was very striking in this specimen of gypsum; when a portion of it was moistened with solution of potash, and muriatic acid brought near, white vapours were produced, and reddened litmus paper was very quickly rendered of a blue colour in its vicinity.

It was now suspected that all mineral substances, emitting an argillaceous odour, contained ammonia; a great number of specimens were tried, being moistened with solution of caustic potash, and examined by litmus paper. In no case was ammonia absent, and with common clay it continued to be evolved for more than two days. Amongst the substances tried, were pipe clay, other clays, numerous gypsums, Paris plaster, steatite, &c. The antiquity of the mineral seemed to have no relation to the ammonia.

M. Bouis concludes that, in all cases, the argillaceous smell of minerals is connected with, and dependent upon, the presence of ammonia, the latter being the vehicle of this particular odour.—Annales de Chimie, xxxv. 333.[p490]

8.Composition of Apatite.—According to M. Rose, the apatite from the following localities gave the annexed proportions of chloride and fluoride of calcium, the rest being phosphate of lime with occasional traces of iron and magnesia:—

S. G.Chlo.Calc.Fluor.Calc.Apatite from Suarum in Norway3.1744.2804.590Cabo de Gota in Spain3.2350.8857.049Arendal3.1940.8017.010Greiner in the Tyrol3.1750.1507.690Faldigl, ditto3.1660.1007.620St. Gothard3.197trace7.690Ehrenfriedersdorf3.211trace7.690Annales de Chimie.

9.Burmese Petroleum Wells.—“The gentlemen of the mission examined carefully the celebrated Petroleum Wells, near which they remained for eight days, owing to the accident of the steam-vessel taking the ground in their vicinity. Some of the wells are from thirty-seven to fifty-three fathoms in depth, and are said to yield at an average, daily, from 130 to 185 gallons of the earth-oil. The wells are scattered over an area of about sixteen square miles. The wells are private property, the owners paying a tax of five per cent. of the produce to the state. This commodity is almost universally used by the Burmans as lamp oil. Its price on the spot does not, on an average, exceed from fivepence to sevenpence halfpenny per cwt. The other useful mineral or saline productions of the Burman empire are coal, saltpetre, soda, and culinary salt. One of the lakes affording the latter, which is within six or seven miles of the capital, was examined by the gentlemen of the mission.” Crawford’s Mission to Ava.—Jameson’s Journal, 1827, p. 366.

10.Direction of the Branches of Trees.—Professor Eaton remarks that all trees with spreading branches accommodate the direction of the lower branches to the surface of the earth over which they extend, as may be seen in orchards growing on the sides of hills, and in all open forests; and inquires what influence can the earth have upon the branches on the upper side of a tree, which causes them to form a different angle with the body of the tree from the angle formed by the branches on the lower side, so that all the branches hold a parallel direction to the earth’s surface.—Silliman’s Journal, xiii. 194.

11.Effects of Light on Vegetation.—The following observations by Professor Eaton are dated Rensselaer school, Troy, April 30, 1827. “Clouds and rain have obscured the hemisphere during the last six days. In that time the leaves of all the forests which are seen from this place have greatly expanded. But they were all of a pallid hue until this afternoon. Within the period of about six hours, they have all changed their colour to a beautiful green. As the only efficient change which has taken place, is that we have a[p491]serene sky, and a bright sun, we may say with confidence that this change of colour is produced by the action of the sun’s rays.”

“Seven years ago, next month, I had a still more favourable opportunity to observe this phenomenon in company with the Hon. J. Lansing, late Chancellor of this State. While we were engaged in taking a geological survey of his manor of Blenheim, the leaves of the forest had expanded to almost the common size in cloudy weather. I believe the sun had scarcely shone upon them in twenty days. Standing upon a hill, we observed that the dense forests upon the opposite side of the Schoharie were almost white. The sun now began to shine in full brightness. The colour of the forest absolutely changed so fast that we could perceive its progress. By the middle of the afternoon, the whole of these extensive forests, many miles in length, presented their usual summer dress.”—Silliman’s Journal, xiii. 193.

12.Organization and Reproduction of the Trufle.—The trufle, according to the account given of it by M. Turpin, in a memoir read to the Academy of Sciences, is a vegetable entirely destitute of leafy appendages or of roots; it is nothing more than a rounded subterraneous mass, absorbing nourishment upon every point of its surface, and the reproduction of which is dependent upon bodies generated within its substance. The trufle is composed of, i. globular vesicles, destined, to the reproduction of the vegetable; ii. short and barren filaments, called by M. Turpin,tigellules. The whole forms a substance, at first white, but which becomes brown by age, with the exception of particular white veins. This change of colour is dependent upon the presence of the reproductive bodies ortrufinelles. Each globular vesicle is fitted to give birth, on its internal surface, to a multitude of these reproductive bodies, but there are only a few of them which perfect the young vegetable. These dilate considerably, and produce internally other smaller vesicles, of which, two, three, or four increase in size, become brown, are beset with small points on their exterior surface, and fill the interior of the larger vesicle. The small masses thus formed, are thetrufinelles, and become trufles after the death of their parent. Thus the brown parts of the trufle are those which contain the trufinelles, and the interposed white veins are the parts which are destitute of trufinelles. The parent trufle, having accomplished its growth and the formation of the reproductive bodies within, gradually dissolves and supplies that aliment to the young vegetable which is proper for them; the cavity originally occupied by it in the earth is then left occupied by a multitude of young trufles, of which the stronger starve or destroy the others, whilst they frequently adhere together, and, enlarging in size, reproduce the phenomena already described.

The reporters of this memoir to the Academy state that they have verified M. Turpin’s account, but point out a circumstance in the natural history of the trufle, which is still unexplained. If the[p492]method described be the only mode in which the trufle is reproduced, then it is difficult to comprehend the enormous multiplication of that vegetable in certain parts of France, where immense quantities are annually collected without exhausting or even diminishing the race. If the plant has no means of progression, how can the young trufles leave the place of their birth, and become disseminated over the soil? The Mémoire received the approbation of the Academy.—Revue Ency.xxxv. 794.

13.Alteration of Corn in a subterraneous Repository.—An inhabitant of Deneuvre in the department of Merthe, whilst excavating in the locality of the ancient citadel of that town, found a large quantity of corn which appeared to have been carbonized. A portion was sent to M. Braconnot for examination, but without any particulars of the cavity containing it. The grain was smooth on the exterior, and unchanged in form, but its aspect announced the entire destruction of its proximate principles. It floated on water, could be crushed between the finger to a black powder, and when rubbed on paper left traces resembling those of black chalk.

Being analysed, it was found to consist principally of a substance resembling ulmine in its properties, ulmate of lime and carbonaceous matter: the proportions were

Ulmine26.5Ulmate of lime, containing some phosphate of lime and a little oxide of iron42.0Carbonaceous matter30.0Muriates of potash and lime1.5Nitrates of potash and lime1.5Fatty matter of the consistency of wax, undetermined.100.0

Although the time during which this corn has been stored up is probably very long, still M. Braconnot thinks the principal cause of the change in it has been humidity; and thinks also that the same may have been the case with the corn lately found in an Egyptian tomb135, and quotes the known fact of corn having been found at Scarpone, an ancient Roman station, preserved in good condition, during eighteen centuries, in a reservoir constructed of Roman mortar.

The best use that could be made of the carbonized corn of Deneuvre was to apply it as a manure, for it contained the best elements of a substance of this kind, and M. Braconnot had long since observed the presence of ulmine in good manure, its acid properties, and its effects on vegetation. He adds also that Bruyères earth of excellent quality gave one-fourth of a combustible matter formed of ulmine and a carbonaceous body but little soluble in potash, the remaining three-fourths being a pure siliceous sand without a trace of lime. Yet so effectual is this earth, that, where it cannot be obtained, certain exotics cannot be cultivated.—Annales de Chimie, xxxv. 262.[p493]

135See p. 210 of the last Number.

135See p. 210 of the last Number.

14.Quick Method of putting Insects to Death.—The following method is by M. Ricord, for the use of naturalists. The insect is to be fixed on a piece of cork and put under a jar or vessel with a little ether; the latter being placed either in a capsule, or on the plate on which the jar or glass is placed: the vessel should apply closely, that the vapour of the ether may be retained, and the air within be prevented from changing its place. The insect thus immersed in the ethereal atmosphere will soon die without having time to hurt its form or appearance by violence.—Bull. Univ.B. xii. 295.

15.Destruction of Snails by common Salt.—M. Em. Rousseau had applied common salt as a manure to a small piece of garden, and remarked that where snails had come in contact with the salt they quickly died. Wishing to confirm the fact, he strewed some salt upon the ground and placed a number of snails amongst it; all those which came out of their shells and touched the salt immediately threw out a greenish globular froth, and in a few minutes were dead. The fact may be turned to account by agriculturists and gardeners.—Bull. Univ.D. viii. 276.

16.Remarkable Hairy Man.—The following account is given of an individual of this kind in Crawford’s Mission to Ava. “As connected with this department may be mentioned the existence at Ava of a man covered from head to foot with hair, whose history is not less remarkable than that of the celebrated porcupine man who excited so much curiosity in England and other parts of Europe near a century ago. The hair on the face of this singular being, the ears included, is shaggy, and about eight inches long. On the breast and shoulders it is from four to five. It is singular that the teeth of this individual are defective in number, the molares or grinders being entirely wanting. This person is a native of the Shan country, or Lao, and from the banks of the upper portion of the Saluen, or Martaban river; he was presented to the king of Ava as a curiosity, by the prince of that country. At Ava he married a Burmese woman, by whom he has two daughters; the eldest resembles her mother, the youngest is covered with hair like her father, only that it is white or fair, whereas his is now brown or black, having, however, been fair when a child, like that of the infant. With the exceptions mentioned, both the father and his child are perfectly well-formed, and, indeed, for the Burman race, rather handsome. The whole family were sent by the king to the residence of the Mission, where drawings and descriptions of them were taken.”—Jameson’s Jour.1827, p. 368.

17.Application of Remedies by Absorption from the Surface.—The following are the results obtained by M. Bailly, who has been assiduously engaged in trying this plan.

Salts of Morphia, applied in this manner, speedily exhibit their[p494]action upon the brain and nervous system, by the contraction of the pupils, and often by dysuria and ischuria; nausea and vomiting are rare; sometimes a sensation of itching is felt in the nasal cavities, and papular eruptions not unfrequently appear upon the skin.

Extract of Belladonna, applied upon the upper surface of the feet, produced all the consequences derived from its internal exhibition; such as dilatation of the pupil and impaired vision.

Extract of Squill, while it augments transpiration, promotes the urinary secretion, and facilitates expectoration.

Well powdered Strychninesupports the suppuration of wounds tolerably well, and stimulates the locomotive system without inconveniently exciting the brain. It happens also in certain palsies, such as those which are caused by the carbonate of lead, that the power of motion is restored without the production of those violent shocks which have been so unpleasant to patients. M. Bailly has observed, with respect to this medicine in general, that it often excites a marked turgescence about the head, heightening the colour of the face, which demands the suspension of the remedy, if not the intervention of blood-letting.

Perchloride of Mercury(corrosive sublimate) produces an intense sensation of heat, and corrodes the parts with which it comes in contact. Sometimes, however, it has been known to relieve the pains of exostoses, &c.The proto-chloride(calomel) also excites pain, particularly if rubbed upon a recently blistered surface. In this way it may cure old syphilitic affections; but as a set-off against these advantages, there is sometimes a difficulty in keeping up the action, as the absorbent powers of the surface wear out by long continued contact.

One great advantage of theendermicpractice is the exemption of the digestive organs from an inconvenient or unaccustomed stimulus; and its importance must be apparent where the stomach is incapable of retaining medicines, or the power of deglutition is lost.—Nouv. Bib. Med.—Med. Rep.v. 341.

18.On the Strix Cunicularia, or Coquimbo Owl.—Captain Head, and every reader of his “Rough Notes,” will, we are sure thank us for any hint tending to throw light on facts related in that spirited and interesting narrative; particularly as, in the course of his adventures, circumstances are occasionally recorded somewhat startling to those who are in the habit of considering whatever surpasses their ken or comprehension as a travellers’ tale. Thus the concluding part of the following passage, however true to the very letter, as we shall show, has we know excited considerable surprise, and possibly considerable doubt as to its accuracy.

“The Biscacho136is found all over the plains of the Pampas; like rabbits they live in holes, which are in groups in every[p495]direction, and which make galloping over these plains very dangerous. These animals are never seen in the day, but as soon as the lower limb of the sun reaches the horizon, they are seen issuing from their holes in all directions, which are scattered in groups like little villages, all over the Pampas. The biscachos, when full grown, are nearly as large as badgers, but their head resembles a rabbit, excepting that they have large bushy whiskers. In the evening they sit outside their holes, and they all appear to be moralising. They are the most serious looking animals I ever saw; and even the young ones are grey headed, have mustachios, and look thoughtful and grave.In the day time their holes are always guarded by two little owls, who are never an instant away from their post. As one gallops by these owls, they always stand looking at the stranger and then at each other, moving their old-fashioned heads in a manner which is quite ridiculous, until one rushes by them, when fear gets the better of their dignified looks, and they both run into the biscachos’ “hole.”—(Head’s Rough Notes, p. 82.)

Captain Head has not given us the name of this owl, but in all probability it was the Strix Cunicularia, or Coquimbo Owl, which is described as flyingin pairs, sometimes by day, and making its nestin long subterraneous burrows137. In the singular motion of its head, it however corresponds with the Strix Brasiliana, or Brownish Horned Owl, mentioned by Maregrave in his History of Brazil, which he says is easily tamed, and can soturn about its neckthat the tip of the beak shall exactly point at the middle of the back; that it also plays with men like an ape,making many mowes, (as Willoughby translates it,)and antic mimical faces, and snapping with its bill. But for the best account we have met with, we are indebted to the splendid continuation of Wilson’s American Ornithology by Lucien Bonaparte, under the title “Burrowing Owl—a bird,” he says, “that so far from seeking refuge in the ruined habitations of man, fixes his residence within the earth; instead of concealing itself in solitary recesses of the forests, delights to dwell on open plains, in company with animals remarkable for their social disposition, neatness, and order. Instead of sailing heavily forth in the obscurity of the evening or morning twilight, and then retreating to its secluded abode, this bird enjoys the broadest glare of the noon-day sun, and flying rapidly along, searches for food or pleasure during the cheerful light of the day. In the trans-Mississippian territories of the United States, this very singular birdresides exclusively in the villages of the Marmot, or Prairie Dog, whose excavations are so commodious, as to render it unnecessary that it should dig for itself, as it is said to do in other parts of the world, where no burrowing animals exist. These villages are very numerous, and variable in their extent, sometimes covering only a few acres, and at others spreading over the surface of the country for miles together. They are composed of slightly[p496]elevated mounds, about two feet in width at the base, and seldom exceeding eighteen inches in height. In all these Prairie dog villages, the burrowing owl is seen moving briskly about, or else in small flocks scattered among the mounds, and at a distance it may be mistaken for the marmot itself when sitting erect. They manifestbut little timidity, and allow themselves to be approached sufficiently close for shooting; but if alarmed, some or all of them soar away, and settle down again at a short distance: if further disturbed, their flight is continued until they are no longer in view,or they descend into their dwellings, whence they are difficult to dislodge. The burrows into which these owls have been seen to descend on the plains of the river Platte, where they are the most numerous, were evidently excavated by the marmot, whence it has been interred by the learned and indefatigable Say138, that they were either common, though unfriendly residents of the same habitation, or that the owl was the sole occupant by right of conquest.” We have in the statements of Captain Head, however, a proof that both tenants habitually resort at the same time to one burrow; and we are assured by Pike and others, that a common danger often drives them into the same excavation where lizards and rattlesnakes also enter for concealment and safety.

In the above extracts we have noted in italics the striking similarity to the account given by Captain Head.

E. S.

136This animal is probably either the Cavia Paca, Spotted Cavy, or Arctomys Monax, Ferruginous Brown Marmot, though the latter is described as principally found in North America.137Turton, Lin. vol. i. 169.138We have had no opportunity of consulting Say, and therefore can only refer our readers to an author who has collected an interesting store of facts relative to natural science, and particularly with regard to this bird.

136This animal is probably either the Cavia Paca, Spotted Cavy, or Arctomys Monax, Ferruginous Brown Marmot, though the latter is described as principally found in North America.

137Turton, Lin. vol. i. 169.

138We have had no opportunity of consulting Say, and therefore can only refer our readers to an author who has collected an interesting store of facts relative to natural science, and particularly with regard to this bird.

19.Naturalisation of Fish.—We have received the following from Mr. Arnold of Guernsey.

16thAugust, 1827.

Sir,

Having understood that the correctness of Dr. Mac Culloch’s statements respecting my pond, and the attempts to propagate sea fish in it, have been questioned, I beg to say that his statements are perfectly correct; and to add further, that during nearly four months of the year the water is perfectly fresh, and is drunk by cattle.

In summer, the saltness varies; but no examination yet made has discovered in it more than half as much salt as is contained in the neighbouring sea-water.

I further beg leave to add, that the general size of the pond in summer is about four acres and a half; in winter, when swelled by the rains, it is extended to upwards of fifteen acres; which will account for the freshness of the water.

I remain, Sir, your obedient humble servant,

To the Editor of the Quarterly Journal.

J. B.ARNOLD.

20.Mode of keeping Apples.—It seems not to be generally known, that apples may be kept the whole year round by being[p497]immersed in corn, which receives no injury from their contact. If the American apples were packed among grain, they would arrive here in much finer condition. In Portugal it is customary to have a small ledge in every apartment, (immediately under the cornice,) barely wide enough to hold an apple: in this way the ceilings are fringed with fruit, which are not easily got at without a ladder; while one glance of the eye serves to shew if any depredations have been committed.

21.On the Cultivation and Forcing Sea Kale.—The Crambe maritima, or Sea Kale, is an indigenous plant of this and other countries of Europe, and found on the sandy beach of the sea-shore.

It has been long introduced into our gardens as a culinary vegetable, but it is only within the last thirty years, that it has been brought into general use, and subjected to a mode of cultivation, very different from that which was first bestowed upon it.

The principal value of this plant is its property of early growth; appearing at table at a time when few such things can be had. It precedes asparagus, for which it is no bad substitute; and as it makes a dish of itself, it gives a variety to the delicacies of the table; and if the opinions given of its medicinal virtues be correct, it is well worth cultivation, and the notice we are about to take of it, in describing an easy method of having it in great perfection throughout the winter months, and up to the time it may be gathered from the natural ground.

Prepare one or more beds (with alleys two feet wide between) for the reception of the seeds, in the following manner: mark out the bed or beds two and a half feet wide, and of any required length, as near as can be from east to west; line off the sides and ends, driving a stake at each corner to ascertain the boundaries; dig out the earth of the bed one spade deep, removing it to some distance; fill this excavation with the purest and finest sand which can be procured in the neighbourhood, either from the sea-shore, the bed of a river, or from a pit. It signifies nothing of what colour it is, so it be pure, and as free from loam as it can be had; for in proportion as the soil of the bed is poor or rich, so will the flavour of the plant be when dressed. When this precaution is not taken, and when the plants are suffered to enjoy the rich and cultivated soil of a kitchen garden, or the situation made so, by rich dressings or coverings of fresh manure, the plants are stimulated into an unnatural luxuriance, which deteriorates the flavour, imparting to them that strong disagreeable scent and taste, resembling common cabbage, than which nothing can be a greater drawback on the value of the vegetable; but when grown entirely in pure sand, the flavour is mild and pleasant, and is relished by most palates.

When the bed is filled with sand and raised therewith about six inches above the natural level of the ground, (and this should be done previous to the end of March, which is the sowing season,) draw a drill along the middle, from end to end, about three inches[p498]deep, in which drop the seeds pretty thickly, as they can be thinned out to the proper distance after they come up. If the sand or weather be dry at the time of sowing, give a little water in the drill and immediately cover up. If the seed be good, the plants will soon appear, and when they are advanced to a size large enough to enable the gardener to choose the most promising, let them be thinned out to the distance of six or seven inches, the distance at which they may remain. During the summer, the bed should be occasionally watered withdung water; and this for the purpose of encouraging the growth of the plants on their first setting off; and as manure given in this shape is more fugitive than when applied in a more solid or concentrated state, it cannot impart rankness to the plants when they arrive at that age fit to be brought to table.

The plants cannot be forced, nor should any of their shoots be cut, the first winter after sowing; but should be suffered and assisted to establish themselves, and gain sufficient strength to yield adequate crops, in the succeeding years.

About the month of November in the second winter after sowing, a part at one end of the bed should be prepared for forcing. For this purpose, and in order that it may be done with facility and effect, a rough wooden frame or frames should be made, eighteen inches high behind, and one foot high in front, shaped like a common hot-bed frame, and of any convenient and portable length; and in width, the same as the bed. Light wooden covers in convenient lengths should be fixed by hinges to the back; these may be raised at will for admission of light and air, and, in fine weather, may be thrown entirely back. When the frames are placed, dig out the alleys one foot deep to receive linings of hot dung, which may be banked op against both the back and front of the frame. The surface of the bed within the frame must be covered with soft, short straw, or hay, nine inches thick, to arrest the heat which rises from the linings, and form that warm humid region into which the shoots will advance. The temperature of these dark frames must be regulated by due attendance; and in intensely cold or frosty weather, the frames at night will require coverings of mats and litter, to prevent the plants receiving a check.

The required supply of the family—the time for it—and the length or number of the frames, must be judged of by the gardener, and who will act accordingly; but two frames are indispensable; because the second should be considerably advanced by the time the crop in the first is all cut.

Young plants may be transplanted; and if they are to be had, may be tried; but the safer way is to sow and plant both, to prevent disappointment; and in order that the roots be not too much exhausted by forcing, one bed should be forced in one year, and another the next.

The crowns of the roots have a tendency to rise; and as annual[p499]additions of sand will be required after the autumnal dressing, the beds by these additions become unsightly; but cutting off the most aspiring (with its flowering stem) every summer, will keep the whole within proper bounds. Instead of covering with dung or litter, to protect from winter’s frost, the frames may be set on those parts intended to be forced, to answer that purpose; and the uncovered parts of the beds may receive a coat of mould out of the alleys, to be drawn back off the sand in the spring.

The writer of this began to force Sea Kale as long ago as 1798, using hot dung within, as well as without, a frame with glazed lights; but soon found that, neither the glass nor dunginsidewas necessary or suitable; he, therefore, afterwards succeeded, by the above plan, to produce the finest crops of this vegetable, at any time in the winter months; and can confidently recommend such management, especially to those who have no hot-house or hot-bed frames; because when there is any early forced house or frames, if old roots are properly selected and potted in the autumn, and placed in such house or frame, where there is sufficient heat, and well shut up from light by whelming other empty pots over them, a crop may be had in this way, without the trouble and expense of out-door forcing.

J. M.


Back to IndexNext