BOOKS COMPILED BY

In 1767 we find Mr Richard L. Edgeworth, the father of Maria Edgeworth, employing the sails of a common windmill for communicating intelligence, by an arranged system of signals according to the different positions of thearms. The signals were made to denote numbers, the corresponding parties being each provided with a dictionary in which the words were numbered—the system in vogue for our army-signalling till 1871, when the Morse alphabet was substituted for it.

A great stride was made in 1793 by M. Chappe, a citizen of Paris, when the French Revolution directed all the energies of that nation to the improvement of the art of war; reporting on whose machine to the French Convention in August of the following year, Barère remarked: 'By this invention, remoteness and distance almost disappear, and all the communications of correspondence are effected with the rapidity of the twinkling of an eye.' It consisted of a strong wooden mast some twenty-five feet high, with a cross-beam twelve feet by nine inches jointed on to its top, so as to be movable about its centre like a scale-beam, and could thus be placed horizontally, vertically, or anyhow inclined by means of cords. To each end of this cross-beam was affixed a short vertical indicator about four feet long, which likewise turned on pivots by means of cords, and to the end of each was attached a counterweight, almost invisible at a distance, to balance the weight of it. This machine could be made to assume certain positions which represented or were symbolical of letters of the alphabet. In working, nothing depended on the operator's manual skill, as the movements were regulated mechanically. The time taken up for each movement was twenty seconds, of which the actual motion occupied four; during the other sixteen, the telegraph was kept stationary, to allow of its being distinctly observed and the letter written down by those at the next station. All the parts were painted dark brown, that they might stand out well against the sky; and three persons were required at each station, one to manipulate the machine, another to read the messages through a telescope, and thethird to transfer them to paper, or repeat them to No. 1 to send on. The first machine of this kind was erected on the roof of the Paris Louvre, to communicate with the army which was then stationed near Lille, between which places intermediate ones from nine to twelve miles apart were erected, the second being at Montmartre. The different limbs were furnished with argand lamps for night-work.

Shortly after this, our own government set up lines of communication from the Admiralty to Deal, Portsmouth, and other points on the coast, which we find thus reported in theAnnual Registerfor 1796:

March 28th. 'A telegraph was this day erected over the Admiralty, which is to be the point of communication with all the different sea-ports in the kingdom. The nearest telegraph to London has hitherto been in St George's Fields; and to such perfection has this ingenious and useful contrivance been already brought, that one day last week information was conveyed from Dover to London in the space of only seven minutes. The plan proposed to be adopted in respect to telegraphs is yet only carried into effect between London and Dover; but it is intended to extend all over the kingdom. The importance of this speedy communication must be evident to every one; and it has this advantage, that the information conveyed is known only to the person who sends and to him who receives it. The intermediate posts have only to answer and convey the signals.'

The machines used consisted of three masts connected by a top-piece. The spaces between the masts were divided into three horizontally, and in each partition a large wooden octagon was fixed, poised upon a horizontal axis across its centre, so that it could be made to present either its surface or its edge to the observer. The octagons were turned by means of cranks upon the ends ofthe axles, from which cords descended into a cabin below. By the changes in the position of these six octagonal boards, thirty-six changes were easily exhibited, and the signal to represent any letter or number made: thus, one board being turned into a horizontal position so as to expose its edge, while the other five remained shut or in a vertical position, might stand for A, two of them only in a horizontal position for B, three for C, and so on. It was, however, found that the octagons were less evident to the eye at a distance than the indicators of Chappe's machine, requiring the stations to be closer together; nor could this telegraph be made to change its direction, so that it could only be seen from one particular point, which necessitated having a separate machine at the Admiralty for each line, as well as an additional one at every branch-point. It was, moreover, too bulky and of a form unsuitable for illumination at night.

Here we may notice that in 1801 Mr John Boaz of Glasgow obtained a patent for a telegraph which effected the signal by means of twenty-five lamps arranged in five rows of five each, so as to form a square. Each lamp was provided with a blind, with which its light could be obscured, so that they could be made to exhibit letters and figures by leaving such lamps only visible as were necessary to form the character.

The next improvement again came from France, in 1806, when an entirely new set of telegraphs on the following principle was established along the whole extent of the coast of the French empire. A single upright pole was provided with three arms, each movable about an axis at one end—one near the head, the other two at points lower down, all painted black, with their counterpoises white, so as to be invisible a short way off. Each arm could assume six different positions—one straight out on either side of the pole, two at an angle of forty-fivedegrees above this line, and two at forty-five degrees below it. The arm near the head could be made to exhibit seven positions, the seventh being the vertical; but as this might have been mistaken for part of the pole, it was not employed. The number of combinations or different signals that could be rendered by this machine, employing only three objects, was consequently three hundred and forty-two against sixty-three by that of our Admiralty just described, and which employed six objects.

It was not long, however, before we copied the advancement of our neighbours across the Channel, and in some respects improved upon it, the main differences being that only two arms were employed—one at the top, the other half-way down, and that the mast was made to revolve on a vertical axis, so that the arms could be rendered visible from any desired quarter. Its mechanism, the invention of Sir Home Popham, enabled the arms to be moved by means of endless screws worked by iron spindles from below, a vast improvement on the old cords, the more so as they worked inside the mast, which was hollow, hexagonal in section, and framed of six boards bound together by iron hoops, and were thus protected from the weather. Inside the cabin he erected two dials, one for each arm, each having an index finger that worked simultaneously with its corresponding arm above, on the same principle as the little semaphore models to be seen nowadays in our railway signal cabins.

We have now described the most prominent of the numerous contrivances which, prior to the application of electricity to that end, were devised and made use of for telegraphic communication, all of which, unlike that subtle power that is not afraid of the dark and can travel in all weathers, possessed a common weakness in their liability to failure through atmospheric causes, fog, mist, and haze. To us who live in this age of electrical marvels, when thatparticular science more than all others progresses by leaps and bounds, it appears passing strange and almost incredible that so many years were allowed to elapse before the parents of the electric telegraph, the electrical machine and magnetic compass, were joined in wedlock to produce their amazing progeny, which now enables all mankind, however distant, to hold rapid, soft, and easy converse.

A veil of mystery still hangs around the first plan for an electric telegraph, communicated to theScots Magazinefor 1753 by one 'C. M.' of Renfrew. Even the name of this obscure and modest genius is doubtful; but it is probable that he was Charles Morrison, a native of Greenock, who was trained as a surgeon. At this period only the electricity developed by friction was available for the purpose, and being of a refractory nature, there was no practical result.

But after Volta had invented the chemical generator or voltaic pile in the first year of our century, and Oersted, in 1820, had discovered the influence of the electric current on a magnetic needle, the illustrious Laplace suggested to Ampère, the famous electrician, that a working telegraph might be produced if currents were conveyed to a distance by wires, and made to deflect magnetic needles, one for every letter of the alphabet. This was in the year 1820; but it was not until sixteen years later that the idea was put in practice. In 1836 Mr William Fothergill Cooke, an officer of the Madras army, at home on furlough, was travelling in Germany, and chanced to see at the university of Heidelberg, in the early part of March, an experimental telegraph, fitted up between the study and the lecture theatre of the Professor of Natural Philosophy. It wasbased on the principle of Laplace and Ampère, and consisted of two electric circuits and a pair of magnetic needles which responded to the interruptions of the current. Mr Cooke was struck with this device; but it was only during his journey from Heidelberg to Frankfort on the 17th of the month, while reading Mrs Mary Somerville's book on theCorrelation of the Physical Sciences, that the notion of his practical telegraph flashed upon his mind. Sanguine of success, he abandoned his earlier pursuits and devoted all his energies to realise his invention.

The following year he associated himself with Professor Wheatstone; a joint patent was procured; and the Cooke and Wheatstone needle telegraph was erected between the Euston Square and Camden Town stations of the London and Birmingham Railway. To test the working of the instruments through a longer distance, several miles of wire were suspended in the carriage-shed at Euston, and included in the circuit. All being ready, the trial was made on the evening of the 25th of July 1837, a memorable date. Some friends of the inventors were present, including Mr George Stephenson and Mr Isambard Brunel, the celebrated engineers. Mr Cooke, with these, was stationed at Camden Town, and Mr Wheatstone at Euston Square. The latter struck the key and signalled the first message. Instantly the answer came on the vibrating needles, and their hopes were realised. 'Never,' said Professor Wheatstone—'never did I feel such a tumultuous sensation before, as when, all alone in the still room, I heard the needles click; and as I spelled the words I felt all the magnitude of the invention, now proved to be practical beyond cavil or dispute.'

It was in 1832, during a voyage from Havre to New York in the packetSully, that Mr S. F. B. Morse, then an artist, conceived the idea of the electro-magnetic marking telegraph, and drew a design for it in his sketch-book.But it was not until the beginning of 1838 that he and his colleague, Mr Alfred Vail, succeeded in getting the apparatus to work. Judge Vail, the father of Alfred, and proprietor of the Speedwell ironworks, had found the money for the experiments; but as time went on and no result was achieved, he became disheartened, and perhaps annoyed at the sarcasms of his neighbours, so that the inventors were afraid to meet him. 'I recall vividly,' says Mr Baxter, 'even after the lapse of so many years, the proud moment when Alfred said to me, "William, go up to the house and invite father to come down and see the telegraph-machine work." I did not stop to don my coat, although it was the 6th of January, but ran in my shop-clothes as fast as I possibly could. It was just after dinner when I knocked at the door of the house, and was ushered into the sitting-room. The judge had on his broad-brimmed hat and surtout, as if prepared to go out; but he sat before the fireplace, leaning his head on his cane, apparently in deep meditation. As I entered his room he looked up and said, "Well, William?" and I answered: "Mr Alfred and Mr Morse sent me to invite you to come down to the room and see the telegraph-machine work." He started up, as if the importance of the message impressed him deeply; and in a few minutes we were standing in the experimental room. After a short explanation, he called for a piece of paper, and writing upon it the words, "A patient waiter is no loser," he handed it to Alfred, saying, "If you can send this, and Mr Morse can read it at the other end, I shall be convinced." The message was received by Morse at the other end, and handed to the judge, who, at this unexpected triumph, was overcome by his emotions.' The practical value of the invention was soon realised; by 1840 telegraph lines were being made in civilised countries, and ere long extended into the network of lines which now encircle the globe andbring the remotest ends of the earth into direct and immediate communication.

A year or two before the first attempt to lay an Atlantic cable, there were only eighty-seven nautical miles of submarine cables laid; now, the total length of these wonderful message-carriers under the waves is over 160,500 English statute miles. There are now fourteen cables crossing the Atlantic, which are owned by six different companies.

The charter which Mr Cyrus W. Field obtained for the New York, Newfoundland, and London Telegraph Company was granted in the year 1854. It constructed the land-line telegraph in Newfoundland, and laid a cable across the Gulf of St Lawrence; but this was only the commencement of the work. Soundings of the sea were needed; electricians had to devise forms of cable most suitable; engineers to consider the methods of carrying and of laying the cable; and capitalists had to be convinced that the scheme was practicable, and likely to be remunerative; whilst governments were appealed to for aid. Great Britain readily promised aid; but the United States Senate passed the needful Bill by a majority of one.

But when the first Atlantic cable expedition left the coast of Kerry, it was a stately squadron of British and American ships of war, such as theNiagaraand theAgamemnon, and of merchant steamships. The Lord-lieutenant of Ireland, Directors of the Atlantic Telegraph Company, and of British railways, were there, with representatives of several nations; and when the shore-end had been landed at Valentia, the expedition left the Irish coast in August 1857. When 335 miles of the cable had beenlaid, it parted, and high hopes were buried many fathoms below the surface.

The first expedition of 1858 also failed; the second one was successful; and on the 16th of August in that year, Queen Victoria congratulated the President of the United States 'upon the successful completion of this great international work;' and President Buchanan replied, trusting that the telegraph might 'prove to be a bond of perpetual peace and friendship between the kindred nations.' But after a few weeks' work, the cable gave its last throb, and was silent.

Not until 1865 was another attempt made, and then the cable was broken after 1200 miles had been successfully laid. Then, at the suggestion of Mr (afterwards Sir) Daniel Gooch, the Anglo-American Telegraph Company was formed; and on 13th July 1866 another expedition left Ireland; and towards the end of the month, theGreat Easternglided calmly into Heart's Content, 'dropping her anchor in front of the telegraph house, having trailed behind her a chain of two thousand miles, to bind the Old World to the New.'

But the success of the year was more than the mere laying of a cable: theGreat Easternwas able, in the words of the late Lord Iddesleigh, to complete the 'laying of the cable of 1866, and the recovering that of 1865.' The Queen conferred the honour of knighthood on Captain Anderson, on Professor Thomson, and on Messrs Glass and Channing; whilst Mr Gooch, M.P., was made a baronet. The charge for a limited message was then twenty pounds; and it was not long before a rival company was begun, to share in the rich harvest looked for; and thus another cable was laid, leading ultimately to an amalgamation between its ordinary company and the original Anglo-American Telegraph Company.

The Great Eastern paying out the Atlantic Cable.TheGreat Easternpaying out the Atlantic Cable.

Then, shortly afterwards, the Direct United States Cable Companycame into being, and laid a cable; a French company followed suit; the great Western Union Telegraph Company of America entered into the Atlantic trade, and had two cables constructed and laid. The commencement of ocean telegraphy by each of these companies led to competition, and reduced rates for a time with the original company, ending in what is known as a pool or joint purse agreement, under which the total receipts were divided in allotted proportions to the companies. These companies have now eight cables usually operative; and it was stated by Sir J. Pender that these eight cables 'are capable of carrying over forty million words per annum.'

In addition to the cables of the associated companies, the Commercial Cable Company own two modern cables; and one of the two additional ones was laid by this company—the other by the original—the Anglo-American Company. But the work is simple now to what it was thirty years ago. Then, there were only one or two cable-ships; now, Mr Preece enumerates thirty-seven, of which five belong to the greatest of our telegraph companies, the Eastern. The authority we have just named says that 'the form of cable has practically remained unaltered since the original Calais cable was laid in 1851;' its weight has been increased; and there have been additions to it to enable it to resist insidious submarine enemies. The gear of the steamships used in the service has been improved; whilst the 'picking-up gear' of one of the best known of these cable-ships is 'capable of lifting thirty tons at a speed of one knot per hour.' And there has been a wide knowledge gained of the ocean, its depth, its mountains, and its valleys, so that the task of cable-laying is much more of an exact science than it was. When the first attempt was made to lay an Atlantic cable, 'the manufacture of sea-cables' had been only recently begun; now, 140,000 knots are at work in the sea, andyearly the area is being enlarged. When, in 1856, Mr Thackeray subscribed to the Atlantic Telegraph Company, its share capital was £350,000—that being the estimated cost of the cable between Newfoundland and Ireland; now, five companies have a capital of over £12,500,000 invested in the Atlantic telegraph trade. The largest portion of the capital is that of the Anglo-American Telegraph Company, which has a capital of £7,000,000, and which represents the Atlantic Telegraph Company, the New York, and Newfoundland, and the French Atlantic Companies of old.

Though the traffic fluctuates greatly, in some degree according to the charge per word (for in one year of lowest charges the number of words carried by the associated companies increased by 133 per cent., whilst the receipts decreased about 49 per cent.), yet it does not occupy fully the carrying capacity of the cables. But their 'life' and service is finite, and thus it becomes needful from time to time to renew these great and costly carriers under the Atlantic.

Since the telegraphs of the United Kingdom passed into the hands of the State, the changes which have taken place during that period in the volume of the business transacted, the rapidity in the transit of messages, and the charges made for sending telegrams, are little short of marvellous. It was in the year 1852 that the acquisition of the telegraph system by the State was first suggested, but not until late in the year 1867, when Mr Disraeli was Chancellor of the Exchequer, did the government definitely determine to take the matter up. At that time, as Mr Baines, C.B., tells us in his book,Forty Yearsat the Post-office: 'Five powerful telegraph companies were in existence—The Electric and International, the British and Irish Magnetic, the United Kingdom, the Universal Private, and the London and Provincial Companies. There were others of less importance. Terms had to be made with all of them. The railway interest had to be considered, and the submarine companies to be thought of, though not bought.' With strong and well-organised interests like these fighting hard to secure for themselves the very best possible terms, the government had not unnaturally to submit to a hard bargain before they could obtain from Parliament the powers which they required. However, after a severe struggle, the necessary Bill was successfully passed, and the consequent Money Bill became law in the following session. As the result of this action, the telegraphs became the property of the State upon the 29th of January 1870, and upon the 5th of the following month the actual transfer took place. The step seems to have been taken none too soon, for under the companies the telegraphs had been worked in a manner far from satisfactory to the public. Many districts had been completely neglected, and even between important centres the service had been quite inadequate. Moreover, charges had been high, and exasperating delays of frequent occurrence.

Six million pounds was the sum first voted by Parliament for the purchase of the telegraphs, and this was practically all swallowed up in compensation. The Electric and International Company received £2,938,826; the Magnetic Company, £1,243,536; Reuter's Telegram Company, £726,000; the United Kingdom Company, £562,264; the Universal Private Company, £184,421; and the London and Provincial Company, £60,000. But large as these amounts were, they only made up about one-half of the expenditure which the governmenthad to incur, and the total cost ultimately reached the enormous sum of eleven millions. Some idea of the manner in which the extra five millions was expended may be gathered from the fact that between October 1869 and October 1870, about 15,000 miles of iron wire, nearly 2000 miles of gutta-percha-covered copper wire, about 100,000 poles, and 1,000,000 other fittings were purchased and fixed in position, 3500 telegraph instruments and 15,000 batteries were acquired, and about 2400 new telegraphists and temporary assistants were trained. The total expenditure was so vast that the Treasury eventually took fright, and in 1875 a committee was appointed 'to investigate the causes of the increased cost of the telegraph service since the acquisition of the telegraphs by the State.'

This committee found that the following were the three main causes of the increase: The salaries of all the officials of the telegraph companies had been largely increased after their entry into the government service; the supervising staff maintained by the State was much more costly than that formerly employed by the companies; and a large additional outlay had been forced upon the government in connection with the maintenance of the telegraph lines. 'It would not,' they say in their report, 'be possible, in our opinion, for various reasons, for the government to work at so cheap a rate as the telegraph companies, but ... a reasonable expectation might be entertained that the working expenses could be kept within seventy or seventy-five per cent. of the gross revenue, and the responsible officers of the Post-office telegraph service should be urged to work up to that standard. Such a result would cover the cost of working, and the sum necessary for payment of interest on the debt incurred in the purchase of the telegraphs.' In regard to this question of cost, Mr Baines most trulyremarks that the real stumbling-block of the Department was, and still is, 'the interest payable on £11,000,000 capital outlay, equal at, say, three per cent, to a charge of £330,000 a year.'

The transfer of the telegraphs to the State was immediately followed by a startling increase in the number of messages sent. In fact, the public, attracted by the shilling rate, poured in telegrams so fast, and were so well supported by the news-agencies, who took full advantage of the reduced scale, that there was at first some danger of a collapse. Fortunately, however, the staff was equal to the emergency, and after the first rush was over, everything worked with perfect smoothness.

During the next four years the enlargement of business was simply extraordinary. In 1875 the rate of increase was not maintained at quite so high a level, but nevertheless nearly 1,650,000 more messages were dealt with than during the previous year. The quantity of matter transmitted for Press purposes was also much greater than it had ever been before, and amounted to more than 220,000,000 words.

In 1895 the number of telegraph offices at post-offices was 7409, in addition to 2252 at railway stations, or a grand total of 9661. The number of ordinary inland messages sent during the year was 71,589,064.

In regard to the great increase of pace in the transmission of telegraphic messages, Mr Baines tells us that, 'looking back fifty years, we see wires working at the rate of eight words a minute, or an average of four words per wire per minute, over relatively short distances. Now, there is a potentiality of 400 words—nay, even 600 or 700 words—per wire per minute, over very long distances. As the invention of duplex working has been supplemented by the contrivances for multiplex working (one line sufficing to connect several different offices in one part ofthe country with one or more offices in another part), it is almost impossible to put a limit to the carrying capacity of a single wire.' In 1866 the time occupied in sending a telegram between London and Bournemouth was two hours, and between Manchester and Bolton, two hours and a quarter; while in 1893 the times occupied were ten minutes and five minutes respectively.

Press telegrams have enormously increased in number and length since the purchase of the telegraph system by the State. When the companies owned the wires, the news service from London to the provinces was ordinarily not more than a column of print a night. At the present time the news service of the Press Association alone over the Post-office wires to papers outside the metropolis averages fully 500 columns nightly. Since 1870 this Association has paid the Post-office £750,000 for telegraphic charges, and in addition to this, very large sums have been paid by the London and provincial daily papers for the independent transmission of news, and by the principal journals in the country for the exclusive use, during certain hours, of 'special wires.' Some of the leading papers in the provinces receive ten or more columns of specially telegraphed news on nights when important matters are under discussion in Parliament; and from this some idea may be formed of the amount of business now transacted between the Press and the Telegraph Department.

So much have times altered in the last fifty years, that the electric telegraph itself, which now reaches its thin arms into more than six thousand offices, is threatened in its turn with serious rivalry at the hands of a youthful butvigorous competitor, the telephone. Its advantages are such that its ultimate popularity cannot be a matter of doubt. It is no small benefit to be able to recognise voices, to transact business with promptitude by word of mouth, to get a reply, 'Yes' or 'No,' on the spot, instead of having to rush to the nearest telegraph office.

Great inventions are often conceived a long time before they are realised in practice. Sometimes the original idea occurs to the man who subsequently works it out; and sometimes it comes as a happy thought to one who is either in advance of his age, or who is prevented by adverse circumstances from following it up, and who yet lives to see the day when some more fortunate individual gives it a material shape, and so achieves the fame which was denied to him. Such is the case of M. Charles Bourselle, who in 1854 proposed a form of speaking-telephone, which, although not practicable in its first crude condition, might have led its originator to a more successful instrument if he had pursued the subject further.

The telephone is an instrument designed to reproduce sounds at a distance by means of electricity. It was believed by most people, and even by eminent electricians, that the speaking-telephone had never been dreamed of by any one before Professor Graham Bell introduced his marvellous little apparatus to the scientific world. But that was a mistake. More than one person had thought of such a thing, Bourselle among the number. Philip Reis, a German electrician, had even constructed an electric telephone in 1864, which transmitted words with some degree of perfection; and the assistant of Reis asserts that it was designed to carry music as well as words. Professor Bell, in devising his telephone, copied the human ear with its vibrating drum. The first iron plate he used as a vibrator was a little piece of clock-spring glued to aparchment diaphragm, and on saying to the spring on the telephone at one end of the line: 'Do you understand what I say?' the answer from his assistant at the other end came back immediately: 'Yes; I understand you perfectly.' The sounds were feeble, and he had to hold his ear close to the little piece of iron on the parchment, but they were distinct; and though Reis had transmitted certain single words some ten years before, Bell was the first to make a piece of matter utter sentences. Reis gave the electric wire a tongue so that it could mumble like an infant; but Bell taught it to speak.

The next step is attributed to Mr Elisha Gray of Chicago, who sent successions of electrical current of varying strength as well as of varying frequency into the circuit, and thus enabled the relative loudness as well as the pitch of sounds to be transmitted; and who afterwards took the important step of using the variations of a steady current. These variations, positive and negative, are capable of representing all the back-and-fore variations of position of a particle of air, however irregular these may be: and he secured them by making the sound-waves set a diaphragm in vibration. This diaphragm carried a metallic point which dipped in dilute sulphuric acid; the deeper it dipped the less was the resistance to a current passing through the acid, andvice versâ: so that every variation in the position of the diaphragm produced a corresponding variation in the intensity of the current: and the varying current acted upon a distant electro-magnet, which accordingly fluctuated in strength, and in its attraction for a piece of soft iron suspended on a flexible diaphragm: this piece of soft iron accordingly oscillated, pulling the flexible diaphragm with it; and the variations of pressure in the air acted upon by the diaphragm produced waves, reproducing the characteristics of the original sound-waves, and perceived by the ear as reproducing the original sound orvoice. Mr Gray lodged acaveatfor this contrivance in the United States Patent Office on 14th February 1876; but on the same day Professor Alexander Graham Bell filed a specification and drawings of the original Bell telephone.

Bell's telephone was first exhibited in America at the Centennial Exhibition in Philadelphia in 1876; and in England, at the Glasgow meeting of the British Association in September of that year. On that occasion, Sir William Thomson (now Lord Kelvin) pronounced it, with enthusiasm, to be the 'greatest of all the marvels of the electric telegraph.' The surprise created by its first appearance was, however, nothing to the astonishment and delight which it aroused in this country when Professor Bell, the following year, himself exhibited it in London to the Society of Telegraph Engineers. Since then, its introduction as a valuable aid to social life has been very rapid, and the telephone is now to be found in use from China to Peru.

The Phonograph is an instrument for mechanically recording and reproducing articulate human speech, song, &c. It was invented by Mr T. A. Edison in the spring of 1877, at his Menlo Park Laboratory, New Jersey, and came into existence as the result of one of the many lines of experiment he was then engaged upon.

Thomas Alva Edison, this notable American inventor, was born at Milan, Ohio, 11th February 1847, but his early years were spent at Port Huron, Michigan. His father was of Dutch, and his mother of Scotch descent; the latter, having been a teacher, gave him what schooling he received. Edison was a great reader in his youth, andat the age of twelve he became a newsboy on the Grand Trunk Line running into Detroit, and began to experiment in chemistry. Gaining the exclusive right of selling newspapers on this line, and purchasing some old type, with the aid of four assistants he printed and issued theGrand Trunk Herald, the first newspaper printed in a railway train. A station-master, in gratitude for his having saved his child from the front of an advancing train, taught him telegraphy, in which he had previously been greatly interested; and thenceforward he concentrated the energies of a very versatile mind chiefly upon electrical studies.

Edison with his Phonograph.Edison with his Phonograph.

Edison invented an automatic repeater, by means of which messages could be sent from one wire to another without the intervention of the operator. His system of duplex telegraphy was perfected while a telegraph operator in Boston, but was not entirely successful until 1872. In 1871 he became superintendent of the New York Gold and Stock Company, and here invented the printing-telegraph for gold and stock quotations, for the manufacture of which he established a workshop at Newark, N.J., continuing there till his removal to Menlo Park, N.J., in 1876. Ten years later he settled at Orange, at the foot of the Orange Mountains, his large premises at Menlo Park having grown too small for him.

His inventive faculties now getting full play, he took out over fifty patents in connection with improvements in telegraphy, including the duplex, quadruplex, and sextuplex system; the carbon telephone transmitter; microtasimeter; aerophone, for amplifying sound; the megaphone, for magnifying sound. Thence also emanated his phonograph, a form of telephone, and various practical adaptations of the electric light. His kinetoscope (1894) is a development of the Zoetrope, in which the continuous picture is obtained from a swift succession of instantaneousphotographs (taken 46 or more in a second), and printed on a strip of celluloid. Of late he has devoted himself to improving metallurgic methods. He has taken out some 500 patents, and founded many companies at home and in Europe.

Following up some of his telegraphic inventions, he had developed a machine which, by reason of the indentations made on paper, would transfer a message in Morse characters from one circuit to another automatically, through the agency of a tracing-point connected with a circuit-closing device. Upon revolving with rapidity the cylinder that carried the indented or embossed paper Mr Edison found that the indentations could be reproduced with immense rapidity through the vibration of the tracing-point. He at once saw that he could vibrate a diaphragm by the sound-waves of the voice, and, by means of a stylus attached to the diaphragm, make them record themselves upon an impressible substance placed on the revolving cylinder. The record being made thus, the diaphragm would, when the stylus again traversed the cylinder, be thrown into the same vibrations as before, and the actual reproduction of human speech, or any other sound, would be the result. The invention thought out in this manner was at once tried, with paraffined paper as the receiving material, and afterwards with tinfoil, the experiment proving a remarkable success, despite the crudity of the apparatus. In 1878 Mr Edison made a number of phonographs, which were exhibited in America and Europe, and attracted universal attention. The records were made in these on soft tinfoil sheets fastened around metal cylinders. For a while Mr Edison was compelled to suspend work on this invention, but soon returned to it and worked out the machine as it exists practically to-day. It occupies about the same space as a hand sewing-machine. A light tube of wax to slide on and off thecylinder is substituted for the tinfoil, which had been wrapped round it, and the indenting stylus is replaced by a minute engraving point. Under the varying pressure of the sound-waves, this point or knife cuts into the tube almost imperceptibly, the wax chiselled away wreathing off in very fine spirals before the edge of the little blade, as the cylinder travels under it. Each cylinder will receive about a thousand words. In the improved machine Mr Edison at first employed two diaphragms in 'spectacle' form, one to receive and the other to reproduce; but he has since combined these in a single efficient attachment. The wax cylinders can be used several hundred times, the machine being fitted with a small paring tool which will shave off the record previously made, leaving a smooth new surface. The machine has also been supplemented by the inventor with an ingenious little electric motor with delicate governing mechanism, so that the phonograph can be operated at any chosen rate of speed, uniformly. This motor derives its energising current either from an Edison-Lalande primary battery, a storage battery, or an electric-light circuit.

The new and perfected Edison phonograph has already gone into very general use, and many thousands are distributed in American business offices, where they facilitate correspondence in a variety of ways. They are also employed by stenographers as a help in the transcription of their shorthand notes. Heretofore these notes have been slowly dictated to amanuenses, but they are now frequently read off to a phonograph, and then written out at leisure. The phonograph is, however, being used for direct stenograph work, and it reported verbatim 40,000 words of discussion at one convention held in 1890, the words being quietly repeated into the machine by the reporter as quickly as they were uttered by the various speakers. A large number of machines are in useby actors, clergymen, musicians, reciters, and others, to improve their elocution and singing. Automatic phonographs are also to be found in many places of public resort, equipped with musical or elocutionary cylinders, which can be heard upon the insertion of a small coin; and miniature phonographs have been applied to dolls and toys. The value of the phonograph in the preservation of dying languages has been perceived too, and records have already been secured of the speech, songs, war-cries, and folklore of American tribes now becoming extinct. It is also worthy of note that several voice records remain of distinguished men, who 'being dead yet speak.' Their tones can now be renewed at will, and their very utterances, faithful in accent and individuality, can be heard again and again through all time.

Improvements are being made in the wholesale reproduction of phonographic cylinders, by electrotyping and other processes; and the machine, in a more or less modified form, is being introduced as a means of furnishing a record of communications through the telephone. Phonographic clocks, books, and other devices have also been invented by Mr Edison, whose discovery is evidently of a generic nature, opening up a large and entirely new field in the arts and sciences.

Edinburgh:Printed by W. & R. Chambers, Limited.

ADVENTURE AND ADVENTURERS.Being True Tales of Daring, Peril, and Heroism. Illustrated.

GOOD AND GREAT WOMEN.Lives of Queen Victoria, Florence Nightingale, Jenny Lind, &c. Illustrated.

BENEFICENT AND USEFUL LIVES.Lives of Lord Shaftesbury, George Peabody, Sir W. Besant, Samuel Morley, Sir J. Y. Simpson, &c. Illustrated.

GREAT THINKERS AND WORKERS.Lives of Thomas Carlyle, Lord Armstrong, Lord Tennyson, Charles Dickens, W. M. Thackeray, Sir H. Bessemer, James Nasmyth, &c. Illustrated.

RECENT TRAVEL AND ADVENTURE.Travels of H. M. Stanley, Lieutenant Greely, Joseph Thomson, Dr Livingstone, Lady Brassey, Arminius Vambéry, Sir Richard Burton, &c. Illustrated.

GREAT HISTORIC EVENTS.Indian Mutiny, French Revolution, the Crusades, Conquest of Mexico, &c. Illustrated.


Back to IndexNext