ILLUSIONS OF THE SENSES

Fig. 21.

On September 21, 1870, the Germans so completely surrounded the French capitol, that all communication by roads, railways, and telegraphs, was cut off and the only way of escape from the city was through the air. On April 23, the first balloon left Paris, and in a short time after that, a regular balloon post was established, letters and packages being sent out at intervals of three to seven days. In order to get news back to the city, carrier pigeons were employed, and at first the letters were simply written on very thin paper and enclosed in quills which were fastened to the middle tail-feather of the bird, as shown in the engraving, Fig. 21. It is, of course, needlessto say, that the ordinary pictures of doves with letters tied round their necks or love-notes attached to their wings, are all mere romance. A bird loaded in that way would soon fall a prey to its enemies. As it was, some of the pigeons were shot by German gunners or captured by hawks trained by the Germans for the purpose, but the great majority got safely through.

Written communications, however, were of necessity, bulky and heavy, and therefore M. Dagron, a Parisian photographer, suggested that the news be printed in large sheets of which microphotographs could be made and transferred to collodion positives which might then be stripped from the glass and would be very light. This was done; the collodion pellicles measuring about ten centimeters (four inches) square and containing about three thousand average messages. Eighteen of these pellicles weighed less than one gramme (fifteen grains) and were easily carried by a single pigeon. The pigeons having been bred in Paris and sent out by balloons, always returned to their dove-cotes in that city.

M. Dagron left Paris by balloon on November 12, and after a most adventurous voyage, being nearly captured by a German patrol, he reached Tours and there established his headquarters, and organized a regular system of communication with the capitol. The results were most satisfactory, upwards of two and a half millions of messages having been sent into the city. Even postal orders, and drafts were transmitted in this way and duly honored.

And thus through the pigeon-post, aided by microphotography, Paris was enabled to keep in touch with the outer world, and the anxiety of thousands of families was relieved.

It is not likely, however, that the pigeon-post will ever again come into use for this purpose; our interest in it is now merely historical, for in the next great siege, if we ever have one, the wireless telegraph will no doubt take its place and messages, which no hawks can capture and no guns can destroy, will be sent directly over the heads of the besiegers.

But let us hope and pray, that the savage and unnecessary war which is now being waged in the east will be the last, and that in the near future, two or more of the great nations of the globe will so police the world, that peace on earth and good will toward men will everywhere prevail.

O

ursenses have been called the "Five Gateways of Knowledge" because all that we know of the world in which we live reaches the mind, either directly or indirectly, through these avenues. From the "ivory palace," in which she dwells apart, and which we call the skull, the mind sends forth her scouts—sight, hearing, feeling, taste, and smell—bidding them bring in reports of all that is going on around her, and if the information which they furnish should be untrue or distorted, the most dire results might follow. She, therefore, frequently compares the tale that is told by one with the reports from the others, and in this way it is found that under some conditions these reporters are anything but reliable; the stories which they tell are often distorted and untrue, and in some cases their tales have no foundation whatever in fact, but are the "unsubstantial fabric of a vision."

It is, therefore, of the greatest importance to us, that we should find out the points on which these information bearers are most likely to be deceived so that we may guard against the errors into which they would otherwise certainly lead us.

All the senses are liable to be imposed upon under certain conditions. The senses of taste and of smell are frequently the subject of phantom smells and tastes, which are as vivid as the sensations produced by physical causes acting in the regular way. Even those comparatively newsenses[9]which have been differentiated from the sense of touch and which, with the original five, make up the mystic number seven, are very untrustworthy guides under certain circumstances. Thus we all know how the sense of heat may be deceived by the old experiment of placing one hand in a bowl of cold water and the other in a bowl of hot water, and then, after a few minutes, placing both hands together in a bowl of tepid water; the hand, which has been in the cold water will feel warm, while that which has just been taken from the hot water, will feel quite cold.

We have all experienced the deceptions to which the sense of hearing exposes us. Who has not heard sounds which had no existence except in our own sensations? And every one is familiar with the illusions to which we are liable when under the influence of a skilful ventriloquist.

Even the sense of touch, which most of us regard as infallible, is liable to gross deception. When we have "felt" anything we are always confident as to its shape, number, hardness, etc., but the following very simple experiment shows that this confidence may be misplaced:

Fig. 22.

Take a large pea or a small marble or bullet and place iton the table or in the palm of the left hand. Then cross the fingers of the right hand as shown in the engraving, Fig. 22, the second finger crossing the first, and place them on the ball, so that the latter may lie between the fingers, as figured in the cut. If the pea or ball be now rolled about, the sensation is apparently that given by two peas under the fingers, and this illusion is so strong that it cannot be dispelled by calling in any of the other senses (the sense of sight for example) as is usually the case under similar circumstances. We may try and try, but it willonly be after considerable experience that we shall learn to disregard the apparent impression that there are two balls.

The cause of this illusion is readily found. In the ordinary position of the fingers the same ball cannot touch at the same time the exterior sides of two adjoining fingers. When the two fingers are crossed, the conditions are exceptionally changed, but the instinctive interpretation remains the same, unless a frequent repetition of the experiment has overcome the effect of our first education on this point. The experiment, in fact has to be repeated a great number of times to make the illusion become less and less appreciable.

But of all the senses, that of sight is the most liable to error and illusion, as the following simple illustrations will show.

Fig. 23.Fig. 24.

Fig. 23.

Fig. 24.

In Fig. 23 a black spot has been placed on a white ground, and in Fig. 24 a white spot is placed on a black ground; which is the larger, the black spot or the white one? To every eye the white spot will appear to be the largest, but as a matter of fact they are both the same size. This curious effect is attributed by Helmholtz to what is called irradiation. The eye may also be greatly deceived even in regard to the length of lines placed side by side.Thus, in Fig. 25 a thin vertical line stands upon a thick horizontal one; although the two lines are of precisely the same length, the vertical one seems to be considerably longer than the other.

Fig. 25.

In Figs. 26 and 27 a series of vertical and horizontal lines are shown, and in both forms the space that is covered seems to be longer one way than the other. As a matter of fact the space in each case is a perfect square, and the apparent difference in width and height depends upon whether the lines are vertical or horizontal.

Fig. 26.Fig. 27.

Fig. 26.

Fig. 27.

Advantage is taken of this curious illusion in decorating rooms and in selecting dresses. Stout ladies of taste avoid dress goods having horizontal stripes, and ladies of the opposite conformation avoid those in which the stripes are vertical.

But the greatest discrepancy is seen in Figs. 28 and 29, the middle line in Fig. 29 appearing to be much longer than in Fig. 28. Careful measurement will show that they are both of precisely the same length, the apparent differencebeing due to the arrangement of the divergent lines at the ends.

Fig. 28.Fig. 29.

Fig. 28.

Fig. 29.

Converging lines have a curious effect upon apparent size. Thus in Fig. 30 we have a wall and three posts, and if asked which of the posts was the highest, most persons would name C, but measurement will show that A is the highest and that C is the shortest.

Fig. 30.

A still more striking effect is produced in two parallel lines by crossing them with a series of oblique lines as seen in Figs. 31 and 32. In Fig. 31 the horizontal lines seem to be much closer at the right-hand ends than at the left, butaccurate measurement will show that they are strictly parallel.

Fig. 31.

By changing the direction of the oblique lines, as shown in Fig. 32, the horizontal lines appear to be crooked although they are perfectly straight.

Fig. 32.

All these curious illusions are, however, far surpassed by an experiment which we will now proceed to describe.

FOOTNOTES:[9]The old and generally recognized list of the senses is as follows: Sight, Hearing, Smell, Taste, and Touch. This is the list enumerated by John Bunyan in his famous work, "The Holie Warre." It has, however, been pointed out that the sense which enables us to recognize heat is not quite the same as that of touch and modern physiologists have therefore set apart, as a distinct sense, the power by which we recognize heat.The same had been previously done in the case of the sense of Muscular Resistance but, as the author of "The Natural History of Hell" says, "when we differentiate the 'Sense of Heat,' and the 'Sense of Resistance' from the Sense of Touch, we may set up new signposts, but we do not open up any new 'gateways', things still remain as they were of old, and every messenger from the material world around us must enter the ivory palace of the skull through one of the old and well-known ways."

[9]The old and generally recognized list of the senses is as follows: Sight, Hearing, Smell, Taste, and Touch. This is the list enumerated by John Bunyan in his famous work, "The Holie Warre." It has, however, been pointed out that the sense which enables us to recognize heat is not quite the same as that of touch and modern physiologists have therefore set apart, as a distinct sense, the power by which we recognize heat.The same had been previously done in the case of the sense of Muscular Resistance but, as the author of "The Natural History of Hell" says, "when we differentiate the 'Sense of Heat,' and the 'Sense of Resistance' from the Sense of Touch, we may set up new signposts, but we do not open up any new 'gateways', things still remain as they were of old, and every messenger from the material world around us must enter the ivory palace of the skull through one of the old and well-known ways."

[9]The old and generally recognized list of the senses is as follows: Sight, Hearing, Smell, Taste, and Touch. This is the list enumerated by John Bunyan in his famous work, "The Holie Warre." It has, however, been pointed out that the sense which enables us to recognize heat is not quite the same as that of touch and modern physiologists have therefore set apart, as a distinct sense, the power by which we recognize heat.

The same had been previously done in the case of the sense of Muscular Resistance but, as the author of "The Natural History of Hell" says, "when we differentiate the 'Sense of Heat,' and the 'Sense of Resistance' from the Sense of Touch, we may set up new signposts, but we do not open up any new 'gateways', things still remain as they were of old, and every messenger from the material world around us must enter the ivory palace of the skull through one of the old and well-known ways."

T

hefollowing curious experiment always excites surprise, and as I have met with very few persons who have ever heard of it, I republish it from "The Young Scientist," for November, 1880. It throws a good deal of light upon the facts connected with vision.

Fig. 33.

Procure a paste-board tube about seven or eight inches long and an inch or so in diameter, or roll up a strip of any kind of stiff paper so as to form a tube. Holding this tubein the left hand, look through it with the left eye, the right eye also being kept open. Then bring the right hand into the position shown in the engraving, Fig. 33, the edge opposite the thumb being about in line with the right-hand side of the tube. Or the right hand may rest against the right-hand side of the tube, near the end farthest from the eye. This cuts off entirely the view of the object by the right eye, yet strange to say the object will still remain apparently visible to both eyes through a hole in the hand, as shown by the dotted lines in the engraving! In other words, it will appear to us as if there was actually a hole through the hand, the object being seen through that hole. The result is startlingly realistic, and forms one of the simplest and most interesting experiments known.

This singular optical illusion is evidently due to the sympathy which exists between the two eyes, from our habit of blending the images formed in both eyes so as to give a single image.

A

verycommon exhibition by street showmen, and one which never fails to excite surprise and draw a crowd, is the apparatus by which a person is apparently enabled to look through a brick. Mounted on a simple-looking stand are a couple of tubes which look like a telescope cut in two in the middle. Looking through what most people take for a telescope, we are not surprised when we see clearly the people, buildings, trees, etc., beyond it, but this natural expectation is turned into the most startled surprise when it is found that the view of these objects is not cut off by placing a common brick between the two parts of the telescope and directly in the apparent line of vision, as shown in the accompanying illustration, Fig. 34.

Fig. 34.

In truth, however, the observer looksroundthe brick instead of through it, and this he is enabled to do by means of four mirrors ingeniously arranged as shown in the engraving. As the mirrors and the lower connecting tube are concealed, and the upright tubes supporting the pretended telescope, though hollow, appear to be solid, it is not very easy for those who are not in the secret to discover the trick.

Of course any number of "fake" explanations are given by the showman who always manages to keep up with the times and exploit the latest mystery. At one time it was psychic force, then Roentgen or X-rays; lately it has been attributed to the mysterious effects of radium!

This illustration is more properly a delusion; there is no illusion about it.

A

nArabian author, Al Sephadi, relates the following curious anecdote:

A mathematician named Sessa, the son of Dahar, the subject of an Indian Prince, having invented the game of chess, his sovereign was highly pleased with the invention, and wishing to confer on him some reward worthy of his magnificence, desired him to ask whatever he thought proper, assuring him that it should be granted. The mathematician, however, only asked for a grain of wheat for the first square of the chess-board, two for the second, four for the third, and so on to the last, or sixty-fourth. The prince at first was almost incensed at this demand, conceiving that it was ill-suited to his liberality. By the advice of his courtiers, however, he ordered his vizier to comply with Sessa's request, but the minister was much astonished when, having caused the quantity of wheat necessary to fulfil the prince's order to be calculated, he found that all the grain in the royal granaries, and even all that in those of his subjects and in all Asia, would not be sufficient.

He therefore informed the prince, who sent for the mathematician, and candidly acknowledged that he was not rich enough to be able to comply with his demand, the ingenuity of which astonished him still more than the game he had invented.

It will be found by calculation that the sixty-fourth term of the double progression, beginning with unity, is

9,223,372,036,854,775,808,

and the sum of all the terms of this double progression, beginning with unity, may be obtained by doubling the last term and subtracting the first from the sum. The number, therefore, of the grains of wheat required to satisfy Sessa's demand will be

18,446,744,073,709,551,615.

Now, if a pint contains 9,216 grains of wheat, a gallon will contain 73,728, and a bushel (8 gallons) will contain 589,784. Dividing the number of grains by this quantity, we get 31,274,997,412,295 for the number of bushels necessary to discharge the promise of the Indian prince. And if we suppose that one acre of land is capable of producing in one year, thirty bushels of wheat, it would require 1,042,499,913,743 acres, which is more than eight times the entire surface of the globe; for the diameter of the earth being taken at 7,930 miles, its whole surface, including land and water, will amount to very little more than 126,437,889,177 square acres.

If the price of a bushel of wheat be estimated at one dollar, the value of the above quantity probably exceeds that of all the riches on the earth.

A

gentlemantook a fancy to a horse, and the dealer, to induce him to buy, offered the animal for the value of the twenty-fourth nail in his shoe, reckoning one cent for the first nail, two for the second, four for the third, and so on. The gentleman, thinking the price very low, accepted the offer. What was the price of the horse?

On calculating, it will be found that the twenty-fourth term of the progression 1, 2, 4, 8, 16, etc., is 8,388,608, or $83,886.08, a sum which is more than any horse, even the best Arabian, was ever sold for.

Had the price of the horse been fixed at the value of all the nails, the sum would have been double the above price less the first term, or $167,772.15.

T

hefollowing note on the result of unrestrained propagation for one hundred generations is taken from "Familiar Lectures on Scientific Subjects," by Sir John F. W. Herschel:

For the benefit of those who discuss the subjects of population, war, pestilence, famine, etc., it may be as well to mention that the number of human beings living at the end of the hundredth generation, commencing from a single pair, doubling at each generation (say in thirty years), and allowing for each man, woman, and child, an average space of four feet in height and one foot square, would form a vertical column, having for its base the whole surface of the earth and sea spread out into a plane, and for its height 3,674 times the sun's distance from the earth! The number of human strata thus piled, one on the other, would amount to 460,790,000,000,000.

In this connection the following facts in regard to the present population of the globe may be of interest:

The present population of the entire globe is estimated by the best statisticians at between fourteen and fifteenhundred millions of persons. This number would easily find standing-room on one half of Long Island, in the State of New York. If this entire population were to be brought to the United States, we could easily give every man, woman, and child, one acre and a half each, or a nice little farm of seven acres and a half to every family, consisting of a man, his wife, and three children.

This question has also an important bearing on the preservation of animals which, in limited numbers, are harmless and even desirable. In Australia, where the restraints on increase are slight, the rabbit soon becomes not only a nuisance but a menace, and in this country the migratory thrush or robin, as it is generally called, has been so protected in some localities that it threatens to destroy the small fruit industry.

M

anyplans have been suggested for getting rich quickly, and some of these are so plausible and alluring that multitudes have been induced to invest in them the savings which had been accumulated by hard labor and severe economy. It is needless to say that, except in the case of a few stool-pigeons, who were allowed to make large profits so that their success might deceive others and lead them into the net, all these projects have led to disaster or ruin. It is a curious fact, however, that some of those who invested in such "get-rich-quickly" schemes were probably fully aware of their fraudulent character and went into the speculation with their eyes open in the hope thattheymight be allowed to becomethe stool-pigeons, and in this way come out of the enterprise with a large balance on the right side. No regret can be felt when a bird of this kind gets plucked.

But by the following simple method every one may become his own promoter and in a short time accumulate a respectable fortune. It would seem that almost any one could save one cent for the first day of the month, two cents for the second, four for the third, and so on. Now if you will do this for thirty days we will guarantee you the possession of quite a nice little fortune. See how easy it is to become a millionaire on paper, and by the way, it is only on paper that such schemes ever succeed.

If, however, you should have any doubt in regard to your ability to lay aside the required amount each day, perhaps you can induce some prosperous and avaricious employer to accept the following tempting proposition:

Offer to work for him for a year, provided he pays you one cent for the first week, two cents for the second, four for the third, and so on to the end of the term. Surely your services would increase in value in a corresponding ratio, and many business men would gladly accept your terms. We ourselves have had such a proposition accepted over and over again; the only difficulty was that when we insisted upon security for the last instalment of our wages, our would-be employers could never come to time. And we would strongly urge upon our readers that if they ever make such a bargain, they get full security for the last payment for they will find that when it becomes due there will not be money enough in the whole world to satisfy the claim.

The entire amount of all the money in circulation among all the nations of the world (not thewealth) is estimated atsomewhat less than $15,000,000,000, and the last payment would amount to fifteen hundred times that immense sum.

The French have a proverb that "it is the first step that costs" (c'est le premier pas qui coute) but in this case it is the last step that costs and it costs with a vengeance.

While on this subject let me suggest to my readers to figure up the amount of which they will be possessed if they will begin at fifteen years of age and save ten cents per week for sixty years, depositing the money in a savings bank as often as it reaches the amount required for a deposit, and adding the interest every six months. Most persons will be surprised at the result.

S

evenyears after the death of Shakespeare, his collected works were published in a large folio volume, now known as "The First Folio Shakespeare." This was in the year 1623. The price at which the volume was originally sold was one pound, but perhaps we ought to take into consideration the fact that at that time money had a value, or purchasing power, at least eight times that which it has at present; Halliwell-Phillips estimates it at from twelve to twenty times its present value. For this circumstance, however, full allowance may be made by multiplying the ultimate result by the proper number.

This folio is regarded as the most valuable printed book in the English language—the last copy that was offeredfor sale in good condition having brought the record price of nearly $9,000, so that it is safe to assume that a perfect copy, in the condition in which it left the publisher's hands, would readily command $10,000, and the question now arises: What would be the comparative value of the present price, $10,000, and of the original price (one pound) placed at interest and compounded every year since 1623?

Over and over again I have heard it said that the purchasers of the "First Folio" had made a splendid investment and the same remark is frequently used in reference to the purchase of books in general, irrespective of the present intellectual use that may be made of them. Let us make the comparison.

Money placed at compound interest at six per cent, a little more than doubles itself in twelve years. At the present time and for a few years back, six per cent is a high rate, but it is a very low rate for the average. During a large part of the time money brought eight, ten, and twelve per cent per annum, and even within the half century just past it brought seven per cent during a large portion of the time. Now, between 1623 and 1899, there are 23 periods, of 12 years each, and at double progression the twenty-third term, beginning with unity, would be 8,388,608. This, therefore, would be the amount, in pounds, which the volume had cost up to 1899. In dollars it would be $40,794,878.88. An article which costs forty millions of dollars, and sells for ten thousand dollars, cannot be called a very good financial investment.

From a literary or intellectual standpoint, however, the subject presents an entirely different aspect.

Some time ago I asked one of the foremost Shakespearian scholars in the world if he had a copy of the "First Folio."His reply was that he could not afford it; that it would not be wise for him to lose $400 to $500 per year for the mere sake of ownership, when for a very slight expenditure for time and railway fare he could consult any one of half-a-dozen copies whenever he required to do so.

A

good-sizedvolume might be filled with the various arithmetical puzzles which have been propounded. They range from a method of discovering the number which any one may think of to a solution of the "famous" question: "How old is Ann?" Of the following cases one may be considered a "catch" question, while the other is an interesting problem.

A country woman, carrying eggs to a garrison where she had three guards to pass, sold at the first, half the number she had and half an egg more; at the second, the half of what remained and half an egg more; at the third the half of the remainder and half an egg more; when she arrived at the market-place she had three dozen still to sell. How was this possible without breaking any of the eggs?

At first view, this problem seems impossible, for how can half an egg be sold without breaking any? But by taking the greater half of an odd number we take the exact half and half an egg more. If she had 295 eggs before she came to the first guard, she would there sell 148, leaving her 147. At the next she sold 74, leaving her 73. At the next she sold 37, leaving her three dozen.

The second problem is as follows: After the Romans had captured Jotopat, Josephus and forty other Jews sought shelter in a cave, but the refugees were so frightened that, with the exception of Josephus himself and one other, they resolved to kill themselves rather than fall into the hands of their enemies. Failing to dissuade them from this horrid purpose, Josephus used his authority as their chief to insist that they put each other to death in an orderly manner. They were therefore arranged round a circle, and every third man was killed until but two men remained, the understanding being that they were to commit suicide. By placing himself and the other man in the 31st and 16th places, they were the last that were left, and in this way they escaped death.

N

extto that of Euclid, the name of Archimedes is probably that which is the best known of all the mathematicians and mechanics of antiquity, and this is in great part due to the two famous sayings which have been attributed to him, one being "Eureka"—"I have found it," uttered when he discovered the method now universally in use for finding the specific gravity of bodies, and the other being the equally famous dictum which he is said to have addressed to Hiero, King of Sicily,—"Give me a fulcrum and I will raise the earth from its place."

That Archimedes, provided he had been immortal, could have carried out his promise, is mathematically certain, but it occurred to Ozanam to calculate the length of time whichit would take him to move the earth only one inch, supposing his machine constructed and mathematically perfect; that is to say, without friction, without gravity, and in complete equilibrium, and the following is the result:

For this purpose we shall suppose that the matter of which the earth is composed weighs 300 pounds per cubic foot, this being about the ascertained average. If the diameter of the earth be 7,930 miles, the whole globe will be found to contain 261,107,411,765 cubic miles, which make 1,423,499,120,882,544,640,000 cubic yards, or 38,434,476,263,828,705,280,000 cubic feet, and allowing 300 pounds to each cubic foot, we shall have 11,530,342,879,148,611,584,000,000 for the weight of the earth in pounds.

Now, we know, by the laws of mechanics, that, whatever be the construction of a machine, the space passed over by the weight, is to that passed over by the moving power, in the reciprocal ratio of the latter to the former. It is known also, that a man can act with an effort equal only to about 30 pounds for eight or ten hours, without intermission, and with a velocity of about 10,000 feet per hour. If then we suppose the machine of Archimedes to be put in motion by means of a crank, and that the force continually applied to it is equal to 30 pounds, then with the velocity of 10,000 feet per hour, to raise the earth one inch the moving power must pass over the space of 384,344,762,638,287,052,800,000 inches; and if this space be divided by 10,000 feet or 120,000 inches, we shall have for a quotient 3,202,873,021,985,725,440, which will be the number of hours required for this motion. But as a year contains 8,766 hours, a century will contain 876,600; and if we divide the above number of hours by the latter, the quotient, 3,653,745,176,803, will be the number of centuriesduring which it would be necessary to make the crank of the machine continually turn in order to move the earth only one inch. We have omitted the fraction of a century as being of little consequence in a calculation of this kind. The machine is also supposed to be constantly in action, but if it should be worked only eight hours each day, the time required would be three times as long.

So that while it is true that Archimedes could move the world, the space through which he could have moved it, during his whole life, from infancy to old age, is so small that even if multiplied two hundred million times it could not be measured by even the most delicate of our modern measuring instruments.

There is a modern saying which has become almost as famous amongst English-speaking peoples as is that of Archimedes to the world at large. It is that which Bulwer Lytton puts into the mouth of Richelieu, in his well-known play of that name:

"Beneath the rule of men entirely greatThe Pen is Mightier than the Sword."

About thirty years ago it occurred to the writer that these two epigrammatic sayings—that of Archimedes and that of Bulwer Lytton, might be symbolized in an allegorical drawing which would forcibly express the ideas which they contain, and the question immediately arose—Where will Archimedes get his fulcrum and what can he use as a lever?

And the mental answer was: Let the pen be the lever and the printing press the fulcrum, while the sword, used for the same purpose but resting on glory, or in other words, having no substantial fulcrum, breaks in the attempt.The little engraving which, with a new motto, forms a fitting tail-piece to this volume, was the outcome.

It is true that the pen is mighty, and in the hands of philosophers and diplomats it accomplishes much, but it is only when resting on the printing press that it is provided with that fulcrum which enables it to raise the world by diffusing knowledge, inculcating morality, and providing pleasure and culture for humanity at large.

When assigned to such a task the sword breaks, and well it may. But we have a well-grounded hope that through the influence of the pen and the printing press there will soon come an era of universal


Back to IndexNext