CHAPTER IX.
On the Working of Silver.
CHAPTER X.
Enriching the Surfaces of Silver.
CHAPTER XI.
Imitation Silver Alloys.
CHAPTER XII.
Economical Process.
CHAPTER XIII.
Licences and Duties.
CHAPTER XIV.
Useful Information for the Trade.
CHAPTER XV.
THE
SILVERSMITH’S HANDBOOK.
INTRODUCTORY CHAPTER.
In reviewing the rise and progress of the silversmith’s beautiful and interesting art, in its relation to the manufacture of articles of personal ornament and luxury at home and abroad, we may observe at the outset, that the material of which they are composed differs widely in character from that employed by the ordinary “metalsmiths” and the manufacturer of “electro-plated wares.” Silver, the material of which we are now treating, being a precious metal and of considerable value, it is essentially necessary that the most careful means be exercised in dealing with it from the commencement—that is, from the pure or fine state—and also that the utmost economy be observed in reference to the kind of mechanical treatment to which it is subjected in the production of the silversmith’s work, in order to prevent too greata quantity of waste or loss of material. For it should be borne in mind that silver, like gold, begins to lose, in one way or another, every time it is touched; therefore, carefulness and economy will be the characteristics of our teaching, so far as regards the present subject.
The vast majority of working silversmiths know very little of the physical and chemical properties of the metal they employ, and still less of the comparison it bears with other metals in the field of science; and this want of scientific knowledge is nowhere more apparent than in our own country, where the English workman, in art education, is much behind the foreigner; and yet we have some of the finest and best workmen, in theirspecialbranches, in the whole world. The English workman believes that if the work is worth doing at all, it is worth doing well; and we have no hesitation in saying, that, if a good technical education were afforded, concerning the precious metal trades, he would scarcely have an equal, and certainly no superior, abroad, in art workmanship, both in respect to the display of good taste and judgment, combined with a knowledge of design, so far as the exercise of these qualities is compatible with the manufacture of articles specially designed for use and ornament.
The object of the information we are about to supply is to enable the practical silversmith to become a perfect master of his art or profession; and such a condition, when once achieved, will be found of considerable assistance to him in the various kinds of manufacture that present themselves; so that he will know how to begin a piece of work and when to leave it off; be able to remedy a defect in the metal when required, as well as be in a position to form an opinion as to the relative treatment of its different alloys; all of which invariably require different treatment.
We shall commence by describing the characteristics offine silver, carefully narrating the distinctive features of its alloys; then give an account of the processes employed, mechanical and chemical, in the silversmith’s workshop; and conclude by pointing out the difference between English and foreign work in regard both to style and workmanship.
It may be thought by the reader, if uninitiated in the art, that the costly plate and other articles made from the precious metal are manufactured from entirelypuresilver, and therefore that they possess absolute freedom from alloy; but this is not the case. Pure silver being far too soft to stand the necessary wear and tear of (metallic)life, it is mixed with some other metal, to give it increased hardness. In the manufacture of plate and ornamental wares the metal employed is always copper, in various proportions, thus forming different commercial qualities; and of these we shall speak hereafter. Our first object is to treat of the chemical and physical properties of the pure metal.
CHAPTER I.
Silver.
Pure silver is, next to gold, the finest metal, but of a smoother and more polished nature. It may be said to be almost infinitely malleable, but it will not so easily yield or extend under the hammer as fine gold. As a malleable metal, however, it stands next to it in this respect. It is characterized by its perfectly white colour, being the whitest of all the metals. It is harder than gold, yet in a pure state it is so soft that it can easily be cut with a knife. On account of its extreme softness, when in a pure state, it is employed for filigree work, being utterly devoid of that elastic power which is found in the metal when alloyed. It is for this reason that the Indian filigree workers, who are the finest in the world, are so very particular about the absolute purity of the metal before commencing the manufacture of their artistic work; all of which is exceedingly beautiful.
It is reported that fine silver is capable of being beaten into leaves of less than one-hundred-thousandth part of an inch in thickness. For the accuracy of this statement we cannot vouch, never having had occasion to try the experiment; its employment in that form being unknown in the ordinary industrial pursuits. Fine silver is extremely ductile, and may be drawn into the very finest wire without breaking, and almost without annealing. Its purity can be partly ascertained by the latter process; for perfectly fine silver never changes colour by heat, whereas when it contains alloy it blackens if heated in contact with a current of air, and soon hardens in wire-drawing.
Silver was a metallic element known to the ancients, and it is repeatedly mentioned in the Holy Scriptures. In the time of the patriarchs we read of it as having been constantly employed in the transactions of nations, and that it was in use as a standard of value; thus forming a circulating medium for the purpose of exchange. This function it has always continued to fulfil down to the present day, except that since the year 1816 it has not been so employed in the English currency. However, as token money, it is everywhere recognised as a circulating medium of trade. The Egyptian symbol for silver was represented byFig. 1, relating to the moon; in modern chemistry it is understood byag.from the Latin nameargentum, denoting silver.
Luna.Fig. 1.Egyptian mark for Silver.
Luna.Fig. 1.Egyptian mark for Silver.
Fine silver is capable of receiving a polish scarcely inferior in lustre to that of highly polished steel, and in this state it reflects more light and heat than any other metal, without any perceptible change of colour for some considerable time. It is chiefly on this account, as well as its resistance to oxidation in air and water, that it is used for such a variety of purposes, not only of ornament and luxury, but also in a domestic way. Silver, unlike gold, cannot resist the influence of sulphuretted hydrogen, from the action of which it very soon becomes much tarnished if left exposed in damp rooms, &c.
Silver ranks next to gold in point of ductility and malleability. When pure, its density, or specific gravity, lies between 10.47 and 10.50, taking water as 1, according to the degree of compression it has received by rolling and hammering. It is fusible at a full red heat, or about 1873° Fahr. It is a metal having a very low radiating power for heat; hence silver wire of given dimensions retains and conducts heat better than a similar piece of another metal; for the same reason, a liquid containedin a silver vessel retains its heat much longer than if placed in one made of some other substance. Silver volatilises when subjected to a very great temperature in the fire, emitting rather greenish fumes. It loses between 2/21sts and 3/25ths, in proportion to its impurity, of its absolute weight in air when weighed in water. In point of tenacity it occupies the fifth position among the useful metals. In hardness it lies between copper and gold; and a small addition of the former substance considerably increases this quality, in which state it is largely employed in the arts. Nitric acid is the proper solvent for silver, as it dissolves it with the greatest ease and rapidity, formingnitrateof silver, which is much used for medical purposes, and in art. Sulphuric and hydrochloric acids act upon it but slowly in the cold. Silver resists partially the best aqua-regia, probably on account of the dense chloride which forms on the surface of the metal, from the action of the hydrochloric acid in the mixture of aqua-regia.
Fine silver is largely used in the industrial and commercial arts, in the manufacture of silver lace and fine filigree work; the latter branch being more commonly practised in India, Sweden, Norway, and some parts of Germany, where labour is cheap, than in England. This class of silversmith’swork takes a long time to produce, and as labour forms the chief item of its cost, this, not unnaturally, acts as a great drawback in the extension of the art of very fine filigree working, in all its intricate variety, in countries where labour is dear. To this subject we shall subsequently refer again in detail. Fine silver, with a small proportion of alloy, is largely used by all nations for purposes of coinage. It amalgamates with nearly all the metals, but is principally used in alloys suitable to the watchmaker’s and silversmith’s art. The purchasable price of fine silver for manufacturing purposes, which in 1884 was 4s.8d.is now, 1921, 3s.per ounce, troy weight, varying however in value according to the total amounts purchased; for which see refiners' and assayers' charge lists, to be procured at the offices of any bullion dealer. The silver ores of commerce have generally an intermixture of a small quantity of gold, and sometimes instances have occurred in which it has been employed in manufactures without a proper chemical investigation; and in such cases the loss resulting from the omission would have amply paid the expenses of the process.
Exposed to the action of hot and concentrated sulphuric acid, silver dissolves, setting free sulphurous acid. By the application of this process—whichis one of the most advantageous methods—silver may readily be separated from gold, sulphuric acid having no action upon the latter metal. With the exception of gold, silver perhaps more perfectly resists the action of thecaustic alkaliesand the powerful effects ofnitre(saltpetre) than any other metal, if we omit platinum from the list of elements at present known to metallurgical chemistry. For reasons such as these its superiority for the manufacture of utensils for culinary and other domestic purposes is at once apparent, and because it is a metal upon whichvegetable acidsproduce no effect.
CHAPTER II.
Sources of Silver.
Strictly speaking, silver mining does not exist as a distinct operation in Great Britain, for it can hardly be said that this country possesses any great quantity of silver ore. Yet we must not disguise or leave unnoticed, in dealing with this subject, the positive fact that silver is found to some extent in our copper and lead mines, principally in the latter; but in no case, as far as we know, have mines been worked for the sake of the silver alone. It is almost always found in conjunction with lead, and it is from that source that we have a good supply of British silver. The average annual yield in the British Isles for some years has been equal to 800,000 ounces—a position in regard to the quantity produced ranking second only to Spain amongst the nations of the world, America, of course, being excepted. Silver is found in a native state, the commonest ore being a sulphuret.
The chief European supplies are derived from Spain, in which country genuine silver ore exists; from Saxony and Prussia, where the ores are principally associated with lead, as in England; and from Austria, where it is for the greater part found mixed with copper. Silver is nearly always to be found in copper and lead mines, but generally in such small quantities that it is rarely worth the trouble and expense of separation.
Considerably more than three-fourths of the whole total supply of silver comes from America; and in fact nearly the whole territory of America is said to be more or less argentiferous. Until lately Mexico carried off the palm, as containing and yielding the largest percentage of silver; but through the discovery of another mine in the United States, at Nevada, of considerable richness, which has yielded enormous supplies, we shall not be far wrong in pronouncing the silver mines in the State of Nevada to be the richest in the whole world. The extensive production of these mines, combined with other causes, has led to a considerable depreciation in the value of silver, and probably this may yet lead to its more extensive employment in the arts and manufactures; and, in the midst of the very general depression of the jewellery trade, any change extending in that direction would bejoyfully accepted by the thousands of workmen in the precious metal trades now standing idle. We are told that, since the year 1860, the production of silver has increased from an average yield of eight or nine to fourteen millions per annum, or about 60 per cent.; while, on the other hand, the foreign demand for the metal (formerly largely employed for the currency) has greatly diminished. The rise in cost of silver during the war years and those immediately following necessitated an Act in Great Britain “to amend the law in respect of the standard fineness of silver coins current in the United Kingdom and in other parts of His Majesty’s Dominions.”
The chief sources of supply in the British Isles, according to Professor George Gladstone, are as given below; and as all the silver found in this country is produced from lead ores, the average yield here given must be understood to exist in about that proportion to every ton of lead ore assayed:—Isle of Man, 50 to 60 oz.; Cornwall, about 30 oz.; Devonshire, about 30 oz.; Cardiganshire, 15 to 20 oz.; Montgomeryshire, 15 to 20 oz. Thus, it will be seen the lead ores of the Isle of Man yield the greatest proportion of silver in the British dominions. Silver is also found in the undermentioned counties, in all of which it is produced from lead ore:—Cumberland, Durham, and Northumberland,Denbighshire, Flintshire, and Derbyshire; but the percentage is much smaller than in the preceding cases. Ireland also yields a fair percentage of silver.
CHAPTER III.
The Assay of Silver Ores.
A large proportion of the silver of commerce is extracted from ores (which are too poor to allow of their being smelted or fused) by a process called amalgamation. Founded on the ready solubility of silver, &c., in metallic mercury, the ore is first crushed to powder, then mixed with common salt, and afterwards roasted. By the adoption of this plan the silver is reduced to a state of chloride. The roasting is done in a reverberatory furnace, in which the heat is very gradually raised, the ore being constantly stirred; the heat is then increased sufficiently to raise the ore to a good red heat. It is then put into wooden barrels, revolving on iron axles attached to the ends, and scraps of iron are then added to it; both are then agitated together by rotary motion, the effect of which is to reduce the chloride of silver to a metallic state. When this is effected, it is again agitated with mercury,and a fluid amalgam is formed with the metal, together with any other metallic ingredient that may happen to be present in the roasted ore. Subsequently, to recover the silver, the mercury is driven off by heat, and the silver is thus left behind in an impure state.
There are three ways of assaying silver ores; they are in thetestassay as follows:—
1. Melting in a crucible.2. Scorification.3. Cupellation.
In the crucible assay the ore is commonly run down with a suitable flux, those most frequently employed being litharge, carbonate of soda, borax, and charcoal. These four substances are all that are required by the practical assayer in the treatment of the regular ores of silver.